WO2023139868A1 - Porous membrane, porous membrane laminate, and production method for porous membrane - Google Patents

Porous membrane, porous membrane laminate, and production method for porous membrane Download PDF

Info

Publication number
WO2023139868A1
WO2023139868A1 PCT/JP2022/039922 JP2022039922W WO2023139868A1 WO 2023139868 A1 WO2023139868 A1 WO 2023139868A1 JP 2022039922 W JP2022039922 W JP 2022039922W WO 2023139868 A1 WO2023139868 A1 WO 2023139868A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
porous
membrane
less
polytetrafluoroethylene
Prior art date
Application number
PCT/JP2022/039922
Other languages
French (fr)
Japanese (ja)
Inventor
寛一 片山
篤史 福永
隆昌 橋本
佳奈子 千野
寛之 辻脇
Original Assignee
住友電工ファインポリマー株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ファインポリマー株式会社, 住友電気工業株式会社 filed Critical 住友電工ファインポリマー株式会社
Publication of WO2023139868A1 publication Critical patent/WO2023139868A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof

Definitions

  • the present disclosure relates to a porous membrane, a porous membrane laminate, and a method for manufacturing a porous membrane.
  • a porous membrane using polytetrafluoroethylene has the properties of PTFE such as high heat resistance, chemical stability, weather resistance, nonflammability, high strength, non-adhesiveness, and low coefficient of friction, as well as properties such as flexibility due to porosity, dispersion medium permeability, particle trapping, and low dielectric constant. Therefore, porous films containing PTFE as a main component are frequently used as dispersion media and gas precision filters in the semiconductor, liquid crystal, and food and medical fields. As such a filter, in recent years, a porous filter using a porous membrane containing PTFE as a main component capable of trapping fine particles with a particle size of less than 0.1 ⁇ m has been proposed (see Japanese Patent Application Laid-Open No. 2010-94579).
  • a porous film according to an aspect of the present disclosure is a porous film containing polytetrafluoroethylene as a main component, and the 1st.
  • the Run melting curve has an endothermic peak in the range of 300° C. to 360° C., and the difference between the onset temperature and the end set temperature of the endothermic peak is 20° C. or less.
  • FIG. 1 is a schematic partial cross-sectional view showing a porous membrane according to one embodiment of the present disclosure.
  • FIG. 2 is a schematic partial cross-sectional view showing an example of a porous membrane laminate according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
  • FIG. 4 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
  • FIG. 5 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
  • FIG. 6 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
  • FIG. 1 is a schematic partial cross-sectional view showing a porous membrane according to one embodiment of the present disclosure.
  • FIG. 2 is a schematic partial cross-sectional view showing an example of a porous membrane laminate according to an embodiment of
  • FIG. 7 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
  • FIG. 8 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
  • FIG. 9 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
  • FIG. 10 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
  • FIG. 11 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
  • FIG. 12 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
  • polytetrafluoroethylene used for the porous membrane it is preferable to use polytetrafluoroethylene having a high molecular weight in order to reduce the diameter of the pores.
  • the molding pressure increases when molding a material for forming a porous membrane containing polytetrafluoroethylene as a main component, making it difficult to perform extrusion molding using a general-purpose apparatus and manufacturing conditions.
  • the pore size of the porous membrane may vary, and the accuracy of the filtration process may decrease.
  • the present disclosure has been made based on such circumstances, and aims to provide a porous membrane with small variation in pore size.
  • a porous film according to one aspect of the present disclosure is a porous film containing polytetrafluoroethylene as a main component, and is obtained by differential scanning calorimetry at a temperature increase rate of 10°C/min.
  • the Run melting curve has an endothermic peak in the range of 300° C. to 360° C., and the difference between the onset temperature and the end set temperature of the endothermic peak is 20° C. or less.
  • the porous membrane is a porous membrane whose main component is polytetrafluoroethylene (hereinafter also referred to as PTFE), and the 1st. Since the difference between the onset temperature (endothermic start temperature) and the endset temperature (endothermic end temperature) of the endothermic peak in the range of 300° C. or higher and 360° C. or lower in the Run melting curve is 20° C. or less, the PTFE particle size has a narrow particle size distribution. If the particle size distribution of the PTFE particles is broad, the gaps between the PTFE particles become small, making it difficult for the liquid lubricant to permeate.
  • PTFE polytetrafluoroethylene
  • the porous membrane has a narrow particle size distribution of the PTFE particle diameter and large gaps between the PTFE particles, so that the liquid lubricant can easily permeate.
  • the pressure for extruding the material forming the porous membrane is reduced, and the variation in pore size is reduced, so that the accuracy of filtration of the porous membrane can be improved.
  • the above-mentioned "main component” refers to a component having the largest content in terms of mass, for example, a component having a content of 90% by mass or more, preferably 95% by mass or more.
  • Differential scanning calorimetry is measured using a differential scanning calorimeter (DSC) by the method shown below. 5 mg to 30 mg of the sample was heated from room temperature to 380° C. at a rate of 10° C./min (pattern 1 (1st. Run)), then cooled from 380° C. to 100° C. at a rate of ⁇ 1° C./min (pattern 2), and then heated from 100° C. to 380° C. at a rate of 10° C./min (pattern 3 (2nd. Run)). Starting from the end set temperature of the endothermic peak in the range of 300° C. or higher and 360° C. or lower in the melting curve of Pattern 1, the endothermic amount obtained by integrating the section of 48° C.
  • DSC differential scanning calorimeter
  • the first heat of fusion is defined as the first heat of fusion.
  • the end set temperature of the endothermic peak in the range of 300° C. or higher and 360° C. or lower in the melting curve of Pattern 3 is taken as the starting point, and the endothermic value obtained by integrating the section of 48° C. is defined as the second heat of fusion.
  • the porous membrane preferably has a difference of 15°C or less between the onset temperature and the endset temperature of the endothermic peak.
  • the porous membrane preferably has a porosity of 40% or more and 90% or less.
