JP2013245633A - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP2013245633A
JP2013245633A JP2012121007A JP2012121007A JP2013245633A JP 2013245633 A JP2013245633 A JP 2013245633A JP 2012121007 A JP2012121007 A JP 2012121007A JP 2012121007 A JP2012121007 A JP 2012121007A JP 2013245633 A JP2013245633 A JP 2013245633A
Authority
JP
Japan
Prior art keywords
injection
waveform
fuel
pressure
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012121007A
Other languages
Japanese (ja)
Other versions
JP5565435B2 (en
Inventor
Sumitaka Ikeda
純孝 池田
Naoyuki Yamada
直幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012121007A priority Critical patent/JP5565435B2/en
Priority to DE102013105355.6A priority patent/DE102013105355B4/en
Priority to CN201310296382.2A priority patent/CN103511106B/en
Publication of JP2013245633A publication Critical patent/JP2013245633A/en
Application granted granted Critical
Publication of JP5565435B2 publication Critical patent/JP5565435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0618Actual fuel injection timing or delay, e.g. determined from fuel pressure drop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device which can accurately calculate the maximum injection rate in a target injection by making any injection on a second and following stages among multistage injection be a target injection.SOLUTION: An ECU 30 obtains a detection waveform at multistage injection detected with a fuel pressure sensor 20 when performing multistage injection, and stores a model waveform as a reference of a pressure waveform when performing injection at a stage earlier than the target injection without performing the target injection to extract the target waveform caused by the target injection by deducting the model waveform from the detection waveform at multistage injection. The ECU 30 calculates a reference pressure based on a fuel pressure when the injection is not performed in the target waveform, and calculates the maximum injection rate at the target injection based on a first parameter indicating a degree of the fuel pressure lowered from the reference pressure associated with the performance of the target injection in the target waveform and on a second parameter reflecting the fuel pressure of the model waveform when the target injection is performed.

Description

本発明は、内燃機関の燃料噴射弁から燃料を噴射させることに伴い生じる燃料圧力の変化に基づいて、対象噴射での噴射状態を把握して燃料噴射弁の作動を制御する燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device for controlling the operation of a fuel injection valve by grasping an injection state in target injection based on a change in fuel pressure caused by injecting fuel from a fuel injection valve of an internal combustion engine. .

内燃機関の出力トルク及びエミッション状態を精度良く制御するには、燃料噴射弁から噴射される燃料の噴射量及び噴射開始時期等、その噴射状態を精度良く制御することが重要である。そこで特許文献1には、噴孔に至るまでの燃料供給経路内で噴射に伴い生じる燃料圧力の変化を燃圧センサで検出することで、実際の噴射での噴射率波形(噴射状態)を検出している。そして、この噴射率波形に基づき次回からの噴射指令信号を設定することで、噴射状態を所望する状態に精度良く制御することを図っている。   In order to accurately control the output torque and the emission state of the internal combustion engine, it is important to accurately control the injection state such as the injection amount of fuel injected from the fuel injection valve and the injection start timing. Therefore, in Patent Document 1, an injection rate waveform (injection state) in actual injection is detected by detecting a change in fuel pressure caused by injection in the fuel supply path up to the nozzle hole with a fuel pressure sensor. ing. Then, by setting an injection command signal from the next time based on this injection rate waveform, the injection state is controlled to a desired state with high accuracy.

特開2010−3004号公報JP 2010-3004 A

ところで、1燃焼サイクルあたりに燃料噴射を複数回行う多段噴射を実施する場合には次の点に留意する必要がある。すなわち、多段噴射を実施している時に燃圧センサにより検出された圧力波形(多段噴射時検出波形)には、対象噴射よりも前段の噴射に起因して生じる波形成分の余波が重畳している。   By the way, it is necessary to pay attention to the following points when performing multistage injection in which fuel injection is performed a plurality of times per one combustion cycle. That is, the aftermath of the waveform component resulting from the injection preceding the target injection is superimposed on the pressure waveform (detection waveform at the time of multistage injection) detected by the fuel pressure sensor when performing the multistage injection.

そこで上記特許文献1では、前段噴射を単段で実施している時の圧力波形を数式で表したモデル波形を予め記憶させておき、上記の多段噴射時検出波形からモデル波形を差し引くことで、対象噴射に起因した圧力波形(対象波形)を抽出している。そして、その抽出した対象波形に基づいて、実際の噴射状態を検出している。   Therefore, in Patent Document 1, by storing in advance a model waveform that represents the pressure waveform when the pre-injection is performed in a single stage as a mathematical formula, and subtracting the model waveform from the detection waveform during multi-stage injection, The pressure waveform (target waveform) resulting from the target injection is extracted. Then, the actual injection state is detected based on the extracted target waveform.

しかしながら、本発明者が各種試験を実施したところ、対象波形に基づき算出した最大噴射率と実際の最大噴射率とにずれが生じることが分かった。すなわち、対象波形は、モデル波形を基準とした相対的な圧力変化を示すため、対象波形とは別にモデル波形が最大噴射率に及ぼす影響が打ち消されることとなる。   However, when the inventor conducted various tests, it was found that there was a difference between the maximum injection rate calculated based on the target waveform and the actual maximum injection rate. That is, since the target waveform indicates a relative pressure change with the model waveform as a reference, the influence of the model waveform on the maximum injection rate is canceled separately from the target waveform.

本発明は、上記課題を解決するためになされたものであり、その目的は、多段噴射のうち2段目以降のいずれかの噴射を対象噴射とし、その対象噴射での最大噴射率を高精度で算出することのできる燃料噴射制御装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and the object thereof is to set any one of the second and subsequent stages of the multistage injection as the target injection, and the maximum injection rate in the target injection is highly accurate. It is providing the fuel-injection control apparatus which can be calculated by.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1に記載の発明は、内燃機関で燃焼させる燃料を噴孔(11b)から噴射する燃料噴射弁(10)と、前記噴孔に至るまでの燃料供給経路(42b、11a)内の燃料圧力を検出する燃圧センサ(20)と、を備えた燃料噴射システムに適用される燃料噴射制御装置であって、前記内燃機関の1燃焼サイクル中に燃料を複数回噴射する多段噴射を実施している時に、前記燃圧センサにより検出される前記燃料圧力の変化を示す圧力波形を、多段噴射時検出波形として取得する検出波形取得手段と、前記多段噴射のうち2段目以降のいずれかの噴射を対象噴射とした場合に、前記対象噴射を実施することなく前記対象噴射よりも前段の噴射を実施した時の、前記圧力波形の規範となるモデル波形(Wm)を記憶しているモデル波形記憶手段と、前記モデル波形を前記多段噴射時検出波形から差し引いて、前記対象噴射に起因した圧力波形を対象波形(Wt)として抽出する対象波形抽出手段と、前記対象波形において前記燃料噴射弁による噴射が実施されていない時の燃料圧力に基づいて、基準圧力(Pbase)を算出する基準圧力算出手段と、前記対象波形において前記対象噴射の実施に伴い前記基準圧力から燃料圧力が下降した度合いを示す第1パラメータ(ΔPγ、ΔP)と、前記対象噴射を実施している時の前記モデル波形の燃料圧力を反映する第2パラメータ(ΔPdif)とに基づいて、前記対象噴射での最大噴射率(Rmax)を算出する最大噴射率算出手段と、を備えることを特徴とする。   The invention according to claim 1 is a fuel injection valve (10) for injecting fuel to be burned in an internal combustion engine from an injection hole (11b), and fuel in a fuel supply path (42b, 11a) to the injection hole. A fuel injection control device applied to a fuel injection system including a fuel pressure sensor (20) for detecting pressure, and performing multi-stage injection for injecting fuel multiple times during one combustion cycle of the internal combustion engine A detection waveform acquisition means for acquiring a pressure waveform indicating a change in the fuel pressure detected by the fuel pressure sensor as a detection waveform during multi-stage injection, and any one of the second and subsequent stages of the multi-stage injection. A model waveform memory that stores a model waveform (Wm) that serves as a reference for the pressure waveform when the injection is performed before the target injection without performing the target injection. Subtracting the model waveform from the detection waveform at the time of multistage injection and extracting the pressure waveform resulting from the target injection as a target waveform (Wt); and injection by the fuel injection valve in the target waveform Reference pressure calculating means for calculating a reference pressure (Pbase) based on the fuel pressure when not being implemented, and a first level indicating the degree to which the fuel pressure has decreased from the reference pressure in the target waveform as the target injection is performed. Based on one parameter (ΔPγ, ΔP) and a second parameter (ΔPdif) reflecting the fuel pressure of the model waveform when the target injection is being performed, the maximum injection rate (Rmax) in the target injection And a maximum injection rate calculating means for calculating.

上記構成によれば、燃料噴射弁により燃料の噴射が実施された時に、燃圧センサにより、噴孔に至るまでの燃料供給経路内の燃料圧力が検出される。そして、多段噴射を実施している時に、燃圧センサにより検出される燃料圧力の変化を示す圧力波形が、多段噴射時検出波形として取得される。   According to the above configuration, when fuel is injected by the fuel injection valve, the fuel pressure in the fuel supply path up to the injection hole is detected by the fuel pressure sensor. And the pressure waveform which shows the change of the fuel pressure detected by a fuel pressure sensor when performing multistage injection is acquired as a detection waveform at the time of multistage injection.

モデル波形記憶手段には、多段噴射のうち2段目以降のいずれかの噴射を対象噴射とした場合に、対象噴射を実施することなく対象噴射よりも前段の噴射を実施した時の、圧力波形の規範となるモデル波形が記憶されている。そして、モデル波形が多段噴射時検出波形から差し引かれることで、対象噴射に起因した圧力波形が対象波形として抽出される。また、対象波形において燃料噴射弁による噴射が実施されていない時の燃料圧力に基づいて、基準圧力が算出される。   In the model waveform storage means, when any one of the second and subsequent stages of the multistage injection is set as the target injection, the pressure waveform when the injection before the target injection is performed without performing the target injection. The model waveform that is the norm of the is stored. And a pressure waveform resulting from object injection is extracted as an object waveform by subtracting a model waveform from a detection waveform at the time of multi-stage injection. Further, the reference pressure is calculated based on the fuel pressure when the injection by the fuel injection valve is not performed in the target waveform.

そして、対象波形において対象噴射の実施に伴い基準圧力から燃料圧力が下降した度合いを示す第1パラメータと、対象噴射を実施している時のモデル波形の燃料圧力を反映する第2パラメータとに基づいて、対象噴射での最大噴射率が算出される。ここで、対象波形において対象噴射の実施に伴い基準圧力から燃料圧力が下降した度合いを示す第1パラメータは、対象噴射での最大噴射率と強い相関がある。また、対象噴射を実施している時のモデル波形の燃料圧力を反映する第2パラメータは、対象波形とは別にモデル波形が最大噴射率に及ぼす影響を反映する。このため、対象噴射での最大噴射率と強い相関のある第1パラメータに加えて、モデル波形が最大噴射率に及ぼす影響を反映する第2パラメータにも基づいて、最大噴射率が算出される。その結果、対象波形に基づいて対象噴射での最大噴射率を算出する場合に、最大噴射率を高精度で算出することができる。   And based on the 1st parameter which shows the degree to which fuel pressure fell from the standard pressure with implementation of object injection in an object waveform, and the 2nd parameter which reflects fuel pressure of a model waveform at the time of performing object injection. Thus, the maximum injection rate in the target injection is calculated. Here, in the target waveform, the first parameter indicating the degree to which the fuel pressure has decreased from the reference pressure with the execution of the target injection has a strong correlation with the maximum injection rate in the target injection. In addition, the second parameter reflecting the fuel pressure of the model waveform when the target injection is performed reflects the influence of the model waveform on the maximum injection rate separately from the target waveform. For this reason, in addition to the first parameter having a strong correlation with the maximum injection rate in the target injection, the maximum injection rate is calculated based on the second parameter that reflects the influence of the model waveform on the maximum injection rate. As a result, when the maximum injection rate in the target injection is calculated based on the target waveform, the maximum injection rate can be calculated with high accuracy.

