JP2013237808A - Micropore film made of modified polytetrafluoroethylene and method of manufacturing the same, porous resin film composite, and filter element - Google Patents

Micropore film made of modified polytetrafluoroethylene and method of manufacturing the same, porous resin film composite, and filter element Download PDF

Info

Publication number
JP2013237808A
JP2013237808A JP2012112670A JP2012112670A JP2013237808A JP 2013237808 A JP2013237808 A JP 2013237808A JP 2012112670 A JP2012112670 A JP 2012112670A JP 2012112670 A JP2012112670 A JP 2012112670A JP 2013237808 A JP2013237808 A JP 2013237808A
Authority
JP
Japan
Prior art keywords
film
modified polytetrafluoroethylene
stretching
membrane
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012112670A
Other languages
Japanese (ja)
Other versions
JP5873389B2 (en
Inventor
Fumihiro Hayashi
文弘 林
Aya Oya
彩 大矢
Atsushi Uno
敦史 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Fine Polymer Inc
Original Assignee
Sumitomo Electric Fine Polymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Fine Polymer Inc filed Critical Sumitomo Electric Fine Polymer Inc
Priority to JP2012112670A priority Critical patent/JP5873389B2/en
Publication of JP2013237808A publication Critical patent/JP2013237808A/en
Application granted granted Critical
Publication of JP5873389B2 publication Critical patent/JP5873389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide: a method of manufacturing a micropore film made of modified polytetrafluoroethylene in which a difference between an average flow rate pore size and the maximum pore size is small and that is excellent in permeability; the micropore film manufactured by the manufacturing method; a porous resin film composite using the micropore film; and a filter element using the porous resin film composite.SOLUTION: A method of manufacturing a micropore film made of modified polytetrafluoroethylene comprises: heating a film obtained by forming particles of modified polytetrafluoroethylene to a given shape dimension, at higher temperature than a melting point thereof to be non-porous; and then stretching the resultant film to be porous, wherein an amount of heat of fusion of the modified polytetrafluoroethylene is less than 32 J/g, and the stretching step has a low temperature stretching process and a high temperature stretching step. In addition, the micropore film manufactured by the manufacturing method, a porous resin film composite obtained by using the micropore film, and a filter element obtained by using the porous resin film composite are disclosed.

Description

本発明は、ヘキサフルオロプロピレン(HFP)やパーフルオロアルキルビニルエーテル(PAVE)等が少量共重合されたポリテトラフルオロエチレン(以下、「変性PTFE」と言う)からなる微細孔径膜(以下、「変性PTFE製微細孔径膜」と言う)の製造方法に関する。具体的には、変性PTFEの樹脂粒子を膜状に成形後加熱して無孔質化し、得られた無孔質膜を延伸して多孔質化する変性PTFE製微細孔径膜の製造方法に関する。本発明は、又、前記の製造方法により得られ、孔径分布が狭いとともに濾過膜として用いた場合の処理液の透過性に優れる変性PTFE製微細孔径膜に関する。本発明は、さらに、前記変性PTFE製微細孔径膜をその構成要素とする多孔質樹脂膜複合体、及び前記多孔質樹脂膜複合体を濾過膜として用いるフィルターエレメントに関する。   The present invention relates to a microporous membrane (hereinafter referred to as “modified PTFE”) made of polytetrafluoroethylene (hereinafter referred to as “modified PTFE”) obtained by copolymerizing a small amount of hexafluoropropylene (HFP), perfluoroalkyl vinyl ether (PAVE) or the like. It is related with a manufacturing method of “made fine pore diameter membrane”. More specifically, the present invention relates to a method for producing a modified PTFE microporous membrane in which modified PTFE resin particles are molded into a membrane and then heated to make it nonporous, and the resulting nonporous membrane is stretched to make it porous. The present invention also relates to a modified PTFE fine pore diameter membrane obtained by the above-described production method, having a narrow pore size distribution and having excellent treatment liquid permeability when used as a filtration membrane. The present invention further relates to a porous resin membrane composite having the modified PTFE microporous membrane as a constituent element, and a filter element using the porous resin membrane composite as a filtration membrane.

フッ素樹脂製微細孔径膜とは、ポリテトラフルオロエチレン(以下、「PTFE」と言う)等のフッ素樹脂を主原料として形成された膜状の多孔質体であってその孔径が微細なものである。フッ素樹脂製微細孔径膜の中でもPTFEを主体として形成されているPTFE製微細孔径膜(PTFE多孔質体)は、耐薬品性、耐熱性に優れるので、微細な粒子を濾過するための濾過膜(フィルター)等として用いられている。   The microporous membrane made of fluororesin is a membrane-like porous body formed from fluororesin such as polytetrafluoroethylene (hereinafter referred to as “PTFE”) as a main raw material, and has a micropore size. . Among the fluororesin microporous membranes, PTFE microporous membranes (PTFE porous body) formed mainly of PTFE are excellent in chemical resistance and heat resistance, and therefore are filtration membranes for filtering fine particles ( Filter) and the like.

PTFE多孔質体の製造方法として、例えば、特許文献1には、PTFEファインパウダーに押出助剤を配合して混合後に所望の形状にペースト押出成形を行い、その押出成形品を加熱して345℃付近の高融点を残した半焼性状態とし、その後に延伸して多孔質化する方法が開示されている。ここで使用されるPTFEファインパウダーとは、テトラフルオロエチレンを乳化重合して生成した粒径が0.15μm〜0.35μmのPTFE粒子(一次粒子)からなるもの(乳化重合品)を乾燥し数百μm〜数千μmに造粒した粉体である。   As a method for producing a PTFE porous body, for example, in Patent Document 1, an extrusion aid is blended with PTFE fine powder, mixed and paste-extruded into a desired shape, and the extruded product is heated to 345 ° C. A method is disclosed in which a semi-fired state in which a high melting point is left in the vicinity is left, and then it is stretched to make it porous. The PTFE fine powder used here is a number obtained by drying PTFE particles (primary particles) having a particle size of 0.15 to 0.35 μm produced by emulsion polymerization of tetrafluoroethylene (emulsion polymerization product). It is a powder granulated to 100 μm to several thousand μm.

上記の方法では、押出成形品を延伸することにより成形品が多孔質化される。しかしこの方法は、基本的に粉体成形であり成形品を完全溶融しないことから延伸前から粒子間に空隙が存在する。従って、多孔質化された成形品(多孔質体)には大きな孔が生成しやすく、優れた濾過性能を有する微小孔径膜を製造することは困難であった。   In the above method, the molded product is made porous by stretching the extruded product. However, since this method is basically powder molding and does not completely melt the molded product, there are voids between the particles before stretching. Therefore, large pores are easily generated in the porous molded product (porous body), and it has been difficult to produce a microporous membrane having excellent filtration performance.

そこで、PTFEファインパウダー等の粉末を膜状に成形した後、PTFEの融点以上に加熱、焼結し、空気の透過性やアルコールの透過性が消失するまで完全溶融して無孔質化し、その後延伸して多孔質化する方法が特許文献2等で開示されている。又、特許文献3では、PTFE等のフッ素樹脂粉末を分散媒中に分散したディスパージョンを平滑なフィルム上に塗布した後、分散媒の乾燥及びフッ素樹脂粉末の焼結を行ってフッ素樹脂粉末を完全溶融することにより、ボイドやクラック等の欠陥が少ない無孔質のフッ素樹脂薄膜が得られること、この無孔質のフッ素樹脂薄膜を延伸して多孔質化することにより、微細孔を有し気孔率も高くかつ欠陥がないフッ素樹脂薄膜(フッ素樹脂製微細孔径膜)が得られることが開示されている。さらに、特許文献2や3では、分子量の指標である融解熱量が32J/g以上であるPTFEを使用すると、延伸加工性が良いと記載されている。   Therefore, after forming a powder such as PTFE fine powder into a film shape, it is heated and sintered to a temperature higher than the melting point of PTFE, completely melted until it loses air permeability and alcohol permeability, and then made nonporous. A method of stretching to make it porous is disclosed in Patent Document 2 and the like. Further, in Patent Document 3, after applying a dispersion in which a fluororesin powder such as PTFE is dispersed in a dispersion medium, the dispersion medium is dried and the fluororesin powder is sintered to obtain a fluororesin powder. By completely melting, a non-porous fluororesin thin film with few defects such as voids and cracks can be obtained, and by making this non-porous fluororesin thin film porous, it has fine pores. It is disclosed that a fluororesin thin film (fluorine resin microporous membrane) having a high porosity and no defects can be obtained. Further, Patent Documents 2 and 3 describe that stretch workability is good when PTFE having a heat of fusion of 32 J / g or more, which is an index of molecular weight, is used.

さらに又、特許文献4では、前記の、完全溶融して無孔質化した後に延伸多孔質化する方法において、より孔径が小さい多孔質膜、特に平均流量孔径が45nm以下の多孔質膜を製作するためには、30℃以下で延伸すると良いと記載されている。   Furthermore, in Patent Document 4, a porous film having a smaller pore diameter, particularly a porous film having an average flow pore diameter of 45 nm or less, is manufactured in the method of making a porous film after it is completely melted and made nonporous. In order to do so, it is described that it should be stretched at 30 ° C. or lower.

特開2007−332342号公報JP 2007-332342 A 特開2007−7732号公報JP 2007-7732 A 特許4371176号公報Japanese Patent No. 4371176 特開2010−94579号公報JP 2010-94579 A

近年、フィルターエレメントに使用する濾過膜としてより優れた分画性能を得るため、平均流量孔径と最大孔径間の差異がより小さく、孔径分布が狭い微細孔径膜が望まれている。さらに、濾過膜としてフィルターエレメントに使用され大きな処理流量を得るため、処理液(フィルターエレメントに濾過される液)の透過性に優れる微細孔径膜が望まれている。   In recent years, in order to obtain better fractionation performance as a filtration membrane used in a filter element, a fine pore size membrane having a smaller difference between the average flow pore size and the maximum pore size and a narrow pore size distribution is desired. Furthermore, in order to obtain a large treatment flow rate used as a filter membrane in a filter element, a fine pore diameter membrane having excellent permeability of a treatment liquid (liquid to be filtered through the filter element) is desired.

ここで、平均流量孔径とは、細孔径分布測定器等を用いるバブルポイント法(ASTM F316−86、JISK3832)により、膜に加えられる差圧と膜を透過する空気流量との関係を、膜が乾燥している場合と膜が液体で濡れている場合について測定し、得られたグラフをそれぞれ乾き曲線及び濡れ曲線とし、乾き曲線の流量を1/2とした曲線と、濡れ曲線との交点における差圧をP(Pa)としたとき、式d=cγ/Pで表されるd(μm)の値であり、孔径の平均に対応した指標である(cは定数で2860であり、γは液体の表面張力(dynes/cm)である)。   Here, the average flow pore size is the relationship between the differential pressure applied to the membrane and the air flow rate through the membrane by the bubble point method (ASTM F316-86, JIS K3832) using a pore size distribution measuring device or the like. Measured when the film is dry and when the film is wet with a liquid, and the obtained graph is a dry curve and a wet curve, respectively. When the differential pressure is P (Pa), it is a value of d (μm) represented by the formula d = cγ / P, and is an index corresponding to the average pore diameter (c is a constant 2860, γ is Liquid surface tension (dynes / cm)).

又、最大孔径とは、上記の、細孔径分布測定器等を用いるバブルポイント法により計測される値であり、孔径の分布の上限に対応した指標である。具体的には、膜全面が液体で濡れている状態で片面の空気圧を高めていったとき、膜の毛細管力を超えて空気の透過が始まる圧力(最低圧力)を測定し、この最低圧力をP1として上記の式(最大孔径=cγ/P1)から算出される。又、最近PMI社では、2つの液の組合せによる新しいバブルポイント法を開発しており、この方法により1nm〜数十nmの孔径の測定が可能である(インターネット:pmiapp.com/products/liquid -liquid-porometer.html 等)。   The maximum pore diameter is a value measured by the bubble point method using the above-mentioned pore diameter distribution measuring instrument or the like, and is an index corresponding to the upper limit of the pore diameter distribution. Specifically, when the air pressure on one side is increased while the entire membrane surface is wet with liquid, the pressure at which air permeation exceeds the capillary force of the membrane (minimum pressure) is measured. P1 is calculated from the above formula (maximum pore diameter = cγ / P1). Recently, PMI has developed a new bubble point method using a combination of two liquids, and this method can measure pore sizes from 1 nm to several tens of nm (Internet: pmiapp.com/products/liquid- liquid-porometer.html etc.).

