JP2011052175A - Polytetrafluoroethylene porous film, porous fluorine resin film composite, and method for producing them - Google Patents

Polytetrafluoroethylene porous film, porous fluorine resin film composite, and method for producing them Download PDF

Info

Publication number
JP2011052175A
JP2011052175A JP2009204694A JP2009204694A JP2011052175A JP 2011052175 A JP2011052175 A JP 2011052175A JP 2009204694 A JP2009204694 A JP 2009204694A JP 2009204694 A JP2009204694 A JP 2009204694A JP 2011052175 A JP2011052175 A JP 2011052175A
Authority
JP
Japan
Prior art keywords
porous
ptfe
stretching
membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009204694A
Other languages
Japanese (ja)
Other versions
JP5364945B2 (en
Inventor
Fumihiro Hayashi
文弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Fine Polymer Inc
Original Assignee
Sumitomo Electric Fine Polymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Fine Polymer Inc filed Critical Sumitomo Electric Fine Polymer Inc
Priority to JP2009204694A priority Critical patent/JP5364945B2/en
Publication of JP2011052175A publication Critical patent/JP2011052175A/en
Application granted granted Critical
Publication of JP5364945B2 publication Critical patent/JP5364945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PTFE porous film having ≤50 nm mean flow pore diameter, a porous fluorine resin film composite containing the PTFE porous film having ≤50 nm mean flow pore diameter and a method for producing the PTFE porous film having a smaller pore diameter of ≤50 nm mean flow pore diameter by stretching the PTFE under a condition in which the stretching was impossible until now. <P>SOLUTION: This polytetrafluoroethylene porous film having ≤50 nm mean flow pore diameter, and the porous fluorine resin film composite consisting of the polytetrafluoroethylene porous film and a porous material bonded/fixed to the same are provided. The method for producing the polytetrafluoroethylene porous film or the porous fluorine resin film composite is provided by comprising a process of fixing a non-porous film consisting of a polytetrafluoroethylene having ≥32 J/g amount of the heat of fusion and having ≤20 μm film thickness on a supporting body having a characteristic of elongating uniformly by stretching to obtain a laminate body and a process of stretching the laminate body. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、限外ろ過等に使用可能な平均流量孔径の小さいポリテトラフルオロエチレン多孔質膜及びこのポリテトラフルオロエチレン多孔質膜と多孔質支持体からなる多孔質フッ素樹脂膜複合体に関する。本発明は、又、これらのポリテトラフルオロエチレン多孔質膜及び多孔質フッ素樹脂膜複合体を製造する方法に関する。   The present invention relates to a polytetrafluoroethylene porous membrane having a small average flow pore size that can be used for ultrafiltration and the like, and a porous fluororesin membrane composite comprising the polytetrafluoroethylene porous membrane and a porous support. The present invention also relates to a method for producing these polytetrafluoroethylene porous membrane and porous fluororesin membrane composite.

ポリテトラフルオロエチレン(PTFE)からなる多孔質膜は、耐薬品性、耐熱性が優れるので、微細な粒子をろ過するフィルター等に用いられている。このPTFEからなる多孔質膜の製造方法としては、例えば、無孔質のPTFE膜を作製しそれを延伸して多孔質化する方法が知られている。そして、無孔質のPTFE膜は、PTFE粉末を液体に分散させたディスパージョンを基体にコーティングし、液体を除去するとともに融点以上に加熱して焼結する方法(キャスティング法)を挙げることができ、例えば、特開平5−32810号公報(特許文献1)等に開示されている。   A porous film made of polytetrafluoroethylene (PTFE) is excellent in chemical resistance and heat resistance, and thus is used in a filter for filtering fine particles. As a method for producing a porous membrane made of PTFE, for example, a method is known in which a nonporous PTFE membrane is produced and made porous by stretching. A non-porous PTFE membrane may include a method (casting method) in which a dispersion in which PTFE powder is dispersed in a liquid is coated on a substrate, and the liquid is removed and heated to a temperature equal to or higher than the melting point (casting method). For example, it is disclosed by Unexamined-Japanese-Patent No. 5-32810 (patent document 1) etc.

PTFEからなる多孔質膜が、フィルターに用いられる場合、優れたろ過処理効率(ろ過性、低い流れ抵抗)、高い強度が求められる。又、より微細な粒子のろ過分別を可能とするためには、より微細で均一な孔径を有しかつボイドやクラック等の欠陥を有しないこと等が望まれている。   When a porous membrane made of PTFE is used for a filter, excellent filtration efficiency (filterability, low flow resistance) and high strength are required. Further, in order to enable finer particles to be separated by filtration, it is desired to have finer and uniform pore diameters and no defects such as voids and cracks.

優れたろ過処理効率のためには、より高い気孔率の膜やより薄い膜が望まれる。一般的には、無孔質PTFE膜の延伸比を増大することにより、得られる多孔質膜の気孔率が増大し又膜厚を減少させる傾向もあるので、延伸比を増大させることによりろ過処理効率を向上させることができる。しかし、延伸比の増大により、気孔径も増大し、微細な粒子のろ過分別ができなくなる。又、膜厚の減少により強度も低下する。   Higher porosity membranes and thinner membranes are desired for superior filtration efficiency. Generally, increasing the stretch ratio of the nonporous PTFE membrane increases the porosity of the resulting porous membrane and also tends to decrease the film thickness. Efficiency can be improved. However, the increase in the stretch ratio also increases the pore size, and fine particles cannot be separated by filtration. In addition, the strength also decreases due to the decrease in film thickness.

特公表2009−501632号公報(特許文献2)には、このような問題を解決し、小孔径(微細な粒子のろ過分別を可能とすること)及び低い流れ抵抗(優れたろ過処理効率)の両方を提供する薄くて強いろ過膜(段落0011)として、新規なPTFE多孔質膜が開示されており、この膜は、高い強度、低い流れ抵抗(優れたろ過処理効率)を有し微細な粒子のろ過分別を可能とし、これまで達成不可能であってきたろ過性能を有する、(段落0012)と述べられている。   In Japanese Patent Publication No. 2009-501632 (Patent Document 2), such a problem is solved, and a small pore diameter (to enable filtration and separation of fine particles) and a low flow resistance (excellent filtration efficiency). As a thin and strong filtration membrane (paragraph 0011) that provides both, a novel PTFE porous membrane is disclosed, which has high strength, low flow resistance (excellent filtration efficiency) and fine particles (Paragraph 0012), which has a filtration performance that has been unattainable until now.

特開平5−32810号公報JP-A-5-32810 特公表2009−501632号公報(段落0012)Japanese Patent Publication No. 2009-501632 (paragraph 0012)

しかし、特許文献2に開示されているPTFE多孔質膜の最も小さな平均流量孔径(平均流れ孔径)は55nm(0.055μm)程度であり(図6)、又、特許文献2に開示されている多孔質フッ素樹脂複合体の平均流量孔径は47nm(0.047μm)であり、47nm未満の平均流量孔径を有するPTFE多孔質膜は開示されていない。一方、より微細な孔径を有するPTFE多孔質膜、例えば分子量50000程度のポリエチレングリコールの除去を可能にするような限外ろ過膜も望まれている。分子量50000程度のポリエチレングリコールの除去を可能にするためにはPTFE多孔質膜の平均流量孔径を50nm程度以下とする必要がある。   However, the smallest average flow pore size (average flow pore size) of the PTFE porous membrane disclosed in Patent Document 2 is about 55 nm (0.055 μm) (FIG. 6), and is disclosed in Patent Document 2. The average flow pore size of the porous fluororesin composite is 47 nm (0.047 μm), and a PTFE porous membrane having an average flow pore size of less than 47 nm is not disclosed. On the other hand, a PTFE porous membrane having a finer pore size, for example, an ultrafiltration membrane capable of removing polyethylene glycol having a molecular weight of about 50000 is also desired. In order to enable removal of polyethylene glycol having a molecular weight of about 50,000, the average flow pore size of the PTFE porous membrane needs to be about 50 nm or less.

本発明の課題は、先ず、平均流量孔径が50nm以下のPTFE多孔質膜を提供することにある。   An object of the present invention is to first provide a PTFE porous membrane having an average flow pore size of 50 nm or less.

本発明は、又、平均流量孔径が50nm以下のPTFE多孔質膜を含む多孔質フッ素樹脂膜複合体を提供することを課題とする。   Another object of the present invention is to provide a porous fluororesin membrane composite including a PTFE porous membrane having an average flow pore size of 50 nm or less.

本発明は、又、これまで延伸が不可能だった条件でPTFEを延伸する技術により平均流量孔径が50nm以下の孔径の小さいPTFE多孔質膜を製造する方法、及びこのPTFE多孔質膜を有する多孔質フッ素樹脂膜複合体の製造方法を提供することを課題とする。   The present invention also provides a method for producing a PTFE porous membrane having a mean flow pore size of 50 nm or less and a small pore size by a technique of stretching PTFE under conditions that could not be stretched until now, and a porous material having this PTFE porous membrane. It is an object to provide a method for producing a porous fluororesin membrane composite.

本発明者は、上記課題を達成するべく鋭意検討の結果、以下の事実を見出し、この知見に基づき本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor found the following facts and completed the present invention based on this finding.

1)延伸を低温度で行う程、又は融解熱量が高いPTFEを用いる程、平均流量孔径が低いPTFE多孔質膜が得られる。
2)延伸を低温度で行う、又は融解熱量が高いPTFEを用いると、延伸加工性が低くなり、破断やピンホール等が起きやすく延伸加工が難しい。
3)しかし、PTFE膜を、延伸により均質に伸びる特性を有する支持体に固定して延伸することにより、平均流量孔径が50nm以下のPTFE多孔質膜が得られるような低い温度で延伸する場合、又は融解熱量が高いPTFEを用いる場合でも、延伸加工が容易になる。
1) A PTFE porous membrane having a lower average flow pore size is obtained as the stretching is performed at a lower temperature or PTFE having a higher heat of fusion is used.
2) When stretching is performed at a low temperature or PTFE having a high heat of fusion is used, stretching processability is lowered, and breakage, pinholes, and the like are likely to occur, and the stretching process is difficult.
3) However, when the PTFE membrane is stretched at a low temperature such that a PTFE porous membrane having an average flow pore diameter of 50 nm or less can be obtained by fixing and stretching the PTFE membrane on a support having a property of stretching uniformly by stretching, Even when PTFE having a high heat of fusion is used, the stretching process is facilitated.

一般にPTFEは温度が30℃未満にあると硬くかつ破断伸びが小さくなるなど、延伸加工性が低くなる特徴がある。特に薄膜の場合、中でも膜厚が20μm以下の場合は、膜厚のムラが大きくなり、その薄いところが他の部位よりも先に伸びの限界を超えるので、より破断が起きやすく、低温での延伸は難しい。そこで破断伸びが高くなる30℃以上、特に50℃から100℃の間で延伸が行われてきた。   In general, PTFE is characterized by low stretch workability such as being hard and having a low elongation at break when the temperature is below 30 ° C. Especially in the case of a thin film, especially when the film thickness is 20 μm or less, the film thickness unevenness becomes large, and the thin part exceeds the limit of elongation before other parts, so that it is more likely to break, and stretching at a low temperature. Is difficult. Therefore, stretching has been carried out at 30 ° C. or higher, particularly between 50 ° C. and 100 ° C. at which the elongation at break increases.