  • porosity means the ratio of the total volume of pores to the volume of the object, and can be obtained by measuring the density of the object according to ASTM-D-792.
  • the porous membrane preferably has an average flow pore size of 69 nm or more and 107 nm or less in the pore size distribution.
  • the porous membrane has an average flow pore size of 69 nm or more and 107 nm or less in the pore size distribution, so that it is possible to suppress an increase in pressure loss while improving the performance of trapping fine particles in the porous membrane.
  • the porous membrane preferably has a pore size ratio of 17% or more and 49% or less in the pore size distribution. Since the porous membrane has a pore size ratio of 17% or more and 49% or less in the pore size distribution, the pore size variation of the laminate is small, and the accuracy of the filtration process can be improved.
  • a porous membrane laminate according to another aspect of the present disclosure includes one or more of the porous membranes described in (1) to (5) above. Since the porous membrane laminate includes the porous membrane, the accuracy of the filtration process is excellent, and it is suitable as a microfiltration filter.
  • the porous membrane laminate according to another aspect of the present disclosure further includes one or more support membranes containing polytetrafluoroethylene as a main component, and the support membrane is preferably laminated on one or both sides of the porous membrane.
  • the porous membrane laminate is provided with one or more porous support membranes, and the membrane is laminated on one or both sides of the porous membrane, so that the support membrane functions as a protective material for the porous membrane. Therefore, the porous membrane laminate can increase the mechanical strength and life of the porous membrane laminate while improving the trapping performance. Moreover, heat resistance, chemical stability, etc. can be improved by using polytetrafluoroethylene as a main component of the support film.
  • a method for producing a porous membrane according to another aspect of the present disclosure includes a step of forming a kneaded product of polytetrafluoroethylene powder and a liquid lubricant, and the difference between the maximum particle size and the minimum particle size in the primary particle size of the polytetrafluoroethylene is 200 nm or less.
  • the primary particle size referred to here is the minimum unit of polytetrafluoroethylene. The broader the particle size distribution of the primary particles of polytetrafluoroethylene, the narrower the gaps between the PTFE particles, the more difficult it is for the molding aid to permeate, and the lower the extrusion pressure.
  • the difference between the maximum particle size and the minimum particle size in the primary particle size of the polytetrafluoroethylene is 200 nm or less, so that the permeability of the liquid lubricant during molding is excellent, and the extrusion pressure can be reduced.
  • the maximum particle size and the minimum particle size can be analyzed from the particle size distribution of the SEM image obtained by observing the polytetrafluoroethylene powder at 50,000 magnifications using image analysis software Image-Pro.
  • the 1st In (8) above, the 1st.
  • the 1st When the heat of fusion in the range of 300 ° C. to 360 ° C.
  • the 1st In (8) above, the 1st.
  • the difference between the onset temperature and the endset temperature of the endothermic peak having a range of 300° C. to 360° C. in the Run melting curve is preferably 20° C. or less.
  • the 1st When the difference between the onset temperature and the end-set temperature of the endothermic peak having a range of 300° C. or higher and 360° C. or lower in the Run melting curve is 20° C. or less, the extrusion pressure during the production of the porous membrane can be reduced to a favorable range, and the pore size variation can be reduced.
  • FIG. 1 is a schematic partial cross-sectional view showing a porous membrane according to one embodiment of the present disclosure.
  • the porous membrane 1 is composed of a biaxially stretched porous membrane containing polytetrafluoroethylene as a main component. This biaxially stretched porous membrane is made porous by stretching the surface of a sheet containing PTFE as a main component in two directions perpendicular to each other.
  • the porous membrane 1 allows the filtrate to permeate in the thickness direction while preventing permeation of fine impurities.
  • the PTFE powder one with a high molecular weight is preferable.
  • the use of high-molecular-weight PTFE powder can promote the growth of the fibrous skeleton while preventing excessive expansion of pores and tearing of the sheet during stretching.
  • the PTFE powder one with a high molecular weight is preferable.
  • the use of high-molecular-weight PTFE powder can promote growth of the fibrous skeleton while preventing excessive pore expansion and membrane cleavage during stretching.
  • the lower limit of the number average molecular weight of the PTFE powder forming the porous membrane 1 is preferably 12 million, more preferably 20 million.
  • the upper limit of the number average molecular weight of the PTFE powder forming the porous membrane 1 is preferably 50 million, more preferably 40 million. If the number-average molecular weight of the PTFE powder forming the porous membrane 1 is less than the above lower limit, the pore size of the porous membrane 1 may become large and the accuracy of the filtration process may deteriorate. On the other hand, if the number average molecular weight of the PTFE powder forming the porous membrane 1 exceeds the upper limit, formation of the membrane may become difficult.
  • the "number-average molecular weight" is obtained from the specific gravity of the molded product, but the molecular weight of PTFE varies greatly depending on the measurement method and is difficult to measure accurately.
  • the Run melting curve has an endothermic peak in the range of 300° C. to 360° C., and the difference between the onset temperature and the end set temperature of the endothermic peak is preferably 20° C. or less, more preferably 15° C. or less.
  • the difference between the onset temperature and the endset temperature of the endothermic peak is 20° C. or less, the particle size distribution of the PTFE particles is narrowed, and the gaps between the particles become large, so that the liquid lubricant can easily permeate.
  • the extrusion pressure of the forming material of the porous membrane 1 is reduced, and the variation in the pore diameter of the molded porous membrane 1 is reduced, so that the accuracy of the filtration process can be improved.
  • the difference between the onset temperature and the endset temperature of the endothermic peak is preferably as low as possible.
  • the difference between the onset temperature and the endset temperature of the endothermic peak may be 5°C or more and 20°C or less, or 7°C or more and 15°C or less.
  • the onset temperature and endset temperature of the endothermic peak in the range of 300° C. or higher and 360° C. or lower in the Run melting curve can be adjusted, for example, by selecting the molecular weight, crystallinity, primary particle size, etc. of the raw material PTFE.
  • the lower limit of the run heat of fusion (second heat of fusion) is preferably 10 J/g, more preferably 14 J/g.