しかしながら前記の方法によれば、平均流量孔径が50nm以下の微細孔を有しかつ欠陥が少ないフッ素樹脂製微細孔径膜が得られるものの、処理液の透過性については必ずしも近年の要請を満たすものではなかった。特に、本発明者が鋭意検討した結果、孔径をより小さく調整した場合には透過性が劣り処理流量が小さくなりやすいことが見出された。処理流量が小さくなると、所定の処理量を得るためには、膜面積の増大やポンプの容量の増大等を要し設備の大型化が必要となる。さらに、平均流量孔径が40nm以下となると、平均流量孔径と最大孔径の差(孔径分布)が広がることが本発明者により見出された。   However, according to the above-described method, although a fluororesin microporous membrane having an average flow pore size of 50 nm or less and having few defects can be obtained, the permeability of the treatment liquid does not always satisfy the recent demand. There wasn't. In particular, as a result of intensive studies by the present inventors, it has been found that when the pore diameter is adjusted to be smaller, the permeability is poor and the treatment flow rate tends to be small. When the processing flow rate is reduced, in order to obtain a predetermined processing amount, it is necessary to increase the membrane area, increase the capacity of the pump, etc., and increase the size of the equipment. Furthermore, it has been found by the present inventor that the difference between the average flow pore diameter and the maximum pore diameter (pore diameter distribution) increases when the average flow pore diameter is 40 nm or less.

孔径分布が広くなると、微細な異物を高い除去効率(充分な分画性能)で除去できない。すなわち、分画性能が低下する。そこで、孔径を非常に小さくした場合、例えば平均流量孔径を40nm以下に調整した場合であっても、平均流量孔径と最大孔径間の差異が小さく分画性能に優れるとともに、透過性にも優れるフッ素樹脂製微細孔径膜の開発が望まれている。   When the pore size distribution becomes wide, fine foreign matters cannot be removed with high removal efficiency (sufficient fractionation performance). That is, the fractionation performance is reduced. Therefore, when the pore diameter is very small, for example, even when the average flow pore diameter is adjusted to 40 nm or less, the difference between the average flow pore diameter and the maximum pore diameter is small, and the fractionation performance is excellent, and the permeability is also excellent. Development of a resin microporous membrane is desired.

本発明は、従来の方法により製造されるフッ素樹脂製微細孔径膜と比べて平均流量孔径と最大孔径間の差異が小さく分画性能に優れるとともに、透過性にも優れるフッ素樹脂製微細孔径膜を製造できる方法、及び、この方法により製造され、分画性能及び透過性がともに優れるフッ素樹脂製微細孔径膜を提供することを課題とする。又本発明は、前記フッ素樹脂製微細孔径膜を用いる多孔質樹脂膜複合体、並びに前記多孔質樹脂膜複合体を用いたフィルターエレメントを提供することを課題とする。   The present invention provides a fluororesin microporous membrane having a small difference between the average flow pore size and the maximum pore size as compared with a fluororesin microporous membrane manufactured by a conventional method and having excellent fractionation performance and excellent permeability. It is an object of the present invention to provide a method that can be manufactured, and a fluororesin-made microporous membrane that is manufactured by this method and has excellent fractionation performance and permeability. Another object of the present invention is to provide a porous resin membrane composite using the fluororesin microporous membrane and a filter element using the porous resin membrane composite.

本発明者は、前記課題を解決するために鋭意研究した結果、フッ素樹脂粉末(粒子)を膜状に成形し、得られた成形品を加熱してフッ素樹脂粉末を完全溶融して無孔質化し、その後延伸して多孔質化する方法において、原料のフッ素樹脂粒子として融解熱量が32J/g未満の変性PTFEを使用するとともに、延伸を、80℃以下での延伸及び80℃を超える温度での延伸の少なくとも2工程で行うことにより、40nm以下の平均流量孔径を有するとともに、平均流量孔径と最大孔径間の差異がより小さくかつ透過性にも優れるフッ素樹脂製微細孔径膜が得られることを見出し、本発明を完成した。   As a result of diligent research to solve the above-mentioned problems, the inventor formed a fluororesin powder (particles) into a film shape, and heated the resulting molded product to completely melt the fluororesin powder and to make it nonporous. In the method of forming a porous material by subsequent stretching, a modified PTFE having a heat of fusion of less than 32 J / g is used as the raw material fluororesin particles, and the stretching is performed at a temperature of 80 ° C. or less and at a temperature exceeding 80 ° C. By performing the stretching in at least two steps, it is possible to obtain a fluororesin microporous membrane having an average flow pore size of 40 nm or less, a smaller difference between the average flow pore size and the maximum pore size, and excellent permeability. The headline and the present invention were completed.

請求項1に記載の発明は、変性PTFEの粉末を膜状に成形して膜状成形品を得る成膜工程、前記膜状成形品を前記変性PTFEの融点以上に加熱して無孔質膜状成形品を得る焼結工程、及び、前記無孔質膜状成形品を延伸して多孔質化する延伸工程を有し、前記変性PTFEの融解熱量が32J/g未満であり、かつ前記延伸工程が、80℃以下で少なくとも1方向へ延伸する低温延伸工程及び前記低温延伸後に行われ80℃を超える温度で少なくとも1方向へ延伸する高温延伸工程を有することを特徴とする変性PTFE製微細孔径膜の製造方法である。   The invention according to claim 1 is a film forming step for obtaining a film-shaped molded product by forming a powder of modified PTFE into a film shape, and heating the film-shaped molded product to a temperature equal to or higher than the melting point of the modified PTFE. And a stretching step of stretching the nonporous membrane-shaped molded product to make it porous, the heat of fusion of the modified PTFE is less than 32 J / g, and the stretching The modified PTFE micropore diameter is characterized in that the process has a low temperature stretching step of stretching in at least one direction at 80 ° C. or less and a high temperature stretching step performed after the low temperature stretching and stretching in at least one direction at a temperature exceeding 80 ° C. It is a manufacturing method of a film | membrane.

本発明の製造方法において原料の変性PTFEの粉末とは、変性PTFEの微細粒子からなる粉体である。変性PTFEの微細粒子(変性PTFE粉末)を液体(分散媒)に分散した乳液である変性PTFEディスパージョンも、原料の変性PTFEの粉末として用いることができる。変性PTFEの粉末としては、例えば、変性PTFEの微細粒子からなる粉体であり乳化重合により製造される変性PTFEファインパウダーや懸濁重合により製造される変性PTFEモールディングパウダーを挙げることができる。   In the production method of the present invention, the raw material modified PTFE powder is a powder composed of fine particles of modified PTFE. A modified PTFE dispersion, which is an emulsion in which fine particles of modified PTFE (modified PTFE powder) are dispersed in a liquid (dispersion medium), can also be used as a raw material modified PTFE powder. Examples of the modified PTFE powder include modified PTFE fine powder produced by emulsion polymerization and modified PTFE molding powder produced by emulsion polymerization, which is a powder composed of fine particles of modified PTFE.

変性PTFEの粉末を膜状に成形して所定の形状寸法の膜状成形品を得る方法は、粉体から膜を成形するための公知の方法、例えば、特許文献1に記載のペースト押出や、特許文献2に記載の方法等により行うこともできる。又、変性PTFEディスパージョン等を用い、特許文献3に記載の方法等により膜状成形品を得ることもできる。具体的には、変性PTFEディスパージョンを平坦な板上に塗布して製膜し分散媒を乾燥して除去する方法(キャスティング法)によることもできる。この方法によれば、変性PTFE製無孔質膜中のボイド等の欠陥の生成を大きく抑制でき、膜は配向がなく等方的で均質となり、延伸において収縮・変形することもなく均質な微細孔径膜を得ることができる。変性PTFEは、通常、溶融粘度が高く溶融押出が困難である又その溶液の作製も困難であるので、前記のような方法が一般的に採用される。   A method of obtaining a film-shaped molded article having a predetermined shape by forming a powder of modified PTFE into a film shape is a known method for forming a film from a powder, for example, paste extrusion described in Patent Document 1, It can also be carried out by the method described in Patent Document 2. A film-shaped molded article can also be obtained by the method described in Patent Document 3 using a modified PTFE dispersion or the like. Specifically, a method (casting method) in which the modified PTFE dispersion is coated on a flat plate to form a film and the dispersion medium is dried and removed can be used. According to this method, the generation of voids and other defects in the modified PTFE non-porous membrane can be greatly suppressed, the membrane has no orientation and is isotropic and homogeneous, and it does not shrink or deform during stretching. A pore diameter membrane can be obtained. Since the modified PTFE usually has a high melt viscosity and is difficult to melt-extrusion and it is difficult to produce a solution thereof, the above-described method is generally employed.

変性PTFEとは、ヘキサフルオロプロピレン(HFP)、アルキルビニルエーテル(PAVE)、クロロトリフルオロエチレン(CTFE)等が少量、好ましくはテトラフルオロエチレンに対して1/50(モル比)以下共重合されたPTFEを言う。   Modified PTFE is a PTFE copolymerized with a small amount of hexafluoropropylene (HFP), alkyl vinyl ether (PAVE), chlorotrifluoroethylene (CTFE) or the like, preferably 1/50 (molar ratio) or less with respect to tetrafluoroethylene. Say.

成膜工程で得られた膜状成形品は、膜を構成する変性PTFEの融点以上に加熱され、変性PTFEの粉末を完全溶融させる(焼結工程)。変性PTFEの粉末を完全溶融した結果、無孔質膜状成形品(変性PTFE製無孔質膜)が作製される。無孔質膜状成形品とは、膜を貫通する孔がほとんどない膜を意味するが、具体的には、ガーレー秒が5000秒以上の膜が好ましい。変性PTFEの粉末の溶融を完全にしてガーレー秒の大きい無孔質膜状成形品を作製するために、原料の融点より高い温度で加熱されることが好ましく、又樹脂の分解や変性を抑制するために加熱温度は、450℃以下の温度が好ましい。   The film-shaped molded article obtained in the film forming process is heated to a temperature equal to or higher than the melting point of the modified PTFE constituting the film to completely melt the modified PTFE powder (sintering process). As a result of completely melting the modified PTFE powder, a nonporous membrane-shaped molded article (modified PTFE nonporous membrane) is produced. The non-porous film-shaped molded article means a film having few holes penetrating the film, and specifically, a film having a Gurley second of 5000 seconds or more is preferable. In order to completely melt the modified PTFE powder and produce a nonporous membrane-shaped molded article having a large Gurley second, it is preferably heated at a temperature higher than the melting point of the raw material, and also suppresses decomposition and modification of the resin. Therefore, the heating temperature is preferably 450 ° C. or lower.

このようにして得られた無孔質膜状成形品は、延伸されて多孔質化される。延伸の前には、変性PTFEの融点以上に昇温した後ゆっくりと結晶融点以下へ徐冷する方法、又は変性PTFEの融点よりもやや低い温度で一定時間加熱する方法(以下、「定温処理」と言うことがある)によりアニールをすることが好ましい。アニールは、特許文献3に記載の方法と同様にして行うことができる。   The nonporous membrane-like molded article thus obtained is stretched and made porous. Before stretching, the temperature is raised above the melting point of the modified PTFE and then slowly cooled below the crystalline melting point, or the heating is performed at a temperature slightly lower than the melting point of the modified PTFE for a certain time (hereinafter referred to as “constant temperature treatment”). It is preferable to perform annealing. Annealing can be performed in the same manner as the method described in Patent Document 3.

アニールすることにより、延伸前に変性PTFEの樹脂の結晶化度を飽和させることができ、多孔質膜の製造においてより孔径の再現性を高くすることができる。なお、結晶化プロセスでは徐冷速度が低いほどあるいは定温処理時間が長いほど結晶化度が高まり融解熱量が高くなる傾向がある。一方、徐冷速度が高いほどあるいは定温処理時間が短いほど結晶化度は低くなり、融解熱量が低くなる傾向がある。   By annealing, the crystallinity of the modified PTFE resin can be saturated before stretching, and the reproducibility of the pore diameter can be further enhanced in the production of the porous membrane. In the crystallization process, the lower the slow cooling rate or the longer the constant temperature treatment time, the higher the crystallinity and the higher the heat of fusion. On the other hand, the higher the slow cooling rate or the shorter the constant temperature treatment time, the lower the crystallinity and the lower the heat of fusion.

本発明の製造方法は、
1)原料の変性PTFEとして、融解熱量が32J/g未満のものを用いること、
2)延伸工程が、80℃以下で少なくとも1方向へ延伸する低温延伸工程及び前記低温延伸後に行われ80℃を超える温度で少なくとも1方向へ延伸する高温延伸工程を有することを特徴とする。これらの特徴により、40nmの平均流量孔径を有するとともに、平均流量孔径と最大孔径間の差異がより小さくかつ透過性にも優れる変性PTFE製微細孔径膜が得られる。
The production method of the present invention comprises:
1) Use a raw material modified PTFE having a heat of fusion of less than 32 J / g,
2) The stretching step includes a low-temperature stretching step of stretching at least in one direction at 80 ° C. or less and a high-temperature stretching step of stretching in at least one direction at a temperature exceeding 80 ° C. performed after the low-temperature stretching. Due to these features, a modified PTFE microporous membrane having an average flow pore size of 40 nm, a smaller difference between the average flow pore size and the maximum pore size and excellent permeability is obtained.