又、特に融解熱量が大きく30J/gを超えるような低分子量PTFEでは、更に破断伸びが小さくなるので、部分的に破断伸びを超えてピンホールが生じ、数10%延伸するのみで完全に破断するなど、延伸加工が難しい。   In particular, in the case of low molecular weight PTFE having a large heat of fusion and exceeding 30 J / g, the elongation at break is further reduced, so that a pinhole is partially generated exceeding the elongation at break, and it is completely broken only by stretching several tens of percent. Stretching is difficult.

本発明者は、このような延伸加工が難しい条件であっても、延伸により均質に伸びる特性を有する支持体に固定して延伸することにより、破断やピンホールの発生を防ぐことができ、しかも、この延伸により、平均流量孔径が50nm以下のPTFE多孔質膜が得られることを見出したのである。   The present inventor can prevent the occurrence of breakage and pinholes by fixing and stretching on a support having a property of extending uniformly by stretching, even under such difficult conditions. The inventors have found that a PTFE porous membrane having an average flow pore size of 50 nm or less can be obtained by this stretching.

本発明はその第1の態様として、平均流量孔径が50nm以下であることを特徴とするPTFE多孔質膜(請求項1)を提供する。このPTFE多孔質膜は、平均流量孔径が50nm以下であるので、分子量50000程度のポリエチレングリコールの限外ろ過による除去を可能にする。このPTFE多孔質膜は、後述の請求項4に記載の方法により得ることができる。   As a first aspect of the present invention, there is provided a PTFE porous membrane (Claim 1) having an average flow pore size of 50 nm or less. Since this PTFE porous membrane has an average flow pore size of 50 nm or less, it is possible to remove polyethylene glycol having a molecular weight of about 50,000 by ultrafiltration. This PTFE porous membrane can be obtained by the method described in claim 4 described later.

請求項2は、膜厚が20μm以下であることを特徴とする請求項1に記載のPTFE多孔質膜を提供する。このPTFE多孔質膜は、膜厚が20μm以下であるので、ろ過時の流れ抵抗が低く、優れたろ過処理効率が得られる。   A second aspect of the present invention provides the PTFE porous membrane according to the first aspect, wherein the film thickness is 20 μm or less. Since this PTFE porous membrane has a thickness of 20 μm or less, the flow resistance during filtration is low, and excellent filtration efficiency can be obtained.

本発明はその第2の態様として、平均流量孔径が50nm以下であるPTFE多孔質膜、及び前記PTFE多孔質膜に接着固定され平均流量孔径が50nmより大きい多孔質体からなることを特徴とする多孔質フッ素樹脂膜複合体(請求項3)を提供する。この多孔質フッ素樹脂膜複合体は、後述の請求項7に記載の方法により得ることができる。   The second aspect of the present invention is characterized in that it comprises a PTFE porous membrane having an average flow pore size of 50 nm or less, and a porous body that is bonded and fixed to the PTFE porous membrane and has an average flow pore size greater than 50 nm. A porous fluororesin membrane composite is provided. This porous fluororesin membrane composite can be obtained by the method described in claim 7 described later.

この多孔質フッ素樹脂膜複合体では、平均流量孔径が50nm以下であるPTFE多孔質膜が、平均流量孔径が50nmより大きい多孔質体に接着固定され支持されているので、高い強度が得られる。従って、この支持体としての多孔質体については高い機械的強度が望まれる。この支持体(多孔質体)の平均孔径及び気孔率は、平均流量孔径が50nmより大きく、支持体としての機能を奏する限りは、特に制限はないが、優れたろ過処理効率を得る点からは、平均孔径及び気孔率は大きい方が好ましい。   In this porous fluororesin membrane composite, a PTFE porous membrane having an average flow pore size of 50 nm or less is bonded and fixed to a porous body having an average flow pore size greater than 50 nm, and thus high strength is obtained. Therefore, high mechanical strength is desired for the porous body as the support. The average pore diameter and porosity of the support (porous body) are not particularly limited as long as the average flow pore diameter is larger than 50 nm and functions as a support, but from the viewpoint of obtaining excellent filtration efficiency. The average pore diameter and porosity are preferably large.

この支持体に用いられるものとしては、連続気孔の多孔質体であればよく、特に制限されない。具体的には、発泡体、不織布、延伸多孔質体等を挙げることができ、それらを構成する材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、PTFE、PFA等のフッ素系樹脂、ポリイミド、ポリアミドイミド等のポリイミド系樹脂等を挙げることができる。   The material used for the support is not particularly limited as long as it is a porous body having continuous pores. Specific examples include foams, non-woven fabrics, stretched porous bodies, and the like. Polyolefin resins such as polyethylene and polypropylene, fluorine resins such as PTFE and PFA, polyimide, polyamide Examples thereof include polyimide resins such as imide.

本発明はその第3の態様として、平均流量孔径が50nm以下であるPTFE多孔質膜の製造方法であって、
PTFEからなり膜厚が20μm以下の無孔質フィルムを、延伸により均質に伸びる特性を有する支持体に固定して積層体を得る工程、
前記積層体を延伸する工程、及び
延伸後の前記積層体から前記支持体を除去する工程
からなることを特徴とするPTFE多孔質膜の製造方法(請求項4)を提供する。
The third aspect of the present invention is a method for producing a PTFE porous membrane having an average flow pore size of 50 nm or less,
Fixing a non-porous film made of PTFE and having a film thickness of 20 μm or less to a support having the property of extending uniformly by stretching to obtain a laminate;
There is provided a method for producing a porous PTFE membrane (Claim 4) comprising a step of stretching the laminate and a step of removing the support from the laminate after stretching.

この方法では、PTFEからなる無孔質フィルムを延伸することを特徴とし、この特徴により平均流量孔径が50nm以下のPTFE多孔質膜が得られる。融解熱量が30J/gを超えるような低分子量PTFEは、破断伸びが小さく延伸加工が難しく、特に膜厚が20μm以下の薄膜の場合この傾向が顕著であるが、請求項4の方法では、膜を延伸により均質に伸びる特性を有する支持体に固定して積層体としこの積層体を延伸するので、破断やピンホールの形成等が抑制され均質な延伸が達成される。   This method is characterized in that a nonporous film made of PTFE is stretched, and a PTFE porous membrane having an average flow pore size of 50 nm or less can be obtained by this feature. The low molecular weight PTFE having a heat of fusion exceeding 30 J / g has a small elongation at break and is difficult to stretch, and this tendency is particularly noticeable in the case of a thin film having a thickness of 20 μm or less. Since the laminate is stretched by fixing it to a support having a property of stretching uniformly by stretching, the laminate is stretched, so that uniform stretching can be achieved while suppressing the formation of breaks and pinholes.

ここで用いられる支持体としては、延伸により均質に伸びる特性を有し、無孔質フィルムを接着固定できるものであればよく、特に限定されないが、機械的強度が高く伸びやすいものが好ましい。具体的には、ゴムやその他のエラストマー、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、PTFE、PFA等のフッ素系樹脂等からなるフィルムを挙げることができる。   The support used here is not particularly limited as long as it has a property of extending uniformly by stretching and can adhere and fix a nonporous film. However, a support having high mechanical strength and easy elongation is preferable. Specific examples include films made of rubber and other elastomers, polyolefin resins such as polyethylene and polypropylene, and fluorine resins such as PTFE and PFA.

前記無孔質フィルムを前記支持体に固定する方法としては、接着剤や粘着剤を使用して接着する方法、加熱により融着する方法等を挙げることができる。接着剤や粘着剤として、溶剤可溶性あるいは熱可塑性のフッ素樹脂、フッ素ゴムを使用すれば、フッ素樹脂薄膜の素材そのものの耐熱性や耐薬品性を生かせる用途に使用することができるのでより好ましい。   Examples of the method for fixing the nonporous film to the support include a method of bonding using an adhesive or a pressure-sensitive adhesive, a method of fusing by heating, and the like. Use of a solvent-soluble or thermoplastic fluororesin or fluororubber as the adhesive or pressure-sensitive adhesive is more preferable because it can be used for applications that make use of the heat resistance and chemical resistance of the fluororesin thin film itself.

延伸後、前記積層体より、前記支持体を除去することにより、平均流量孔径が50nm以下、膜厚が20μm以下で欠陥のないPTFE多孔質膜が得られる。前記支持体の除去は、無孔質フィルムと支持体を固定する接着剤や粘着剤を有機溶剤等で軟化又は除去して支持体を剥離する方法、又は加熱や場合により冷却等も行いながら機械的に剥離する方法等により行うことができる。   After stretching, the support is removed from the laminate to obtain a PTFE porous membrane having an average flow pore size of 50 nm or less and a film thickness of 20 μm or less and having no defects. The support is removed by a method in which the adhesive or pressure-sensitive adhesive for fixing the nonporous film and the support is softened or removed with an organic solvent or the like, or the support is peeled off, or a machine while performing heating or cooling if necessary. It can carry out by the method of peeling automatically.

請求項5は、前記無孔質フィルムを構成するPTFEの融解熱量が32J/g以上であることを特徴とする請求項4に記載のPTFE多孔質膜の製造方法を提供する。無孔質フィルムを構成するPTFEの融解熱量が高い程、延伸して得られるPTFE多孔質膜の平均流量孔径が小さくなる。特に、融解熱量が32J/g以上のPTFEから無孔質フィルムを構成することが好ましい。   A fifth aspect of the present invention provides the method for producing a porous PTFE membrane according to the fourth aspect, wherein the heat of fusion of PTFE constituting the nonporous film is 32 J / g or more. The higher the heat of fusion of PTFE constituting the nonporous film, the smaller the average flow pore size of the PTFE porous membrane obtained by stretching. In particular, it is preferable to form a nonporous film from PTFE having a heat of fusion of 32 J / g or more.

請求項6は、前記延伸が、30℃未満の温度で行われることを特徴とする請求項4又は請求項5に記載のPTFE多孔質膜の製造方法である。延伸温度が低い程、延伸して得られるPTFE多孔質膜の平均流量孔径が小さくなる。特に30℃未満の温度で延伸することが好ましい。従来は、30℃未満の温度での延伸は困難であったが、請求項4の方法では膜を延伸により均質に伸びる特性を有する支持体に固定して積層体としこの積層体を延伸するので、このような低温でも延伸は可能であり破断やピンホール等の発生は抑制される。   A sixth aspect of the present invention is the method for producing a porous PTFE membrane according to the fourth or fifth aspect, wherein the stretching is performed at a temperature of less than 30 ° C. The lower the stretching temperature, the smaller the average flow pore size of the PTFE porous membrane obtained by stretching. It is particularly preferable to stretch at a temperature of less than 30 ° C. Conventionally, stretching at a temperature of less than 30 ° C. has been difficult. However, in the method of claim 4, the film is fixed to a support having the property of being stretched uniformly by stretching, and this laminate is stretched. The film can be stretched even at such a low temperature, and the occurrence of breakage and pinholes is suppressed.