請求項4に記載の発明は、内燃機関で燃焼させる燃料を噴孔(11b)から噴射する燃料噴射弁(10)と、前記噴孔に至るまでの燃料供給経路(42b、11a)内の燃料圧力を検出する燃圧センサ(20)と、を備えた燃料噴射システムに適用される燃料噴射制御装置であって、前記内燃機関の1燃焼サイクル中に燃料を複数回噴射する多段噴射を実施している時に、前記燃圧センサにより検出される前記燃料圧力の変化を示す圧力波形を、多段噴射時検出波形として取得する検出波形取得手段と、前記多段噴射のうち2段目以降のいずれかの噴射を対象噴射とした場合に、前記対象噴射を実施することなく前記対象噴射よりも前段の噴射を実施した時の、前記圧力波形の規範となるモデル波形(Wm)を記憶しているモデル波形記憶手段と、前記モデル波形を前記多段噴射時検出波形から差し引いて、前記対象噴射に起因した圧力波形を対象波形(Wt)として抽出する対象波形抽出手段と、前記多段噴射時検出波形において前記燃料噴射弁による噴射が実施されていない時の燃料圧力である第1パラメータ(Pi、Pc)と、前記対象噴射を実施している時の前記モデル波形の燃料圧力を反映する第2パラメータ(ΔPdif)とに基づいて、前記対象噴射での最大噴射率(Rmax)を算出する最大噴射率算出手段と、を備えることを特徴とする。   According to a fourth aspect of the present invention, there is provided a fuel injection valve (10) for injecting fuel combusted in an internal combustion engine from an injection hole (11b), and fuel in a fuel supply path (42b, 11a) to the injection hole. A fuel injection control device applied to a fuel injection system including a fuel pressure sensor (20) for detecting pressure, and performing multi-stage injection for injecting fuel multiple times during one combustion cycle of the internal combustion engine A detection waveform acquisition means for acquiring a pressure waveform indicating a change in the fuel pressure detected by the fuel pressure sensor as a detection waveform during multi-stage injection, and any one of the second and subsequent stages of the multi-stage injection. A model waveform memory that stores a model waveform (Wm) that serves as a reference for the pressure waveform when the injection is performed before the target injection without performing the target injection. Subtracting the model waveform from the detection waveform at the time of multistage injection to extract a pressure waveform resulting from the target injection as a target waveform (Wt), and the fuel injection valve in the detection waveform at the time of multistage injection The first parameter (Pi, Pc) that is the fuel pressure when the injection by the engine is not performed, and the second parameter (ΔPdif) that reflects the fuel pressure of the model waveform when the target injection is performed And a maximum injection rate calculating means for calculating a maximum injection rate (Rmax) in the target injection.

上記構成によれば、多段噴射時検出波形において燃料噴射弁による噴射が実施されていない時の燃料圧力である第1パラメータと、対象噴射を実施している時のモデル波形の燃料圧力を反映する第2パラメータとに基づいて、対象噴射での最大噴射率が算出される。ここで、多段噴射時検出波形において燃料噴射弁による噴射が実施されていない時の燃料圧力である第1パラメータは、対象噴射での最大噴射率と強い相関がある。また、対象噴射を実施している時のモデル波形の燃料圧力を反映する第2パラメータは、対象波形とは別にモデル波形が最大噴射率に及ぼす影響を反映する。このため、対象噴射での最大噴射率と強い相関のある第1パラメータに加えて、モデル波形が最大噴射率に及ぼす影響を反映する第2パラメータにも基づいて、最大噴射率が算出される。その結果、対象噴射での最大噴射率を高精度で算出することができる。   According to the above configuration, the first parameter that is the fuel pressure when the injection by the fuel injection valve is not performed in the detection waveform at the time of multistage injection, and the fuel pressure of the model waveform when the target injection is performed are reflected. Based on the second parameter, the maximum injection rate in the target injection is calculated. Here, the first parameter, which is the fuel pressure when the injection by the fuel injection valve is not performed in the detection waveform at the time of multistage injection, has a strong correlation with the maximum injection rate in the target injection. In addition, the second parameter reflecting the fuel pressure of the model waveform when the target injection is performed reflects the influence of the model waveform on the maximum injection rate separately from the target waveform. For this reason, in addition to the first parameter having a strong correlation with the maximum injection rate in the target injection, the maximum injection rate is calculated based on the second parameter that reflects the influence of the model waveform on the maximum injection rate. As a result, the maximum injection rate in the target injection can be calculated with high accuracy.

燃料噴射制御装置が適用された燃料噴射システムの概略を示す模式図。The schematic diagram which shows the outline of the fuel-injection system to which the fuel-injection control apparatus was applied. 噴射指令信号に対応する噴射率及び燃圧の変化を示すタイムチャート。The time chart which shows the change of the injection rate and fuel pressure corresponding to an injection command signal. 図1のECUの機能のうち、燃料噴射弁に対する噴射指令信号の設定等の機能を説明するブロック図。The block diagram explaining functions, such as the setting of the injection command signal with respect to a fuel injection valve, among the functions of ECU of FIG. 噴射率パラメータを算出する手順を示すフローチャート。The flowchart which shows the procedure which calculates an injection rate parameter. 噴射時燃圧波形、非噴射時燃圧波形、噴射波形を示すタイムチャート。The time chart which shows the fuel pressure waveform at the time of injection, the fuel pressure waveform at the time of non-injection, and the injection waveform. 前段噴射から対象噴射までの噴射間隔と実噴射量との関係を示すグラフ。The graph which shows the relationship between the injection space | interval from a front | former stage injection to object injection, and an actual injection quantity. 実噴射率、多段噴射時検出波形、対象波形を示すタイムチャート。The time chart which shows an actual injection rate, the detection waveform at the time of multistage injection, and an object waveform. 噴射指令信号、多段噴射時検出波形、対象波形を示すタイムチャート。The time chart which shows an injection command signal, the detection waveform at the time of multistage injection, and a target waveform. モデル圧力差の変形例を示すタイムチャート。The time chart which shows the modification of a model pressure difference.

以下、燃料噴射制御装置を具体化した一実施形態を図面に基づいて説明する。本実施形態の燃料噴射制御装置は、車両用のエンジン(内燃機関)に搭載されたものであり、このエンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, an embodiment embodying a fuel injection control device will be described with reference to the drawings. The fuel injection control device of the present embodiment is mounted on a vehicle engine (internal combustion engine), and in this engine, high pressure fuel is injected into a plurality of cylinders # 1 to # 4 to perform compression auto-ignition combustion. A diesel engine is assumed.

図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ20、及び車両に搭載された電子制御装置であるECU30等を示す模式図である。   FIG. 1 is a schematic diagram showing a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on each fuel injection valve 10, an ECU 30 that is an electronic control device mounted on a vehicle, and the like. is there.

まず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、燃料ポンプ41によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。   First, an engine fuel injection system including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped and stored in the common rail 42 (pressure accumulating container) by the fuel pump 41, and distributed and supplied to the fuel injection valves 10 (# 1 to # 4) of each cylinder. The plurality of fuel injection valves 10 (# 1 to # 4) sequentially inject fuel in a preset order.

なお、燃料ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して燃料は圧送される。そして、燃料ポンプ41はエンジン出力を駆動源としてクランク軸により駆動するので、1燃焼サイクル中に決められた回数だけ燃料ポンプ41から燃料を圧送することとなる。   In addition, since the plunger pump is used for the fuel pump 41, fuel is pumped in synchronism with the reciprocating motion of the plunger. Since the fuel pump 41 is driven by the crankshaft using the engine output as a drive source, the fuel is pumped from the fuel pump 41 a predetermined number of times during one combustion cycle.

燃料噴射弁10は、以下に説明するボデー11、ニードル形状の弁体12及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。弁体12は、ボデー11内に収容されて噴孔11bを開閉する。   The fuel injection valve 10 includes a body 11, a needle-shaped valve body 12, an actuator 13, and the like described below. The body 11 forms a high-pressure passage 11a inside and a nozzle hole 11b for injecting fuel. The valve body 12 is accommodated in the body 11 and opens and closes the nozzle hole 11b.

ボデー11内には弁体12に背圧を付与する背圧室11cが形成されており、高圧通路11a及び低圧通路11dは背圧室11cと接続されている。高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は、制御弁14により切り替えられる。電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、背圧室11cが低圧通路11dと連通して背圧室11c内の燃料圧力は低下する。その結果、弁体12へ付与される背圧が低下して、弁体12がリフトアップ(開弁作動)する。これにより、弁体12のシート面12aがボデー11のシート面11eから離れて、噴孔11bから燃料が噴射される。   A back pressure chamber 11c for applying a back pressure to the valve body 12 is formed in the body 11, and the high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11a and the low pressure passage 11d and the back pressure chamber 11c is switched by the control valve 14. When the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized and the control valve 14 is pushed down in FIG. 1, the back pressure chamber 11c communicates with the low pressure passage 11d and the fuel pressure in the back pressure chamber 11c decreases. . As a result, the back pressure applied to the valve body 12 is lowered, and the valve body 12 is lifted up (opening operation). Thereby, the seat surface 12a of the valve body 12 is separated from the seat surface 11e of the body 11, and fuel is injected from the injection hole 11b.

一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、背圧室11cが高圧通路11aと連通して背圧室11c内の燃料圧力は上昇する。その結果、弁体12へ付与される背圧が上昇して、弁体12はリフトダウン(閉弁作動)する。これにより、弁体12のシート面12aがボデー11のシート面11eに当接して、噴孔11bからの燃料噴射が停止される。   On the other hand, when the power supply to the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the back pressure chamber 11c communicates with the high pressure passage 11a and the fuel pressure in the back pressure chamber 11c increases. As a result, the back pressure applied to the valve body 12 rises, and the valve body 12 is lifted down (closed valve operation). Thereby, the seat surface 12a of the valve body 12 contacts the seat surface 11e of the body 11, and the fuel injection from the injection hole 11b is stopped.

したがって、ECU30がアクチュエータ13への通電を制御することで、弁体12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、弁体12の開閉作動に応じて噴孔11bから噴射される。   Therefore, the ECU 30 controls the energization of the actuator 13 so that the opening / closing operation of the valve body 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the valve body 12.

燃圧センサ20は、全ての燃料噴射弁10に搭載されており、以下に説明するステム21(起歪体)及び圧力センサ素子22等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号をECU30へ出力する。   The fuel pressure sensor 20 is mounted on all the fuel injection valves 10 and includes a stem 21 (a strain generating body) and a pressure sensor element 22 described below. The stem 21 is attached to the body 11, and the diaphragm portion 21a formed on the stem 21 is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a. The pressure sensor element 22 is attached to the diaphragm portion 21a, and outputs a pressure detection signal to the ECU 30 in accordance with the amount of elastic deformation generated in the diaphragm portion 21a.

ECU30は、アクセルペダルの操作量やエンジン負荷、エンジン回転速度NE等に基づき目標噴射状態(例えば噴射段数、噴射開始時期、噴射終了時期、噴射量等)を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態を、噴射状態マップにして記憶させておく。そして、現状のエンジン負荷及びエンジン回転速度に基づき、噴射状態マップを参照して目標噴射状態を算出する。そして、算出した目標噴射状態に対応する噴射指令信号t1、t2、Tq(図2(a)参照)を、後に詳述する噴射率パラメータtd,te,Rα,Rβ,Rmaxに基づき設定し、燃料噴射弁10へ出力することで燃料噴射弁10の作動を制御する。ECU30(モデル波形記憶手段)は、多段噴射のうち2段目以降のいずれかの噴射を対象噴射とした場合に、対象噴射を実施することなく対象噴射よりも前段の噴射を実施した時の、圧力波形の規範となるモデル波形を記憶している。このモデル波形は数式で表されて記憶されている。   The ECU 30 calculates a target injection state (for example, the number of injection stages, the injection start timing, the injection end timing, the injection amount, etc.) based on the operation amount of the accelerator pedal, the engine load, the engine rotational speed NE, and the like. For example, the optimal injection state corresponding to the engine load and the engine speed is stored as an injection state map. Based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map. Then, the injection command signals t1, t2, and Tq (see FIG. 2A) corresponding to the calculated target injection state are set based on the injection rate parameters td, te, Rα, Rβ, and Rmax described in detail later, and the fuel By outputting to the injection valve 10, the operation of the fuel injection valve 10 is controlled. The ECU 30 (model waveform storage means), when any one of the second and subsequent stages of the multi-stage injection is set as the target injection, the injection before the target injection is performed without performing the target injection. A model waveform that serves as a reference for the pressure waveform is stored. This model waveform is expressed and stored as a mathematical expression.