変性PTFE(フッ素樹脂)の融解熱量とは、次に示す方法により測定した値である。
1)被測定試料(変性PTFE)を、室温から100℃まで50℃/分で加熱し、その後10℃/分で365℃まで加熱する(第一ステップ)。
2)次に、350℃まで−10℃/分の速度で冷却し、350℃で5分間保持する。さらに350℃から330℃まで−10℃/分の速度で冷却、330℃から305℃まで−1℃/分の速度で冷却する(第二ステップ)。
3)次に−50℃/分の速度で305℃から100℃まで冷却した後、10℃/分の速度で100℃から365℃まで加熱する(第三ステップ)。
この第三ステップにおける加熱の際の吸熱量を融解熱量とする。
The heat of fusion of the modified PTFE (fluororesin) is a value measured by the following method.
1) A sample to be measured (modified PTFE) is heated from room temperature to 100 ° C. at 50 ° C./min, and then heated to 365 ° C. at 10 ° C./min (first step).
2) Next, cool to 350 ° C. at a rate of −10 ° C./min and hold at 350 ° C. for 5 minutes. Further, cooling is performed at a rate of −10 ° C./min from 350 ° C. to 330 ° C., and cooling is performed at a rate of −1 ° C./min from 330 ° C. to 305 ° C. (second step).
3) Next, after cooling from 305 ° C. to 100 ° C. at a rate of −50 ° C./min, heating from 100 ° C. to 365 ° C. at a rate of 10 ° C./min (third step).
The amount of heat absorbed during heating in this third step is defined as the amount of heat of fusion.

変性PTFEの融解熱量は、変性PTFE(フッ素樹脂)の結晶化傾向により調整することができ、結晶化傾向が高い程、融解熱量が大きくなる。又変性PTFEの樹脂の結晶化度は、樹脂の分子量や無孔質膜を形成した後のアニール条件を変えること等により調整することができる。   The heat of fusion of the modified PTFE can be adjusted by the crystallization tendency of the modified PTFE (fluororesin), and the heat of fusion increases as the crystallization tendency increases. The crystallinity of the modified PTFE resin can be adjusted by changing the molecular weight of the resin or the annealing conditions after forming the nonporous film.

本発明の製造方法の延伸工程においては、80℃以下で延伸した後更に80℃を超える温度で延伸を行う。すなわち、80℃以下で延伸する低温延伸工程及び80℃を超える温度で延伸する高温延伸工程の少なくとも2段階の延伸工程が行われる。延伸を、温度を変えて行う結果、最大孔径と平均流量孔径の差が小さく濾過性能が良いとともに、透過性に優れた変性PTFE製微細孔径膜が得られる。   In the stretching process of the production method of the present invention, after stretching at 80 ° C. or lower, stretching is further performed at a temperature exceeding 80 ° C. That is, at least two stages of stretching processes are performed: a low-temperature stretching process in which stretching is performed at 80 ° C. or less and a high-temperature stretching process in which stretching is performed at a temperature exceeding 80 ° C. As a result of performing stretching at different temperatures, a modified PTFE microporous membrane having a small difference between the maximum pore size and the average flow rate pore size and good filtration performance and excellent permeability can be obtained.

延伸は、低温延伸及び高温延伸のいずれについても、1軸延伸又は2軸延伸で行うことができるが2軸延伸が好ましい。又、低温での延伸及び高温での延伸のそれぞれで異なった方向への延伸を行ってもよい。   Stretching can be performed by uniaxial stretching or biaxial stretching for both low temperature stretching and high temperature stretching, but biaxial stretching is preferred. Further, stretching in different directions may be performed for stretching at a low temperature and stretching at a high temperature.

延伸により無孔質膜状成形品(変性PTFE製無孔質膜)が多孔質化され孔が形成される。延伸の大きさを増大するとともにその孔径が増大し平均流量孔径も増大して行く。従って、所望の平均流量孔径が得られるように、低温での延伸及び高温での延伸の程度が選択される。好ましくは、低温延伸工程と高温延伸工程とで同程度の延伸率となるように延伸が行われる。   By stretching, the non-porous film-shaped molded article (modified PTFE non-porous film) is made porous to form pores. As the size of stretching increases, the pore size increases and the average flow pore size also increases. Therefore, the degree of stretching at low temperature and stretching at high temperature is selected so that the desired average flow pore size is obtained. Preferably, the stretching is performed so that the stretching ratio is approximately the same in the low-temperature stretching step and the high-temperature stretching step.

上記の本発明の製造方法によれば、平均流量孔径が小さい変性PTFE製微細孔径膜を製造することができるが、平均流量孔径が40nm以下の場合であっても、変性PTFE製微細孔径膜の平均流量孔径と最大径の差異を小さく(孔径分布が狭く、従って濾過性能に優れ)、かつ透過性が高いものとすることができる。従って、本発明の製造方法により得られた変性PTFE製微細孔径膜を微細粒子除去のための濾過膜として用いると、微細な粒子を確実に除去することができ、高い除去効率を達成することができるとともに、濾過の処理流量を大きくすることができ、膜面積の増大、ポンプの容量の増大、設備が大型化等の問題を解決することができる。   According to the production method of the present invention, a modified PTFE microporous membrane having a small average flow pore size can be produced. Even if the average flow pore size is 40 nm or less, the modified PTFE microporous membrane is not suitable. The difference between the mean flow pore size and the maximum pore size can be made small (pore size distribution is narrow and therefore excellent in filtration performance), and the permeability can be made high. Therefore, if the modified PTFE microporous membrane obtained by the production method of the present invention is used as a filtration membrane for removing fine particles, fine particles can be reliably removed and high removal efficiency can be achieved. In addition, the flow rate of filtration can be increased, and problems such as an increase in membrane area, an increase in pump capacity, and an increase in equipment size can be solved.

請求項2に記載の発明は、前記低温延伸工程が、30℃未満で行われることを特徴とする請求項1に記載の変性PTFE製微細孔径膜の製造方法である。   The invention according to claim 2 is the method for producing a modified PTFE microporous membrane according to claim 1, wherein the low-temperature stretching step is performed at a temperature lower than 30 ° C.

30℃未満で延伸を行った後、80℃を超える温度での延伸を行うことにより、製造される変性PTFE製微細孔径膜の透過性をより向上させることができるので好ましい。より好ましくは、低温延伸工程を20℃未満で行う場合であり、透過性をさらに向上させることができる。   It is preferable to perform stretching at a temperature exceeding 80 ° C. after stretching at less than 30 ° C., because the permeability of the produced modified PTFE microporous membrane can be further improved. More preferably, it is a case where a low-temperature extending | stretching process is performed at less than 20 degreeC, and permeability can further be improved.

請求項3に記載の発明は、前記変性PTFEの粉末が、PFA変性PTFE又はFEP変性PTFEの粉末であることを特徴とする請求項1又は請求項2に記載の変性PTFE製微細孔径膜の製造方法である。   According to a third aspect of the present invention, the modified PTFE powder is a PFA-modified PTFE or FEP-modified PTFE powder, wherein the modified PTFE-made microporous membrane according to the first or second aspect is produced. Is the method.

原料の変性PTFEの粉末として、PFA変性PTFE又はFEP変性PTFEの粉末を用いることにより、耐熱性、化学安定性が高いとともに、孔径分布がより狭く平均流量孔径と最大径の差異がより小さい変性PTFE製微細孔径膜が得られるので好ましい。   By using PFA-modified PTFE or FEP-modified PTFE powder as the raw material modified PTFE powder, the modified PTFE has high heat resistance and chemical stability, and has a narrower pore size distribution and a smaller difference between the average flow pore size and the maximum diameter. It is preferable because a microporous membrane can be obtained.

請求項4に記載の発明は、請求項1ないし請求項3のいずれか1項に記載の変性PTFE製微細孔径膜の製造方法により製造され、平均流量孔径が40nm以下であることを特徴とする変性PTFE製微細孔径膜である。前記の本発明の製造方法により製造される変性PTFE製微細孔径膜は、平均流量孔径が40nm以下との微細な孔径を有する場合であっても、前記のように、その平均流量孔径と最大径の差異が小さく(孔径分布が狭く、従って濾過性能に優れ)、かつ透過性が高いものである。そして、微細粒子除去のための濾過膜として好適に用いられ、微細な粒子を確実に除去することができ、高い除去効率を達成することができるとともに、濾過の処理流量を大きくすることができる。   Invention of Claim 4 is manufactured by the manufacturing method of the microporous film | membrane made from the modified PTFE of any one of Claim 1 thru | or 3, The average flow hole diameter is 40 nm or less, It is characterized by the above-mentioned. This is a modified PTFE microporous membrane. Even if the modified PTFE microporous membrane produced by the production method of the present invention has a fine pore diameter of 40 nm or less, the average flow pore diameter and the maximum diameter are as described above. Difference is small (the pore size distribution is narrow, and thus the filtration performance is excellent), and the permeability is high. And it is used suitably as a filtration membrane for fine particle removal, a fine particle can be removed reliably, high removal efficiency can be achieved, and the processing flow rate of filtration can be increased.

請求項5に記載の発明は、平均流量孔径と最大孔径の差が15nm未満であることを特徴とする請求項4に記載の変性PTFE製微細孔径膜である。   The invention according to claim 5 is the modified PTFE fine pore diameter membrane according to claim 4, wherein the difference between the average flow pore size and the maximum pore size is less than 15 nm.

微細な粒子を確実に除去することができ、高い除去効率を達成するためには、微細孔径膜の平均流量孔径が小さく、かつその平均流量孔径と最大径の差異が小さい(孔径分布が狭い。寸法精度が高いと言う)ことが望まれる。中でも、平均流量孔径が40nm以下であり、平均流量孔径と最大孔径の差が15nm未満である場合は、微細な粒子をより確実に除去することができ、微細粒子の高い除去効率を達成するとの効果がより大きくなるので好ましい。   In order to reliably remove fine particles and achieve high removal efficiency, the average flow pore diameter of the fine pore diameter membrane is small and the difference between the average flow pore diameter and the maximum diameter is small (pore diameter distribution is narrow). It is desired that the dimensional accuracy is high). Among these, when the average flow pore size is 40 nm or less and the difference between the average flow pore size and the maximum pore size is less than 15 nm, fine particles can be more reliably removed, and high removal efficiency of fine particles is achieved. Since an effect becomes larger, it is preferable.

請求項6に記載の発明は、(最大孔径−平均流量孔径)/平均流量孔径の値が0.5以下であることを特徴とする請求項5に記載の変性PTFE製微細孔径膜である。平均流量孔径が40nm以下であり、平均流量孔径と最大孔径の差が15nm未満であり、かつ平均流量孔径と最大孔径の差が、平均流量孔径に対し50%以下の大きさである場合は、前記の効果がさらに顕著になるとともに、より微細な粒子を高い除去効率で除去できるのでより好ましい。   A sixth aspect of the present invention is the modified PTFE microporous membrane according to the fifth aspect, wherein the value of (maximum pore diameter−average flow pore diameter) / average flow pore diameter is 0.5 or less. When the average flow pore size is 40 nm or less, the difference between the average flow pore size and the maximum pore size is less than 15 nm, and the difference between the average flow pore size and the maximum pore size is 50% or less of the average flow pore size, It is more preferable because the above-described effect becomes more remarkable and finer particles can be removed with high removal efficiency.

請求項7に記載の発明は、膜厚(nm)/[(平均流量孔径(nm))×ガーレー秒]で表される透過性インデックスが0.009以上であることを特徴とする請求項4ないし請求項6のいずれか1項に記載の変性PTFE製微細孔径膜である。本発明の変性PTFE製微細孔径膜は、優れた気孔率を有し、濾過膜として用いた場合大きな処理速度を得ることができる。前記の式で表される透過性インデックスは、気孔率の大小を示す指標であり、透過性インデックスが0.009以上の変性PTFE製微細孔径膜を濾過膜として用いた場合、膜を透過する流束(流量)を大きくすることができ、大きな処理速度を得ることがでるので好ましい。 The invention described in claim 7 is characterized in that a permeability index expressed by film thickness (nm) / [(average flow pore size (nm)) 2 × Gurley second] is 0.009 or more. The modified PTFE microporous membrane according to any one of claims 4 to 6. The modified PTFE microporous membrane of the present invention has an excellent porosity and can obtain a high processing speed when used as a filtration membrane. The permeability index represented by the above formula is an index indicating the size of the porosity. When a modified PTFE microporous membrane having a permeability index of 0.009 or more is used as a filtration membrane, the permeability that permeates the membrane. This is preferable because the bundle (flow rate) can be increased and a high processing speed can be obtained.

請求項8に記載の発明は、請求項4ないし請求項7のいずれか1項に記載の変性PTFE製微細孔径膜を、この変性PTFE製微細孔径膜よりも平均流量孔径が大きくかつ破断荷重が高い多孔質支持体上に固定してなることを特徴とする多孔質樹脂膜複合体である。   According to an eighth aspect of the present invention, the modified PTFE fine pore diameter membrane according to any one of the fourth to seventh aspects has an average flow pore size larger than that of the modified PTFE fine pore diameter membrane and has a breaking load. It is a porous resin film composite characterized by being fixed on a high porous support.