本発明はその第4の態様として、平均流量孔径が50nm以下であるPTFE多孔質膜及び前記PTFE多孔質膜に接着固定され平均流量孔径が50nmより大きい多孔質体からなる多孔質フッ素樹脂膜複合体の製造方法であって、
PTFEからなり膜厚が20μm以下の無孔質フィルムを、延伸により均質に伸びる特性を有する多孔質の支持体に固定して積層体を得る工程、及び
前記積層体を延伸する工程からなることを特徴とする多孔質フッ素樹脂膜複合体の製造方法(請求項7)を提供する。
As a fourth aspect of the present invention, a porous fluororesin membrane composite comprising a PTFE porous membrane having an average flow pore size of 50 nm or less and a porous body bonded and fixed to the PTFE porous membrane having an average flow pore size greater than 50 nm. A method for manufacturing a body,
A non-porous film made of PTFE having a thickness of 20 μm or less is fixed to a porous support having a property of being uniformly stretched by stretching, and a laminate is obtained; and the laminate is stretched Provided is a method for producing a characteristic porous fluororesin membrane composite (claim 7).

ここで用いられる支持体は、延伸により均質に伸びる特性を有する多孔質であり、無孔質フィルムを接着固定できるものであれば特に限定されないが、機械的強度が高く伸び易いものが好ましい。具体的には、ゴムやその他のエラストマー、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、PTFE、PFA等のフッ素系樹脂等からなる多孔質体フィルムを挙げることができる。   The support used here is not particularly limited as long as it is a porous material having a property of extending uniformly by stretching and can adhere and fix a nonporous film, but a material having high mechanical strength and easy elongation is preferable. Specific examples include porous films made of rubber and other elastomers, polyolefin resins such as polyethylene and polypropylene, and fluorine resins such as PTFE and PFA.

前記無孔質フィルムを前記支持体に固定する方法としては、請求項4に記載の方法と同様な方法を採用することができる。   As a method for fixing the nonporous film to the support, a method similar to the method according to claim 4 can be employed.

請求項8は、前記無孔質フィルムを構成するPTFEの融解熱量が32J/g以上であることを特徴とする請求項7に記載の多孔質フッ素樹脂膜複合体の製造方法を提供する。請求項9は、前記延伸が、30℃未満の温度で行われることを特徴とする請求項7又は請求項8に記載の多孔質フッ素樹脂膜複合体の製造方法を提供する。   An eighth aspect of the present invention provides the method for producing a porous fluororesin membrane composite according to the seventh aspect, wherein the heat of fusion of PTFE constituting the nonporous film is 32 J / g or more. A ninth aspect provides the method for producing a porous fluororesin membrane composite according to the seventh or eighth aspect, wherein the stretching is performed at a temperature of less than 30 ° C.

請求項5及び請求項6の発明の場合と同様に、PTFEの融解熱量が高い程、又、延伸温度が低い程、延伸して得られるPTFE多孔質膜の平均流量孔径が小さくなる。   As in the case of the inventions of claims 5 and 6, the higher the heat of fusion of PTFE and the lower the stretching temperature, the smaller the average flow pore size of the PTFE porous membrane obtained by stretching.

本発明のPTFE多孔質膜及び多孔質フッ素樹脂膜複合体は、平均流量孔径が50nm以下の孔を有するので、微細な粒子の除去を可能にする。従って、例えば分子量50000程度のポリエチレングリコールの限外ろ過等のためのろ過膜として用いることができる。   Since the PTFE porous membrane and the porous fluororesin membrane composite of the present invention have pores having an average flow pore size of 50 nm or less, fine particles can be removed. Therefore, for example, it can be used as a filtration membrane for ultrafiltration of polyethylene glycol having a molecular weight of about 50,000.

又、本発明のPTFE多孔質膜及び多孔質フッ素樹脂膜複合体は、前記の優れたろ過性を示すとともに、耐薬品性や耐熱性にも優れる。膜厚が薄い場合は、優れたろ過処理効率も示す。又、非常に柔軟性に富み、多孔質フッ素樹脂膜複合体の場合は多孔質の支持体により機械的強度等にも優れるので、ハンドリングが容易である。従って、公知の各種の分離膜エレメントの製造に用いることができる。   Moreover, the PTFE porous membrane and porous fluororesin membrane composite of the present invention exhibit excellent filterability as well as excellent chemical resistance and heat resistance. When the film thickness is thin, excellent filtration efficiency is also shown. Further, it is very flexible, and in the case of a porous fluororesin membrane composite, it is easy to handle because the porous support is excellent in mechanical strength and the like. Therefore, it can be used for production of various known separation membrane elements.

本発明のPTFE多孔質膜及び多孔質フッ素樹脂膜複合体は、従来のPTFE多孔質膜によるろ過では除去できなかった微細な粒子の除去を可能にする。又、本発明の多孔質フッ素樹脂膜複合体は、機械的強度の点でも優れたものである。このような優れた特性を有するPTFE多孔質膜及び多孔質フッ素樹脂膜複合体は、それぞれ、本発明のPTFE多孔質膜の製造方法及び本発明の多孔質フッ素樹脂膜複合体の製造方法により製造することができる。   The PTFE porous membrane and porous fluororesin membrane composite of the present invention enable the removal of fine particles that could not be removed by filtration with a conventional PTFE porous membrane. The porous fluororesin membrane composite of the present invention is also excellent in terms of mechanical strength. The PTFE porous membrane and the porous fluororesin membrane composite having such excellent characteristics are produced by the method for producing the PTFE porous membrane of the present invention and the method for producing the porous fluororesin membrane composite of the present invention, respectively. can do.

次に、本発明を実施するための形態を、具体的に説明する。なお、本発明はこの形態や実施例に限定されるものではなく、本発明の趣旨を損なわない限り他の形態へ変更することができる。   Next, the form for implementing this invention is demonstrated concretely. In addition, this invention is not limited to this form and an Example, As long as the meaning of this invention is not impaired, it can change into another form.

本発明のPTFE多孔質膜の製造方法(請求項4)や多孔質フッ素樹脂膜複合体の製造方法(請求項7)に用いられる無孔質フィルムは、PTFEからなる。PTFEとしては、融解熱量が32J/g以上のものが好ましいが、これに限定されるものではない。ここで、融解熱量とは、室温から245℃まで50℃/分で加熱、10℃/分で365℃まで加熱、350℃まで−10℃/分の速度で冷却、350℃で5分間保持、350℃から330℃まで−10℃/分の速度で冷却、330℃から305℃まで−1℃/分の速度で冷却、−50℃/分の速度で305℃から245℃まで冷却、及び10℃/分の速度で245℃から365℃まで加熱をこの順序で行ったときの、10℃/分の速度で245℃から365℃までの加熱の際の296〜343℃間の吸熱量と定義される。   The nonporous film used in the method for producing a porous PTFE membrane of the present invention (Claim 4) and the method for producing a porous fluororesin membrane composite (Claim 7) is made of PTFE. PTFE is preferably one having a heat of fusion of 32 J / g or more, but is not limited thereto. Here, the heat of fusion means heating from room temperature to 245 ° C. at 50 ° C./min, heating at 10 ° C./min to 365 ° C., cooling to 350 ° C. at a rate of −10 ° C./min, holding at 350 ° C. for 5 minutes, Cool from 350 ° C to 330 ° C at a rate of -10 ° C / min, cool from 330 ° C to 305 ° C at a rate of -1 ° C / min, cool from 305 ° C to 245 ° C at a rate of -50 ° C / min, and 10 Defined as an endothermic amount between 296 and 343 ° C. when heating from 245 ° C. to 365 ° C. at a rate of 10 ° C./min when heating from 245 ° C. to 365 ° C. in this order at a rate of ° C./min. Is done.

この無孔質フィルムとしては、優れたろ過処理能力を得るために薄い方が好ましいが、又、ボイドやクラック等の欠陥が少ないものが好ましい。   The nonporous film is preferably thin in order to obtain an excellent filtering ability, but is preferably one having few defects such as voids and cracks.

ボイドやクラック等の欠陥が少ないとの特徴は、ガーレー秒により表すことができるが、具体的には、ガーレー秒が300秒以上のものが好ましく、より好ましくは1000秒以上、さらに好ましくは5000秒以上である。ここでガーレー秒とは、JIS−P8117等記載されている透気度(空気の透過量)を表す数値で、具体的には、100mlの空気が645cmの面積を通過する時間(秒)を表す。薄膜が欠陥を有する場合は、その欠陥を通って空気が透過するのでガーレー秒は小さくなるが、欠陥が少なくなるに従って空気が透過しにくくなりガーレー秒は増大する。 The feature that there are few defects such as voids and cracks can be expressed by Gurley seconds. Specifically, Gurley seconds are preferably 300 seconds or more, more preferably 1000 seconds or more, and even more preferably 5000 seconds. That's it. Here, the Gurley second is a numerical value representing the air permeability (air permeation amount) described in JIS-P8117 and the like. Specifically, the time (second) in which 100 ml of air passes through an area of 645 cm 2 is shown. To express. When the thin film has a defect, air permeates through the defect and thus the Gurley second decreases. However, as the defect decreases, the air hardly permeates and the Gurley second increases.

膜厚が20μm以下であって、ボイドやクラック等の欠陥が少ない無孔質フィルムは、平滑な箔上に、PTFE粉末を分散媒中に分散したフッ素樹脂ディスパージョンを塗布した後、該分散媒の乾燥、PTFEの焼結を行い、その後、この平滑な箔を除去する方法により製造することができる。フッ素樹脂ディスパージョンの分散媒としては、通常、水等の水性媒体が用いられる。   A nonporous film having a film thickness of 20 μm or less and having few defects such as voids and cracks is obtained by applying a fluororesin dispersion in which PTFE powder is dispersed in a dispersion medium on a smooth foil, and then applying the dispersion medium. It can be manufactured by a method of drying this, sintering PTFE, and then removing this smooth foil. As the dispersion medium for the fluororesin dispersion, an aqueous medium such as water is usually used.

平滑な箔とは、この製造方法においてフッ素樹脂ディスパージョンと接する側の表面に孔や凹凸が観測されない平滑なフィルムである。平滑な箔の厚さの範囲は特に限定されないが、基体上に塗布したフッ素樹脂ディスパージョン上に気泡が入らないように被せる操作が容易に行われるような柔軟性を有する厚さであって、除去が困難とならない厚さが望ましい。薄膜の形成後、平滑な箔の除去が行われるが、除去の方法としては、平滑な箔が金属箔の場合は酸等により溶解除去する方法が例示される。   A smooth foil is a smooth film in which no holes or irregularities are observed on the surface in contact with the fluororesin dispersion in this production method. Although the thickness range of the smooth foil is not particularly limited, it is a thickness having flexibility such that an operation for covering the fluororesin dispersion coated on the substrate so as to prevent bubbles from entering can be easily performed, A thickness that does not make removal difficult is desirable. After the thin film is formed, the smooth foil is removed. Examples of the removing method include a method of dissolving and removing with an acid or the like when the smooth foil is a metal foil.