次に、燃料噴射弁10からの燃料の噴射を制御する噴射制御の手法について、図2〜図5を用いて以下に説明する。   Next, an injection control method for controlling fuel injection from the fuel injection valve 10 will be described below with reference to FIGS.

燃圧センサ20の検出値に基づいて、噴射に伴い生じた燃料圧力の時間に対する変化を示す圧力波形(図2(c)参照)を検出する。検出した圧力波形に基づいて、時間に対する噴射率の変化を示す噴射率波形(図2(b)参照)を算出する。そして、算出した噴射率波形(噴射状態)を特定する噴射率パラメータRα,Rβ,Rmaxを学習するとともに、噴射指令信号(パルスオン時期t1及びパルスオン期間Tq)と噴射状態との相関関係を特定する噴射率パラメータtd,teを学習する。   Based on the detection value of the fuel pressure sensor 20, a pressure waveform (see FIG. 2C) showing a change with time of the fuel pressure caused by the injection is detected. Based on the detected pressure waveform, an injection rate waveform (see FIG. 2B) indicating a change in the injection rate with respect to time is calculated. Then, the injection rate parameters Rα, Rβ, and Rmax that specify the calculated injection rate waveform (injection state) are learned, and the injection that specifies the correlation between the injection command signal (pulse-on timing t1 and pulse-on period Tq) and the injection state The rate parameters td and te are learned.

具体的には、圧力波形のうち、噴射開始に伴い燃圧が下降を開始する変曲点P1から下降が終了する変曲点P2までの下降波形を、最小二乗法等により直線に近似した下降近似直線Lαを算出する。そして、下降近似直線Lαのうち、燃圧が基準値Bαとなる時期(LαとBαとが交わる交点時期LBα)を算出する。この交点時期LBαと噴射開始時期R1とは相関が強いことに着目し、交点時期LBαに基づき噴射開始時期R1を算出する。例えば、交点時期LBαよりも所定の遅れ時間Cαだけ前の時期を噴射開始時期R1として算出すればよい。   Specifically, in the pressure waveform, a descending approximation in which the descending waveform from the inflection point P1 at which the fuel pressure starts to descend with the start of injection to the inflection point P2 at which the descending ends is approximated to a straight line by the least square method or the like A straight line Lα is calculated. Then, a time at which the fuel pressure becomes the reference value Bα (intersection time LBα where Lα and Bα intersect) is calculated from the descending approximate straight line Lα. Focusing on the fact that the intersection time LBα and the injection start time R1 are strongly correlated, the injection start time R1 is calculated based on the intersection time LBα. For example, a timing that is a predetermined delay time Cα before the intersection timing LBα may be calculated as the injection start timing R1.

また、圧力波形のうち、噴射終了に伴い燃圧上昇を開始する変曲点P3から上昇が終了する変曲点P5までの上昇波形を、最小二乗法等により直線に近似した上昇近似直線Lβを算出する。そして、上昇近似直線Lβのうち、燃圧が基準値Bβとなる時期(LβとBβとが交わる交点時期LBβ)を算出する。この交点時期LBβと噴射終了時期R4とは相関が強いことに着目し、交点時期LBβに基づき噴射終了時期R4を算出する。例えば、交点時期LBβよりも所定の遅れ時間Cβだけ前の時期を噴射終了時期R4として算出すればよい。   Also, a rising approximate line Lβ is calculated by approximating the rising waveform from the inflection point P3 at which the fuel pressure rises at the end of injection to the inflection point P5 at which the rise ends from the pressure waveform by a least square method or the like. To do. Then, a time at which the fuel pressure becomes the reference value Bβ (intersection time LBβ where Lβ and Bβ intersect) is calculated from the rising approximate straight line Lβ. Focusing on the strong correlation between the intersection time LBβ and the injection end time R4, the injection end time R4 is calculated based on the intersection time LBβ. For example, a timing that is a predetermined delay time Cβ before the intersection timing LBβ may be calculated as the injection end timing R4.

次に、下降近似直線Lαの傾きと噴射率上昇の傾きとは相関が強いことに着目し、図2(b)に示す噴射率波形のうち噴射率上昇を示す直線Rαの傾きを、下降近似直線Lαの傾きに基づき算出する。例えば、Lαの傾きに所定の係数を掛けてRαの傾きを算出すればよい。同様にして、上昇近似直線Lβの傾きと噴射率下降の傾きとは相関が強いので、噴射率波形のうち噴射率下降を示す直線Rβの傾きを、上昇近似直線Lβの傾きに基づき算出する。   Next, paying attention to the strong correlation between the slope of the descending approximate line Lα and the slope of increasing the injection rate, the slope of the straight line Rα showing the increasing rate of injection in the injection rate waveform shown in FIG. Calculation is based on the slope of the straight line Lα. For example, the slope of Rα may be calculated by multiplying the slope of Lα by a predetermined coefficient. Similarly, since the inclination of the rising approximate line Lβ and the inclination of the injection rate decrease are strongly correlated, the inclination of the straight line Rβ indicating the decrease in the injection rate in the injection rate waveform is calculated based on the inclination of the rising approximate line Lβ.

次に、噴射率波形の直線Rα,Rβに基づき、噴射終了を指令したことに伴い弁体12がリフトダウンを開始する時期(閉弁作動開始時期R23)を算出する。具体的には、両直線Rα,Rβの交点を算出し、その交点時期を閉弁作動開始時期R23として算出する。また、噴射開始時期R1の噴射開始指令時期t1に対する遅れ時間(噴射開始遅れ時間td)を算出する。また、閉弁作動開始時期R23の噴射終了指令時期t2に対する遅れ時間(噴射終了遅れ時間te)を算出する。   Next, based on the straight lines Rα and Rβ of the injection rate waveform, a timing (valve closing operation start timing R23) at which the valve body 12 starts lift-down in response to the command to end injection is calculated. Specifically, the intersection of both straight lines Rα and Rβ is calculated, and the intersection timing is calculated as the valve closing operation start timing R23. Further, a delay time (injection start delay time td) with respect to the injection start command timing t1 of the injection start timing R1 is calculated. Further, a delay time (injection end delay time te) with respect to the injection end command timing t2 of the valve closing operation start timing R23 is calculated.

また、下降近似直線Lα及び上昇近似直線Lβの交点に対応した圧力を交点圧力Pαβとして算出し、後に詳述する基準圧力Pbaseと交点圧力Pαβとの圧力差ΔPγを算出する。圧力差ΔPγ(第1パラメータ)は、圧力波形(対象波形)において対象噴射の実施に伴い基準圧力Pbaseから燃料圧力が下降した度合いを示す。この圧力差ΔPγと最大噴射率Rmaxとは相関が強いことに着目し、圧力差ΔPγに基づき最大噴射率Rmaxを算出する。具体的には、圧力差ΔPγに相関係数Cγを掛けることで最大噴射率Rmaxを算出する。圧力差ΔPγが大きいほど、最大噴射率Rmaxは大きく算出される。但し、圧力差ΔPγが所定値ΔPγth未満である小噴射の場合には上述の如くRmax=ΔPγ×Cγとする一方で、ΔPγ≧ΔPγthである大噴射の場合には燃圧に応じて予め設定しておいた値(設定値Rγ)を最大噴射率Rmaxとして算出する。   Further, the pressure corresponding to the intersection of the descending approximate straight line Lα and the ascending approximate straight line Lβ is calculated as the intersection pressure Pαβ, and the pressure difference ΔPγ between the reference pressure Pbase and the intersection pressure Pαβ, which will be described in detail later, is calculated. The pressure difference ΔPγ (first parameter) indicates the degree to which the fuel pressure has dropped from the reference pressure Pbase with the execution of target injection in the pressure waveform (target waveform). Focusing on the strong correlation between the pressure difference ΔPγ and the maximum injection rate Rmax, the maximum injection rate Rmax is calculated based on the pressure difference ΔPγ. Specifically, the maximum injection rate Rmax is calculated by multiplying the pressure difference ΔPγ by the correlation coefficient Cγ. The larger the pressure difference ΔPγ is, the larger the maximum injection rate Rmax is calculated. However, in the case of small injection where the pressure difference ΔPγ is less than the predetermined value ΔPγth, Rmax = ΔPγ × Cγ is set as described above, whereas in the case of large injection where ΔPγ ≧ ΔPγth, the pressure is set in advance according to the fuel pressure. The set value (set value Rγ) is calculated as the maximum injection rate Rmax.

なお、上記「小噴射」とは、噴射率がRγに達する前に弁体12がリフトダウンを開始する態様の噴射を想定している。このときには、燃料噴射弁10の高圧通路11a内を流通する燃料が、シート面11e,12aにより絞られることで最大噴射率Rmaxが決定される。一方、上記「大噴射」とは、噴射率がRγに達した後に弁体12がリフトダウンを開始する態様の噴射を想定している。このときには、高圧通路11a内を流通する燃料が、噴孔11bにより絞られることで最大噴射率Rmax(設定値Rγ)が決定される。要するに、噴射指令期間Tqが十分に長く、設定値Rγに達した以降も開弁状態を継続させる大噴射の場合においては、噴射率波形は台形となる(図2(b)の実線参照)。一方、設定値Rγに達する前に閉弁作動を開始させる小噴射の場合には、噴射率波形は三角形となる(図2(b)の点線参照)。   The “small injection” is assumed to be an injection in which the valve body 12 starts to be lifted down before the injection rate reaches Rγ. At this time, the maximum injection rate Rmax is determined by the fuel flowing through the high-pressure passage 11a of the fuel injection valve 10 being throttled by the seat surfaces 11e and 12a. On the other hand, the “large injection” is assumed to be an injection in which the valve body 12 starts to be lifted down after the injection rate reaches Rγ. At this time, the maximum injection rate Rmax (set value Rγ) is determined by the fuel flowing through the high-pressure passage 11a being throttled by the injection hole 11b. In short, in the case of large injection in which the injection command period Tq is sufficiently long and the valve opening state is continued even after reaching the set value Rγ, the injection rate waveform becomes a trapezoid (see the solid line in FIG. 2B). On the other hand, in the case of small injection that starts the valve closing operation before reaching the set value Rγ, the injection rate waveform is a triangle (see the dotted line in FIG. 2B).

以上により、圧力波形から噴射率パラメータtd,te,Rα,Rβ,Rmaxを算出することができる。そして、これらの噴射率パラメータtd,te,Rα,Rβ,Rmaxの経時変化を加味した学習値に基づき、噴射指令信号(図2(a)参照)に対応した噴射率波形(図2(b)参照)を算出することができる。なお、このように算出した噴射率波形の面積(図2(b)中の網点ハッチ参照)は噴射量に相当するので、噴射率パラメータに基づき噴射量を算出することもできる。例えば、算出した噴射量と噴射指令期間Tqとの関係を、噴射率パラメータとして算出(学習)してもよい。   As described above, the injection rate parameters td, te, Rα, Rβ, and Rmax can be calculated from the pressure waveform. An injection rate waveform (FIG. 2 (b)) corresponding to the injection command signal (see FIG. 2 (a)) is based on a learned value that takes into account changes over time in these injection rate parameters td, te, Rα, Rβ, and Rmax. Reference) can be calculated. Since the area of the injection rate waveform calculated in this way (see halftone dot hatching in FIG. 2B) corresponds to the injection amount, the injection amount can also be calculated based on the injection rate parameter. For example, the relationship between the calculated injection amount and the injection command period Tq may be calculated (learned) as an injection rate parameter.