  • the upper limit of the heat of fusion in Run is preferably 23 J/g, more preferably 18 J/g. If the second heat of fusion of the porous membrane 1 is less than the above lower limit, the pore size of the porous membrane 1 becomes large, and there is a risk that the accuracy of the filtration process will decrease. On the other hand, when the second heat of fusion of the porous membrane 1 exceeds the upper limit, formation of the membrane may become difficult.
  • the lower limit of the average thickness of the porous membrane 1 is preferably 2 ⁇ m, more preferably 5 ⁇ m.
  • the upper limit of the average thickness of the porous membrane 1 is preferably 50 ⁇ m, more preferably 40 ⁇ m. If the average thickness is less than the lower limit, the strength of the porous membrane 1 may be insufficient. On the other hand, if the average thickness exceeds the upper limit, the porous membrane 1 becomes unnecessarily thick, which may increase the pressure loss when the filtrate is permeated. When the average thickness of the porous membrane 1 is within the above range, both strength and filtration efficiency of the porous membrane 1 can be achieved.
  • Average thickness refers to the average value of ten arbitrary thicknesses, measured using a standard digital thickness gauge.
  • the upper limit of the average flow pore size in the pore size distribution of the porous membrane 1 is preferably 107 nm or less, more preferably 90 nm or less, and even more preferably 73 nm or less.
  • the lower limit of the average flow pore size in the pore size distribution of the porous membrane 1 is preferably 69 nm or more, more preferably 70 nm or more, and even more preferably 71 nm or more. If the average flow pore diameter of the porous membrane 1 is less than the above lower limit, the pressure loss of the porous membrane 1 may increase.
  • the average flow pore size of the pore size distribution of the porous membrane 1 is preferably 69 nm or more and 107 nm or less, more preferably 70 nm or more and 90 nm or less, and even more preferably 71 nm or more and 73 nm or less.
  • the "average flow pore diameter" can be calculated from the pore diameter distribution measured by a pore diameter distribution measuring device (for example, PMI Perm Porometer "CFP-1500A”) in accordance with ASTM F316-03, JIS-K3832: 1990, as described later.
  • the upper limit of the pore size ratio of the pore size distribution of the porous membrane 1 is preferably 49% or less, more preferably 40% or less, and even more preferably 30% or less. When the upper limit of the pore size ratio of the pore size distribution of the porous membrane 1 is 49% or less, the accuracy of the filtration process can be improved.
  • the lower limit of the pore size ratio of the pore size distribution of the porous membrane 1 is preferably 17% or more, more preferably 18% or more, and even more preferably 19% or more. When the lower limit of the pore size ratio of the pore size distribution of the porous membrane 1 is 17% or more, the pressure loss can be increased.
  • the pore size ratio of the pore size distribution of the porous membrane 1 is preferably 17% or more and 49% or less, more preferably 18% or more and 40% or less, and even more preferably 19% or more and 30% or less.
  • the pore size ratio of the pore size distribution of the porous membrane 1 can be obtained by the method described later.
  • the upper limit of the porosity of the porous membrane 1 is preferably 90% or less, more preferably 85% or less.
  • the lower limit of the porosity of the porous membrane 1 is preferably 40% or more, more preferably 50% or more. If the porosity of the porous membrane 1 exceeds 90%, there is a risk that the ability of the porous membrane 1 to capture fine particles will be insufficient. On the other hand, if the porosity of the porous membrane 1 is less than 40%, the pressure loss of the porous membrane 1 may increase.
  • the porosity of the porous membrane 1 is preferably 40% or more and 90% or less, more preferably 50% or more and 85% or less.
  • the porous membrane 1 may contain other fluororesins and additives within a range that does not impair the desired effects of the present disclosure.
  • the method for producing the porous membrane includes the steps of forming a kneaded product of PTFE powder and liquid lubricant, and stretching the formed body.
  • a kneaded mixture of PTFE powder produced by emulsion polymerization or the like and a liquid lubricant is extruded to form a sheet.
  • the raw material PTFE particles are powder composed of fine PTFE particles.
  • Examples of the PTFE powder include PTFE fine powder, which is a powder composed of fine particles of PTFE and produced by emulsion polymerization, and PTFE molding powder produced by suspension polymerization.
  • liquid lubricant Various lubricants conventionally used in the extrusion method can be used as the liquid lubricant.
  • the liquid lubricant include petroleum solvents such as solvent naphtha and white oil, hydrocarbon oils such as undecane, aromatic hydrocarbons such as toluol and xylol, alcohols, ketones, esters, silicone oils, fluorochlorocarbon oils, solutions obtained by dissolving polymers such as polyisobutylene and polyisoprene in these solvents, water or aqueous solutions containing surfactants, and the like.
  • solvents such as solvent naphtha and white oil
  • hydrocarbon oils such as undecane
  • aromatic hydrocarbons such as toluol and xylol
  • alcohols ketones, esters
  • silicone oils fluorochlorocarbon oils
  • solutions obtained by dissolving polymers such as polyisobutylene and polyisoprene in these solvents, water or aqueous solutions containing surfactants,
  • the lower limit of the amount of the liquid lubricant mixed with 100 parts by mass of the PTFE powder is preferably 10 parts by mass, more preferably 16 parts by mass.
  • the upper limit of the mixed amount of the liquid lubricant is preferably 40 parts by mass, more preferably 25 parts by mass. If the amount of the liquid lubricant mixed is less than 10 parts by mass, extrusion may become difficult. Conversely, if the amount of the liquid lubricant mixed exceeds 40 parts by mass, compression molding, which will be described later, may become difficult.
  • the material for forming the porous film may contain other additives in addition to the liquid lubricant, depending on the purpose.
  • additives include pigments for coloring, carbon black, graphite, silica powder, glass powder, glass fiber, inorganic fillers such as silicates and carbonates, metal powders, metal oxide powders, and metal sulfide powders for improving wear resistance, preventing cold flow, and facilitating pore formation.