金属箔は、フッ素樹脂ディスパージョン上に気泡が入らないように被せる操作が容易に行われるような柔軟性を有し、薄膜の形成後酸等による溶解除去が容易であるので、平滑な箔として好ましい。金属箔の中でもアルミ箔は、柔軟性及び溶解除去の容易さ、さらには入手の容易さの点で特に好適である。   The metal foil is flexible so that it can be easily covered so that air bubbles do not enter the fluororesin dispersion, and it is easy to dissolve and remove with acid after forming a thin film. preferable. Among metal foils, aluminum foil is particularly suitable in terms of flexibility, ease of dissolution and removal, and availability.

分散媒の乾燥は、分散媒の沸点に近い温度又は沸点以上に加熱することにより行うことができる。乾燥によりPTFE粉末からなる皮膜が形成されるが、この皮膜を、フッ素樹脂の融点以上に加熱して焼結することによりPTFEの無孔質フィルムを得ることができる。乾燥と焼結の加熱を同一工程で行ってもよい。   The dispersion medium can be dried by heating to a temperature close to or higher than the boiling point of the dispersion medium. A film made of PTFE powder is formed by drying, and a non-porous film of PTFE can be obtained by heating this film to a temperature equal to or higher than the melting point of the fluororesin and sintering. Drying and sintering heating may be performed in the same step.

ボイドやクラック等の欠陥を低減する効果は、前記PTFE粉末に、高濃度条件でゲル化する水溶性ポリマーを添加することにより向上する。この水溶性ポリマーとしては、アニオン性、カチオン性よりもノニオン性のものが好ましく、又、分子量は1万以上が好ましい。該水溶性ポリマーとしては、具体的には、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、デンプン、アガロース等を挙げることができる。   The effect of reducing defects such as voids and cracks is improved by adding a water-soluble polymer that gels under high concentration conditions to the PTFE powder. The water-soluble polymer is preferably nonionic than anionic or cationic, and the molecular weight is preferably 10,000 or more. Specific examples of the water-soluble polymer include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, starch, and agarose.

表面凹凸やピンホールなどの欠陥の発生を抑制するためには、陰イオン性界面活性剤を0.5mg/ml以上加えることも好ましい。より好ましく2.5mg/ml以上である。陰イオン性の界面活性剤としては、ポリオキシエチレン・アルキルエーテル・カルボン酸塩などのカルボン酸型、ポリオキシエチレン・アルキルエーテル・スルホン酸塩などの硫酸エステル型、ポリオキシエチレン・アルキルエーテル・リン酸塩などのリン酸エステル型等の界面活性剤を挙げることができる。   In order to suppress the occurrence of defects such as surface irregularities and pinholes, it is also preferable to add 0.5 mg / ml or more of an anionic surfactant. More preferably, it is 2.5 mg / ml or more. Examples of anionic surfactants include carboxylic acid types such as polyoxyethylene, alkyl ether, and carboxylate, sulfate ester types such as polyoxyethylene, alkyl ether, and sulfonate, polyoxyethylene, alkyl ether, and phosphorus. A surfactant such as a phosphate ester type such as an acid salt can be used.

本発明の多孔質フッ素樹脂膜複合体において、多孔質体の支持体は1枚であってもよいが、多孔質体の支持体2枚でその間に平均流量孔径が50nm以下であることを特徴とするPTFE多孔質膜が挟まれていてもよい。   In the porous fluororesin membrane composite of the present invention, the number of porous supports may be one, but the average flow pore size is 50 nm or less between the two porous supports. A PTFE porous membrane may be sandwiched.

実施例、参考例において示されている各物性値の測定方法を以下に示す。   The measuring method of each physical property value shown in Examples and Reference Examples is shown below.

[0.055粒子捕集率の測定方法]
外形0.055μmの真球状ポリスチレン粒子ラテックス(JSR社製 標準粒子用ラテックス STADEX SC0055−D 固形分1%)を純水で100倍に希釈(固形分0.01%)し、この液を試験液とする。サンプル(PTFE多孔質膜)をφ47mmのディスク状に打ち抜いて、イソプロパノールを含浸した後、ろ過ホルダーに固定し差圧0.42kgf/cmで前記試験液32mlをろ過した。試験液とろ過液の標準粒子濃度を、分光光度計(島津製作所社製 UV−160)を用いて測定した。0.055粒子捕集率とは、この測定値を用い以下の式より求めた値である。
捕集率={1−(ろ過液の標準粒子濃度)/(試験液の標準粒子濃度)}×100[%]
[Measurement method of 0.055 particle collection rate]
A spherical polystyrene particle latex having an outer shape of 0.055 μm (latex for standard particles STADEX SC0055-D, solid content: 1%, manufactured by JSR) was diluted 100 times with pure water (solid content: 0.01%), and this solution was used as a test solution. And A sample (PTFE porous membrane) was punched into a disk having a diameter of 47 mm, impregnated with isopropanol, fixed to a filtration holder, and 32 ml of the test solution was filtered at a differential pressure of 0.42 kgf / cm 2 . The standard particle concentrations of the test liquid and the filtrate were measured using a spectrophotometer (Shimadzu Corporation UV-160). The 0.055 particle collection rate is a value obtained from the following formula using this measured value.
Collection rate = {1− (standard particle concentration of filtrate) / (standard particle concentration of test liquid)} × 100 [%]

[平均流量孔径の測定方法]
細孔分布測定器(パームポロメータ CFP−1500A:Porous Materials,Inc製)により、液体として、GALWICK(プロピレン,1,1,2,3,3,3酸化ヘキサフッ酸(Porous Materials,Inc製)を用いて、測定した。具体的には、次のようにして求められる。先ず、膜に加えられる差圧と膜を透過する空気流量との関係を、膜が乾燥している場合と膜が液体で濡れている場合について測定し、得られたグラフをそれぞれ、乾き曲線及び濡れ曲線とする。乾き曲線の流量を1/2とした曲線と、濡れ曲線との交点における差圧をP(Pa)とする。次の式により、平均流量孔径を求める。
平均流量孔径d(μm)=cγ/P
ここで、cは定数で2860であり、γは液体の表面張力(dynes/cm)である。
[Measurement method of average flow pore size]
GALWICK (propylene, 1,1,2,3,3,3 oxide hexafluoric acid (manufactured by Porous Materials, Inc.) was used as a liquid with a pore distribution measuring device (palm porometer CFP-1500A: manufactured by Porous Materials, Inc.). Specifically, it is obtained as follows: First, the relationship between the differential pressure applied to the membrane and the flow rate of air passing through the membrane is shown in the case where the membrane is dry and the membrane is liquid. The graph obtained was measured as a dry curve and a wet curve, respectively, and the differential pressure at the intersection of the dry curve flow rate ½ and the wet curve is P (Pa). The average flow pore size is determined by the following formula.
Average flow pore diameter d (μm) = cγ / P
Here, c is a constant of 2860, and γ is the surface tension (dynes / cm) of the liquid.

[融解熱量の測定方法]
PTFEのサンプルを10mgから20mgを採り、必要に応じてアルミセルに封止する。ここで、PTFEは可能な限り収縮変形できるようにフリーな状態に保つことが重要であるので、セルを潰さないか潰し切らないようにする。
[Measurement method of heat of fusion]
10 mg to 20 mg of PTFE sample is taken and sealed in an aluminum cell if necessary. Here, since it is important to keep PTFE free so that it can contract and deform as much as possible, the cells should not be crushed or crushed.

このサンプルについて、以下の条件で加熱や冷却を行う。
室温から245℃まで50℃/分で加熱、その後10℃/分で365℃まで加熱する(第一ステップ)。
次に−10℃/分の速度で350℃まで冷却し、350℃で5分間保持する。次に−10℃/分の速度で350℃から330℃まで、−1℃/分の速度で330℃から305℃まで冷却する(第二ステップ)。PTFEの分子量が小さいほど結晶化が促進されやすく、第二ステップでの発熱量が大きくなる傾向がある。次に−50℃/分の速度で305℃から245℃まで冷却する。
次に10℃/分の速度で245℃から365℃まで加熱する(第三ステップ)。
This sample is heated and cooled under the following conditions.
Heat from room temperature to 245 ° C. at 50 ° C./min, and then heat to 365 ° C. at 10 ° C./min (first step).
Next, it is cooled to 350 ° C. at a rate of −10 ° C./min and held at 350 ° C. for 5 minutes. Next, cooling is performed from 350 ° C. to 330 ° C. at a rate of −10 ° C./min, and from 330 ° C. to 305 ° C. at a rate of −1 ° C./min (second step). The smaller the molecular weight of PTFE, the easier the crystallization is promoted, and the calorific value in the second step tends to increase. Next, it is cooled from 305 ° C. to 245 ° C. at a rate of −50 ° C./min.
Next, it is heated from 245 ° C. to 365 ° C. at a rate of 10 ° C./min (third step).

0.5sec/回でサンプリングタイムを行い、島津製作所社製熱流束示差走査熱量計DSC−50を使用し吸熱カーブ、発熱カーブを求める。この吸熱、発熱カーブより、吸熱量及び発熱量を求めることができるが、融解熱量は296℃から343℃の区間の吸熱量を積分して求めた値である。   A sampling time is performed at 0.5 sec / time, and an endothermic curve and an exothermic curve are obtained using a heat flux differential scanning calorimeter DSC-50 manufactured by Shimadzu Corporation. The endothermic amount and the exothermic amount can be obtained from the endothermic and exothermic curves, and the heat of fusion is a value obtained by integrating the endothermic amount in the section from 296 ° C to 343 ° C.

[IPAバブリングポイントの測定方法]
サンプル(PTFE多孔質膜又は多孔質フッ素樹脂膜複合体)をイソプロピルアルコールに含浸し、管壁の孔内をイソプロピルアルコールで充満した後、一方の面より徐々に空気圧を負荷したときに、初めて気泡が反対面より出てくるときの圧力を、IPAバブリングポイントとした。
[Measurement method of IPA bubbling point]
When a sample (PTFE porous membrane or porous fluororesin membrane composite) is impregnated with isopropyl alcohol and the hole in the tube wall is filled with isopropyl alcohol, air pressure is gradually applied from one side for the first time. IPA bubbling point was defined as the pressure at which the water came out from the opposite surface.

実施例1
日東電工社製PTFEフィルム(No.920UL、膜厚20μm)に電子線を照射し、融解熱量を42J/gに調整した。この膜を370℃で5分間加熱した後、315℃で8時間加熱した。この膜は加熱前よりも長さ方向に収縮し、膜厚は約50μmに増大した。この膜を圧延ロールにて膜厚を13μmに加工した。この膜を幅50mmの住友スリーエム社製PTFEテープ(スコッチ5490)に挟んで固定した。
Example 1
A PTFE film (No. 920UL, film thickness 20 μm) manufactured by Nitto Denko Corporation was irradiated with an electron beam to adjust the heat of fusion to 42 J / g. The film was heated at 370 ° C. for 5 minutes and then heated at 315 ° C. for 8 hours. This film contracted in the length direction before heating, and the film thickness increased to about 50 μm. This film was processed to a thickness of 13 μm with a rolling roll. This film was fixed by being sandwiched between PTFE tapes (Scotch 5490) manufactured by Sumitomo 3M Co., Ltd. having a width of 50 mm.