図3は、これら噴射率パラメータの学習、及び燃料噴射弁10へ出力する噴射指令信号の設定等の概要を示すブロック図である。同図に基づいて、ECU30により機能する各部31,32,33,34について以下に説明する。噴射率パラメータ算出部31は、燃圧センサ20により検出された圧力波形に基づき、先述したように噴射率パラメータtd,te,Rα,Rβ,Rmaxを算出する。   FIG. 3 is a block diagram showing an outline of learning of these injection rate parameters, setting of an injection command signal to be output to the fuel injection valve 10, and the like. Based on the same figure, each part 31,32,33,34 which functions by ECU30 is demonstrated below. The injection rate parameter calculation unit 31 calculates the injection rate parameters td, te, Rα, Rβ, and Rmax as described above based on the pressure waveform detected by the fuel pressure sensor 20.

学習部32は、算出した噴射率パラメータをECU30のメモリに記憶更新して学習する。なお、噴射率パラメータは、その時の供給燃圧(コモンレール42内の圧力)および噴射量に応じて異なる値となる。そのため、後述する基準圧力Pbase(図2(c)参照)や供給燃圧等の燃圧と、噴射率波形の面積から算出される噴射量Qや噴射指令期間Tq等の噴射量とに関連付けて、噴射率パラメータを学習させている。図3の例では、噴射量Qに対する噴射率パラメータの値を噴射率パラメータマップM1〜M5に記憶させている。そして、これらのマップM1〜M5は、燃圧の代表値(例えば30MPa,50MPa,100MPa・・・等)毎に異なるマップとして設定されている。   The learning unit 32 learns by storing and updating the calculated injection rate parameter in the memory of the ECU 30. The injection rate parameter has a different value depending on the supply fuel pressure (pressure in the common rail 42) and the injection amount at that time. Therefore, the injection pressure is related to the fuel pressure such as a reference pressure Pbase (see FIG. 2C) and supply fuel pressure, which will be described later, and the injection amount Q calculated from the area of the injection rate waveform and the injection amount such as the injection command period Tq. The rate parameter is learned. In the example of FIG. 3, the injection rate parameter value for the injection amount Q is stored in the injection rate parameter maps M1 to M5. These maps M1 to M5 are set as different maps for each representative value of fuel pressure (for example, 30 MPa, 50 MPa, 100 MPa, etc.).

補間部33は、現時点での要求噴射量および燃圧に対応する噴射率パラメータを、噴射率パラメータマップM1〜M5に記憶されている噴射率パラメータの学習値を補間して算出する。   The interpolation unit 33 calculates an injection rate parameter corresponding to the current required injection amount and fuel pressure by interpolating the learned values of the injection rate parameters stored in the injection rate parameter maps M1 to M5.

設定部34は、補間部33により算出した噴射率パラメータに基づき、目標噴射状態(要求噴射量および要求噴射開始時期)に対応する噴射指令信号(噴射開始指令時期t1、噴射指令期間Tq)を設定する。そして、このように設定した噴射指令信号にしたがって燃料噴射弁10を作動させた時の圧力波形を、燃圧センサ20により検出する。そして、検出した圧力波形に基づいて、噴射率パラメータ算出部31は噴射率パラメータtd,te,Rα,Rβ,Rmaxを算出する。   The setting unit 34 sets an injection command signal (injection start command timing t1, injection command period Tq) corresponding to a target injection state (requested injection amount and required injection start timing) based on the injection rate parameter calculated by the interpolation unit 33. To do. Then, the fuel pressure sensor 20 detects a pressure waveform when the fuel injection valve 10 is operated according to the injection command signal set in this way. Based on the detected pressure waveform, the injection rate parameter calculation unit 31 calculates injection rate parameters td, te, Rα, Rβ, and Rmax.

要するに、噴射指令信号に対する実際の噴射状態(つまり噴射率パラメータtd,te,Rα,Rβ,Rmax)を検出して学習し、その学習値に基づき、目標噴射状態に対応する噴射指令信号を設定する。そのため、実際の噴射状態に基づき噴射指令信号がフィードバック制御されることとなり、実噴射状態が目標噴射状態に一致するよう燃料噴射状態を高精度で制御できる。特に、実噴射量が目標噴射量となるように、噴射率パラメータに基づき噴射指令期間Tqを設定するようフィードバック制御することで、実噴射量を目標噴射量に一致させることができる。   In short, an actual injection state (that is, injection rate parameters td, te, Rα, Rβ, Rmax) with respect to the injection command signal is detected and learned, and an injection command signal corresponding to the target injection state is set based on the learned value. . Therefore, the injection command signal is feedback-controlled based on the actual injection state, and the fuel injection state can be controlled with high accuracy so that the actual injection state matches the target injection state. In particular, the actual injection amount can be made to coincide with the target injection amount by performing feedback control so that the injection command period Tq is set based on the injection rate parameter so that the actual injection amount becomes the target injection amount.

次に、検出した圧力波形(図2(c)参照)から噴射率パラメータtd,te,Rα,Rβ,Rmax(図2(b)参照)を算出することで噴射状態を解析する手順について、図4のフローチャートを用いて説明する。なお、図4に示す処理は、ECU30が有するマイコンにより繰り返し実行される。   Next, the procedure for analyzing the injection state by calculating the injection rate parameters td, te, Rα, Rβ, Rmax (see FIG. 2B) from the detected pressure waveform (see FIG. 2C) is shown in FIG. This will be described with reference to the flowchart of FIG. Note that the process shown in FIG. 4 is repeatedly executed by a microcomputer included in the ECU 30.

まず、ステップS10において、以下に説明する噴射波形Wbを燃圧センサ20の検出値に基づき算出する。以下の説明では、燃料噴射中の気筒を噴射気筒、噴射気筒で燃料を噴射している時に噴射を停止させている気筒を非噴射気筒と称す。また、噴射気筒の燃料噴射弁10に搭載されている燃圧センサ20を噴射時センサ、非噴射気筒の燃料噴射弁10に搭載されている燃圧センサ20を非噴射時センサと称す。   First, in step S10, an injection waveform Wb described below is calculated based on the detection value of the fuel pressure sensor 20. In the following description, a cylinder during fuel injection is referred to as an injection cylinder, and a cylinder that stops injection when fuel is injected in the injection cylinder is referred to as a non-injection cylinder. The fuel pressure sensor 20 mounted on the fuel injection valve 10 of the injection cylinder is referred to as an injection time sensor, and the fuel pressure sensor 20 mounted on the fuel injection valve 10 of the non-injection cylinder is referred to as a non-injection sensor.

ステップS10では、噴射時センサにより所定のサンプリング周期で検出した複数の検出値を取得し、これらの検出値に基づき、噴射に伴い生じた噴射時センサでの燃圧変化を表す燃圧波形Wa(図5(a)参照)を生成する。次に、非噴射時センサにより所定のサンプリング周期で検出した複数の検出値を取得し、これらの検出値に基づき、噴射に伴い生じた非噴射時センサでの燃圧変化を表す燃圧波形Wu(図5(b)参照)を生成する。   In step S10, a plurality of detection values detected at a predetermined sampling cycle by the injection time sensor are acquired, and based on these detection values, a fuel pressure waveform Wa (FIG. 5) that represents a change in fuel pressure at the injection time sensor that occurs with the injection. (See (a)). Next, a plurality of detection values detected at a predetermined sampling cycle by the non-injection sensor are acquired, and based on these detection values, a fuel pressure waveform Wu representing a change in fuel pressure at the non-injection sensor caused by the injection (FIG. 5 (b)).

ちなみに、燃料ポンプ41からコモンレール42へ燃料を圧送するタイミングと噴射タイミングとが重複した場合には、燃圧波形Wuは図5(b)の実線に示すように、全体的に圧力が高くなった波形となる。一方、このようなポンプ圧送が燃料噴射中に行われなかった場合には、燃料を噴射した直後は、その噴射分だけ噴射システム内全体の燃圧が低下する。そのため、燃圧波形Wu’は図5(b)中の点線に示すように、全体的に圧力が低くなった波形となる。   Incidentally, when the fuel pump 41 pressure-feeds fuel to the common rail 42 and the injection timing overlap, the fuel pressure waveform Wu is a waveform in which the pressure is generally increased as shown by the solid line in FIG. 5B. It becomes. On the other hand, when such pump pumping is not performed during fuel injection, immediately after the fuel is injected, the fuel pressure in the entire injection system is reduced by that amount. Therefore, the fuel pressure waveform Wu ′ is a waveform in which the pressure is lowered as a whole as shown by the dotted line in FIG.

このような燃圧波形Wu,Wu’の成分は燃圧波形Waにも含まれている。換言すれば、燃圧波形Waには、噴射による燃圧変化を表した噴射波形Wb(図5(c)参照)と、燃圧波形Wu,Wu’の成分とが含まれている。そこでステップS10では、噴射気筒での燃圧波形Waから非噴射気筒での燃圧波形Wu,Wu’を差し引くことで、噴射波形Wbを抽出する処理を行う(Wb=Wa−Wu)。   Such components of the fuel pressure waveforms Wu and Wu ′ are also included in the fuel pressure waveform Wa. In other words, the fuel pressure waveform Wa includes an injection waveform Wb (see FIG. 5C) representing a change in fuel pressure due to injection, and components of the fuel pressure waveforms Wu and Wu ′. Therefore, in step S10, the process of extracting the injection waveform Wb is performed by subtracting the fuel pressure waveforms Wu and Wu ′ in the non-injection cylinders from the fuel pressure waveform Wa in the injection cylinders (Wb = Wa−Wu).

次に、図4のステップS11において、以下に説明するうねり除去処理を行う。すなわち、多段噴射を実施する場合には、前段噴射の終了後に残る圧力波形の脈動である前段うねり成分Wc(図2(c)参照)が、燃圧波形Waに重畳する。特に、前段噴射と対象噴射とのインターバルが短い場合には、対象噴射の燃圧波形Waは前段うねり成分Wcの影響を大きく受ける。そこで上記ステップS11では、このような前段うねり成分Wcを噴射波形Wbから差し引くうねり除去処理を実施する。なお、前段うねり成分Wc(モデル波形)については、前段の噴射状態から推測することができる。   Next, in step S11 of FIG. 4, the swell removal process described below is performed. That is, when multistage injection is performed, the pre-stage swell component Wc (see FIG. 2C), which is the pulsation of the pressure waveform remaining after the end of the pre-stage injection, is superimposed on the fuel pressure waveform Wa. In particular, when the interval between the upstream injection and the target injection is short, the fuel pressure waveform Wa of the target injection is greatly affected by the upstream swell component Wc. Therefore, in step S11, the swell removal process for subtracting the preceding swell component Wc from the injection waveform Wb is performed. It should be noted that the upstream swell component Wc (model waveform) can be estimated from the upstream injection state.

続くステップS12では、前記うねり除去処理を施した噴射波形Wb(対象波形)のうち、噴射開始に伴い燃圧が下降を開始するまでの期間に対応する部分の波形である基準波形に基づき、その基準波形の平均燃圧を基準圧力Pbaseとして算出する。例えば、噴射開始指令時期t1から所定時間が経過するまでの期間TAに対応する部分を、基準波形として設定すればよい。或いは、下降波形の微分値に基づき変曲点P1を算出し、噴射開始指令時期t1から変曲点P1よりも所定時間前までの期間に相当する部分を基準波形として設定すればよい。すなわち、基準波形は、うねり除去処理を施した噴射波形Wbにおいて、燃料噴射弁10による噴射が実施されていない時の圧力波形、詳しくは前段噴射が実施される直前の圧力波形である。   In the subsequent step S12, based on the reference waveform which is the waveform of the portion corresponding to the period until the fuel pressure starts to decrease with the start of injection, the reference waveform is determined based on the reference waveform. The average fuel pressure of the waveform is calculated as the reference pressure Pbase. For example, a portion corresponding to a period TA until a predetermined time elapses from the injection start command timing t1 may be set as the reference waveform. Alternatively, the inflection point P1 may be calculated based on the differential value of the descending waveform, and a portion corresponding to a period from the injection start command timing t1 to a predetermined time before the inflection point P1 may be set as the reference waveform. That is, the reference waveform is a pressure waveform when the injection by the fuel injection valve 10 is not performed in the injection waveform Wb subjected to the swell removal process, specifically, a pressure waveform immediately before the pre-stage injection is performed.