前記の変性PTFE製微細孔径膜を濾過膜として用いる場合、圧力損失を小さくし濾過の処理速度を大きくするため、膜の厚みは薄い方が好ましく、通常50μm以下が好ましい。しかしこのような厚みでは、濾過膜としての十分な強度が得られない場合がある。そこで、変性PTFE製微細孔径膜を、より平均流量孔径が大きくかつ破断荷重が高い多孔質支持体上に固定して、複合体として使用することが好ましい。多孔質支持体は平均流量孔径が大きいので、変性PTFE製微細孔径膜と組合せても濾過の処理速度等を低下させることはなく、又破断荷重が高いので機械的強度も優れた多孔質樹脂膜複合体が得られる。   When the modified PTFE microporous membrane is used as a filtration membrane, the thickness of the membrane is preferably thin and usually 50 μm or less in order to reduce pressure loss and increase the filtration speed. However, with such a thickness, sufficient strength as a filtration membrane may not be obtained. Therefore, it is preferable to use the modified PTFE fine pore diameter membrane as a composite by fixing it on a porous support having a larger average flow pore size and a higher breaking load. Since the porous support has a large average flow pore size, it does not decrease the filtration speed even when combined with a modified PTFE fine pore membrane, and the porous resin membrane has excellent mechanical strength due to high breaking load. A complex is obtained.

多孔質支持体は、複合体に機械的強度を付与するものであり、一方複合体が濾過膜として用いられたときには、濾過膜としての特性、例えば処理能力、処理速度等を阻害しないことが望まれる。そこで、多孔質支持体としては、機械的強度や耐薬品性、耐熱性に優れるPTFE製の多孔質体が好ましく用いられ、かつ、その孔径(平均流量孔径)がそれと組合される変性PTFE製微細孔径膜の孔径(平均流量孔径)より大きいだけでなく気孔率が高いことも望まれる。具体的には、PTFE膜を延伸して、100nm以上好ましくは200nm以上の孔を形成して製造されたPTFE製多孔質体であって、充分な機械的強度を付与する厚さを有するものが好ましく用いられる。   The porous support imparts mechanical strength to the composite. On the other hand, when the composite is used as a filtration membrane, it is desirable that the properties as a filtration membrane, such as processing ability and processing speed, are not impaired. It is. Therefore, as the porous support, a PTFE porous body excellent in mechanical strength, chemical resistance, and heat resistance is preferably used, and the pore diameter (average flow pore diameter) is combined with it. In addition to being larger than the pore diameter (average flow pore diameter) of the pore diameter membrane, it is also desired that the porosity be high. Specifically, a PTFE porous body produced by stretching a PTFE membrane to form pores of 100 nm or more, preferably 200 nm or more, having a thickness that gives sufficient mechanical strength. Preferably used.

本発明の多孔質樹脂膜複合体は、前記変性PTFE製無孔質膜を、多孔質支持体に貼り合わして複合体を作製した後、この複合体を延伸することにより得られる。延伸により、複合体を構成する前記変性PTFE製無孔質膜も延伸され、本発明の変性PTFE製微細孔径膜となる。   The porous resin membrane composite of the present invention can be obtained by pasting the modified PTFE non-porous membrane on a porous support to produce a composite, and then stretching the composite. By stretching, the modified PTFE non-porous membrane constituting the composite is also stretched to form the modified PTFE microporous membrane of the present invention.

本発明の、多孔質樹脂膜複合体は、その構成要素である変性PTFE製微細孔径膜の優れた効果、すなわち微細粒子除去のための濾過膜として用いた場合、微細な粒子を確実に除去することができ、高い除去効率を達成することができるとともに、濾過の処理流量を大きくすることができるとの効果を保持するとともに、高い機械的強度を有する。又、多孔質樹脂膜複合体とすることにより変性PTFE製微細孔径膜のみの場合と比べて、その使用時や加工する際のハンドリングが容易となる。従って、この多孔質樹脂膜複合体は、微細粒子を濾過するためのフィルターエレメント等に、微細粒子を濾過するための濾過膜として好適に用いられる。そこで、本発明はさらに、請求項9として、請求項8に記載の多孔質樹脂膜複合体を濾過膜として用いることを特徴とするフィルターエレメントを提供する。   The porous resin membrane composite of the present invention is excellent in the effect of a modified PTFE microporous membrane that is a constituent element thereof, that is, when used as a filtration membrane for removing fine particles, fine particles are reliably removed. It is possible to achieve high removal efficiency, while maintaining the effect that the processing flow rate of filtration can be increased, and it has high mechanical strength. In addition, by using a porous resin membrane composite, handling at the time of use or processing becomes easier than in the case of using only a modified PTFE microporous membrane. Therefore, this porous resin membrane composite is suitably used as a filter membrane for filtering fine particles in a filter element or the like for filtering fine particles. Therefore, the present invention further provides, as claim 9, a filter element characterized by using the porous resin membrane composite according to claim 8 as a filtration membrane.

本発明の変性PTFE製微細孔径膜の製造方法により、平均流量孔径が40nm以下の場合であっても平均流量孔径と最大径の差異を小さく(孔径分布が狭く)かつ透過性が高い変性PTFE製微細孔径膜を製造することができる、この製造方法により得られる本発明の変性PTFE製微細孔径膜は、平均流量孔径が40nm以下であるにもかかわらず、平均流量孔径と最大径の差異が小さくかつ透過性が高いので、微細粒子除去のための濾過膜として用いると、微細な粒子を確実に除去することができ、高い除去効率を達成することができるとともに、濾過の処理流量を大きくすることができる。   By the method for producing a modified PTFE fine pore diameter membrane of the present invention, even if the average flow pore diameter is 40 nm or less, the difference between the average flow pore diameter and the maximum diameter is small (pore diameter distribution is narrow) and the permeability is high. Although the modified PTFE microporous membrane of the present invention obtained by this production method can produce a microporous membrane, the difference between the average flow pore size and the maximum diameter is small even though the average flow pore size is 40 nm or less. And because of its high permeability, when used as a filtration membrane for removing fine particles, fine particles can be reliably removed, high removal efficiency can be achieved, and the filtration processing flow rate can be increased. Can do.

さらに、この変性PTFE製微細孔径膜を多孔質支持体上に固定してなる本発明の多孔質樹脂膜複合体は、微細粒子除去のための濾過膜として用いることができ、濾過膜としての前記の優れた効果を達成することができる。従って、この多孔質樹脂膜複合体を濾過膜として用いた本発明のフィルターエレメントにより、微細な粒子を確実に除去することができ、高い除去効率を達成することができるとともに、濾過の処理流量を大きくすることができる。   Furthermore, the porous resin membrane composite of the present invention formed by fixing this modified PTFE fine pore membrane on a porous support can be used as a filtration membrane for removing fine particles, Excellent effect can be achieved. Therefore, the filter element of the present invention using this porous resin membrane composite as a filtration membrane can surely remove fine particles, achieve high removal efficiency, and reduce the filtration treatment flow rate. Can be bigger.

実施例1で得られる中間体(低温延伸工程後)の表面の電子顕微鏡写真である。2 is an electron micrograph of the surface of the intermediate (after the low temperature stretching step) obtained in Example 1. 実施例1で得られる製品(高温延伸工程後)の表面の電子顕微鏡写真である。It is an electron micrograph of the surface of the product (after a high temperature extending process) obtained in Example 1. 実施例1で得られる製品(高温延伸工程後)の断面の電子顕微鏡写真である。It is an electron micrograph of the cross section of the product (after a high temperature extending | stretching process) obtained in Example 1. FIG.

次に、本発明を実施するための具体的な形態を説明する。なお、本発明はここに述べる形態に限定されるものではない。   Next, specific modes for carrying out the present invention will be described. In addition, this invention is not limited to the form described here.

本発明において原料として好適であるHFPとテトラフルオロエチレンとの共重合体、又はPAVEとテトラフルオロエチレンとの共重合体である変性PTFEは、それぞれ下記構造式(I)又は下記構造式(II)で表される。   The modified PTFE, which is a copolymer of HFP and tetrafluoroethylene, or a copolymer of PAVE and tetrafluoroethylene, which is suitable as a raw material in the present invention, has the following structural formula (I) or the following structural formula (II), respectively. It is represented by

構造式(I)、構造式(II)中のmは、50以上が好ましい。この場合は、前記共重合体を構成するモノマーとしてはテトラフルオロエチレンが主体であり、その融点は320℃以上と比較的高い。この場合(特にmが100以上の場合)の共重合体は、溶融粘度が高く溶融押出が困難であり、溶融押出可能な熱可塑性樹脂のテトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)やテトラフルオロエチレン/パーフルオロアルキルエーテル共重合体(PFA)とは区別される。なお、mが400を超えると、HFPやPAVEを共重合させる効果、すなわち、平均流量孔径と最大径の差異をより小さくできるとの効果が得られにくくなるので、mは50〜400の範囲が好ましい。   M in the structural formulas (I) and (II) is preferably 50 or more. In this case, the monomer constituting the copolymer is mainly tetrafluoroethylene, and its melting point is relatively high at 320 ° C. or higher. The copolymer in this case (especially when m is 100 or more) has a high melt viscosity and is difficult to be melt-extruded, and is a melt-extrudable thermoplastic resin such as tetrafluoroethylene / hexafluoropropylene copolymer (FEP) A distinction is made from tetrafluoroethylene / perfluoroalkyl ether copolymers (PFA). In addition, when m exceeds 400, it becomes difficult to obtain the effect of copolymerizing HFP and PAVE, that is, the effect that the difference between the average flow pore size and the maximum diameter can be made smaller, so m is in the range of 50 to 400. preferable.

構造式(I)、構造式(II)中のnは重合度を表わす。nの範囲は特に限定されないが本発明の原料としては、前記第3ステップでの融解熱量が18〜32J/gの範囲(となるような分子量)の共重合体が好ましく用いられる。分子量が高すぎると気孔率(すなわち透過性インデックス)が低下する傾向があり、分子量が低すぎるとピンホールを生じる、延伸時に破れ易くなる等の傾向がある。又、前記式(II)中のRfは、パーフルオロアルキル基を表わし、好ましくは、炭素数が3のパーフルオロプロピル−C又は炭素数が1のパーフルオロメチル−CFである。 In Structural Formulas (I) and (II), n represents the degree of polymerization. The range of n is not particularly limited, but as the raw material of the present invention, a copolymer having a heat of fusion in the third step in the range of 18 to 32 J / g (a molecular weight such as to be) is preferably used. If the molecular weight is too high, the porosity (that is, the permeability index) tends to decrease, and if the molecular weight is too low, pinholes are generated, and the film tends to be broken during stretching. Further, the formula (II) Rf in represents a perfluoroalkyl group is preferably a perfluoro propyl -C 3 F 7 or perfluoromethyl -CF 3 carbon atoms is 1 the carbon atoms 3.

なお、本発明の変性PTFE製微細孔径膜を構成する前記共重合体は、本発明の趣旨を損ねない範囲で、HFP又はPAVEに加えて他の単量体を共重合させたものでもよい。又、HFP及びPAVEを共に共重合させたものでもよい。   The copolymer constituting the modified PTFE microporous membrane of the present invention may be a copolymer obtained by copolymerizing other monomers in addition to HFP or PAVE as long as the gist of the present invention is not impaired. Moreover, what co-polymerized HFP and PAVE may be used.

本発明の製造方法において成膜工程(無孔質膜の形成工程)は、例えば、次に示す方法により行うことができる。   In the production method of the present invention, the film forming step (nonporous film forming step) can be performed, for example, by the following method.

(1)変性PTFEのファインパウダーに押出助剤を加えた後、シート状、あるいはチューブ状にペースト押出成形し、必要に応じて圧延する方法。 (1) A method in which an extrusion aid is added to the fine powder of modified PTFE, and then paste extrusion molding into a sheet shape or a tube shape and rolling as necessary.

(2)変性PTFEのファインパウダーを圧縮成型により円筒状に成形した後、融点以上にした後、回転させながら切削によって20μm程度の薄いフィルムを作製する方法。 (2) A method in which a fine film of modified PTFE is formed into a cylindrical shape by compression molding, and after making the melting point or higher, a thin film of about 20 μm is produced by cutting while rotating.

(3)変性PTFEのディスパージョンを平滑な箔上に塗布(キャスティング)した後、分散媒を乾燥し、さらに重合体の融点以上に加熱して焼結する方法(すなわち、前記のキャスティング法。特許文献3に記載の方法)。 (3) A method in which a dispersion of modified PTFE is applied (casting) onto a smooth foil, and then the dispersion medium is dried and further heated to a temperature equal to or higher than the melting point of the polymer (that is, the casting method described above). Method described in Document 3).