次にテープの幅方向に3倍延伸した。これを溶剤(MEK)に付けてPTFEテープから膜を分離し取り出した。次に、この膜を、延伸方向とPTFEテープの長さ方向が一致するように前記と同様なPTFEテープに挟んで固定した。これをテープの幅方向に2倍に延伸し、その後溶剤(MEK)に付けてPTFEテープから膜(PTFE多孔質膜)を分離した。このPTFE多孔質膜の延伸後の厚さは9μmだった。又このPTFE多孔質膜の、ガーレー秒は120秒、IPAバブリングポイントは549kPa、0.055粒子捕集率は75%であった。   Next, it was stretched 3 times in the width direction of the tape. This was attached to a solvent (MEK) to separate and remove the membrane from the PTFE tape. Next, this film was fixed by being sandwiched between PTFE tapes similar to those described above so that the stretching direction and the length direction of the PTFE tape coincided. This was stretched twice in the width direction of the tape, and then attached to a solvent (MEK) to separate the membrane (PTFE porous membrane) from the PTFE tape. The thickness of the PTFE porous membrane after stretching was 9 μm. The PTFE porous membrane had a Gurley second of 120 seconds, an IPA bubbling point of 549 kPa, and a 0.055 particle collection rate of 75%.

実施例2
[フッ素樹脂ディスパージョンの調整]
融解熱量が50J/gのPTFEディスパージョン30J(三井デュポンフロロケミカル社製)とMFAラテックス、及びPFAディスパージョン920HPとを用いて、MFA/(PTFE+MFA+PFA)(体積比)及びPFA/(PTFE+MFA+PFA)(体積比)が各2%であるフッ素樹脂ディスパージョンを調整し、更に分子量200万のポリエチレンオキサイドを濃度3mg/ml、ポリオキシエチレンアルキルエーテル硫酸エステルトリエタノールアミン(花王製20T)を10mg/mlとなるように添加してフッ素樹脂ディスパージョンを調整した。
Example 2
[Adjustment of fluororesin dispersion]
Using PTFE dispersion 30J (made by Mitsui DuPont Fluorochemical Co., Ltd.) having a heat of fusion of 50 J / g, MFA latex, and PFA dispersion 920HP, MFA / (PTFE + MFA + PFA) (volume ratio) and PFA / (PTFE + MFA + PFA) (volume) The ratio of the fluororesin dispersion is 2% each, and the concentration of polyethylene oxide having a molecular weight of 2 million is 3 mg / ml, and the polyoxyethylene alkyl ether sulfate triethanolamine (Kao 20T) is 10 mg / ml. The fluororesin dispersion was adjusted by adding as described above.

[試験体の作製]
厚さ50μmのアルミ箔をガラス平板の上に皺がないように広げて固定し、フッ素樹脂ディスパージョンを滴下した後、日本ベアリング社製のステンレス鋼製のスライドシャフト(商品名:ステンレスファインシャフトSNSF型、外径20mm)を滑らすようにしてフッ素樹脂ディスパージョンをアルミ箔一面に均一になるように伸ばした。
[Preparation of specimen]
An aluminum foil with a thickness of 50 μm is spread and fixed on a flat glass plate so that there is no wrinkle, and after a fluororesin dispersion is dropped, a stainless steel slide shaft made by Nihon Bearing Co., Ltd. (trade name: stainless fine shaft SNSF) The fluororesin dispersion was stretched uniformly over the entire surface of the aluminum foil by sliding the mold (outer diameter 20 mm).

この箔を、80℃で60分間乾燥、250℃で1時間加熱、340℃で1時間加熱の各工程を経た後、自然冷却し、アルミ箔上に固定されたフッ素樹脂薄膜(PTFEを主体とする無孔質フッ素樹脂薄膜)を形成させた。フッ素樹脂薄膜が形成される前後のアルミ箔の単位面積当たりの重量差とフッ素樹脂の真比重(2.25g/cm)より算出したフッ素樹脂薄膜の平均厚さは約3μmであった。 This foil was dried at 80 ° C. for 60 minutes, heated at 250 ° C. for 1 hour, heated at 340 ° C. for 1 hour, then naturally cooled, and a fluororesin thin film (mainly PTFE) fixed on the aluminum foil. Nonporous fluororesin thin film) was formed. The average thickness of the fluororesin thin film calculated from the weight difference per unit area of the aluminum foil before and after the fluororesin thin film was formed and the true specific gravity (2.25 g / cm 3 ) of the fluororesin was about 3 μm.

次に、920HPを蒸留水で4倍の容積に薄めたPFAディスパージョンに、更に分子量200万のポリエチレンオキサイドを濃度3mg/ml、ポリオキシエチレンアルキルエーテル硫酸エステルトリエタノールアミン(花王社製20T)を10mg/mlとなるように添加し、4倍希釈のPFAディスパージョンを調整した。   Next, a polyethylene oxide with a molecular weight of 2 million was added to a PFA dispersion obtained by diluting 920HP to 4 times with distilled water, and a polyoxyethylene alkyl ether sulfate ester triethanolamine (20T manufactured by Kao Corporation). It added so that it might become 10 mg / ml, and adjusted the PFA dispersion of 4-fold dilution.

アルミ箔上に固定されたフッ素樹脂薄膜をガラス平板の上に皺がないように広げて固定し、この4倍希釈のPFAディスパージョンを滴下した後、前記と同じ日本ベアリング(株)製のステンレス鋼製のスライドシャフトを滑らすようにして4倍希釈のPFAディスパージョンをアルミ箔一面に均一になるように伸ばしながら、水分が乾燥しない間に、孔径0.45μm、厚さ80μmの延伸PTFE多孔質体(住友電工ファインポリマー社製、商品名:ボアフロンFP−045−80)(IPA−BP:150kPa、気孔率:70%、ガーレー秒:9.1秒)を被せた。その後、80℃で60分間乾燥、250℃で1時間加熱、320℃で1時間加熱、317.5℃で8時間加熱の各工程を経た後、自然冷却して、延伸PTFE多孔質体上に、PTFEよりも融点の低い熱可塑性のPFAにより、PTFEを主体とする無孔質フッ素樹脂薄膜が接着され、更にその上にアルミ箔が固定された複合体を得た。次いで、アルミ箔を塩酸によって溶解除去して、試験体(無孔質PTFE膜の積層体)を得た。   After spreading and fixing the fluororesin thin film fixed on the aluminum foil on the glass plate so as not to be wrinkled, and dropping this 4-fold diluted PFA dispersion, the same stainless steel made by Nihon Bearing Co., Ltd. as described above. Stretched PTFE porous material with a pore diameter of 0.45 μm and a thickness of 80 μm while the steel slide shaft is slid and the PFA dispersion diluted four times is uniformly spread over the entire surface of the aluminum foil while the moisture does not dry. A body (manufactured by Sumitomo Electric Fine Polymer Co., Ltd., trade name: BoaFLON FP-045-80) (IPA-BP: 150 kPa, porosity: 70%, Gurley second: 9.1 seconds) was covered. Then, after passing through the steps of drying at 80 ° C. for 60 minutes, heating at 250 ° C. for 1 hour, heating at 320 ° C. for 1 hour, and heating at 317.5 ° C. for 8 hours, then naturally cooling to the expanded PTFE porous body A composite in which a non-porous fluororesin thin film mainly composed of PTFE was bonded with thermoplastic PFA having a melting point lower than that of PTFE and an aluminum foil was fixed thereon was obtained. Next, the aluminum foil was dissolved and removed with hydrochloric acid to obtain a test body (a laminate of nonporous PTFE membranes).

この試験体のガーレー秒は5000秒以上でPTFE薄膜側から室温でエタノールを接触させてみたが浸透するような穴はなく、この試験体は、エタノールが浸透しない無孔質PTFE膜(PTFEを主体とする無孔質フッ素樹脂薄膜)を含む積層体であることが示された。   The test specimen had a Gurley second of 5000 seconds or more and was contacted with ethanol at room temperature from the PTFE thin film side, but there was no permeation hole, and this test specimen was a non-porous PTFE membrane (PTFE mainly containing no ethanol penetration). And a non-porous fluororesin thin film).

[延伸]
次に、この試験体を、引張試験機を用いて温度25℃、チャック間55mm、ストローク165mm(延伸率200%)で幅方向に延伸した後、更に同じ引張試験機で温度25℃、チャック間55mm、ストローク88mm(延伸率60%)で幅方向と直交する方向へ延伸し多孔質フッ素樹脂膜複合体を得た。この多孔質フッ素樹脂膜複合体のガーレー秒は80秒であった。IPAバブリングポイントは1180kPaであった。平均流量孔径は0.027μmであった。
[Stretching]
Next, this test specimen was stretched in the width direction at a temperature of 25 ° C., a chuck interval of 55 mm, and a stroke of 165 mm (stretching rate: 200%) using a tensile tester, and further at a temperature of 25 ° C. between chucks. The film was stretched in the direction perpendicular to the width direction at 55 mm and a stroke of 88 mm (stretching rate 60%) to obtain a porous fluororesin membrane composite. The Gurley second of this porous fluororesin membrane composite was 80 seconds. The IPA bubbling point was 1180 kPa. The average flow pore size was 0.027 μm.

実施例3
実施例2と同条件でフッ素樹脂ディスパージョンの調整及び試験体の作製を行い、試験体(無孔質PTFE膜の積層体)を得た。この試験体のガーレー秒は5000秒以上でPTFE薄膜側から室温でエタノールを接触させてみたが、浸透するような穴はなく、この試験体は、エタノールが浸透しない無孔質PTFE膜(PTFEを主体とする無孔質フッ素樹脂薄膜)を含む積層体であることが示された。
Example 3
The fluororesin dispersion was adjusted and the test specimen was prepared under the same conditions as in Example 2 to obtain a test specimen (laminate of nonporous PTFE membrane). The Gurley second of this test body was 5000 seconds or more, and ethanol was contacted from the PTFE thin film side at room temperature. However, there was no hole that could penetrate, and this test body was made of a nonporous PTFE membrane (PTFE membrane that did not penetrate ethanol). It was shown to be a laminate including a non-porous fluororesin thin film as a main component.

次に、この試験体を、引張試験機を用いて温度15℃、チャック間55mm、ストローク165mm(延伸率200%)で幅方向に延伸した後、更に同じ引張試験機で温度15℃、チャック間55mm、ストローク88mm(延伸率60%)で幅方向と直交する方向へ延伸し多孔質フッ素樹脂膜複合体を得た。この多孔質フッ素樹脂膜複合体のガーレー秒は360秒であった。IPAバブリングポイントは測定限界の3000kPaであった。平均流量孔径は測定限界の0.015μm以下であった。   Next, the specimen was stretched in the width direction at a temperature of 15 ° C., a chuck interval of 55 mm, and a stroke of 165 mm (stretching rate of 200%) using a tensile tester, and further at a temperature of 15 ° C. between chucks. The film was stretched in the direction perpendicular to the width direction at 55 mm and a stroke of 88 mm (stretching rate 60%) to obtain a porous fluororesin membrane composite. The Gurley second of this porous fluororesin membrane composite was 360 seconds. The IPA bubbling point was the measurement limit of 3000 kPa. The average flow pore size was 0.015 μm or less, which is the measurement limit.