  • substances that can be removed or decomposed by heating, extraction, dissolution, etc. such as ammonium chloride, sodium chloride, plastics other than PTFE, rubber, etc., may be blended in the form of powder or solution.
  • the PTFE powder and the liquid lubricant are mixed, and then compression-molded into a block body, which is a primary molded body, by a compression molding machine.
  • this block is extruded into a sheet at a temperature of room temperature (eg, 25° C.) to 50° C. at a speed of, for example, 10 mm/min to 30 mm/min.
  • a PTFE sheet having an average thickness of 250 ⁇ m or more and 350 ⁇ m or less is obtained.
  • the difference between the maximum particle size and the minimum particle size in the primary particle size of the polytetrafluoroethylene is 200 nm or less, preferably 190 nm or less.
  • the difference between the maximum particle size and the minimum particle size in the primary particle size of the polytetrafluoroethylene is 200 nm or less, so that the liquid lubricant has excellent permeability during molding and the extrusion pressure can be reduced.
  • the 1st In the method for producing the porous membrane, the 1st.
  • the heat of fusion in the range of 300° C. to 360° C. in the Run melting curve is preferably 60.0 J/g or more, more preferably 62.0 J/g or more.
  • the 1st When the heat of fusion in the range of 300 ° C. to 360 ° C.
  • the 1st In the method for producing the porous membrane, the 1st.
  • the difference between the onset temperature and the endset temperature of the endothermic peak having a range of 300° C. to 360° C. in the Run melting curve is preferably 20° C. or less, more preferably 15° C. or less.
  • the difference between the onset temperature and the endset temperature of the endothermic peak is 20° C. or less, the particle size distribution of the PTFE particles is narrowed, and the gaps between the particles become large, so that the liquid lubricant can easily permeate.
  • the extrusion pressure of the forming material of the porous membrane 1 is reduced, and the variation in the pore diameter of the molded porous membrane 1 is reduced, so that the accuracy of the filtration process can be improved.
  • the liquid lubricant contained in the PTFE sheet may be removed after stretching the sheet, but it is preferably removed before stretching.
  • the liquid lubricant can be removed by heating, extraction, dissolution, or the like. When heating, for example, the liquid lubricant can be removed by rolling the PTFE sheet with a hot roll at 130° C. or higher and 220° C. or lower.
  • a liquid lubricant having a relatively high boiling point such as silicone oil or fluorochlorocarbon oil, removal by extraction is suitable.
  • Step of stretching In this step, the PTFE sheet, which is a molded body, is biaxially stretched. Through this step, pores are formed and a porous membrane can be obtained. In this step, a biaxially stretched porous membrane is obtained by sequentially stretching the PTFE sheet in the machine direction (flow direction) and the transverse direction (width direction) perpendicular to the machine direction.
  • the lower limit of the temperature during stretching is preferably 60°C, more preferably 120°C.
  • the upper limit of the temperature during stretching is preferably 300°C, more preferably 280°C. If the temperature during stretching is less than 60°C, the pore size may become too large. Conversely, if the temperature during stretching exceeds 300°C, the pore size may become too small.
  • the biaxially stretched porous membrane is preferably heat-set after stretching.
  • heat setting shrinkage of the biaxially stretched porous membrane can be prevented, and the porous structure can be more reliably maintained.
  • a specific method of heat setting for example, a method of fixing both ends of the biaxially stretched porous membrane and holding at a temperature of 200° C. or higher and 500° C. or lower for 0.1 minute or longer and 20 minutes or shorter can be used.
  • heat setting is preferably performed after each stage.
  • the extrusion pressure during manufacturing is reduced and the variation in pore size is small, so it can be suitably used as a filter or the like that requires high filtration accuracy.
  • the porous membrane laminates 10 and 20 include the porous membrane 1 described above.
  • the porous membrane laminate 10, 20 includes one or more porous membranes 1 (FIGS. 2 to 12).
  • the porous membrane laminate further comprises one or more supporting membranes, and the supporting membranes are laminated on one side or both sides of the porous membrane. This can improve the strength of the porous membrane laminate.
  • FIG. 2 is a schematic partial cross-sectional view showing a porous membrane laminate according to one embodiment of the present disclosure.
  • a porous membrane laminate 10 shown in FIG. 2 includes a porous membrane 1 and a porous support membrane 2 laminated on one side of the porous membrane 1 .
  • the porous membrane laminate 10 includes the porous membrane 1 and the porous support film 2 laminated on one side of the porous membrane 1” can be rephrased as “the porous membrane laminate 10 comprises the first porous membrane 1 made of the porous membrane 1 and the first support film 2 mainly composed of polytetrafluoroethylene, and the first porous membrane 1 is arranged on one main surface of the first support film 2.”
  • the porous membrane laminate 10 is provided with the porous support membrane 2 laminated on one side of the porous membrane 1, and the porous membrane 1 is supported by the support membrane 2, so that the mechanical strength can be improved and clogging of the filter can be suppressed.
  • the porous support film 2 is a porous body, and preferably contains polytetrafluoroethylene as a main component.
  • polytetrafluoroethylene By using polytetrafluoroethylene as the main component of the support film 2, heat resistance, chemical stability, etc. can be improved.
  • the upper limit of the average thickness of the support film 2 is preferably 20 ⁇ m, more preferably 15 ⁇ m.
  • the lower limit of the average thickness of the support film 2 is preferably 2 ⁇ m, more preferably 5 ⁇ m. If the average thickness of the support membrane 2 exceeds 20 ⁇ m, the pressure loss of the porous membrane laminate 10 may increase. On the other hand, if the average thickness of the support film 2 is less than 2 ⁇ m, the strength of the porous membrane laminate 10 may be insufficient.
  • the lower limit of the average flow pore size of the support membrane 2 is preferably 0.08 ⁇ m, more preferably 0.10 ⁇ m.