続くステップS13では、噴射波形Wbのうち、噴射率増大に伴い燃圧が下降していく期間に対応する部分の波形である下降波形に基づき、その下降波形の近似直線Lαを算出する。例えば、噴射開始指令時期t1から所定時間が経過した時点からの所定期間TBに対応する部分を、下降波形として設定すればよい。或いは、下降波形の微分値に基づき変曲点P1,P2を算出し、これら変曲点P1,P2の間に相当する部分を下降波形として設定すればよい。そして、下降波形を構成する複数の燃圧検出値(サンプリング値)から、最小二乗法により近似直線Lαを算出すればよい。或いは、下降波形のうち微分値が最小となる時点における接線を、近似直線Lαとして算出すればよい。   In the subsequent step S13, an approximate straight line Lα of the descending waveform is calculated based on the descending waveform that is the waveform corresponding to the period in which the fuel pressure decreases as the injection rate increases in the injection waveform Wb. For example, what is necessary is just to set the part corresponding to predetermined period TB from the time of predetermined time having passed from injection start command timing t1 as a fall waveform. Alternatively, the inflection points P1 and P2 may be calculated based on the differential value of the descending waveform, and the portion corresponding to the inflection points P1 and P2 may be set as the descending waveform. Then, an approximate straight line Lα may be calculated by a least square method from a plurality of detected fuel pressure values (sampling values) constituting the descending waveform. Alternatively, the tangent at the time when the differential value becomes the minimum in the descending waveform may be calculated as the approximate straight line Lα.

続くステップS14では、噴射波形Wbのうち、噴射率下降に伴い燃圧が上昇していく期間に対応する部分の波形である上昇波形に基づき、その上昇波形の近似直線Lβを算出する。例えば、噴射終了指令時期t2から所定時間が経過した時点からの所定期間TCに対応する部分を、上昇波形として設定すればよい。或いは、上昇波形の微分値に基づき変曲点P3,P5を算出し、これら変曲点P3,P5の間に相当する部分を上昇波形として設定すればよい。そして、上昇波形を構成する複数の燃圧検出値(サンプリング値)から、最小二乗法により近似直線Lβを算出すればよい。或いは、上昇波形のうち微分値が最大となる時点における接線を、近似直線Lβとして算出すればよい。   In the subsequent step S14, an approximate straight line Lβ of the rising waveform is calculated based on the rising waveform that is the waveform corresponding to the period in which the fuel pressure increases as the injection rate decreases in the injection waveform Wb. For example, what is necessary is just to set the part corresponding to the predetermined period TC from the time of predetermined time having passed since the injection end instruction | command time t2 as a rising waveform. Alternatively, the inflection points P3 and P5 may be calculated based on the differential value of the rising waveform, and a portion corresponding to the inflection points P3 and P5 may be set as the rising waveform. Then, the approximate straight line Lβ may be calculated from the plurality of detected fuel pressure values (sampling values) constituting the rising waveform by the least square method. Alternatively, the tangent at the time when the differential value becomes the maximum in the rising waveform may be calculated as the approximate straight line Lβ.

続くステップS15では、基準圧力Pbaseに基づき基準値Bα,Bβを算出する。例えば、基準圧力Pbaseより所定量だけ低い値を基準値Bα,Bβとして算出すればよい。なお、両基準値Bα,Bβを同じ値に設定する必要はない。また、前記所定量は基準圧力Pbaseの値や燃料温度等に応じて可変設定してもよい。   In subsequent step S15, reference values Bα and Bβ are calculated based on the reference pressure Pbase. For example, values lower than the reference pressure Pbase by a predetermined amount may be calculated as the reference values Bα and Bβ. It is not necessary to set both reference values Bα and Bβ to the same value. The predetermined amount may be variably set according to the value of the reference pressure Pbase, the fuel temperature, and the like.

続くステップS16では、近似直線Lαのうち、燃圧が基準値Bαとなる時期(LαとBαの交点時期LBα)を算出する。この交点時期LBαと噴射開始時期R1とは相関が強いことに着目し、交点時期LBαに基づき噴射開始時期R1を算出する。例えば、交点時期LBαよりも所定の遅れ時間Cαだけ前の時期を噴射開始時期R1として算出すればよい。   In the subsequent step S16, a time (intersection time LBα between Lα and Bα) at which the fuel pressure becomes the reference value Bα is calculated from the approximate straight line Lα. Focusing on the fact that the intersection time LBα and the injection start time R1 are strongly correlated, the injection start time R1 is calculated based on the intersection time LBα. For example, a timing that is a predetermined delay time Cα before the intersection timing LBα may be calculated as the injection start timing R1.

続くステップS17では、近似直線Lβのうち、燃圧が基準値Bβとなる時期(LβとBβの交点時期LBβ)を算出する。この交点時期LBβと噴射終了時期R4とは相関が強いことに着目し、交点時期LBβに基づき噴射終了時期R4を算出する。例えば、交点時期LBβよりも所定の遅れ時間Cβだけ前の時期を噴射終了時期R4として算出すればよい。なお、上記遅れ時間Cα,Cβは、基準圧力Pbaseの値や燃料温度等に応じて可変設定してもよい。   In the subsequent step S17, a time at which the fuel pressure becomes the reference value Bβ (intersection time LBβ between Lβ and Bβ) is calculated from the approximate straight line Lβ. Focusing on the strong correlation between the intersection time LBβ and the injection end time R4, the injection end time R4 is calculated based on the intersection time LBβ. For example, a timing that is a predetermined delay time Cβ before the intersection timing LBβ may be calculated as the injection end timing R4. The delay times Cα and Cβ may be variably set according to the value of the reference pressure Pbase, the fuel temperature, and the like.

続くステップS18では、近似直線Lαの傾きと噴射率上昇の傾きとは相関が強いことに着目し、図2(b)に示す噴射率波形のうち噴射率上昇を示す直線Rαの傾きを、近似直線Lαの傾きに基づき算出する。例えば、Lαの傾きに所定の係数を掛けてRαの傾きを算出すればよい。なお、ステップS16で算出した噴射開始時期R1とステップS18で算出したRαの傾きに基づき、噴射指令信号に対する噴射率波形の上昇部分を表した直線Rαを特定することができる。   In the subsequent step S18, paying attention to the fact that the slope of the approximate straight line Lα and the slope of the increase in the injection rate are strongly correlated, the slope of the straight line Rα indicating the increase in the injection rate in the injection rate waveform shown in FIG. Calculation is based on the slope of the straight line Lα. For example, the slope of Rα may be calculated by multiplying the slope of Lα by a predetermined coefficient. Note that, based on the injection start timing R1 calculated in step S16 and the slope of Rα calculated in step S18, a straight line Rα representing the rising portion of the injection rate waveform with respect to the injection command signal can be specified.

さらにステップS18では、近似直線Lβの傾きと噴射率下降の傾きとは相関が強いことに着目し、噴射率波形のうち噴射率下降を示す直線Rβの傾きを、近似直線Lβの傾きに基づき算出する。例えば、Lβの傾きに所定の係数を掛けてRβの傾きを算出すればよい。なお、ステップS17で算出した噴射終了時期R4とステップS18で算出したRβの傾きに基づき、噴射指令信号に対する噴射率波形の下降部分を表した直線Rβを特定することができる。なお、上記所定の係数は、基準圧力Pbaseの値や燃料温度等に応じて可変設定してもよい。   Further, in step S18, paying attention to the fact that the slope of the approximate line Lβ and the slope of the injection rate decrease are strongly correlated, the slope of the straight line Rβ indicating the decrease in the injection rate in the injection rate waveform is calculated based on the slope of the approximate line Lβ. To do. For example, the slope of Rβ may be calculated by multiplying the slope of Lβ by a predetermined coefficient. Note that, based on the injection end timing R4 calculated in step S17 and the slope of Rβ calculated in step S18, a straight line Rβ representing the descending portion of the injection rate waveform with respect to the injection command signal can be specified. The predetermined coefficient may be variably set according to the value of the reference pressure Pbase, the fuel temperature, and the like.

続くステップS19では、ステップS18で算出した噴射率波形の直線Rα,Rβに基づき、噴射終了を指令したことに伴い弁体12がリフトダウンを開始する時期(閉弁作動開始時期R23)を算出する。具体的には、両直線Rα,Rβの交点を算出し、その交点時期を閉弁作動開始時期R23として算出する。   In subsequent step S19, based on the straight lines Rα and Rβ of the injection rate waveform calculated in step S18, a time (valve closing operation start time R23) at which the valve body 12 starts lift-down in response to the command to end the injection is calculated. . Specifically, the intersection of both straight lines Rα and Rβ is calculated, and the intersection timing is calculated as the valve closing operation start timing R23.

続くステップS20では、ステップS16で算出した噴射開始時期R1の噴射開始指令時期t1に対する遅れ時間(噴射開始遅れ時間td)を算出する。また、ステップS19で算出した閉弁作動開始時期R23の噴射終了指令時期t2に対する遅れ時間(噴射終了遅れ時間te)を算出する。なお、噴射終了遅れ時間teとは、噴射終了を指令した時期t2から、制御弁14の作動を開始する時期までの遅れ時間のことである。要するにこれらの遅れ時間td,teは、噴射指令信号に対する噴射率変化の応答遅れを表すパラメータであり、他にも、噴射開始指令時期t1から最大噴射率到達時期R2までの遅れ時間、噴射終了指令時期t2から噴射率低下開始時期R3までの遅れ時間、噴射終了指令時期t2から噴射終了時期R4までの遅れ時間等が挙げられる。   In the subsequent step S20, a delay time (injection start delay time td) of the injection start timing R1 calculated in step S16 with respect to the injection start command timing t1 is calculated. Further, a delay time (injection end delay time te) with respect to the injection end command timing t2 of the valve closing operation start timing R23 calculated in step S19 is calculated. The injection end delay time te is a delay time from the timing t2 at which the injection end is commanded to the timing at which the operation of the control valve 14 is started. In short, these delay times td and te are parameters representing the response delay of the injection rate change with respect to the injection command signal. Besides, the delay time from the injection start command timing t1 to the maximum injection rate arrival timing R2, the injection end command Examples include a delay time from the timing t2 to the injection rate decrease start timing R3, a delay time from the injection end command timing t2 to the injection end timing R4, and the like.

続くステップS21では、基準圧力Pbaseと交点圧力Pαβとの圧力差ΔPγ(第1パラメータ)が所定値ΔPγth未満であるか否かを判定する。ΔPγ<ΔPγthと判定された場合(S21:YES)には、次のステップS22において、上述したモデル波形が最大噴射率Rmaxに及ぼす影響を加味するために圧力差ΔPγを補正する。この処理については後述する。そして、この場合には小噴射であるとみなして、次のステップS23において、補正された圧力差ΔPγに基づき最大噴射率Rmaxを算出する(Rmax=ΔPγ×Cγ)。   In the subsequent step S21, it is determined whether or not the pressure difference ΔPγ (first parameter) between the reference pressure Pbase and the intersection pressure Pαβ is less than a predetermined value ΔPγth. When it is determined that ΔPγ <ΔPγth (S21: YES), in the next step S22, the pressure difference ΔPγ is corrected in order to take into account the influence of the model waveform described above on the maximum injection rate Rmax. This process will be described later. In this case, it is considered that the injection is small, and in the next step S23, the maximum injection rate Rmax is calculated based on the corrected pressure difference ΔPγ (Rmax = ΔPγ × Cγ).