(1)の方法に使用される変性PTFEファインパウダーは、テトラフルオロエチレン及びHFPやPAVE等の共重合される単量体の乳化重合で製造される粒子ラテックス(粒子径:150〜350nm)を凝析、乾燥、造粒した粉体(径:300〜600μm、)である。乳化重合では、テトラフルオロエチレンモノマー及び共重合される単量体(HFPやPAVE等)を水中で重合させながら真球に近い粒子(一次粒子)を150〜350nm程度まで成長させる。   The modified PTFE fine powder used in the method (1) is a particle latex (particle diameter: 150 to 350 nm) produced by emulsion polymerization of tetrafluoroethylene and a copolymerized monomer such as HFP or PAVE. This is a powder (diameter: 300 to 600 μm) which has been deposited, dried and granulated. In emulsion polymerization, particles (primary particles) close to true spheres are grown to about 150 to 350 nm while polymerizing a tetrafluoroethylene monomer and a copolymerized monomer (such as HFP or PAVE) in water.

(2)の方法に使用される変性PTFEファインパウダーは、(1)の方法に使用されるものと同じ粉体である。   The modified PTFE fine powder used in the method (2) is the same powder as that used in the method (1).

(3)の方法に使用される変性PTFEのディスパージョンは、テトラフルオロエチレン及び共重合される単量体(HFP又はPAVE等)の乳化重合等により製造される。   The dispersion of the modified PTFE used in the method (3) is produced by emulsion polymerization of tetrafluoroethylene and a monomer to be copolymerized (such as HFP or PAVE).

変性PTFEのディスパージョンの分散媒は、通常、水等の水性媒体である。ディスパージョン中の変性PTFEの樹脂粒子の含有量は20〜50体積%の範囲が好ましい。ディスパージョン中に、さらにノニオン性で分子量が1万以上の水溶性ポリマーを含有する場合、これらはディスパージョンの分散に影響しないとともに水分乾燥時にゲル化して膜を形成し欠陥がさらに少ない変性PTFEの薄膜(変性PTFE製無孔質膜)が得られるので好ましい。ノニオン性で分子量が1万以上の水溶性ポリマーとしては、ポリエチレンオキサイド、ポリビニルアルコール等を挙げることができる。   The dispersion medium of the modified PTFE dispersion is usually an aqueous medium such as water. The content of the modified PTFE resin particles in the dispersion is preferably in the range of 20 to 50% by volume. When the dispersion further contains a nonionic, water-soluble polymer having a molecular weight of 10,000 or more, these do not affect the dispersion of the dispersion, and also gelate during moisture drying to form a film, and the modified PTFE has fewer defects. Since a thin film (non-porous film made of modified PTFE) is obtained, it is preferable. Examples of the nonionic water-soluble polymer having a molecular weight of 10,000 or more include polyethylene oxide and polyvinyl alcohol.

この方法に使用される平滑な箔とは、ディスパージョンと接する側の表面に孔や凹凸が観測されない平滑なフィルムである。平滑な箔としては、柔軟性を有し、膜の形成後、酸等による溶解除去が容易な金属箔が好ましい。金属箔の中でもアルミ箔は、柔軟性及び溶解除去の容易さの点で、又入手の容易さの点で特に好適である。   The smooth foil used in this method is a smooth film in which no holes or irregularities are observed on the surface in contact with the dispersion. The smooth foil is preferably a metal foil that has flexibility and is easy to dissolve and remove with an acid or the like after the film is formed. Among the metal foils, the aluminum foil is particularly suitable from the viewpoint of flexibility and ease of dissolution and removal, and also from the viewpoint of availability.

平滑な箔の厚さの範囲は特に限定されないが、柔軟性を有する厚さが望ましく、又、膜の形成後平滑な箔の除去を行う場合は除去が困難とならない厚さが望ましい。例えば、平滑な箔を溶解除去する場合は、容易に溶解除去される厚さが望まれる。   The range of the thickness of the smooth foil is not particularly limited, but a thickness having flexibility is desirable, and when the smooth foil is removed after the film is formed, a thickness that does not make removal difficult is desirable. For example, when a smooth foil is dissolved and removed, a thickness that can be easily dissolved and removed is desired.

この方法では、平滑な箔上にディスパージョンを単に塗布する方法等によりキャスティングした後、分散媒の乾燥が行われる。乾燥は、分散媒の沸点に近い温度又は沸点以上に加熱することにより行うことができる。乾燥により変性PTFEの樹脂からなる皮膜が形成されるが、この皮膜を変性PTFEの融点以上に加熱して焼結することにより無孔質の変性PTFEの薄膜(変性PTFE製無孔質膜)を得ることができる。乾燥と焼結の加熱を同一工程で行ってもよい。   In this method, the dispersion medium is dried after casting by a method such as simply applying a dispersion on a smooth foil. Drying can be performed by heating to a temperature close to or higher than the boiling point of the dispersion medium. A film made of a modified PTFE resin is formed by drying, and this film is heated to a temperature equal to or higher than the melting point of the modified PTFE to sinter a nonporous modified PTFE thin film (modified PTFE nonporous film). Can be obtained. Drying and sintering heating may be performed in the same step.

前記の成膜工程で得られた変性PTFE製無孔質膜は、好ましくはアニールされる。アニールは、無孔質膜を構成する変性PTFEの融点以上に昇温した後ゆっくりと結晶融点以下へ徐冷する方法や、定温処理により行われる。徐冷は、例えば10℃/分以下の冷却速度で行われる。定温処理は、例えば変性PTFEの融点ピークから2℃から10℃低い温度で、30分以上から10時間保持して行われる。   The modified PTFE nonporous film obtained in the film formation step is preferably annealed. The annealing is performed by a method in which the temperature is raised above the melting point of the modified PTFE constituting the nonporous film and then slowly cooled below the crystalline melting point, or by a constant temperature treatment. The slow cooling is performed at a cooling rate of 10 ° C./min or less, for example. The isothermal treatment is performed, for example, at a temperature 2 ° C. to 10 ° C. lower than the melting point peak of the modified PTFE and held for 30 minutes to 10 hours.

成膜工程で得られた(又はさらにアニールされた)変性PTFE製無孔質膜は、前記のようにして80℃以下の温度で延伸された後、さらに80℃を超える温度で延伸されて、本発明の変性PTFE製無孔質膜が得られる。最初の延伸の温度は、80℃以下が好ましく、30℃以下がより好ましく、19℃以下であればさらに好ましい。   The modified PTFE non-porous film obtained in the film forming step (or further annealed) is stretched at a temperature of 80 ° C. or less as described above, and further stretched at a temperature exceeding 80 ° C., The modified PTFE non-porous membrane of the present invention is obtained. The initial stretching temperature is preferably 80 ° C. or lower, more preferably 30 ° C. or lower, and even more preferably 19 ° C. or lower.

本発明の変性PTFE製微細孔径膜を多孔質支持体に貼り合わすことにより、さらに機械的強度にも優れた多孔質樹脂膜複合体を作製することができる。多孔質樹脂膜複合体の製造方法としては、例えば、次の工程1〜4からなる方法を挙げることができる。   By bonding the modified PTFE microporous membrane of the present invention to a porous support, a porous resin membrane composite having further excellent mechanical strength can be produced. As a manufacturing method of a porous resin film composite, the method which consists of the following processes 1-4 can be mentioned, for example.

工程1:平滑な箔上に、変性PTFEの樹脂粒子を分散媒中に分散したディスパージョンを塗布した後、前記分散媒を乾燥し、さらに変性PTFEの融点以上に加熱して焼結し、変性PTFE製無孔質膜を形成する。
工程2:必要により工程1を繰返した後、前記変性PTFE製無孔質膜上に多孔質支持体を貼り合せる。変性PTFE製無孔質膜と多孔質支持体との貼り合せには、PTFEよりも融点の低い熱可塑性の樹脂例えばPFAを接着剤として用いて行ってもよい。
工程3:工程2の後、前記平滑な箔を除去して前記変性PTFE製無孔質膜及び多孔質支持体からなる複合体を得る。平滑な箔の除去の方法は特に限定されないが、平滑な箔が金属箔の場合は、酸等により溶解除去する方法を挙げることができる。
工程4:前記複合体を延伸する。前記のように、延伸前にアニールをすることにより、延伸前の変性PTFEの樹脂の結晶化度を飽和させることができ、その結果、高い気孔率(大きな透過性インデックス)が得られ、より孔径の再現性を高くして製造することが可能となるので好ましい。
Step 1: After applying a dispersion in which modified PTFE resin particles are dispersed in a dispersion medium on a smooth foil, the dispersion medium is dried, and further heated to a temperature equal to or higher than the melting point of the modified PTFE, and then sintered. A non-porous membrane made of PTFE is formed.
Step 2: After repeating Step 1 as necessary, a porous support is bonded onto the modified PTFE nonporous membrane. The bonding of the modified PTFE nonporous membrane and the porous support may be performed using a thermoplastic resin having a melting point lower than that of PTFE, for example, PFA as an adhesive.
Step 3: After Step 2, the smooth foil is removed to obtain a composite composed of the modified PTFE nonporous membrane and a porous support. The method of removing the smooth foil is not particularly limited, but when the smooth foil is a metal foil, a method of dissolving and removing with an acid or the like can be mentioned.
Step 4: The composite is stretched. As described above, by annealing before stretching, the crystallinity of the modified PTFE resin before stretching can be saturated, and as a result, a high porosity (large permeability index) can be obtained, and the pore diameter can be increased. This is preferable because it can be manufactured with high reproducibility.

先ず、実施例、比較例における融解熱量、透気度(ガーレー秒)、平均流量孔径、最大孔径、及び透過性インデックスの測定方法について述べる。   First, measurement methods of heat of fusion, air permeability (Gurley second), average flow pore size, maximum pore size, and permeability index in Examples and Comparative Examples will be described.

[融解熱量の測定方法]
熱流束示差走査熱量計(島津製作所社製;熱流束示差走査熱量計DSC−50)を用い、以下に示す方法により行った。
[Measurement method of heat of fusion]
A heat flux differential scanning calorimeter (manufactured by Shimadzu Corporation; heat flux differential scanning calorimeter DSC-50) was used by the following method.

サンプル10〜20mgを、室温から100℃まで50℃/分で加熱し、その後10℃/分で365℃まで加熱する(第一ステップ)。次に、350℃まで−10℃/分の速度で冷却し、350℃で5分間保持する。さらに350℃から330℃まで−10℃/分の速度で冷却、330℃から305℃まで−1℃/分の速度で冷却する(第二ステップ)。次に−50℃/分の速度で305℃から100℃まで冷却した後、10℃/分の速度で100℃から365℃まで加熱する(第三ステップ)。なお、サンプリングタイムは0.5秒/回である。第一ステップの吸熱量は303〜353℃の区間、第二ステップの発熱量は318〜309℃の区間、第三ステップの吸熱量は吸熱カーブの終端を基点として48℃の区間を積分して求めるが、この第三ステップにおける吸熱量を融解熱量とする。   10-20 mg of sample is heated from room temperature to 100 ° C. at 50 ° C./min, and then heated to 365 ° C. at 10 ° C./min (first step). Next, it is cooled to 350 ° C. at a rate of −10 ° C./min, and held at 350 ° C. for 5 minutes. Further, cooling is performed at a rate of −10 ° C./min from 350 ° C. to 330 ° C., and cooling is performed at a rate of −1 ° C./min from 330 ° C. to 305 ° C. (second step). Next, after cooling from 305 ° C. to 100 ° C. at a rate of −50 ° C./min, heating is performed from 100 ° C. to 365 ° C. at a rate of 10 ° C./min (third step). The sampling time is 0.5 seconds / time. The heat absorption amount of the first step is 303 to 353 ° C, the heat generation amount of the second step is 318 to 309 ° C, and the heat absorption amount of the third step is the integration of the 48 ° C interval from the end of the endothermic curve. The amount of heat absorbed in this third step is defined as the amount of heat of fusion.

[透気度(ガーレー秒)の測定方法]
JIS P 8117(紙及び板紙の透気度試験方法)に規定のガーレー透気度試験機と同一構造の王研式透気度測定装置(旭精工社製)を用いて測定した。測定結果は、ガーレー秒で表す。
[Measurement method of air permeability (Gurley second)]
It was measured using a Wangken type air permeability measuring device (manufactured by Asahi Seiko Co., Ltd.) having the same structure as the Gurley air permeability tester specified in JIS P 8117 (Paper and paperboard air permeability test method). The measurement result is expressed in Gurley seconds.