参考例1
日東電工社製PTFEフィルム膜厚20μm(No.920UL)に電子線を照射し、融解熱量を42J/gに調整した。この膜を370℃で5分間加熱した後、315℃で8時間加熱した。この膜は加熱前よりも長さ方向に収縮し、膜厚は約50μmに増大した。この膜を圧延ロールにて膜厚を13μmに加工した。次にこの膜について、60℃で延伸を試みたところ、2倍に満たない延伸倍率で破断した。
Reference example 1
A PTFE film thickness 20 μm (No. 920UL) manufactured by Nitto Denko Corporation was irradiated with an electron beam to adjust the heat of fusion to 42 J / g. The film was heated at 370 ° C. for 5 minutes and then heated at 315 ° C. for 8 hours. This film contracted in the length direction before heating, and the film thickness increased to about 50 μm. This film was processed to a thickness of 13 μm with a rolling roll. Next, when this film was stretched at 60 ° C., it was broken at a draw ratio of less than 2 times.

実施例1では、参考例1と同じ膜をPTFEテープ(スコッチ5490)に挟んで固定した後延伸しているが、この場合は、縦3倍、横2倍の延伸を行えた。この実施例1及び参考例1の結果の比較より、延伸が困難なPTFE膜、延伸条件であっても、このPTFE膜を延伸により均質に伸びる特性を有する支持体(PTFEテープ:スコッチ5490)に固定して延伸すれば、延伸が可能となることが示されている。   In Example 1, the same film as in Reference Example 1 was stretched after being sandwiched between PTFE tapes (Scotch 5490). In this case, stretching was performed 3 times in length and 2 times in width. From the comparison of the results of Example 1 and Reference Example 1, it was found that a PTFE film that was difficult to stretch and a support (PTFE tape: Scotch 5490) having the property of stretching the PTFE film uniformly by stretching were obtained. It has been shown that stretching is possible if fixed and stretched.

参考例2
実施例2と同様にしてフッ素樹脂ディスパージョンを調整した。
Reference example 2
In the same manner as in Example 2, a fluororesin dispersion was prepared.

[試験体の作製]
厚さ50μmのアルミ箔をガラス平板の上に皺がないように広げて固定し、フッ素樹脂ディスパージョンを滴下した後、日本ベアリング社製のステンレス鋼製のスライドシャフト(商品名:ステンレスファインシャフトSNSF型、外径20mm)を転がすようにしてフッ素樹脂ディスパージョンをアルミ箔一面に均一になるように伸ばした。
[Preparation of specimen]
An aluminum foil with a thickness of 50 μm is spread and fixed on a flat glass plate so that there is no wrinkle, and after a fluororesin dispersion is dropped, a stainless steel slide shaft made by Nihon Bearing Co., Ltd. (trade name: stainless fine shaft SNSF) The fluororesin dispersion was stretched uniformly over the entire surface of the aluminum foil by rolling the mold (outer diameter 20 mm).

この箔を、80℃で60分間乾燥、250℃で1時間加熱、340℃で1時間加熱、317.5℃で8時間加熱の各工程を経た後、自然冷却し、アルミ箔上に固定されたフッ素樹脂薄膜(PTFEを主体とする無孔質フッ素樹脂薄膜)を形成させた。フッ素樹脂薄膜が形成される前後のアルミ箔の単位面積当たりの重量差とフッ素樹脂の真比重(2.25g/cm)より算出したフッ素樹脂薄膜の平均厚さは約3μmであった。次いで、アルミ箔を塩酸によって溶解除去して、試験体(無孔質PTFE膜)を得た。 This foil was dried at 80 ° C. for 60 minutes, heated at 250 ° C. for 1 hour, heated at 340 ° C. for 1 hour, and heated at 317.5 ° C. for 8 hours, then naturally cooled and fixed on the aluminum foil. A fluororesin thin film (nonporous fluororesin thin film mainly composed of PTFE) was formed. The average thickness of the fluororesin thin film calculated from the weight difference per unit area of the aluminum foil before and after the fluororesin thin film was formed and the true specific gravity (2.25 g / cm 3 ) of the fluororesin was about 3 μm. Next, the aluminum foil was dissolved and removed with hydrochloric acid to obtain a test body (nonporous PTFE membrane).

[延伸]
この試験体について、引張試験機を用いて延伸を試みたが、薄すぎて皺になりやすい等取扱が難しい上、チャックで破れる等、均質に延伸することは出来なかった。
[Stretching]
This specimen was stretched using a tensile tester, but it was difficult to handle because it was too thin and easily wrinkled, and could not be stretched homogeneously, such as torn with a chuck.

参考例2の試験体は、実施例2のフッ素樹脂薄膜(PTFEを主体とする無孔質フッ素樹脂薄膜)と同条件で作製されたものであるが、参考例2では、延伸PTFE多孔質体との積層体を形成せずに、無孔質PTFE膜のみについて延伸を試みており、上記のように均質に延伸することは出来なかった。一方、実施例2では延伸PTFE多孔質体との積層体とした後延伸を試みており、均質な延伸が達成されている。この結果より、PTFE薄膜はそのままでは延伸困難であるが、延伸により均質に伸びる特性を有する多孔質の支持体(延伸PTFE多孔質体等)に固定して延伸すれば、延伸が可能となることが示されている。   The specimen of Reference Example 2 was prepared under the same conditions as the fluororesin thin film (non-porous fluororesin thin film mainly composed of PTFE) of Example 2, but in Reference Example 2, the expanded PTFE porous body was used. In other words, it was attempted to stretch only the nonporous PTFE membrane without forming a laminate with the above, and it was not possible to uniformly stretch as described above. On the other hand, in Example 2, a post-stretching attempt was made as a laminate with a stretched PTFE porous body, and uniform stretching was achieved. From this result, it is difficult to stretch the PTFE thin film as it is, but if it is stretched while being fixed to a porous support (stretched PTFE porous body, etc.) having the property of being uniformly stretched by stretching, stretching becomes possible. It is shown.

比較例1
実施例2と同条件でフッ素樹脂ディスパージョンの調整及び試験体の作製を行い、試験体(無孔質PTFE膜の積層体)を得た。この試験体のガーレー秒は5000秒以上でPTFE薄膜側から室温でエタノールを接触させてみたが、浸透するような穴はなく、この試験体はエタノールが浸透しない無孔質PTFE膜を含む積層体であることが示された。
Comparative Example 1
The fluororesin dispersion was adjusted and the test specimen was prepared under the same conditions as in Example 2 to obtain a test specimen (laminate of nonporous PTFE membrane). The Gurley second of this test body was 5000 seconds or more, and ethanol was contacted from the PTFE thin film side at room temperature, but there was no hole that could penetrate, and this test body was a laminate containing a nonporous PTFE membrane that did not penetrate ethanol It was shown that.

次に、この試験体を、引張試験機を用いて温度60℃、チャック間55mm、ストローク165mm(延伸率200%)で幅方向に延伸した後、更に同じ引張試験機で温度60℃、チャック間55mm、ストローク88mm(延伸率60%)で幅方向と直交する方向へ延伸し、多孔質フッ素樹脂膜複合体を得た。この多孔質フッ素樹脂膜複合体のガーレー秒は21秒であった。IPAバブリングポイントは745kPaであった。平均流量孔径は0.055μm以下であった。   Next, this test body was stretched in the width direction using a tensile tester at a temperature of 60 ° C., a chuck distance of 55 mm, and a stroke of 165 mm (stretching rate of 200%), and then further the same tensile tester at a temperature of 60 ° C. The film was stretched in the direction orthogonal to the width direction at 55 mm and a stroke of 88 mm (stretching rate 60%) to obtain a porous fluororesin membrane composite. The Gurley second of this porous fluororesin membrane composite was 21 seconds. The IPA bubbling point was 745 kPa. The average flow pore size was 0.055 μm or less.

実施例2、実施例3及び比較例1の結果の比較より、延伸温度が低い程、平均流量孔径の小さいPTFE多孔質膜が得られることが示されている。又、延伸時の温度が30℃未満である実施例2(25℃)、実施例3(15℃)では、平均流量孔径が50nm以下であるPTFE多孔質膜(すなわち、本発明のPTFE多孔質膜)が得られているが、延伸時の温度が60℃である比較例1では平均流量孔径は55nmであり、本発明のPTFE多孔質膜は得られないことが示されている。   From the comparison of the results of Example 2, Example 3 and Comparative Example 1, it is shown that the lower the stretching temperature, the smaller the PTFE porous membrane having a smaller average flow pore size. In Example 2 (25 ° C.) and Example 3 (15 ° C.) in which the temperature during stretching is less than 30 ° C., the PTFE porous membrane having an average flow pore size of 50 nm or less (that is, the PTFE porous membrane of the present invention). In Comparative Example 1 in which the temperature during stretching is 60 ° C., the average flow pore size is 55 nm, indicating that the PTFE porous membrane of the present invention cannot be obtained.

実施例4
延伸PTFE多孔質体上に、PFAによりフッ素樹脂薄膜が接着され更にその上にアルミ箔が固定された複合体を得るための乾燥、加熱の工程において、80℃で60分間乾燥、250℃で1時間加熱、320℃で1時間加熱の後に行われる317.5℃での加熱時間を0.5時間とした以外は、実施例2と同条件でフッ素樹脂ディスパージョンの調整及び試験体の作製を行い、試験体を得た。この試験体のガーレー秒は5000秒以上でPTFE薄膜側から室温でエタノールを接触させてみたが、浸透するような穴はなく、エタノールが浸透しない無孔質PTFE膜(フッ素樹脂薄膜)を含む積層体であることが示された。
Example 4
In a drying and heating process for obtaining a composite in which a fluororesin thin film is bonded with PFA and an aluminum foil is fixed on the expanded PTFE porous body, drying is performed at 80 ° C. for 60 minutes, and at 250 ° C. for 1 Preparation of a fluororesin dispersion and preparation of a specimen under the same conditions as in Example 2 except that the heating time at 317.5 ° C. performed after heating at 320 ° C. for 1 hour was 0.5 hours. A test specimen was obtained. The Gurley second of this test body was 5000 seconds or more, and when ethanol was contacted from the PTFE thin film side at room temperature, there was no hole that could permeate, and there was a nonporous PTFE film (fluororesin thin film) that did not permeate ethanol. It was shown to be a body.

次に、テンター式横軸延伸機(延伸ゾーン長1.5m)を用いて温度35℃、入口チャック間230mm、出口552mm、ラインスピード6.3/分で延伸を行い、多孔質フッ素樹脂膜複合体を得た。この多孔質フッ素樹脂膜複合体のガーレー秒は48秒、IPAバブリングポイントは1180kPa、平均流量径は0.0485μmであった。   Next, using a tenter type horizontal axis stretching machine (stretching zone length 1.5 m), stretching is performed at a temperature of 35 ° C., 230 mm between the inlet chucks, 552 mm at the outlet, and a line speed of 6.3 / min. Got the body. This porous fluororesin membrane composite had a Gurley second of 48 seconds, an IPA bubbling point of 1180 kPa, and an average flow diameter of 0.0485 μm.