一方、ΔPγ≧ΔPγthと判定された場合(S21:NO)には、次のステップS24において、燃料噴射弁10に供給される燃料の圧力に応じて予め設定しておいた値(設定値Rγ)を、最大噴射率Rmaxとして算出する。燃料噴射弁10に供給される燃料の圧力(第1パラメータ)としては、コモンレール42内の燃圧Pcや、上記噴射波形Wbにおいて燃料噴射弁10による噴射が実施されていない時の燃圧Piを用いることができる。第1パラメータが大きいほど、最大噴射率Rmaxは大きく算出される。そして、この場合には大噴射であるとみなして、次のステップS25において、上述したモデル波形が最大噴射率Rmaxに及ぼす影響を加味するために最大噴射率Rmax(設定値Rγ)を補正する。この処理については後述する。   On the other hand, when it is determined that ΔPγ ≧ ΔPγth (S21: NO), a value preset in accordance with the pressure of the fuel supplied to the fuel injection valve 10 (set value Rγ) in the next step S24. Is calculated as the maximum injection rate Rmax. As the pressure (first parameter) of the fuel supplied to the fuel injection valve 10, the fuel pressure Pc in the common rail 42 or the fuel pressure Pi when the fuel injection valve 10 does not perform injection in the injection waveform Wb is used. Can do. The larger the first parameter is, the larger the maximum injection rate Rmax is calculated. In this case, it is assumed that the injection is large, and in the next step S25, the maximum injection rate Rmax (set value Rγ) is corrected in order to take into account the effect of the model waveform described above on the maximum injection rate Rmax. This process will be described later.

そして、この一連の処理を一旦終了する(END)。なお、ステップS10の処理が検出波形取得手段としての処理に相当し、ステップS11の処理が対象波形抽出手段としての処理に相当し、ステップS12の処理が基準圧力算出手段としての処理に相当し、ステップS22,23の処理及びステップS24,25の処理がそれぞれ最大噴射率算出手段としての処理に相当する。   Then, this series of processing is temporarily ended (END). In addition, the process of step S10 corresponds to the process as a detection waveform acquisition means, the process of step S11 corresponds to the process as target waveform extraction means, the process of step S12 corresponds to the process as reference pressure calculation means, The processing of steps S22 and 23 and the processing of steps S24 and 25 correspond to processing as maximum injection rate calculation means, respectively.

図6は、図4のステップS22,S25の処理を行っていない場合について、前段噴射から対象噴射までの噴射間隔と実噴射量との関係を示すグラフである。ここでは、同一のエンジン負荷及びエンジン回転速度(エンジン運転状態)に基づいて、目標噴射状態(噴射量の目標値を含む)を算出している。そして、算出した目標噴射状態に対応する噴射指令信号t1、t2、Tqを、上述した噴射率パラメータtd,te,Rα,Rβ,Rmaxに基づき設定して、燃料噴射弁10の作動を制御している。なお、噴射量の目標値に対する実噴射量のフィードバック制御は行っていない。   FIG. 6 is a graph showing the relationship between the injection interval from the previous stage injection to the target injection and the actual injection amount when the processes of steps S22 and S25 of FIG. 4 are not performed. Here, the target injection state (including the target value of the injection amount) is calculated based on the same engine load and engine speed (engine operating state). Then, the injection command signals t1, t2, and Tq corresponding to the calculated target injection state are set based on the injection rate parameters td, te, Rα, Rβ, and Rmax described above, and the operation of the fuel injection valve 10 is controlled. Yes. Note that feedback control of the actual injection amount with respect to the target value of the injection amount is not performed.

同図に示すように、噴射間隔に応じて実噴射量は周期的に変化しており、噴射量の目標値と実噴射量とにずれが生じている。特に、一点鎖線の囲みで示すように、噴射間隔が短い場合において、目標値と実噴射量とのずれが大きくなっている。   As shown in the figure, the actual injection amount periodically changes according to the injection interval, and there is a difference between the target value of the injection amount and the actual injection amount. In particular, as indicated by the one-dot chain line, when the injection interval is short, the deviation between the target value and the actual injection amount is large.

次に、このような目標値と実噴射量とのずれが生じる理由を説明する。図7は、(a)実噴射率、(b)多段噴射時検出波形、(c)対象波形を示すタイムチャートである。ここでは、前段噴射から対象噴射までの噴射間隔のみを変化させて小噴射を実施し、噴射率を実際に測定した結果を示している。対象波形Wtは、多段噴射時検出波形から前段噴射による圧力脈動(モデル波形Wm)を差し引いたものである。なお、同図中の各符号は、図2中の各符号と対応しており、噴射間隔が最も短い噴射(実線の波形)には「1」の添字、噴射間隔が最も長い噴射(一点鎖線の波形)には「2」の添字を付している。   Next, the reason why such a deviation between the target value and the actual injection amount occurs will be described. FIG. 7 is a time chart showing (a) an actual injection rate, (b) a detected waveform during multi-stage injection, and (c) a target waveform. Here, the result of actually measuring the injection rate by performing small injection while changing only the injection interval from the preceding injection to the target injection is shown. The target waveform Wt is obtained by subtracting the pressure pulsation (model waveform Wm) due to the preceding stage injection from the detection waveform during multistage injection. In addition, each code | symbol in the figure respond | corresponds with each code | symbol in FIG. 2, and the injection (short dashed line) with the subscript "1" and the longest injection interval for the shortest injection interval (solid line waveform) The subscript “2” is attached to the waveform.

(a),(b)に示すように、実噴射率波形と多段噴射時検出波形とでは、最大噴射率Rmaxの変化(Rmax1〜Rmax2)と圧力差ΔPγの変化(ΔPγ1〜ΔPγ2)とが相関している。一方、(a),(c)に示すように、実噴射率波形と対象波形Wtとでは、最大噴射率Rmaxの変化(Rmax1〜Rmax2)と圧力差ΔPγの変化(ΔPγ1〜ΔPγ2)とが相関していない。このため、対象波形Wtに基づいて最大噴射率Rmaxを算出すると、実際の最大噴射率Rmaxとずれることとなる。   As shown in (a) and (b), the change in the maximum injection rate Rmax (Rmax1 to Rmax2) and the change in the pressure difference ΔPγ (ΔPγ1 to ΔPγ2) are correlated between the actual injection rate waveform and the detection waveform during multistage injection. doing. On the other hand, as shown in (a) and (c), in the actual injection rate waveform and the target waveform Wt, the change in the maximum injection rate Rmax (Rmax1 to Rmax2) and the change in the pressure difference ΔPγ (ΔPγ1 to ΔPγ2) are correlated. Not done. For this reason, if the maximum injection rate Rmax is calculated based on the target waveform Wt, it will deviate from the actual maximum injection rate Rmax.

その理由は、(b)に示されるように、噴射間隔の相違により噴射開始時(変曲点P1)での燃圧はそれぞれ相違するが、(c)に示されるように、対象波形Wtでは噴射開始時での燃圧の相違が打ち消されることによる。すなわち、対象波形Wtでは、噴射開始時のモデル波形Wmの燃圧を基準として交点圧力Pαβが算出されるため、噴射開始時のモデル波形Wmの燃圧が噴射間隔に応じて変化しても、その変化が最大噴射率Rmaxの算出に反映されない。しかしながら、(a),(b)に示すように、実噴射率は噴射開始時の燃圧や、噴射中の燃圧により影響を受けるため、対象波形Wtに基づき算出された最大噴射率Rmaxが実際の最大噴射率Rmaxとずれることとなる。   The reason for this is that, as shown in (b), the fuel pressure at the start of injection (inflection point P1) differs depending on the injection interval, but as shown in (c), the target waveform Wt is injected. This is due to the cancellation of the difference in fuel pressure at the start. That is, in the target waveform Wt, since the intersection pressure Pαβ is calculated based on the fuel pressure of the model waveform Wm at the start of injection, even if the fuel pressure of the model waveform Wm at the start of injection changes according to the injection interval, the change Is not reflected in the calculation of the maximum injection rate Rmax. However, as shown in (a) and (b), the actual injection rate is affected by the fuel pressure at the start of injection and the fuel pressure during injection, so the maximum injection rate Rmax calculated based on the target waveform Wt is an actual value. It will deviate from the maximum injection rate Rmax.

また、大噴射の場合にも、実噴射率は噴射開始時の燃圧や、噴射中の燃圧により影響を受けるため、最大噴射率Rmaxの算出に際してこれらを考慮する必要がある。   Even in the case of large injection, the actual injection rate is affected by the fuel pressure at the start of injection and the fuel pressure during injection, so these must be taken into account when calculating the maximum injection rate Rmax.

そこで、本実施形態では、こうした最大噴射率Rmaxのずれを補正すべく、図4のステップS22,23、及びステップS24,25において以下の処理を行っている。図8は、(a)駆動噴射指令、(b)多段噴射時検出波形、(c)対象波形を示すタイムチャートである。   Therefore, in the present embodiment, the following processing is performed in steps S22 and 23 and steps S24 and 25 in FIG. 4 in order to correct such a deviation in the maximum injection rate Rmax. FIG. 8 is a time chart showing (a) a drive injection command, (b) a detected waveform during multi-stage injection, and (c) a target waveform.

ステップS22では、対象波形Wtでの圧力差ΔPγ(第1パラメータ)を、対象噴射を実施している時のモデル波形Wmの燃圧を反映するモデル圧力差ΔPdif(第2パラメータ)に基づいて補正する。詳しくは、モデル圧力差ΔPdifは、モデル波形Wmにおける対象噴射の開始時期t1の燃料圧力P11と、対象噴射の実施に伴い対象波形Wtの燃料圧力が最低になる時期t12(又は交点圧力Pαβに対応する時期)のモデル波形Wmの燃料圧力P12との差である。そして、モデル圧力差ΔPdifに補正係数Km1を掛けたものを圧力差ΔPγに加算して、それを補正後の圧力差ΔPγとする。補正係数Km1は、一定値でもよいし、コモンレール42内の燃圧Pcや、多段噴射時検出波形において燃料噴射弁10による噴射が実施されていない時(前段噴射の直前)の燃圧Piに応じて、可変としてもよい。そして、ステップS23では、上述したように、補正された圧力差ΔPγに基づき最大噴射率Rmaxを算出する(Rmax=ΔPγ×Cγ)。   In step S22, the pressure difference ΔPγ (first parameter) in the target waveform Wt is corrected based on the model pressure difference ΔPdif (second parameter) reflecting the fuel pressure of the model waveform Wm when the target injection is performed. . Specifically, the model pressure difference ΔPdif corresponds to the fuel pressure P11 at the start timing t1 of the target injection in the model waveform Wm and the time t12 (or the intersection pressure Pαβ at which the fuel pressure of the target waveform Wt becomes minimum as the target injection is performed). The difference between the model waveform Wm and the fuel pressure P12 of the model waveform Wm. Then, the model pressure difference ΔPdif multiplied by the correction coefficient Km1 is added to the pressure difference ΔPγ to obtain a corrected pressure difference ΔPγ. The correction coefficient Km1 may be a constant value, or according to the fuel pressure Pc in the common rail 42 or the fuel pressure Pi when the fuel injection valve 10 is not performing injection (immediately before the previous stage injection) in the multistage injection detection waveform. It may be variable. In step S23, as described above, the maximum injection rate Rmax is calculated based on the corrected pressure difference ΔPγ (Rmax = ΔPγ × Cγ).

また、ステップS24では、上述したように、燃料噴射弁10に供給される燃料の圧力(第1パラメータ)に応じて予め設定しておいた値(設定値Rγ)を、最大噴射率Rmaxとして算出する。そして、ステップS25では、最大噴射率Rmax(設定値Rγ)を、上記モデル圧力差ΔPdif(第2パラメータ)に基づいて補正する。詳しくは、モデル圧力差ΔPdifに補正係数Km2を掛けたものを最大噴射率Rmaxに加算して、それを補正後の最大噴射率Rmaxとする。又は、圧力差ΔPγにモデル圧力差ΔPdifを加えたもの(ΔPγR)と圧力差ΔPγとの比(或いはその比に補正係数Km2を掛けたもの)を最大噴射率Rmaxに掛けて、それを補正後の最大噴射率Rmaxとする。補正係数Km2は、一定値でもよいし、コモンレール42内の燃圧Pcや、多段噴射時検出波形において燃料噴射弁10による噴射が実施されていない時(前段噴射の直前)の燃圧Piに応じて、可変としてもよい。   Further, in step S24, as described above, a value (set value Rγ) set in advance according to the pressure (first parameter) of the fuel supplied to the fuel injection valve 10 is calculated as the maximum injection rate Rmax. To do. In step S25, the maximum injection rate Rmax (set value Rγ) is corrected based on the model pressure difference ΔPdif (second parameter). Specifically, the model pressure difference ΔPdif multiplied by the correction coefficient Km2 is added to the maximum injection rate Rmax, which is used as the corrected maximum injection rate Rmax. Alternatively, the ratio of the pressure difference ΔPγ plus the model pressure difference ΔPdif (ΔPγR) and the pressure difference ΔPγ (or the ratio multiplied by the correction coefficient Km2) is multiplied by the maximum injection rate Rmax and corrected. The maximum injection rate Rmax. The correction coefficient Km2 may be a constant value, or according to the fuel pressure Pc in the common rail 42 or the fuel pressure Pi when the fuel injection valve 10 is not performing injection (immediately before the previous stage injection) in the multistage injection detection waveform. It may be variable.