  • the upper limit of the mean flow pore size is preferably 3.00 ⁇ m, more preferably 1.50 ⁇ m. If the average flow pore size of the support membrane 2 is less than 0.08 ⁇ m, the pressure loss of the porous membrane laminate 10 may increase. On the other hand, if the average flow pore size of the support membrane 2 exceeds 3.00 ⁇ m, the strength of the support membrane 2 may be insufficient.
  • the porous membrane laminate 20 may have a three-layer structure, and may have a total of three layers, for example, a pair of support membranes 2 arranged as the outermost layers and a porous membrane 1 arranged between the pair of support membranes 2. Also, the porous membrane laminate 20 may have a structure of four or more layers. Examples are shown in FIGS.
  • the porous membrane laminate includes a plurality of the porous membranes and a plurality of the supporting membranes, the porous membranes and the supporting membranes being alternately laminated, and the supporting membranes being arranged at both ends.
  • the porous membrane laminate the porous membrane and the support membrane are alternately laminated, and the support membranes are arranged at both ends, so that the trapping performance, mechanical strength and life of the porous membrane laminate can be further enhanced.
  • FIG. 6 is a schematic partial cross-sectional view showing a porous membrane laminate according to another embodiment of the present disclosure.
  • the porous membrane laminate 20 shown in FIG. 6 has a five-layer structure in which two layers of the porous membrane 1 are laminated between the pair of support membranes 2 of the outermost layer, and the support membrane 2 is further laminated between the pair of porous membranes 1. In this way, the porous membrane 1 and the support membrane 2 are alternately laminated, and the support membrane 2 is laminated on both ends, so that the trapping performance, mechanical strength and life of the porous membrane laminate 20 can be further enhanced.
  • the porous membrane laminate 10 is composed of a first porous membrane 1 made of the porous membrane 1 and a second porous membrane 1 made of the porous membrane 1, and the second porous membrane 1 can be arranged on one main surface of the first porous membrane 1.
  • the mechanical strength of the porous membrane laminate 10 can be improved, and the fine particle trapping performance (probability of trapping particles by fibers) can be improved.
  • the first porous film 1 and the second porous film 1 may have the same structure or different structures.
  • the porous membrane laminate 20 includes a first porous membrane 1 made of the porous membrane 1, a first supporting membrane 2 mainly composed of polytetrafluoroethylene, and a second supporting membrane 2 mainly composed of polytetrafluoroethylene.
  • the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, and deterioration of particle trapping performance due to trauma can be suppressed.
  • the first support film 2 and the second support film 2 may have the same structure or different structures.
  • the porous membrane laminate 20 is composed of a first porous membrane 1 made of the porous membrane 1, a second porous membrane 1 made of the porous membrane 1, and a first supporting membrane 2 containing polytetrafluoroethylene as a main component.
  • the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, and the fine particle trapping performance (probability of trapping particles by fibers) can be improved.
  • the first porous film 1 and the second porous film 1 may have the same structure or different structures.
  • the porous membrane laminate 20 comprises a first porous membrane 1 made of the porous membrane 1, a second porous membrane 1 made of the porous membrane 1, a first supporting membrane 2 mainly composed of polytetrafluoroethylene, and a second supporting membrane 2 mainly composed of polytetrafluoroethylene.
  • 1 and the second support film 2 can be arranged in the above order.
  • the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, the fine particle trapping performance (probability of trapping particles by fibers) can be improved, and deterioration of the particle trapping performance due to trauma can be suppressed.
  • the first porous film 1 and the second porous film 1 may have the same structure or different structures.
  • the first support film 2 and the second support film 2 may have the same structure or different structures.
  • the porous membrane laminate 20 comprises a first porous membrane 1 made of the porous membrane 1, a second porous membrane 1 made of the porous membrane 1, a third porous membrane 1 made of the porous membrane 1, and a first support membrane 2 containing polytetrafluoroethylene as a main component.
  • 1 and the third porous membrane 1 can be arranged in the above order.
  • the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, and the fine particle trapping performance (probability of trapping particles by fibers) can be improved.
  • the first porous film 1, the second porous film 1, and the third porous film 1 may have the same configuration or different configurations.
  • the porous membrane laminate 20 is composed of a first porous membrane 1 composed of the porous membrane 1, a second porous membrane 1 composed of the porous membrane 1, a first supporting membrane 2 mainly composed of polytetrafluoroethylene, a second supporting membrane 2 mainly composed of polytetrafluoroethylene, and a third supporting membrane 2 mainly composed of polytetrafluoroethylene.
  • the first porous membrane 1, the second supporting membrane 2, the second porous membrane 1, and the third supporting membrane 2 can be arranged in the above order.
  • the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, and deterioration of particle trapping performance due to trauma can be suppressed.
  • the first porous film 1 and the second porous film 1 may have the same structure or different structures.
  • the first supporting film 2, the second supporting film 2, and the third supporting film 2 may have the same structure or different structures.
  • the porous membrane laminate 20 is composed of a first porous membrane 1 composed of the porous membrane 1, a second porous membrane 1 composed of the porous membrane 1, a third porous membrane 1 composed of the porous membrane 1, a first supporting membrane 2 mainly composed of polytetrafluoroethylene, and a second supporting membrane 2 mainly composed of polytetrafluoroethylene.
  • the first porous membrane 1, the second porous membrane 1, the third porous membrane 1, and the second support membrane 2 can be arranged in the above order.
  • the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, the fine particle trapping performance (probability of trapping particles by fibers) can be improved, and deterioration of the particle trapping performance due to trauma can be suppressed.
  • the first porous film 1, the second porous film 1, and the third porous film 1 may have the same configuration or different configurations.
  • the first support film 2 and the second support film 2 may have the same structure or different structures.
  • the porous membrane laminate 20 comprises a first porous membrane 1 made of the porous membrane 1, a first support film 2 mainly composed of polytetrafluoroethylene, a second support film 2 mainly composed of polytetrafluoroethylene, a third support film 2 mainly composed of polytetrafluoroethylene, and a fourth support film 2 mainly composed of polytetrafluoroethylene.
  • the second support film 2, the first porous film 1, the third support film 2, and the fourth support film 2 can be arranged in the above order.