[平均流量孔径の測定方法]
細孔分布測定器(パームポロメータ CFP−1500A:Porous Materials,Inc社製)により、液体として、GALWICK(プロピレン,1,1,2,3,3,3酸化ヘキサフッ酸;Porous Materials,Inc社製)を用い、バブルポイント法(ASTM F316−86、JISK3832)により測定し、前記のようにして次の式により求めた。
平均流量孔径d(μm)=cγ/P
(Pは圧力(Pa)、cは2860、γは液体の表面張力(dynes/cm))
[Measurement method of average flow pore size]
GALWICK (propylene, 1,1,2,3,3,3 hexafluoric acid oxide; manufactured by Porous Materials, Inc.) as a liquid using a pore distribution measuring device (palm porometer CFP-1500A: manufactured by Porous Materials, Inc.) ) And the bubble point method (ASTM F316-86, JISK3832), and was obtained by the following formula as described above.
Average flow pore diameter d (μm) = cγ / P
(P is pressure (Pa), c is 2860, γ is surface tension of liquid (dynes / cm))

[最大孔径の測定方法]
細孔分布測定器(パームポロメータ CFP−1500A:Porous Materials,Inc社製)により、液体として、GALWICK(プロピレン,1,1,2,3,3,3酸化ヘキサフッ酸;Porous Materials,Inc社製)を用い、バブルポイント法(ASTM F316−86、JISK3832)により測定した。具体的には、膜全面が液体で濡れている状態で片面のガス圧を高めていったとき、ガス圧が膜の毛細管力を超えて透過が始まる圧力(最低圧力)を測定し、この最低圧力をPとして上記の式(最大孔径=cγ/P)から算出される値である。
[Measurement method of maximum pore size]
GALWICK (propylene, 1,1,2,3,3,3 hexafluoric acid oxide; manufactured by Porous Materials, Inc.) as a liquid using a pore distribution measuring device (palm porometer CFP-1500A: manufactured by Porous Materials, Inc.) ) And the bubble point method (ASTM F316-86, JISK3832). Specifically, when the gas pressure on one side was increased while the entire membrane surface was wet with liquid, the pressure at which the gas pressure exceeded the capillary force of the membrane and permeation began (minimum pressure) was measured. This is a value calculated from the above formula (maximum pore diameter = cγ / P) where P is the pressure.

[透過性インデックス]
前記の方法で測定された透気度(ガーレー秒)及び平均流量孔(nm)と下記の方法で計測された捕集層の厚み(nm)から次の式により求められた値である。
透過性インデックス=捕集層の厚み(nm)/[(平均流量孔径(nm))×ガーレー秒]
[Transparency index]
It is the value calculated | required by the following formula from the air permeability (Gurley second) measured by the said method, the average flow hole (nm), and the thickness (nm) of the collection layer measured by the following method.
Permeability index = collecting layer thickness (nm) / [(average flow pore size (nm)) 2 × Gurley second]

[捕集層の厚みの計測]
得られた変性PTFE製微細孔径膜にイソプロピルアルコール(IPA)を浸透させた後IPAが乾かないようにしながらフッ素樹脂製微細孔径膜を蒸留水に浸漬し、IPAを水に置換する。これを液体窒素のバスに沈め浸漬し、液体窒素中で、カミソリナイフで切断する。この破断面をSEMで観察して捕集層のみの厚みを計測し、捕集層の厚みとする。
[Measurement of collection layer thickness]
After impregnating isopropyl alcohol (IPA) into the resulting modified PTFE microporous membrane, the fluororesin microporous membrane is immersed in distilled water while keeping the IPA from drying, and the IPA is replaced with water. This is immersed in a bath of liquid nitrogen and cut with a razor knife in liquid nitrogen. The fracture surface is observed with an SEM, and the thickness of only the collection layer is measured to obtain the thickness of the collection layer.

実施例1
[ディスパージョンの調整]
前記式(II)で表され、式(II)中のmが283、Rfがパーフルオロメチル−CF基であるPFA変性PTEE(IRスペクトルでPAVEの吸収があり、第三ステップの融解熱量23.1J/g、以下単に「PTFE」と表わすことがある)の水性ディスパージョン(分散媒:水、固形分濃度約55質量%)と、MFAラテックス(ソルベイソレクシス社製、PFAディスパージョンD5010)及びPFAディスパージョン920HP(三井・デュポンフロロケミカル社製)を用いて、MFA/(PTFE+MFA+PFA)及びPFA/(PTFE+MFA+PFA)が各2%(フッ素樹脂、すなわちPTFE、MFA、PFAの固形分の体積比)である変性PTEEのディスパージョンを調整した。さらに分子量200万のポリエチレンオキサイドを濃度0.003g/mlとなるように添加して変性PTEEのディスパージョンを調整した。
Example 1
[Dispersion adjustment]
PFA-modified PTEE represented by the formula (II), wherein m in the formula (II) is 283, and Rf is a perfluoromethyl-CF 3 group (there is absorption of PAVE in the IR spectrum, and the heat of fusion of the third step 23) 0.1 J / g, hereinafter simply referred to as “PTFE”) (dispersion medium: water, solid content concentration of about 55% by mass) and MFA latex (manufactured by Solvay Solexis, PFA dispersion D5010) MFA / (PTFE + MFA + PFA) and PFA / (PTFE + MFA + PFA) are 2% each (volume ratio of solid content of fluororesin, that is, PTFE, MFA, and PFA). The dispersion of the modified PTEE was adjusted. Furthermore, the dispersion of the modified PTEE was adjusted by adding polyethylene oxide having a molecular weight of 2 million to a concentration of 0.003 g / ml.

[成膜工程:変性PTFE(フッ素樹脂)製無孔質膜の作製]
次に、厚さ50μmのアルミ箔をガラス平板の上に雛がないように広げて固定し、前記で調整したディスパージョンを滴下した後、日本ベアリング社製のステンレス鋼製のスライドシャフト(ステンレスファインシャフトSNSF型、外径20mm)を滑らすようにして変性PTEEのディスパージョンをアルミ箔一面に均一になるように伸ばした。この箔を80℃で60分乾燥、250℃で1時間加熱、340℃で1時間加熱の各工程を経た後、自然冷却し、アルミ箔上に固定された変性PTEE薄膜(変性PTEE製無孔質膜)を形成させた。変性PTEE薄膜が形成される前後のアルミ箔の単位面積当たりの重量差とフッ素樹脂の真比重(2.25g/cm)から算出した前記変性PTEE製無孔質膜の平均厚さは約2.4μmであった。
[Film Formation Process: Production of Modified PTFE (Fluororesin) Nonporous Film]
Next, an aluminum foil having a thickness of 50 μm is spread and fixed on a flat glass plate so that there are no chicks. After the dispersion adjusted as described above is dropped, a stainless steel slide shaft manufactured by Nippon Bearing Co., Ltd. The dispersion of the modified PTEE was stretched uniformly over the entire surface of the aluminum foil by sliding the shaft SNSF type (outer diameter 20 mm). The foil was dried at 80 ° C. for 60 minutes, heated at 250 ° C. for 1 hour, heated at 340 ° C. for 1 hour, then naturally cooled, and a modified PTEE thin film (modified PTEE nonporous material) fixed on an aluminum foil. Film). The average thickness of the non-porous membrane made of modified PTEE calculated from the weight difference per unit area of the aluminum foil before and after the modified PTEE thin film is formed and the true specific gravity (2.25 g / cm 3 ) of the fluororesin is about 2 .4 μm.

次に、PFAディスパージョン920HP(三井・デュポンフロロケミカル社製)を蒸留水で4倍の容積に薄めた後、分子量200万のポリエチレンオキサイドを濃度0.003g/mlとなるように添加して、4倍希釈のPFAディスパージョンを調整した。   Next, after diluting PFA dispersion 920HP (made by Mitsui DuPont Fluorochemical Co., Ltd.) to 4 times the volume with distilled water, a polyethylene oxide having a molecular weight of 2 million was added to a concentration of 0.003 g / ml, A 4-fold diluted PFA dispersion was prepared.

[試験体(多孔質樹脂膜複合体)の作製]
前記で得られたアルミ箔上に固定された変性PTFE樹脂薄膜を、ガラス平板の上に、皺がないように広げて固定し、前記で調整した4倍希釈のPFAディスパージョンを滴下した後、前記と同じ日本ベアリング社製のステンレス鋼製のスライドシャフトを滑らすようにして4倍希釈のPFAディスパージョンをアルミ箔一面に均一になるように伸ばしながら、水分が乾燥しない間に、公称孔径0.45μm、厚さ80μmの延伸PTFE多孔質体(多孔質体支持体、住友電工ファインポリマー社製、商品名:ポアフロンFP−045−80、平均流量孔径:0.173μm、気孔率:74%、ガーレー秒=10.7秒)を被せた。
[Preparation of specimen (porous resin membrane composite)]
After the modified PTFE resin thin film fixed on the aluminum foil obtained above was spread and fixed on a glass plate so as not to be wrinkled, the 4-fold diluted PFA dispersion prepared above was dropped, While sliding the same stainless steel slide shaft made by Nippon Bearing Co., Ltd. as described above, the PFA dispersion diluted 4 times was uniformly spread over the entire surface of the aluminum foil, while the moisture did not dry. Expanded PTFE porous body having a thickness of 45 μm and a thickness of 80 μm (porous support, manufactured by Sumitomo Electric Fine Polymer Co., Ltd., trade name: Poreflon FP-045-80, average flow pore size: 0.173 μm, porosity: 74%, Gurley Second = 10.7 seconds).

その後80℃で60分乾燥、250℃で1時間加熱、320℃で1時間加熱、317.5℃で10時間加熱の各工程を経た後自然冷却して、延伸PTFE多孔質体上にPTFEよりも融点の低い熱可塑性のPFAで前記変性PTEE製無孔質膜が接着され、さらにその上にアルミ箔が固定された複合体を得た。次いで、アルミ箔を塩酸により溶解除去して、試験体を得た。この試験体のガーレー秒は5000秒以上で、変性PTEE製無孔質膜側から室温でエタノールを接触させてみたが、浸透するような孔は無かった。エタノールが浸透しない実質的に無孔質の膜を含むフッ素樹脂膜複合体(多孔質樹脂膜複合体)であることが示された。   Then, after drying at 80 ° C. for 60 minutes, heating at 250 ° C. for 1 hour, heating at 320 ° C. for 1 hour, and heating at 317.5 ° C. for 10 hours, it is naturally cooled, and PTFE is applied onto the expanded PTFE porous body. Also, a non-porous membrane made of modified PTEE was bonded with thermoplastic PFA having a low melting point, and a composite having an aluminum foil fixed thereon was obtained. Next, the aluminum foil was dissolved and removed with hydrochloric acid to obtain a test specimen. The Gurley second of this test body was 5000 seconds or more, and ethanol was contacted at room temperature from the modified non-porous membrane side made of PTEE. It was shown to be a fluororesin membrane composite (porous resin membrane composite) containing a substantially nonporous membrane that does not penetrate ethanol.

[延伸]
1.低温延伸工程
次に、特別製の横軸延伸機にて、入口チャック幅230mm、出口690mm、延伸ゾーンの長さ1m、ライン速度6m/分、25℃で、3倍の延伸を行った。この延伸後の試験体の、試薬GALWICK(プロピレン,1,1,2,3,3,3酸化ヘキサフッ酸:Porous Materials社製)での平均流量孔径及び最大孔径は、いずれも測定限界の20nmより小さく、ガーレー秒(透過係数)は4500秒であった。
2.高温延伸工程
次に、特別製の横軸延伸機にて、入口チャック幅300mm、出口750mm、延伸ゾーンの長さ1m、ライン速度6m/分、140℃で、2.5倍の延伸を行い、変性PTEE製微細孔径膜を得た。この変性PTEE製微細孔径膜の、試薬GALWICK(プロピレン,1,1,2,3,3,3酸化ヘキサフッ酸:Porous Materials社製)での平均流量孔径は32.7nmであり、最大孔径は45.6nmであった。従って、最大孔径と平均流量孔径の差は12.9nmで、(最大孔径−平均流量孔径)/平均流量孔径=38.2%であった。又、ガーレー秒(透過係数)は88秒、捕集層の厚みは1.0μmであり、透過性インデックスは0.0106となった。上記の測定結果を表1に示す。又、低温延伸工程後、高温延伸工程後の試験体の電子顕微鏡写真を、図1〜3に示す。
[Stretching]
1. Low-temperature stretching step Next, stretching was performed 3 times at 25 ° C. at a chuck width of 230 mm, an outlet of 690 mm, a length of the stretching zone of 1 m, a line speed of 6 m / min, and a specially made horizontal axis stretching machine. The average flow pore diameter and the maximum pore diameter of the stretched test specimen with the reagent GALWICK (propylene, 1,1,2,3,3,3 hexafluoric acid: manufactured by Porous Materials) are both from the measurement limit of 20 nm. It was small and the Gurley second (transmission coefficient) was 4500 seconds.
2. High-temperature stretching step Next, with a special horizontal axis stretching machine, the inlet chuck width is 300 mm, the outlet is 750 mm, the length of the stretching zone is 1 m, the line speed is 6 m / min, and the stretching is 2.5 times at 140 ° C., A modified PTEE microporous membrane was obtained. This modified PTEE microporous membrane has an average flow pore size of 32.7 nm and a maximum pore size of 45 with the reagent GALWICK (propylene, 1,1,2,3,3,3 hexafluoric acid: manufactured by Porous Materials). .6 nm. Therefore, the difference between the maximum pore diameter and the average flow pore diameter was 12.9 nm, (maximum pore diameter−average flow pore diameter) / average flow pore diameter = 38.2%. The Gurley second (permeability coefficient) was 88 seconds, the thickness of the trapping layer was 1.0 μm, and the permeability index was 0.0106. The measurement results are shown in Table 1. Moreover, the electron micrograph of the test body after a low-temperature extending process and a high-temperature extending process is shown to FIGS.