以上詳述した本実施形態は、以下の利点を有する。   The embodiment described in detail above has the following advantages.

・小噴射では、対象波形Wtにおいて対象噴射の実施に伴い基準圧力Pbaseから燃料圧力が下降した度合いを示す交点圧力Pαβ(第1パラメータ)と、対象噴射を実施している時のモデル波形Wmの燃料圧力を反映するモデル圧力差ΔPdif(第2パラメータ)とに基づいて、対象噴射での最大噴射率Rmaxが算出される。ここで、交点圧力Pαβは、対象噴射での最大噴射率Rmaxと強い相関がある。また、モデル圧力差ΔPdifは、対象波形Wtとは別にモデル波形Wmが最大噴射率Rmaxに及ぼす影響を反映する。このため、対象噴射での最大噴射率Rmaxと強い相関のある交点圧力Pαβに加えて、モデル波形Wmが最大噴射率Rmaxに及ぼす影響を反映するモデル圧力差ΔPdifにも基づいて、最大噴射率Rmaxが算出される。その結果、対象波形Wtに基づいて対象噴射での最大噴射率Rmaxを算出する場合に、最大噴射率Rmaxを高精度で算出することができる。   In the small injection, the intersection pressure Pαβ (first parameter) indicating the degree to which the fuel pressure has decreased from the reference pressure Pbase with the execution of the target injection in the target waveform Wt, and the model waveform Wm when the target injection is performed Based on the model pressure difference ΔPdif (second parameter) reflecting the fuel pressure, the maximum injection rate Rmax in the target injection is calculated. Here, the intersection pressure Pαβ has a strong correlation with the maximum injection rate Rmax in the target injection. Further, the model pressure difference ΔPdif reflects the influence of the model waveform Wm on the maximum injection rate Rmax separately from the target waveform Wt. Therefore, based on the model pressure difference ΔPdif reflecting the influence of the model waveform Wm on the maximum injection rate Rmax in addition to the intersection pressure Pαβ strongly correlated with the maximum injection rate Rmax in the target injection, the maximum injection rate Rmax Is calculated. As a result, when the maximum injection rate Rmax for the target injection is calculated based on the target waveform Wt, the maximum injection rate Rmax can be calculated with high accuracy.

・大噴射では、多段噴射時検出波形において燃料噴射弁10による噴射が実施されていない時の燃圧Pi(第1パラメータ)と、対象噴射を実施している時のモデル波形Wmの燃料圧力を反映するモデル圧力差ΔPdif(第2パラメータ)とに基づいて、対象噴射での最大噴射率Rmax(設定値Rγ)が算出される。ここで、燃圧Piは、対象噴射での最大噴射率Rmaxと強い相関がある。また、モデル圧力差ΔPdifは、対象波形Wtとは別にモデル波形Wmが最大噴射率Rmaxに及ぼす影響を反映する。このため、対象噴射での最大噴射率Rmaxと強い相関のある燃圧Piに加えて、モデル波形Wmが最大噴射率Rmaxに及ぼす影響を反映するモデル圧力差ΔPdifにも基づいて、最大噴射率Rmaxが算出される。その結果、対象噴射での最大噴射率Rmaxを高精度で算出することができる。   In the large injection, the fuel pressure Pi (first parameter) when the injection by the fuel injection valve 10 is not performed in the detection waveform at the time of multistage injection and the fuel pressure of the model waveform Wm when the target injection is performed are reflected. Based on the model pressure difference ΔPdif (second parameter) to be calculated, the maximum injection rate Rmax (set value Rγ) in the target injection is calculated. Here, the fuel pressure Pi has a strong correlation with the maximum injection rate Rmax in the target injection. Further, the model pressure difference ΔPdif reflects the influence of the model waveform Wm on the maximum injection rate Rmax separately from the target waveform Wt. Therefore, in addition to the fuel pressure Pi that has a strong correlation with the maximum injection rate Rmax in the target injection, the maximum injection rate Rmax is also based on the model pressure difference ΔPdif that reflects the effect of the model waveform Wm on the maximum injection rate Rmax. Calculated. As a result, the maximum injection rate Rmax in the target injection can be calculated with high accuracy.

・モデル波形Wmにおける対象噴射の開始時期t11の燃料圧力P11と、対象噴射の実施に伴い対象波形Wtの燃料圧力が最低になる時期t12(又は交点圧力Pαβに対応する時期)におけるモデル波形Wmの燃料圧力P12との差であるモデル圧力差ΔPdifを、第2パラメータとしている。このため、対象噴射での最大噴射率Rmaxを、より高精度で算出することができる。   The fuel pressure P11 at the start timing t11 of the target injection in the model waveform Wm and the model waveform Wm at the time t12 when the fuel pressure of the target waveform Wt becomes the minimum as the target injection is performed (or the time corresponding to the intersection pressure Pαβ). A model pressure difference ΔPdif, which is a difference from the fuel pressure P12, is used as the second parameter. For this reason, the maximum injection rate Rmax in the target injection can be calculated with higher accuracy.

なお、上記実施形態の記載内容に限定されず、以下のように変形して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。   In addition, it is not limited to the description content of the said embodiment, You may deform | transform and implement as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・図4のステップS22,23の処理を以下のように変更してもよい。すなわち、ステップS22では、対象波形Wtでの圧力差ΔPγ(第1パラメータ)に基づいて、最大噴射率Rmaxを算出する。そして、ステップS23では、最大噴射率Rmaxを、上記モデル圧力差ΔPdif(第2パラメータ)に基づいて補正する。詳しくは、上述した図4のステップS25と同様に、最大噴射率Rmaxを補正すればよい。   -You may change the process of step S22, 23 of FIG. 4 as follows. That is, in step S22, the maximum injection rate Rmax is calculated based on the pressure difference ΔPγ (first parameter) in the target waveform Wt. In step S23, the maximum injection rate Rmax is corrected based on the model pressure difference ΔPdif (second parameter). Specifically, the maximum injection rate Rmax may be corrected as in step S25 of FIG. 4 described above.

・図4のステップS24,25の処理を以下のように変更してもよい。すなわち、ステップS24では、燃料噴射弁10に供給される燃圧Pi(第1パラメータ)を、対象噴射を実施している時のモデル波形Wmの燃圧を反映するモデル圧力差ΔPdif(第2パラメータ)に基づいて補正する。詳しくは、モデル圧力差ΔPdifに補正係数Km1を掛けたものを燃圧Piに加算して、それを補正後の燃圧Piとする。補正係数Km1は、一定値でもよいし、コモンレール42内の燃圧Pcや、多段噴射時検出波形において燃料噴射弁10による噴射が実施されていない時(前段噴射の直前)の燃圧Piに応じて、可変としてもよい。そして、ステップS25では、補正後の燃圧Piに基づいて、最大噴射率Rmaxを算出する。   -You may change the process of step S24, 25 of FIG. 4 as follows. That is, in step S24, the fuel pressure Pi (first parameter) supplied to the fuel injection valve 10 is changed to a model pressure difference ΔPdif (second parameter) that reflects the fuel pressure of the model waveform Wm when the target injection is performed. Correct based on. Specifically, the model pressure difference ΔPdif multiplied by the correction coefficient Km1 is added to the fuel pressure Pi, and this is used as the corrected fuel pressure Pi. The correction coefficient Km1 may be a constant value, or according to the fuel pressure Pc in the common rail 42 or the fuel pressure Pi when the fuel injection valve 10 is not performing injection (immediately before the previous stage injection) in the multistage injection detection waveform. It may be variable. In step S25, the maximum injection rate Rmax is calculated based on the corrected fuel pressure Pi.

・図9に示すように、モデル圧力差ΔPdif(第2パラメータ)として、モデル波形Wmにおける対象噴射の開始時期t1の燃料圧力P11と、モデル波形Wmにおいて燃料噴射弁10による噴射が実施されていない時(前段噴射の直前)の燃料圧力P13との差を採用することもできる。この場合のモデル圧力差ΔPdifは、図8に示したモデル圧力差ΔPdifとは、誤差圧力ΔPerだけ相違することとなるが、その傾向は概ね同様となる。こうした構成によれば、簡易な構成により、対象噴射での最大噴射率Rmaxを高精度で算出することができる。   As shown in FIG. 9, as the model pressure difference ΔPdif (second parameter), the fuel pressure P11 at the target injection start timing t1 in the model waveform Wm and the injection by the fuel injection valve 10 in the model waveform Wm are not performed. The difference from the fuel pressure P13 at the time (immediately before the front injection) can also be adopted. The model pressure difference ΔPdif in this case differs from the model pressure difference ΔPdif shown in FIG. 8 by the error pressure ΔPer, but the tendency is substantially the same. According to such a configuration, the maximum injection rate Rmax in the target injection can be calculated with high accuracy by a simple configuration.

・図2,7に示すように、第1パラメータとして、基準圧力Pbaseと対象波形Wtにおける変曲点P2,P23の燃料圧力との圧力差ΔPを用いることもできる。この圧力差ΔPも、対象波形Wtにおいて対象噴射の実施に伴い基準圧力Pbaseから燃料圧力が下降した度合いを示す。   As shown in FIGS. 2 and 7, the pressure difference ΔP between the reference pressure Pbase and the fuel pressure at the inflection points P2 and P23 in the target waveform Wt can be used as the first parameter. This pressure difference ΔP also indicates the degree to which the fuel pressure has fallen from the reference pressure Pbase with the execution of the target injection in the target waveform Wt.

・上記実施形態では、燃圧センサ20を燃料噴射弁10に搭載しているが、燃圧センサはコモンレール42の吐出口42aから噴孔11bに至るまでの燃料供給経路内の燃圧を検出するよう配置された燃圧センサであればよい。よって、例えばコモンレール42と燃料噴射弁10とを接続する高圧配管42bに燃圧センサを搭載してもよい。つまり、コモンレール42及び燃料噴射弁10を接続する高圧配管42bと、ボデー11内の高圧通路11aとが「燃料供給経路」に相当する。   In the above embodiment, the fuel pressure sensor 20 is mounted on the fuel injection valve 10, but the fuel pressure sensor is arranged to detect the fuel pressure in the fuel supply path from the discharge port 42a of the common rail 42 to the nozzle hole 11b. Any fuel pressure sensor may be used. Therefore, for example, a fuel pressure sensor may be mounted on the high-pressure pipe 42 b that connects the common rail 42 and the fuel injection valve 10. That is, the high-pressure pipe 42b connecting the common rail 42 and the fuel injection valve 10 and the high-pressure passage 11a in the body 11 correspond to the “fuel supply path”.

10…燃料噴射弁、11a…高圧通路、11b…噴孔、20…燃圧センサ、30…ECU、31…噴射率パラメータ算出部、32…学習部、33…補間部、34…設定部、42…コモンレール、42b…高圧配管。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 11a ... High pressure passage, 11b ... Injection hole, 20 ... Fuel pressure sensor, 30 ... ECU, 31 ... Injection rate parameter calculation part, 32 ... Learning part, 33 ... Interpolation part, 34 ... Setting part, 42 ... Common rail, 42b ... High pressure piping.