  • the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, and deterioration of particle trapping performance due to trauma can be suppressed.
  • the first supporting film 2, the second supporting film 2, the third supporting film 2, and the fourth supporting film 2 may have the same configuration or different configurations.
  • the porous membrane laminate 20 includes a first porous membrane 1 composed of the porous membrane 1, a second porous membrane 1 composed of the porous membrane 1, a third porous membrane 1 composed of the porous membrane 1, a first supporting membrane 2 composed mainly of polytetrafluoroethylene, a second supporting membrane 2 composed mainly of polytetrafluoroethylene, a third supporting membrane 2 composed mainly of polytetrafluoroethylene, and a polytetrafluoroethylene.
  • the first porous film 1, the second porous film 1, and the third porous film 1 may have the same configuration or different configurations.
  • the first supporting film 2, the second supporting film 2, the third supporting film 2, and the fourth supporting film 2 may have the same configuration or different configurations.
  • the porous membrane laminate 20 includes a first porous membrane 1 composed of the porous membrane 1, a second porous membrane 1 composed of the porous membrane 1, a third porous membrane 1 composed of the porous membrane 1, a fourth porous membrane 1 composed of the porous membrane 1, a fifth porous membrane 1 composed of the porous membrane 1, a first support membrane 2 composed mainly of polytetrafluoroethylene, and polytetrafluoroethylene. and a second support film 2 containing fluoroethylene as a main component, wherein the first porous film 1, the second porous film 1, the third porous film 1, the fourth porous film 1, the fifth porous film 1, and the second support film 2 are arranged in the above order on one main surface of the first support film 2.
  • the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, the fine particle trapping performance (probability of trapping particles by fibers) can be improved, and deterioration of the particle trapping performance due to trauma can be suppressed.
  • the first porous film 1, the second porous film 1, the third porous film 1, the fourth porous film 1, and the fifth porous film 1 may have the same configuration or different configurations.
  • the first support film 2 and the second support film 2 may have the same structure or different structures.
  • the porous membrane laminate is formed by, for example, laminating the porous membrane on one side of the support membrane and heating them.
  • Examples of the method of laminating the porous membrane on the support membrane include a method of fusion bonding by heating, a method of bonding using an adhesive or a pressure-sensitive adhesive, and the like.
  • the porous membrane is first laminated on one side of a support film, for example, and this laminate is heated to thermally fuse and integrate each layer at the boundary to obtain a porous membrane laminate.
  • the lower limit of the heating temperature is preferably 327°C, which is the glass transition point of PTFE, and more preferably 360°C.
  • the upper limit of the heating temperature is preferably 400°C. If the heating temperature is less than 327° C., there is a possibility that the layers will be insufficiently heat-sealed. On the other hand, if the heating temperature exceeds 400°C, each layer may be deformed.
  • the heating time is preferably 0.5 minutes or more and 3 minutes or less.
  • fluororesin or fluororubber having solvent solubility or thermoplasticity is preferable as the adhesive or adhesive in the method of bonding using an adhesive or adhesive.
  • Hydrophilization treatment may be performed on the porous membrane laminate obtained as described above.
  • the porous membrane laminate is impregnated with a hydrophilic material and crosslinked.
  • the hydrophilic material include polyvinyl alcohol (PVA), ethylene vinyl alcohol copolymer (EVOH), acrylate resin, and the like.
  • PVA polyvinyl alcohol
  • EVOH ethylene vinyl alcohol copolymer
  • acrylate resin acrylate resin
  • PVA polyvinyl alcohol
  • PVA polyvinyl alcohol
  • EVOH ethylene vinyl alcohol copolymer
  • acrylate resin acrylate resin
  • the hydrophilization treatment can be performed, for example, by the following procedure.
  • the porous membrane laminate is immersed in isopropyl alcohol (IPA) for 0.25 to 2 minutes, and then immersed in an aqueous PVA solution having a concentration of 0.5 to 0.8 mass % for 5 to 10 minutes.
  • the porous membrane laminate is immersed in pure water for 2 minutes or more and 5 minutes or less, and then crosslinking is performed by adding a crosslinking agent or irradiating electron beams.
  • the porous membrane laminate is washed with pure water and dried at room temperature (25° C.) or higher and 80° C. or lower to make the surface of the porous membrane laminate hydrophilic.
  • cross-linking agent for example, one that forms glutaraldehyde cross-linking, terephthalaldehyde cross-linking, or the like is used.
  • electron beam for example, an electron beam of 6 Mrad can be used.
  • the porous membrane laminate by providing one or a plurality of the porous membranes, the accuracy of filtration processing is excellent.
  • one or a plurality of supporting membranes containing polytetrafluoroethylene as a main component are further provided, and the supporting membrane is laminated on one or both sides of the porous membrane, so that the supporting membrane functions as a protective material for the porous membrane. Therefore, the porous membrane laminate can improve the trapping performance and increase the mechanical strength and life of the porous membrane laminate.
  • heat resistance, chemical stability, etc. can be improved by using polytetrafluoroethylene as a main component of the support film. Therefore, it is suitable for a dispersion medium and gas precision filtration filter used for cleaning, peeling, chemical supply, etc. in the semiconductor-related field, the liquid crystal-related field, and the food and medical-related field.
  • Appendix 1 A porous membrane containing polytetrafluoroethylene as a main component, 1st. obtained by differential scanning calorimetry at a heating rate of 10° C./min.
  • the melting curve of Run has an endothermic peak in the range of 300 ° C. or higher and 360 ° C. or lower,
  • the porous membrane, wherein the difference between the onset temperature and the endset temperature of the endothermic peak is 20°C or less.
  • Appendix 2 The porous membrane according to appendix 1, wherein the difference between the onset temperature and the endset temperature of the endothermic peak is 15° C. or less.
  • Appendix 3 The porous membrane according to appendix 1 or appendix 2, which has a porosity of 40% or more and 90% or less.