実施例2
PFA変性PTEEの代わりに、前記式(I)で表され、式(I)中のmが148であるFEP変性PTEE(IRスペクトルでHFPの吸収があり、第三ステップの融解熱量31.0J/g、以下単に「PTFE」と表わすことがある。)の水性ディスパージョン(分散媒:水、固形分濃度約55質量%)を用いた以外は、実施例1と同様にして、ディスパージョンの調整、成膜工程(変性PTEE製無孔質膜の作製)、試験体(多孔質樹脂膜複合体)の作製、及び延伸を行った。又、実施例1と同様にして、低温延伸工程後及び高温延伸工程後の最大孔径、平均流量孔径、ガーレー秒を測定し、又、高温延伸工程後については得られた変性PTEE製微細孔径膜について捕集層の厚み、透過性インデックスを求めた。得られた結果を表1に示す。
Example 2
Instead of PFA-modified PTEE, FEP-modified PTEE represented by the above formula (I) and m in the formula (I) is 148 (having absorption of HFP in IR spectrum, heat of fusion of 31.0 J / g, hereinafter referred to simply as “PTFE”), except that an aqueous dispersion (dispersion medium: water, solid content concentration of about 55% by mass) was used. The film formation step (preparation of a modified PTEE nonporous membrane), the preparation of a test body (porous resin membrane composite), and stretching were performed. Further, in the same manner as in Example 1, the maximum pore size, average flow pore size, and Gurley second after the low temperature stretching step and after the high temperature stretching step were measured, and the modified PTEE microporous membrane obtained after the high temperature stretching step was obtained. The thickness of the collection layer and the permeability index were obtained. The obtained results are shown in Table 1.

実施例3
低温延伸工程での延伸の温度を25℃から15℃に変えた以外は、実施例2と同様にして、ディスパージョンの調整、成膜工程(変性PTEE製無孔質膜の作製)、試験体(多孔質樹脂膜複合体)の作製、及び延伸を行った。又、実施例1と同様にして、低温延伸工程後及び高温延伸工程後の最大孔径、平均流量孔径、ガーレー秒を測定し、又、高温延伸工程後については得られた変性PTEE製微細孔径膜について捕集層の厚み、透過性インデックスを求めた。得られた結果を表1に示す。
Example 3
Dispersion adjustment, film formation process (production of modified PTEE non-porous film), test specimen, except that the temperature of stretching in the low temperature stretching process was changed from 25 ° C. to 15 ° C. (Porous resin membrane composite) was prepared and stretched. Further, in the same manner as in Example 1, the maximum pore size, average flow pore size, and Gurley second after the low temperature stretching step and after the high temperature stretching step were measured, and the modified PTEE microporous membrane obtained after the high temperature stretching step was obtained. The thickness of the collection layer and the permeability index were obtained. The obtained results are shown in Table 1.

比較例1
PFA変性PTEEの代わりに、PTFE単独重合体からなる水性ディスパージョン34JR(三井デュポン・フロロケミカル社製、粒子の一次粒子径:250nm、第三ステップの融解熱量53.4J/g)を用い、高温延伸工程を行わなかった以外は、実施例1と同様にして、ディスパージョンの調整、成膜工程(フッ素樹脂製無孔質膜の作製)、試験体(多孔質樹脂膜複合体)の作製、及び延伸を行った。又、実施例1と同様にして、延伸工程後の最大孔径、平均流量孔径、ガーレー秒、捕集層の厚み、透過性インデックスを求めた。得られた結果を表1に示す。
Comparative Example 1
Instead of PFA-modified PTEE, an aqueous dispersion 34JR made of PTFE homopolymer (manufactured by Mitsui DuPont Fluorochemical Co., Ltd., primary particle diameter of particles: 250 nm, heat of fusion of the third step 53.4 J / g) was used at a high temperature. Except that the stretching step was not performed, in the same manner as in Example 1, the adjustment of the dispersion, the film forming step (preparation of a nonporous film made of fluororesin), the preparation of a test body (porous resin film composite), And stretching. Further, in the same manner as in Example 1, the maximum pore size, average flow pore size, Gurley second, collection layer thickness, and permeability index after the stretching step were determined. The obtained results are shown in Table 1.

比較例2
PFA変性PTEEの代わりに、PTFE単独重合体からなる水性ディスパージョン(三井デュポン・フロロケミカル社製、粒子の一次粒子径:240nm、第三ステップの融解熱量34.9J/g)を用い、高温延伸工程を行わなかった以外は、実施例1と同様にして、ディスパージョンの調整、成膜工程(フッ素樹脂製無孔質膜の作製)、試験体(多孔質樹脂膜複合体)の作製、及び延伸を行った。又、実施例1と同様にして、延伸工程後の最大孔径、平均流量孔径、ガーレー秒、捕集層の厚み、透過性インデックスを求めた。得られた結果を表1に示す。
Comparative Example 2
Instead of PFA-modified PTEE, an aqueous dispersion composed of a PTFE homopolymer (manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd., primary particle diameter of particles: 240 nm, heat of fusion 34.9 J / g in the third step) is used for high-temperature stretching. Except that the process was not performed, in the same manner as in Example 1, adjustment of dispersion, film formation process (preparation of a non-porous film made of fluororesin), preparation of a test body (porous resin film composite), and Stretching was performed. Further, in the same manner as in Example 1, the maximum pore size, average flow pore size, Gurley second, collection layer thickness, and permeability index after the stretching step were determined. The obtained results are shown in Table 1.

比較例3
PFA変性PTEEの代わりに、PTFE単独重合体(旭硝子社製:AD911:第三ステップの融解熱量30.0J/g)からなる水性ディスパージョン(分散媒:水、固形分濃度約55質量%)を用い、高温延伸工程を行わなかった以外は、実施例1と同様にして、ディスパージョンの調整、成膜工程(フッ素樹脂製無孔質膜の作製)、試験体(多孔質樹脂膜複合体)の作製、及び延伸を行った。又、実施例1と同様にして、延伸工程後の最大孔径、平均流量孔径、ガーレー秒、捕集層の厚み、透過性インデックスを求めた。得られた結果を表1に示す。
Comparative Example 3
Instead of PFA-modified PTEE, an aqueous dispersion (dispersion medium: water, solid content concentration of about 55% by mass) made of PTFE homopolymer (Asahi Glass Co., Ltd .: AD911: third step heat of fusion 30.0 J / g) Used, except that the high-temperature stretching step was not performed, and in the same manner as in Example 1, the dispersion adjustment, the film-forming step (preparation of a non-porous membrane made of fluororesin), and the test specimen (porous resin membrane composite) And stretching. Further, in the same manner as in Example 1, the maximum pore size, average flow pore size, Gurley second, collection layer thickness, and permeability index after the stretching step were determined. The obtained results are shown in Table 1.

比較例4
延伸工程において低温延伸工程を行なわず高温延伸工程のみを行った以外は、実施例2と同様にして、ディスパージョンの調整、成膜工程(変性PTEE製無孔質膜の作製)、試験体(多孔質樹脂膜複合体)の作製、及び延伸を行った。又、実施例1と同様にして、延伸工程後の最大孔径、平均流量孔径、ガーレー秒、捕集層の厚み、透過性インデックスを求めた。得られた結果を表2に示す。
Comparative Example 4
In the same manner as in Example 2 except that only the high temperature stretching step was performed without performing the low temperature stretching step in the stretching step, the adjustment of the dispersion, the film forming step (production of a modified PTEE nonporous film), and the test specimen ( (Porous resin membrane composite) was prepared and stretched. Further, in the same manner as in Example 1, the maximum pore size, average flow pore size, Gurley second, collection layer thickness, and permeability index after the stretching step were determined. The obtained results are shown in Table 2.

比較例5
高温延伸工程の温度を140℃から60℃に変更した以外は、実施例2と同様にして、ディスパージョンの調整、成膜工程(変性PTEE製無孔質膜の作製)、試験体(多孔質樹脂膜複合体)の作製、及び延伸を行ったところ、高温延伸工程で試験体に裂けが発生した。
Comparative Example 5
Except for changing the temperature of the high-temperature stretching step from 140 ° C. to 60 ° C., in the same manner as in Example 2, the adjustment of the dispersion, the film formation step (preparation of a non-porous film made of modified PTEE), and the specimen (porous) Resin membrane composite) was produced and stretched, and tearing occurred in the specimen during the high-temperature stretching process.

比較例6
高温延伸工程の温度を140℃から80℃に変更した以外は、実施例2と同様にして、ディスパージョンの調整、成膜工程(変性PTEE製無孔質膜の作製)、試験体(多孔質樹脂膜複合体)の作製、及び延伸を行ったところ、高温延伸工程で試験体に裂けが発生した。
Comparative Example 6
Except for changing the temperature of the high temperature drawing step from 140 ° C. to 80 ° C., in the same manner as in Example 2, the adjustment of the dispersion, the film forming step (preparation of a non-porous film made of modified PTEE), and the specimen (porous) Resin membrane composite) was produced and stretched, and tearing occurred in the specimen during the high-temperature stretching process.

実施例4
高温延伸工程の温度を140℃から100℃に変更した以外は、実施例2と同様にして、ディスパージョンの調整、成膜工程(変性PTEE製無孔質膜の作製)、試験体(多孔質樹脂膜複合体)の作製、及び延伸を行ったところ、高温延伸工程で試験体に裂けが発生することなく変性PTFE製微細孔径膜(多孔質膜)が得られた。しかし、得られた変性PTEE製微細孔径膜には光の透過ムラが見られ、延伸にムラがあった。
Example 4
Except for changing the temperature of the high-temperature stretching step from 140 ° C. to 100 ° C., in the same manner as in Example 2, the adjustment of the dispersion, the film formation step (preparation of a non-porous film made of modified PTEE), and the specimen (porous) When the resin membrane composite) was produced and stretched, a modified PTFE microporous membrane (porous membrane) was obtained without tearing the test specimen in the high-temperature stretching step. However, the obtained modified PTEE microporous membrane had uneven light transmission and uneven stretching.

実施例5
高温延伸工程の温度を140℃から100℃に変更した以外は、実施例2と同様にして、ディスパージョンの調整、成膜工程(変性PTEE製無孔質膜の作製)、試験体(多孔質樹脂膜複合体)の作製、及び延伸を行ったところ、高温延伸工程で試験体に裂けが発生することなく変性PTEE製微細孔径膜(多孔質膜)が得られた。しかし、得られた変性PTEE製微細孔径膜には光の透過ムラが見られ、延伸にムラがあった。
Example 5
Except for changing the temperature of the high-temperature stretching step from 140 ° C. to 100 ° C., in the same manner as in Example 2, the adjustment of the dispersion, the film formation step (preparation of a non-porous film made of modified PTEE), and the specimen (porous) When the resin membrane composite) was produced and stretched, a modified PTEE microporous membrane (porous membrane) was obtained without tearing the test specimen in the high-temperature stretching step. However, the obtained modified PTEE microporous membrane had uneven light transmission and uneven stretching.

以上の結果より、次のことが示されている。
25℃で延伸を行った後さらに140℃で延伸を行った実施例1〜3では、平均流量孔径が40nm以下であるにも係らず、最大孔径と平均流量孔径の差異は15nm未満であり、かつ(最大孔径−平均流量孔径)/平均流量孔径は0.5以下であり、孔径分布が狭い変性PTFE製微細孔径膜が得られている。又、実施例1〜3で得られた変性PTEE製微細孔径膜は、透過性インデックスが0.009以上であり透過性も優れている。
From the above results, the following is shown.
In Examples 1 to 3, which were stretched at 25 ° C. and then stretched at 140 ° C., the difference between the maximum pore size and the average flow pore size was less than 15 nm despite the average flow pore size being 40 nm or less, And (maximum pore diameter-average flow pore diameter) / average flow pore diameter is 0.5 or less, and a modified PTFE fine pore diameter membrane having a narrow pore diameter distribution is obtained. Further, the modified PTEE microporous membranes obtained in Examples 1 to 3 have a permeability index of 0.009 or more and excellent permeability.