Claims (8)

内燃機関で燃焼させる燃料を噴孔(11b)から噴射する燃料噴射弁(10)と、前記噴孔に至るまでの燃料供給経路(42b、11a)内の燃料圧力を検出する燃圧センサ(20)と、を備えた燃料噴射システムに適用され、
前記内燃機関の1燃焼サイクル中に燃料を複数回噴射する多段噴射を実施している時に、前記燃圧センサにより検出される前記燃料圧力の変化を示す圧力波形を、多段噴射時検出波形として取得する検出波形取得手段と、
前記多段噴射のうち2段目以降のいずれかの噴射を対象噴射とした場合に、前記対象噴射を実施することなく前記対象噴射よりも前段の噴射を実施した時の、前記圧力波形の規範となるモデル波形(Wm)を記憶しているモデル波形記憶手段と、
前記モデル波形を前記多段噴射時検出波形から差し引いて、前記対象噴射に起因した圧力波形を対象波形(Wt)として抽出する対象波形抽出手段と、
前記対象波形において前記燃料噴射弁による噴射が実施されていない時の燃料圧力に基づいて、基準圧力(Pbase)を算出する基準圧力算出手段と、
前記対象波形において前記対象噴射の実施に伴い前記基準圧力から燃料圧力が下降した度合いを示す第1パラメータ(ΔPγ、ΔP)と、前記対象噴射を実施している時の前記モデル波形の燃料圧力を反映する第2パラメータ(ΔPdif)とに基づいて、前記対象噴射での最大噴射率(Rmax)を算出する最大噴射率算出手段と、
を備えることを特徴とする燃料噴射制御装置。
A fuel injection valve (10) for injecting fuel to be burned in the internal combustion engine from the nozzle hole (11b), and a fuel pressure sensor (20) for detecting fuel pressure in the fuel supply path (42b, 11a) to the nozzle hole And applied to a fuel injection system comprising
When multistage injection in which fuel is injected a plurality of times during one combustion cycle of the internal combustion engine is performed, a pressure waveform indicating a change in the fuel pressure detected by the fuel pressure sensor is acquired as a detection waveform during multistage injection. Detection waveform acquisition means;
When any one of the second and subsequent stages of the multi-stage injection is the target injection, the pressure waveform norm when the injection before the target injection is performed without performing the target injection, Model waveform storage means for storing the model waveform (Wm)
A target waveform extraction means for subtracting the model waveform from the detection waveform at the time of multi-stage injection and extracting a pressure waveform resulting from the target injection as a target waveform (Wt);
A reference pressure calculating means for calculating a reference pressure (Pbase) based on a fuel pressure when injection by the fuel injection valve is not performed in the target waveform;
In the target waveform, a first parameter (ΔPγ, ΔP) indicating a degree to which the fuel pressure has decreased from the reference pressure with the execution of the target injection, and a fuel pressure of the model waveform when the target injection is performed. Maximum injection rate calculating means for calculating a maximum injection rate (Rmax) in the target injection based on the second parameter (ΔPdif) to be reflected;
A fuel injection control device comprising:
前記第1パラメータは、前記基準圧力と、前記対象波形において前記対象噴射の実施に伴って、燃料圧力が下降する部分を近似した直線(Lα)と燃料圧力が上昇する部分を近似した直線(Lβ)との交点に対応する燃料圧力(Pαβ)と、の圧力差(ΔPγ)である請求項1に記載の燃料噴射制御装置。   The first parameter includes the reference pressure and a straight line (Lα) approximating a portion where the fuel pressure decreases in the target waveform with the execution of the target injection, and a straight line (Lβ) approximating a portion where the fuel pressure increases. 2. The fuel injection control device according to claim 1, wherein the pressure difference (ΔPγ) is a fuel pressure (Pαβ) corresponding to an intersection with the fuel pressure. 前記最大噴射率算出手段は、前記圧力差が大きいほど前記最大噴射率を大きく算出する請求項2に記載の燃料噴射制御装置。   The fuel injection control device according to claim 2, wherein the maximum injection rate calculation means calculates the maximum injection rate to be larger as the pressure difference is larger. 内燃機関で燃焼させる燃料を噴孔(11b)から噴射する燃料噴射弁(10)と、前記噴孔に至るまでの燃料供給経路(42b、11a)内の燃料圧力を検出する燃圧センサ(20)と、を備えた燃料噴射システムに適用され、
前記内燃機関の1燃焼サイクル中に燃料を複数回噴射する多段噴射を実施している時に、前記燃圧センサにより検出される前記燃料圧力の変化を示す圧力波形を、多段噴射時検出波形として取得する検出波形取得手段と、
前記多段噴射のうち2段目以降のいずれかの噴射を対象噴射とした場合に、前記対象噴射を実施することなく前記対象噴射よりも前段の噴射を実施した時の、前記圧力波形の規範となるモデル波形(Wm)を記憶しているモデル波形記憶手段と、
前記モデル波形を前記多段噴射時検出波形から差し引いて、前記対象噴射に起因した圧力波形を対象波形(Wt)として抽出する対象波形抽出手段と、
前記多段噴射時検出波形において前記燃料噴射弁による噴射が実施されていない時の燃料圧力である第1パラメータ(Pi、Pc)と、前記対象噴射を実施している時の前記モデル波形の燃料圧力を反映する第2パラメータ(ΔPdif)とに基づいて、前記対象噴射での最大噴射率(Rmax)を算出する最大噴射率算出手段と、
を備えることを特徴とする燃料噴射制御装置。
A fuel injection valve (10) for injecting fuel to be burned in the internal combustion engine from the nozzle hole (11b), and a fuel pressure sensor (20) for detecting fuel pressure in the fuel supply path (42b, 11a) to the nozzle hole And applied to a fuel injection system comprising
When multistage injection in which fuel is injected a plurality of times during one combustion cycle of the internal combustion engine is performed, a pressure waveform indicating a change in the fuel pressure detected by the fuel pressure sensor is acquired as a detection waveform during multistage injection. Detection waveform acquisition means;
When any one of the second and subsequent stages of the multi-stage injection is the target injection, the pressure waveform norm when the injection before the target injection is performed without performing the target injection, Model waveform storage means for storing the model waveform (Wm)
A target waveform extraction means for subtracting the model waveform from the detection waveform at the time of multi-stage injection and extracting a pressure waveform resulting from the target injection as a target waveform (Wt);
The first parameter (Pi, Pc), which is the fuel pressure when the fuel injection valve is not injecting in the multistage injection detection waveform, and the fuel pressure of the model waveform when the target injection is being performed A maximum injection rate calculating means for calculating a maximum injection rate (Rmax) in the target injection based on the second parameter (ΔPdif) reflecting
A fuel injection control device comprising:
前記最大噴射率算出手段は、前記第1パラメータが大きいほど前記最大噴射率を大きく算出する請求項4に記載の燃料噴射制御装置。   The fuel injection control device according to claim 4, wherein the maximum injection rate calculation means calculates the maximum injection rate to be larger as the first parameter is larger. 前記第2パラメータは、前記モデル波形における前記対象噴射の開始時の燃料圧力(P11)と、前記対象噴射の実施に伴い前記対象波形の燃料圧力が最低になる時の前記モデル波形の燃料圧力(P12)との差である請求項1〜5のいずれか1項に記載の燃料噴射制御装置。   The second parameter includes a fuel pressure (P11) at the start of the target injection in the model waveform, and a fuel pressure (P11) in the model waveform when the fuel pressure of the target waveform becomes the minimum as the target injection is performed. The fuel injection control device according to any one of claims 1 to 5, which is a difference from P12). 前記第2パラメータは、前記モデル波形における前記対象噴射の開始時の燃料圧力(P11)と、前記モデル波形において前記燃料噴射弁による噴射が実施されていない時の燃料圧力(P13)との差である請求項1〜5のいずれか1項に記載の燃料噴射制御装置。   The second parameter is a difference between a fuel pressure (P11) at the start of the target injection in the model waveform and a fuel pressure (P13) when the fuel injection valve is not injected in the model waveform. The fuel injection control device according to any one of claims 1 to 5. 前記最大噴射率算出手段は、前記第2パラメータに基づいて前記最大噴射率を増減させる請求項1〜7のいずれか1項に記載の燃料噴射制御装置。   The fuel injection control device according to any one of claims 1 to 7, wherein the maximum injection rate calculating means increases or decreases the maximum injection rate based on the second parameter.
JP2012121007A 2012-05-28 2012-05-28 Fuel injection control device Active JP5565435B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012121007A JP5565435B2 (en) 2012-05-28 2012-05-28 Fuel injection control device
DE102013105355.6A DE102013105355B4 (en) 2012-05-28 2013-05-24 Fuel injection control device optimized for multiple injection
CN201310296382.2A CN103511106B (en) 2012-05-28 2013-05-28 Optimize the fuel injection control system of multi-injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012121007A JP5565435B2 (en) 2012-05-28 2012-05-28 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2013245633A true JP2013245633A (en) 2013-12-09
JP5565435B2 JP5565435B2 (en) 2014-08-06

Family

ID=49547142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012121007A Active JP5565435B2 (en) 2012-05-28 2012-05-28 Fuel injection control device

Country Status (3)

Country Link
JP (1) JP5565435B2 (en)
CN (1) CN103511106B (en)
DE (1) DE102013105355B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137595A (en) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 Fuel injection characteristic detection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205686A1 (en) * 2014-03-26 2015-10-01 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine, method for determining a learning structure for the operation of an internal combustion engine, control unit for an internal combustion engine and internal combustion engine
CN113513422B (en) * 2021-06-01 2022-09-23 潍柴动力股份有限公司 Multi-injection fuel quantity compensation method and device, electronic control unit and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003004A (en) * 2008-06-18 2010-01-07 Denso Corp Learning device and fuel injection system
US20100250097A1 (en) * 2009-03-25 2010-09-30 Denso Corporation Fuel injection detecting device
JP2012002173A (en) * 2010-06-18 2012-01-05 Denso Corp Fuel-pressure waveform obtaining device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2200698Y (en) * 1994-05-16 1995-06-14 北内集团总公司 Gasoline machine with mini-computer controlled fuel spurt and direct ignition for internal-combustion engine
JP3906909B2 (en) * 2002-03-11 2007-04-18 三菱自動車工業株式会社 Split fuel injection control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003004A (en) * 2008-06-18 2010-01-07 Denso Corp Learning device and fuel injection system
US20100250097A1 (en) * 2009-03-25 2010-09-30 Denso Corporation Fuel injection detecting device
JP2010223184A (en) * 2009-03-25 2010-10-07 Denso Corp Fuel injection state detection device
JP2012002173A (en) * 2010-06-18 2012-01-05 Denso Corp Fuel-pressure waveform obtaining device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015137595A (en) * 2014-01-22 2015-07-30 トヨタ自動車株式会社 Fuel injection characteristic detection device

Also Published As

Publication number Publication date
DE102013105355B4 (en) 2019-08-01
DE102013105355A1 (en) 2013-11-28
CN103511106A (en) 2014-01-15
CN103511106B (en) 2017-03-01
JP5565435B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP4424395B2 (en) Fuel injection control device for internal combustion engine
JP4835715B2 (en) Fuel injection state detection device
JP5287915B2 (en) Fuel injection state estimation device
JP5723244B2 (en) Fuel injection control device
JP5321606B2 (en) Fuel injection control device
JP5141723B2 (en) Fuel injection control device for internal combustion engine
JP5263280B2 (en) Fuel injection control device
JP5003796B2 (en) Fuel injection state detection device
JP2013007341A (en) Fuel-injection-condition estimating apparatus
JP6040877B2 (en) Fuel injection state estimation device
JP5565435B2 (en) Fuel injection control device
JP5126296B2 (en) Fuel injection state detection device
JP5182337B2 (en) Detection deviation judgment device of fuel pressure sensor
JP5370348B2 (en) Fuel injection control device for internal combustion engine
JP5382006B2 (en) Fuel injection control device
JP5240283B2 (en) Noise diagnosis device for fuel injection system
JP6028603B2 (en) Fuel injection state estimation device
JP2014227952A (en) Fuel injection characteristic detection device
JP5392277B2 (en) Fuel injection control device
JP5375848B2 (en) Fuel injection condition analyzer
JP5168325B2 (en) Fuel injection state detection device
JP2008280851A (en) Fuel injection property detecting device and engine control system
JP6030502B2 (en) Fuel injection characteristic learning device for internal combustion engine
WO2019088188A1 (en) Fuel injection control device
JP2017072113A (en) Fuel injection state detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R151 Written notification of patent or utility model registration

Ref document number: 5565435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250