  • Appendix 4 The porous membrane according to appendix 1 or appendix 2, wherein the mean flow pore size of the pore size distribution is 69 nm or more and 107 nm or less.
  • Appendix 6 A porous membrane laminate comprising one or a plurality of porous membranes according to any one of Appendixes 1 to 5.
  • Appendix 7 The porous membrane laminate according to appendix 6, further comprising one or a plurality of supporting films containing polytetrafluoroethylene as a main component, wherein the supporting films are laminated on one side or both sides of the porous membrane.
  • Appendix 8 A step of forming a kneaded product of polytetrafluoroethylene powder and a liquid lubricant, A method for producing a porous membrane, wherein the difference between the maximum particle size and the minimum primary particle size of the polytetrafluoroethylene is 200 nm or less.
  • Appendix 9 1 st. 9. The method for producing a porous membrane according to appendix 8, wherein the heat of fusion in the range of 300° C. or higher and 360° C. or lower in the Run melting curve is 60.0 J/g or more.
  • Appendix 11 A first porous film made of the porous film according to any one of Appendices 1 to 5, and a second porous film made of the porous film according to any one of Appendices 1 to 5, A porous membrane laminate in which the second porous membrane is arranged on one main surface of the first porous membrane.
  • Appendix 12 A first porous film made of the porous film according to any one of Appendices 1 to 5, a first support film containing polytetrafluoroethylene as a main component, and a second support film containing polytetrafluoroethylene as a main component, A porous membrane laminate in which the first porous membrane and the second supporting membrane are arranged in the order described above on one main surface of the first supporting membrane.
  • a first porous film comprising the porous film according to any one of Appendices 1 to 5; a second porous film comprising the porous film according to any one of Appendices 1 to 5; a third porous film comprising the porous film according to any one of Appendices 1 to 5; and a fourth support film mainly composed of polytetrafluoroethylene, A porous membrane laminate in which the first porous membrane, the second supporting membrane, the second porous membrane, the third supporting membrane, the third porous membrane, and the fourth supporting membrane are arranged in the order described above on one main surface of the first supporting membrane.
  • a first porous film comprising the porous film according to any one of Appendices 1 to 5; a second porous film comprising the porous film according to any one of Appendices 1 to 5; a third porous film comprising the porous film according to any one of Appendices 1 to 5; a fourth porous film comprising the porous film according to any one of Appendices 1 to 5; A fifth porous film made of the porous film according to item 1, a first support film containing polytetrafluoroethylene as a main component, and a second support film containing polytetrafluoroethylene as a main component, A porous membrane laminate in which the first porous membrane, the second porous membrane, the third porous membrane, the fourth porous membrane, the fifth porous membrane, and the second supporting membrane are arranged in the order described above on one main surface of the first supporting membrane.
  • PTFE fine powder A (second heat of fusion: 15.8 J/g, molecular weight: about 28,000,000) shown in Table 1 was used as the raw material powder.
  • the PTFE fine powder A used here is a powder obtained by drying and granulating PTFE particles (primary particles) produced by emulsion polymerization of tetrafluoroethylene (emulsion polymerization product).
  • Table 1 shows the specific gravity of PTFE fine powder A and the results of differential scanning calorimetry using a differential scanning calorimeter (“DSC-60A” manufactured by Shimadzu Corporation). In addition, differential scanning calorimetry by a differential scanning calorimeter was performed by the above-mentioned method.
  • the film was stretched 4 times in the machine direction (machine direction) at a roll temperature of 250°C to 280°C. Subsequently, both ends of the longitudinally stretched film in the lateral direction (width direction) were gripped with chucks, and the film was stretched 25 times in an atmosphere of 150 ° C. in the lateral direction, which is the direction perpendicular to the machine direction. By this stretching, test no. A porous membrane of No. 1 was obtained. The sheet thus stretched was passed through a heating furnace at 360° C. and sintered for 1.5 minutes. A porous membrane of No. 1 was obtained.
  • PTFE fine powder B (second heat of fusion: 17.0 J/g, molecular weight: about 23,000,000) having a specific gravity and differential scanning calorimetry results shown in Table 1 was used as the raw material powder, and 100 parts by mass of the PTFE fine powder was kneaded with 16 parts by mass of naphtha as a liquid lubricant.
  • Test No. 1 by the same process as the porous membrane of Test No. 1. No. 2 porous membrane was obtained.
  • PTFE fine powder C (second heat of fusion 16.8 J/g, molecular weight of about 22 million) having a specific gravity and differential scanning calorimetry results shown in Table 1 was used as the raw material powder, and 100 parts by mass of PTFE fine powder was kneaded with 16 parts by mass of naphtha as a liquid lubricant.
  • Test No. 1 by the same process as the porous membrane of Test No. 1. No. 3 porous membrane was obtained.
  • test no. 1 to test No. 3 propylene, 1,1,2,3,3,3 hexafluoric acid with a surface tension of 15.9 mN/m (“GALWICK” manufactured by PMI) was used as a reagent in accordance with ASTM F316-03 and JIS-K3832: 1990, and the pore size distribution was measured using a pore size distribution measuring device (perm porometer “CFP-1500A” manufactured by PMI). Then, the maximum pore diameter [nm] and the average flow pore diameter [nm] were obtained from the pore diameter distribution, and the pore diameter ratio [%] was calculated from the following formula.
  • GALWICK 1,1,2,3,3,3 hexafluoric acid with a surface tension of 15.9 mN/m
  • Pore diameter ratio [%] ⁇ (maximum pore diameter - average flow pore diameter) / average flow pore diameter ⁇ x 100
  • Test No. 1 to test No. Table 1 shows the evaluation results of the extrusion pressure, pore diameter ratio and porosity of the porous membrane No. 3.
  • the 1st. Test No. in which the difference between the onset temperature and the endset temperature of the endothermic peak having a range of 300° C. or higher and 360° C. or lower in the Run melting curve is 20° C. or lower. 1 and test no.
  • the porous membrane of Test No. 2 was tested. The extrusion pressure and pore size ratio were lower than the porous membrane of No. 3. From this, Test No. 1 and test no.