実施例5
実施例4と同条件でフッ素樹脂ディスパージョンの調整及び試験体の作製を行い、試験体を得た。この試験体のガーレー秒は5000秒以上でPTFE薄膜側から室温でエタノールを接触させてみたが、浸透するような穴はなくエタノールが浸透しない無孔質PTFE膜を含む積層体であることが示された。
Example 5
Adjustment of the fluororesin dispersion and preparation of a test specimen were performed under the same conditions as in Example 4 to obtain a test specimen. The Gurley second of this test body was 5000 seconds or more, and when ethanol was contacted from the PTFE thin film side at room temperature, it was shown that it was a laminate including a nonporous PTFE film that did not have a hole to penetrate and did not penetrate ethanol. It was done.

次に、テンター式横軸延伸機(延伸ゾーン長1.5m)を用いて温度24℃、入口チャック間230mm、出口552mm、ラインスピード6.3/分で延伸を行い、多孔質フッ素樹脂膜複合体を得た。この多孔質フッ素樹脂膜複合体のガーレー秒は378秒、平均流量径は測定限界の0.015μm以下であった。   Next, using a tenter-type horizontal axis stretching machine (stretching zone length 1.5 m), stretching is performed at a temperature of 24 ° C., 230 mm between the inlet chucks, 552 mm at the outlet, and a line speed of 6.3 / min. Got the body. This porous fluororesin membrane composite had a Gurley second of 378 seconds and an average flow diameter of 0.015 μm or less, which was the limit of measurement.

実施例6
融解熱量が50J/gのPTFEディスパージョン30J(三井デュポンフロロケミカル社製)の代わりに、融解熱量が29.5J/gのPTFEディスパージョンAD911(旭硝子社製)を用いた以外は、実施例4と同条件でフッ素樹脂ディスパージョンの調整及び試験体の作製を行い、試験体を得た。この試験体のガーレー秒は5000秒以上でPTFE薄膜側から室温でエタノールを接触させてみたが、浸透するような穴はなく、エタノールが浸透しない無孔質PTFE膜を含む積層体であることが示された。
Example 6
Example 4 except that PTFE dispersion AD911 (Asahi Glass Co., Ltd.) having a heat of fusion of 29.5 J / g was used instead of PTFE dispersion 30J (Mitsui DuPont Fluorochemical Co., Ltd.) having a heat of fusion of 50 J / g. The specimen was prepared by adjusting the fluororesin dispersion and preparing a specimen under the same conditions as in Example 1. The Gurley second of this test body was 5000 seconds or more, and when ethanol was contacted from the PTFE thin film side at room temperature, there was no hole that could penetrate, and it was a laminate including a nonporous PTFE membrane that did not allow ethanol to penetrate. Indicated.

次に、テンター式横軸延伸機(延伸ゾーン長1.5m)を用いて温度24℃、入口チャック間230mm、出口552mm、ラインスピード6.3/分で延伸を行い、多孔質フッ素樹脂膜複合体を得た。この多孔質フッ素樹脂膜複合体のガーレー秒は688秒、平均流量径は測定限界の0.015μm以下であった。   Next, using a tenter-type horizontal axis stretching machine (stretching zone length 1.5 m), stretching is performed at a temperature of 24 ° C., 230 mm between the inlet chucks, 552 mm at the outlet, and a line speed of 6.3 / min. Got the body. This porous fluororesin membrane composite had a Gurley second of 688 seconds and an average flow diameter of 0.015 μm or less, which was the limit of measurement.

[ポリエチレングリコールろ過性評価]
評価方法
蒸留水にポリエチレングリコール(和光純薬社製ポリエチレングリコール粉末;平均分子量5万)を濃度2%となるように溶解し、これを試験液とする。
[Evaluation of polyethylene glycol filterability]
Evaluation method Polyethylene glycol (polyethylene glycol powder manufactured by Wako Pure Chemical Industries, Ltd .; average molecular weight 50,000) is dissolved in distilled water to a concentration of 2%, and this is used as a test solution.

前記の実施例4で得られた多孔質フッ素樹脂膜複合体、実施例6で得られた多孔質フッ素樹脂膜複合体、及び市販のPTFEメンブレン(住友電工ファインポリマー社製ポアフロンHP−010−30、公称孔径100nm、前記ナノメンブレンと同様にして測定した平均流量孔径121nm、バブルポイント185kPa、ガーレー秒23秒)を分離膜サンプルとした。それぞれの分離膜サンプルについて、前記の試験液を用い、以下に示す手順によりポリエチレングリコールろ過性評価を行った。   The porous fluororesin membrane composite obtained in Example 4 above, the porous fluororesin membrane composite obtained in Example 6, and a commercially available PTFE membrane (Poreflon HP-010-30 manufactured by Sumitomo Electric Fine Polymer Co., Ltd.) A nominal pore diameter of 100 nm, an average flow pore diameter of 121 nm, a bubble point of 185 kPa, and a Gurley second of 23 seconds measured in the same manner as the nanomembrane were used as separation membrane samples. About each separation membrane sample, polyethylene glycol filterability evaluation was performed by the procedure shown below using the said test liquid.

1)それぞれの分離膜サンプルを、φ47mmのディスク状に打ち抜いて、イソプロパノールに含浸する。
2)次に、ダイキン工業社製のフッ素系界面活性剤DSN403Nを蒸留水に溶解して濃度0.1%とした水溶液(以降リンス液という)に3分間浸した後、蒸留水に1分間浸けて洗浄する。
3)洗浄後の膜をフィルターホルダーに取付けた後、前記試験液20mlをろ過した。
4)試験液及びろ過液について、波長220nmの吸光度を測定し、下記の式によりPEGの除去利率を算出した。
PEGの除去率={1−(ろ過液の吸光度/試験液の吸光度)}×100[%]
1) Each separation membrane sample is punched into a disk having a diameter of 47 mm and impregnated with isopropanol.
2) Next, the fluorosurfactant DSN403N manufactured by Daikin Industries, Ltd. was dissolved in distilled water to a concentration of 0.1% (hereinafter referred to as “rinse solution”) for 3 minutes, and then immersed in distilled water for 1 minute. And wash.
3) After the washed membrane was attached to the filter holder, 20 ml of the test solution was filtered.
4) About the test liquid and filtrate, the light absorbency of wavelength 220nm was measured, and the removal rate of PEG was computed by the following formula.
PEG removal rate = {1− (absorbance of filtrate / absorbance of test solution)} × 100 [%]

評価結果
HP−010−30を用いた場合の除去率は24%、実施例4の多孔質フッ素樹脂膜複合体を用いた場合の除去率は80%、実施例6の多孔質フッ素樹脂膜複合体を用いた場合の除去率は100%であった。この結果より、本発明の多孔質フッ素樹脂膜複合体は、公知のPTFEメンブレンより、分子量50000程度のポリエチレングリコールのような微細粒子の除去効果が優れていることが示された。又、本発明の多孔質フッ素樹脂膜複合体の中では、実施例4より低い温度で延伸がされた実施例6の方が、分子量50000程度のポリエチレングリコールのような微細粒子の除去効果が優れていることが示された。
Evaluation Results The removal rate when using HP-010-30 is 24%, the removal rate when using the porous fluororesin membrane composite of Example 4 is 80%, and the porous fluororesin membrane composite of Example 6 is used. The removal rate when the body was used was 100%. From this result, it was shown that the porous fluororesin membrane composite of the present invention is more excellent in removing fine particles such as polyethylene glycol having a molecular weight of about 50000 than the known PTFE membrane. Further, among the porous fluororesin membrane composites of the present invention, Example 6, which was stretched at a lower temperature than Example 4, was superior in removing fine particles such as polyethylene glycol having a molecular weight of about 50,000. It was shown that.

Claims (9)

平均流量孔径が50nm以下であることを特徴とするポリテトラフルオロエチレン多孔質膜。   A polytetrafluoroethylene porous membrane having an average flow pore size of 50 nm or less. 膜厚が20μm以下であることを特徴とする請求項1に記載のポリテトラフルオロエチレン多孔質膜。   The polytetrafluoroethylene porous film according to claim 1, wherein the film thickness is 20 μm or less. 請求項1又は請求項2に記載のポリテトラフルオロエチレン多孔質膜及び前記ポリテトラフルオロエチレン多孔質膜に接着固定され平均流量孔径が50nmより大きい多孔質体からなることを特徴とする多孔質フッ素樹脂膜複合体。   3. A porous fluorine film comprising: the polytetrafluoroethylene porous membrane according to claim 1 or 2; and a porous body bonded and fixed to the polytetrafluoroethylene porous membrane and having an average flow pore size larger than 50 nm. Resin membrane composite. 平均流量孔径が50nm以下であることを特徴とするポリテトラフルオロエチレン多孔質膜の製造方法であって、
ポリテトラフルオロエチレンからなり膜厚が20μm以下の無孔質フィルムを、延伸により均質に伸びる特性を有する支持体に固定して積層体を得る工程、
前記積層体を延伸する工程、及び
延伸後の前記積層体から前記支持体を除去する工程
からなることを特徴とするポリテトラフルオロエチレン多孔質膜の製造方法。
An average flow pore size is 50 nm or less, a method for producing a polytetrafluoroethylene porous membrane,
Fixing a nonporous film made of polytetrafluoroethylene and having a film thickness of 20 μm or less to a support having a property of extending uniformly by stretching to obtain a laminate;
A method for producing a polytetrafluoroethylene porous membrane, comprising: a step of stretching the laminate; and a step of removing the support from the laminate after stretching.
前記無孔質フィルムを構成するポリテトラフルオロエチレンの融解熱量が32J/g以上であることを特徴とする請求項4に記載のポリテトラフルオロエチレン多孔質膜の製造方法。   The method for producing a porous polytetrafluoroethylene film according to claim 4, wherein the heat of fusion of polytetrafluoroethylene constituting the nonporous film is 32 J / g or more. 前記延伸が、30℃未満の温度で行われることを特徴とする請求項4又は請求項5に記載のポリテトラフルオロエチレン多孔質膜の製造方法。   The method for producing a porous polytetrafluoroethylene film according to claim 4 or 5, wherein the stretching is performed at a temperature of less than 30 ° C. 平均流量孔径が50nm以下であるポリテトラフルオロエチレン多孔質膜及び前記ポリテトラフルオロエチレン多孔質膜に接着固定され平均流量孔径が50nmより大きい多孔質体からなる多孔質フッ素樹脂膜複合体の製造方法であって、
ポリテトラフルオロエチレンからなり膜厚が20μm以下の無孔質フィルムを、延伸により均質に伸びる特性を有する多孔質の支持体に固定し、積層体を得る工程、及び
前記積層体を延伸する工程からなることを特徴とする多孔質フッ素樹脂膜複合体の製造方法。
Method for producing a polytetrafluoroethylene porous membrane having an average flow pore size of 50 nm or less, and a porous fluororesin membrane composite comprising a porous body bonded and fixed to the polytetrafluoroethylene porous membrane and having an average flow pore size greater than 50 nm Because
From a step of fixing a non-porous film made of polytetrafluoroethylene and having a thickness of 20 μm or less to a porous support having a property of extending uniformly by stretching to obtain a laminate, and a step of stretching the laminate A method for producing a porous fluororesin membrane composite comprising:
前記無孔質フィルムを構成するポリテトラフルオロエチレンの融解熱量が32J/g以上であることを特徴とする請求項7に記載の多孔質フッ素樹脂膜複合体の製造方法。   8. The method for producing a porous fluororesin membrane composite according to claim 7, wherein the heat of fusion of polytetrafluoroethylene constituting the nonporous film is 32 J / g or more. 前記延伸が、30℃未満の温度で行われることを特徴とする請求項7又は請求項8に記載の多孔質フッ素樹脂膜複合体の製造方法。   The method for producing a porous fluororesin membrane composite according to claim 7 or 8, wherein the stretching is performed at a temperature of less than 30 ° C.
JP2009204694A 2009-09-04 2009-09-04 Polytetrafluoroethylene porous membrane, porous fluororesin membrane composite, and production method thereof Active JP5364945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204694A JP5364945B2 (en) 2009-09-04 2009-09-04 Polytetrafluoroethylene porous membrane, porous fluororesin membrane composite, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204694A JP5364945B2 (en) 2009-09-04 2009-09-04 Polytetrafluoroethylene porous membrane, porous fluororesin membrane composite, and production method thereof