一方、低温延伸工程又は高温延伸工程を行わなかった比較例1〜4では、最大孔径と平均流量孔径の差異は15nmを超えており、かつ(最大孔径−平均流量孔径)/平均流量孔径は0.5を超えており、得られたフッ素樹脂製微細孔径膜の孔径分布が広いことが示されている。さらに、比較例1、2及び4では、透過性インデックスが0.009よりも小さく透過性に劣ることも示されている。   On the other hand, in Comparative Examples 1 to 4 in which the low temperature stretching step or the high temperature stretching step was not performed, the difference between the maximum pore diameter and the average flow pore diameter exceeded 15 nm, and (maximum pore diameter−average flow pore diameter) / average flow pore diameter was 0. It is shown that the pore size distribution of the obtained fluororesin microporous membrane is wide. Further, in Comparative Examples 1, 2, and 4, it is also shown that the permeability index is smaller than 0.009 and the permeability is inferior.

又、比較例3では、単独重合のPTFEであって融解熱量が32J/g未満のフッ素樹脂が、実施例の変性PTFEの代わりに用いられているが、低温延伸工程後の段階で、実施例よりも、最大孔径、平均流量孔径及び最大孔径と平均流量孔径の差異が大きい。この結果より、単独重合のPTFEを用いた場合は、分画性能及び透過性が実施例の場合と同等に優れるフッ素樹脂製微細孔径膜の製造が困難であることが示されている。   Further, in Comparative Example 3, a fluoropolymer having a homopolymerization PTFE and a heat of fusion of less than 32 J / g is used instead of the modified PTFE of the Example. The difference between the maximum hole diameter, the average flow hole diameter, and the maximum hole diameter and the average flow hole diameter is larger. From these results, it is shown that when homopolymerized PTFE is used, it is difficult to produce a fluororesin microporous membrane having excellent fractionation performance and permeability equivalent to those of the examples.

比較例5、6及び実施例3、4は、高温延伸工程の温度を変更した以外は実施例2と同じ条件で変性PTEE製微細孔径膜の作製を行った例であるが、高温延伸工程を60℃で行った比較例5、80℃で行った比較例6では高温延伸工程で試験体に裂けが発生した。一方、高温延伸工程を100℃で行った実施例4、120℃で行った実施例5では、高温延伸工程で、試験体に裂けは発生せず延伸を行うことができた。この結果より、高温延伸工程(二回目の延伸)は80℃を超える温度で行う必要があることが示されている。なお実施例4、5では、延伸を行うことができたものの、得られた変性PTEE製微細孔径膜には光の透過ムラが見られ、延伸にムラがあった。この結果より、高温延伸工程の好ましい温度は120℃を超える温度であることが示されている。   Comparative Examples 5 and 6 and Examples 3 and 4 are examples in which a modified PTEE-made microporous membrane was prepared under the same conditions as in Example 2 except that the temperature of the high-temperature stretching step was changed. In Comparative Example 5 performed at 60 ° C. and Comparative Example 6 performed at 80 ° C., the test specimen was cracked during the high-temperature stretching process. On the other hand, in Example 4 in which the high-temperature stretching step was performed at 100 ° C. and in Example 5 in which the high-temperature stretching step was performed at 120 ° C., the test specimen could be stretched without causing tearing. From this result, it is shown that the high temperature stretching step (second stretching) needs to be performed at a temperature exceeding 80 ° C. In Examples 4 and 5, although the stretching could be performed, the obtained modified PTEE microporous membrane showed uneven light transmission, and the stretching was uneven. From this result, it is shown that the preferable temperature of the high-temperature stretching step is a temperature exceeding 120 ° C.

Claims (9)

変性ポリテトラフロオロエチレンの粉末を膜状に成形して膜状成形品を得る成膜工程、前記膜状成形品を前記変性ポリテトラフロオロエチレンの融点以上に加熱して無孔質膜状成形品を得る焼結工程、及び、前記無孔質膜状成形品を延伸して多孔質化する延伸工程を有し、前記変性ポリテトラフロオロエチレンの融解熱量が32J/g未満であり、かつ前記延伸工程が、80℃以下で少なくとも1方向へ延伸する低温延伸工程及び前記低温延伸後に行われ80℃を超える温度で少なくとも1方向へ延伸する高温延伸工程を有することを特徴とする変性ポリテトラフロオロエチレン製微細孔径膜の製造方法。   A film forming step for forming a film-shaped molded product by molding a powder of modified polytetrafluoroethylene into a film shape, and heating the film-shaped molded product to a temperature higher than the melting point of the modified polytetrafluoroethylene to form a nonporous film A sintering step for obtaining a molded product, and a stretching step for stretching the nonporous membrane-shaped molded product to make it porous, and the heat of fusion of the modified polytetrafluoroethylene is less than 32 J / g, And the said extending process has the low-temperature extending process extended | stretched to at least 1 direction at 80 degrees C or less, and the high temperature extending process extended | stretched to at least 1 direction at the temperature exceeding 80 degreeC performed after the said low-temperature extending | stretching, A method for producing a tetrafluoroethylene microporous membrane. 前記低温延伸工程が、30℃未満で行われることを特徴とする請求項1に記載の変性ポリテトラフロオロエチレン製微細孔径膜の製造方法。   The method for producing a modified polytetrafluoroethylene microporous membrane according to claim 1, wherein the low-temperature stretching step is performed at a temperature lower than 30 ° C. 前記変性ポリテトラフロオロエチレンの粉末が、ヘキサフルオロプロピレン変性ポリテトラフロオロエチレン又はパーフルオロアルキルビニルエーテル変性ポリテトラフロオロエチレンの粉末であることを特徴とする請求項1又は請求項2に記載の変性ポリテトラフロオロエチレン製微細孔径膜の製造方法。   3. The powder according to claim 1, wherein the modified polytetrafluoroethylene powder is a hexafluoropropylene-modified polytetrafluoroethylene or perfluoroalkyl vinyl ether-modified polytetrafluoroethylene powder. 4. A method for producing a modified polytetrafluoroethylene microporous membrane. 請求項1ないし請求項3のいずれか1項に記載の変性ポリテトラフロオロエチレン製微細孔径膜の製造方法により製造され、平均流量孔径が40nm以下であることを特徴とする変性ポリテトラフロオロエチレン製微細孔径膜。   A modified polytetrafluoroethylene produced by the method of producing a modified polytetrafluoroethylene microporous membrane according to any one of claims 1 to 3, wherein the average flow pore size is 40 nm or less. Ethylene microporous membrane. 平均流量孔径と最大孔径の差が15nm未満であることを特徴とする請求項4に記載の変性ポリテトラフロオロエチレン製微細孔径膜。   5. A modified polytetrafluoroethylene microporous membrane according to claim 4, wherein the difference between the average flow pore size and the maximum pore size is less than 15 nm. (最大孔径−平均流量孔径)/平均流量孔径の値が0.5以下であることを特徴とする請求項5に記載の変性ポリテトラフロオロエチレン製微細孔径膜。   The value of (maximum pore diameter-average flow pore diameter) / average flow pore diameter is 0.5 or less, The modified polytetrafluoroethylene microporous membrane according to claim 5. 膜厚(nm)/[(平均流量孔径(nm))×ガーレー秒]で表される透過性インデックスが0.009以上であることを特徴とする請求項4ないし請求項6のいずれか1項に記載の変性ポリテトラフロオロエチレン製微細孔径膜。 The permeability index represented by film thickness (nm) / [(average flow pore diameter (nm)) 2 × Gurley second] is 0.009 or more, and any one of claims 4 to 6 The microporous membrane made of modified polytetrafluoroethylene as described in the item. 請求項4ないし請求項7のいずれか1項に記載の変性ポリテトラフロオロエチレン製微細孔径膜を、この変性ポリテトラフロオロエチレン製微細孔径膜よりも平均流量孔径が大きくかつ破断荷重が高い多孔質支持体上に固定してなることを特徴とする多孔質樹脂膜複合体。   The modified polytetrafluoroethylene microporous membrane according to any one of claims 4 to 7 has a larger average flow pore size and a higher breaking load than the modified polytetrafluoroethylene microporous membrane. A porous resin film composite which is fixed on a porous support. 請求項8に記載の多孔質樹脂膜複合体を濾過膜として用いることを特徴とするフィルターエレメント。   A filter element comprising the porous resin membrane composite according to claim 8 as a filtration membrane.
JP2012112670A 2012-05-16 2012-05-16 Method for producing modified polytetrafluoroethylene microporous membrane Active JP5873389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012112670A JP5873389B2 (en) 2012-05-16 2012-05-16 Method for producing modified polytetrafluoroethylene microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012112670A JP5873389B2 (en) 2012-05-16 2012-05-16 Method for producing modified polytetrafluoroethylene microporous membrane

Publications (2)

Publication Number Publication Date
JP2013237808A true JP2013237808A (en) 2013-11-28
JP5873389B2 JP5873389B2 (en) 2016-03-01

Family

ID=49763116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012112670A Active JP5873389B2 (en) 2012-05-16 2012-05-16 Method for producing modified polytetrafluoroethylene microporous membrane

Country Status (1)

Country Link
JP (1) JP5873389B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235118A1 (en) * 2020-05-22 2021-11-25 住友電工ファインポリマー株式会社 Porous film laminate, filter element, and production method for porous film laminate
CN114228254A (en) * 2022-01-20 2022-03-25 深圳市兴业卓辉实业有限公司 Manufacturing method of high-concentration alcohol resistant composite bag
WO2023139869A1 (en) * 2022-01-20 2023-07-27 住友電工ファインポリマー株式会社 Porous membrane and porous membrane laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537326A (en) * 2016-06-29 2018-01-05 中国科学院大连化学物理研究所 A kind of method of polytetrafluoroethylhollow hollow fiber membrane microcellular structure control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595037A (en) * 1982-07-02 1984-01-11 Agency Of Ind Science & Technol Manufacture of porous tetrafluoroethylene resin
JP2007077323A (en) * 2005-09-15 2007-03-29 Sumitomo Electric Fine Polymer Inc Ethylene tetrafluoride resin formed article, stretched ethylene tetrafluoride resin formed article, methods for producing them, and composite material, filter, impact deformation-absorbing material and seal material
JP2010094579A (en) * 2008-10-14 2010-04-30 Sumitomo Electric Fine Polymer Inc Method of manufacturing porous fluororesin thin film and porous fluororesin thin film
JP2011052175A (en) * 2009-09-04 2011-03-17 Sumitomo Electric Fine Polymer Inc Polytetrafluoroethylene porous film, porous fluorine resin film composite, and method for producing them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595037A (en) * 1982-07-02 1984-01-11 Agency Of Ind Science & Technol Manufacture of porous tetrafluoroethylene resin
JP2007077323A (en) * 2005-09-15 2007-03-29 Sumitomo Electric Fine Polymer Inc Ethylene tetrafluoride resin formed article, stretched ethylene tetrafluoride resin formed article, methods for producing them, and composite material, filter, impact deformation-absorbing material and seal material
JP2010094579A (en) * 2008-10-14 2010-04-30 Sumitomo Electric Fine Polymer Inc Method of manufacturing porous fluororesin thin film and porous fluororesin thin film
JP2011052175A (en) * 2009-09-04 2011-03-17 Sumitomo Electric Fine Polymer Inc Polytetrafluoroethylene porous film, porous fluorine resin film composite, and method for producing them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235118A1 (en) * 2020-05-22 2021-11-25 住友電工ファインポリマー株式会社 Porous film laminate, filter element, and production method for porous film laminate
CN114228254A (en) * 2022-01-20 2022-03-25 深圳市兴业卓辉实业有限公司 Manufacturing method of high-concentration alcohol resistant composite bag
WO2023139869A1 (en) * 2022-01-20 2023-07-27 住友電工ファインポリマー株式会社 Porous membrane and porous membrane laminate

Also Published As

Publication number Publication date
JP5873389B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6006783B2 (en) Fluororesin microporous membrane, manufacturing method thereof, and filter element using the fluororesin microporous membrane
JP4371176B2 (en) Fluororesin thin film, fluororesin composite and production method thereof, porous fluororesin composite, and separation membrane element
JP5364945B2 (en) Polytetrafluoroethylene porous membrane, porous fluororesin membrane composite, and production method thereof
TWI706977B (en) Method for preparing porous membrane of fluorine-based resin and porous membrane of fluorine-based resin
EP2789380B1 (en) Process for producing a porous polytetrafluoroethylene film composite
JP5873389B2 (en) Method for producing modified polytetrafluoroethylene microporous membrane
KR101984018B1 (en) Microporous modified polytetrafluoroethylene film, porous modified polytetrafluoroethylene resin film composite and method for producing same, and membrane separation element
KR102190864B1 (en) Preparation method of porous fluorine resin sheet
US9695291B2 (en) Porous polytetrafluoroethylene film and method for producing same
JP7102678B2 (en) Fluorine-based resin porous membrane and its manufacturing method
US9669608B2 (en) Porous polytetrafluoroethylene composite and method for producing the same
WO2023162368A1 (en) Porous membrane laminate
WO2023139868A1 (en) Porous membrane, porous membrane laminate, and production method for porous membrane
JP7255591B2 (en) Method for producing microporous membrane

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160115

R150 Certificate of patent or registration of utility model

Ref document number: 5873389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250