Publications (2)

Publication Number Publication Date
JP2011052175A true JP2011052175A (en) 2011-03-17
JP5364945B2 JP5364945B2 (en) 2013-12-11

Family

ID=43941495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204694A Active JP5364945B2 (en) 2009-09-04 2009-09-04 Polytetrafluoroethylene porous membrane, porous fluororesin membrane composite, and production method thereof

Country Status (1)

Country Link
JP (1) JP5364945B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077347A1 (en) 2011-11-22 2013-05-30 住友電気工業株式会社 Diaphragm for redox flow batteries
JP2013237808A (en) * 2012-05-16 2013-11-28 Sumitomo Electric Fine Polymer Inc Micropore film made of modified polytetrafluoroethylene and method of manufacturing the same, porous resin film composite, and filter element
CN103561851A (en) * 2012-01-27 2014-02-05 住友电工超效能高分子股份有限公司 Microporous modified polytetrafluoroethylene film, porous modified polytetrafluoroethylene resin film composite and method for producing same, and membrane separation element
WO2015002001A1 (en) * 2013-07-01 2015-01-08 住友電工ファインポリマー株式会社 Porous polytetrafluoroethylene film and method for producing same
WO2015002002A1 (en) * 2013-07-01 2015-01-08 住友電工ファインポリマー株式会社 Method for producing porous polytetrafluoroethylene film and porous polytetrafluoroethylene film
WO2015002000A1 (en) * 2013-07-01 2015-01-08 住友電工ファインポリマー株式会社 Polytetrafluoroethylene porous complex and method for producing same
JP2016077944A (en) * 2014-10-10 2016-05-16 住友電気工業株式会社 Porous laminate, and manufacturing method of porous laminate
US9463420B2 (en) 2006-08-09 2016-10-11 Sumitomo Electric Fine Polymer, Inc. Manufacturing methods for a porous fluororesin composite
WO2017159457A1 (en) * 2016-03-16 2017-09-21 住友電工ファインポリマー株式会社 Method for manufacturing laminate, and laminate
JP2017170418A (en) * 2016-03-16 2017-09-28 住友電工ファインポリマー株式会社 Manufacturing method of laminate and the laminate
JP2018509295A (en) * 2015-02-24 2018-04-05 ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツングW.L. Gore & Associates, Gesellschaft Mit Beschrankter Haftung Method for forming porous membrane assembly
JP2018062104A (en) * 2016-10-12 2018-04-19 ユニチカ株式会社 Porous laminated film and method for producing porous laminated film
US10532329B2 (en) 2013-11-14 2020-01-14 Entegris, Inc. Microporous polyamide-imide membranes
CN114729146A (en) * 2019-09-27 2022-07-08 科慕·三井氟产品株式会社 High-strength small-pore-size polytetrafluoroethylene porous membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532810A (en) * 1991-07-29 1993-02-09 Nitto Denko Corp Production of porous body
JP2003175542A (en) * 2001-12-11 2003-06-24 Asahi Glass Co Ltd Photocatalyst carrying porous polytetrafluoroethylene sheet
WO2008018400A1 (en) * 2006-08-09 2008-02-14 Sumitomo Electric Fine Polymer, Inc. Fluororesin membrane, fluororesin composite, porous fluororesin composite, processes for production of them, and separation membrane element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532810A (en) * 1991-07-29 1993-02-09 Nitto Denko Corp Production of porous body
JP2003175542A (en) * 2001-12-11 2003-06-24 Asahi Glass Co Ltd Photocatalyst carrying porous polytetrafluoroethylene sheet
WO2008018400A1 (en) * 2006-08-09 2008-02-14 Sumitomo Electric Fine Polymer, Inc. Fluororesin membrane, fluororesin composite, porous fluororesin composite, processes for production of them, and separation membrane element

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9463420B2 (en) 2006-08-09 2016-10-11 Sumitomo Electric Fine Polymer, Inc. Manufacturing methods for a porous fluororesin composite
US10096855B2 (en) 2011-11-22 2018-10-09 Sumitomo Electric Industries, Ltd. Redox flow cell membrane
WO2013077347A1 (en) 2011-11-22 2013-05-30 住友電気工業株式会社 Diaphragm for redox flow batteries
EP2808075A4 (en) * 2012-01-27 2015-08-26 Sumitomo Elec Fine Polymer Inc Microporous modified polytetrafluoroethylene film, porous modified polytetrafluoroethylene resin film composite and method for producing same, and membrane separation element
CN103561851A (en) * 2012-01-27 2014-02-05 住友电工超效能高分子股份有限公司 Microporous modified polytetrafluoroethylene film, porous modified polytetrafluoroethylene resin film composite and method for producing same, and membrane separation element
KR20140118693A (en) * 2012-01-27 2014-10-08 스미토모덴코파인폴리머 가부시키가이샤 Microporous modified polytetrafluoroethylene film, porous modified polytetrafluoroethylene resin film composite and method for producing same, and membrane separation element
KR101984018B1 (en) 2012-01-27 2019-05-30 스미토모덴코파인폴리머 가부시키가이샤 Microporous modified polytetrafluoroethylene film, porous modified polytetrafluoroethylene resin film composite and method for producing same, and membrane separation element
US9421499B2 (en) 2012-01-27 2016-08-23 Sumitomo Electric Fine Polymer, Inc. Microporous modified-polytetrafluoroethylene membrane, porous-modified-polytetrafluoroethylene-membrane composite and production process thereof, and separation membrane element
JP2013237808A (en) * 2012-05-16 2013-11-28 Sumitomo Electric Fine Polymer Inc Micropore film made of modified polytetrafluoroethylene and method of manufacturing the same, porous resin film composite, and filter element
WO2015002000A1 (en) * 2013-07-01 2015-01-08 住友電工ファインポリマー株式会社 Polytetrafluoroethylene porous complex and method for producing same
WO2015002001A1 (en) * 2013-07-01 2015-01-08 住友電工ファインポリマー株式会社 Porous polytetrafluoroethylene film and method for producing same
KR102066521B1 (en) 2013-07-01 2020-01-15 스미토모덴코파인폴리머 가부시키가이샤 Polytetrafluoroethylene porous complex and method for producing same
CN104822443A (en) * 2013-07-01 2015-08-05 住友电工超效能高分子股份有限公司 Polytetrafluoroethylene porous complex and method for producing same
JP2015009220A (en) * 2013-07-01 2015-01-19 住友電工ファインポリマー株式会社 Porous polytetrafluoroethylene membrane and production method of the same
US9493619B2 (en) 2013-07-01 2016-11-15 Sumitomo Electric Fine Polymer, Inc. Method for producing porous polytetrafluoroethylene film and porous polytetrafluoroethylene film
US9669608B2 (en) 2013-07-01 2017-06-06 Sumitomo Electric Fine Polymer, Inc. Porous polytetrafluoroethylene composite and method for producing the same
US9695291B2 (en) 2013-07-01 2017-07-04 Sumitomo Electric Fine Polymer, Inc. Porous polytetrafluoroethylene film and method for producing same
KR20160026819A (en) * 2013-07-01 2016-03-09 스미토모덴코파인폴리머 가부시키가이샤 Polytetrafluoroethylene porous complex and method for producing same
WO2015002002A1 (en) * 2013-07-01 2015-01-08 住友電工ファインポリマー株式会社 Method for producing porous polytetrafluoroethylene film and porous polytetrafluoroethylene film
US10532329B2 (en) 2013-11-14 2020-01-14 Entegris, Inc. Microporous polyamide-imide membranes
US10919001B2 (en) 2013-11-14 2021-02-16 Entegris, Inc. Microporous polyamide-imide membranes
JP2016077944A (en) * 2014-10-10 2016-05-16 住友電気工業株式会社 Porous laminate, and manufacturing method of porous laminate
JP2018509295A (en) * 2015-02-24 2018-04-05 ダブリュ.エル.ゴア アンド アソシエーツ,ゲゼルシャフト ミット ベシュレンクテル ハフツングW.L. Gore & Associates, Gesellschaft Mit Beschrankter Haftung Method for forming porous membrane assembly
JP2017170418A (en) * 2016-03-16 2017-09-28 住友電工ファインポリマー株式会社 Manufacturing method of laminate and the laminate
WO2017159457A1 (en) * 2016-03-16 2017-09-21 住友電工ファインポリマー株式会社 Method for manufacturing laminate, and laminate
JP2018062104A (en) * 2016-10-12 2018-04-19 ユニチカ株式会社 Porous laminated film and method for producing porous laminated film
CN114729146A (en) * 2019-09-27 2022-07-08 科慕·三井氟产品株式会社 High-strength small-pore-size polytetrafluoroethylene porous membrane

Also Published As

Publication number Publication date
JP5364945B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5364945B2 (en) Polytetrafluoroethylene porous membrane, porous fluororesin membrane composite, and production method thereof
JP5158522B2 (en) Method for producing fluororesin thin film
JP2010094579A (en) Method of manufacturing porous fluororesin thin film and porous fluororesin thin film
JP6006783B2 (en) Fluororesin microporous membrane, manufacturing method thereof, and filter element using the fluororesin microporous membrane
US20150328593A1 (en) Microporous membrane and manufacturing process therefor
US20140339155A1 (en) Porous polytetrafluoroethylene membrane, porous-polytetrafluoroethylene-membrane composite, and separation membrane element
JP5873389B2 (en) Method for producing modified polytetrafluoroethylene microporous membrane
KR101984018B1 (en) Microporous modified polytetrafluoroethylene film, porous modified polytetrafluoroethylene resin film composite and method for producing same, and membrane separation element
JP2017193112A (en) Laminate and production method of laminate
US9669608B2 (en) Porous polytetrafluoroethylene composite and method for producing the same
CN115867375A (en) Porous membrane of polytetrafluoroethylene and/or modified polytetrafluoroethylene having high strength and small pore size
KR20220069062A (en) High strength, small pore size polytetrafluoroethylene porous membrane
WO2021235118A1 (en) Porous film laminate, filter element, and production method for porous film laminate
JP2015009227A (en) Fluororesin micropore membrane, production method of the same and porous fluororesin membrane composite
TW202335734A (en) Porous membrane laminate

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5364945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250