  • the porous membrane of No. 2 has a small variation in pore diameter and has high-precision filtration performance. In particular, test no. In the porous membrane of No. 1, 2nd. Although Run has a low heat of fusion and PTFE fine powder A has the highest molecular weight, 1st.
  • test no. 1 and test no. 2 has a difference of 200 nm or less between the maximum particle size and the minimum particle size in the primary particle size, and is obtained by differential scanning calorimetry at a heating rate of 10° C./min.
  • the porous membrane can be suitably used as a filter or the like that requires high-precision filtration performance, because the extrusion pressure during manufacturing is reduced and the variation in pore size is small.

Abstract

A porous membrane according to the present disclosure is mainly composed of polytetrafluoroethylene, wherein a 1st Run melting curve obtained by differential scanning calorimetry at a heating rate of 10°C/minute has an endothermic peak in a range of 300°C to 360°C inclusive, and the difference between the onset temperature and the endset temperature of the endothermic peak is not more than 20°C.

Description

多孔質膜、多孔質膜積層体及び多孔質膜の製造方法Porous membrane, porous membrane laminate, and method for producing porous membrane
 本開示は、多孔質膜、多孔質膜積層体及び多孔質膜の製造方法に関する。本出願は、2022年1月20日に出願した日本特許出願である特願2022-007434号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a porous membrane, a porous membrane laminate, and a method for manufacturing a porous membrane. This application claims priority from Japanese Patent Application No. 2022-007434 filed on January 20, 2022. All the contents described in the Japanese patent application are incorporated herein by reference.
 ポリテトラフルオロエチレンを用いた多孔質膜は、PTFEの高い耐熱性、化学的安定性、耐候性、不燃性、高強度、非粘着性、低摩擦係数等の特性と、多孔質による可撓性、分散媒透過性、粒子捕捉性、低誘電率等の特性とを有する。そのため、PTFEを主成分とする多孔質膜は、半導体関連分野、液晶関連分野及び食品医療関連分野における分散媒及び気体の精密濾過フィルタとして多用されている。このようなフィルタとして、近年、粒子径が0.1μm未満の微粒子を捕捉できるPTFEを主成分とする多孔質膜を用いた多孔質フィルタが提案されている(特開2010-94579号公報参照)。 A porous membrane using polytetrafluoroethylene has the properties of PTFE such as high heat resistance, chemical stability, weather resistance, nonflammability, high strength, non-adhesiveness, and low coefficient of friction, as well as properties such as flexibility due to porosity, dispersion medium permeability, particle trapping, and low dielectric constant. Therefore, porous films containing PTFE as a main component are frequently used as dispersion media and gas precision filters in the semiconductor, liquid crystal, and food and medical fields. As such a filter, in recent years, a porous filter using a porous membrane containing PTFE as a main component capable of trapping fine particles with a particle size of less than 0.1 μm has been proposed (see Japanese Patent Application Laid-Open No. 2010-94579).
特開2010-94579号公報JP 2010-94579 A
 本開示の一態様に係る多孔質膜は、ポリテトラフルオロエチレンを主成分とする多孔質膜であって、昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線が、300℃以上360℃以下の範囲で吸熱ピークを有し、上記吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下である。 A porous film according to an aspect of the present disclosure is a porous film containing polytetrafluoroethylene as a main component, and the 1st. The Run melting curve has an endothermic peak in the range of 300° C. to 360° C., and the difference between the onset temperature and the end set temperature of the endothermic peak is 20° C. or less.
図1は、本開示の一実施形態に係る多孔質膜を示す模式的部分断面図である。FIG. 1 is a schematic partial cross-sectional view showing a porous membrane according to one embodiment of the present disclosure. 図2は、本開示の一実施形態に係る多孔質膜積層体の一例を示す模式的部分断面図である。FIG. 2 is a schematic partial cross-sectional view showing an example of a porous membrane laminate according to an embodiment of the present disclosure. 図3は、本開示の一実施形態に係る多孔質膜積層体の他の一例を示す模式的部分断面図である。FIG. 3 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure. 図4は、本開示の一実施形態に係る多孔質膜積層体の他の一例を示す模式的部分断面図である。FIG. 4 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure. 図5は、本開示の一実施形態に係る多孔質膜積層体の他の一例を示す模式的部分断面図である。FIG. 5 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure. 図6は、本開示の一実施形態に係る多孔質膜積層体の他の一例を示す模式的部分断面図である。FIG. 6 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure. 図7は、本開示の一実施形態に係る多孔質膜積層体の他の一例を示す模式的部分断面図である。FIG. 7 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure. 図8は、本開示の一実施形態に係る多孔質膜積層体の他の一例を示す模式的部分断面図である。FIG. 8 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure. 図9は、本開示の一実施形態に係る多孔質膜積層体の他の一例を示す模式的部分断面図である。FIG. 9 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure. 図10は、本開示の一実施形態に係る多孔質膜積層体の他の一例を示す模式的部分断面図である。FIG. 10 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure. 図11は、本開示の一実施形態に係る多孔質膜積層体の他の一例を示す模式的部分断面図である。FIG. 11 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure. 図12は、本開示の一実施形態に係る多孔質膜積層体の他の一例を示す模式的部分断面図である。FIG. 12 is a schematic partial cross-sectional view showing another example of the porous membrane laminate according to one embodiment of the present disclosure.
[本開示が解決しようとする課題]
 当該多孔質膜に用いるポリテトラフルオロエチレンとしては、孔の小径化を図るために分子量が高いポリテトラフルオロエチレンを用いることが好ましい。しかしながら、ポリテトラフルオロエチレンは分子量が高くなると、ポリテトラフルオロエチレンを主成分とする多孔質膜の形成材料の成形時に成形圧が高くなり、汎用の装置及び製造条件で押出成形を行うことが困難になる。また、上記多孔質膜の形成材料と押出成形機との摩擦が生じやすくなるため、多孔質膜の孔径がばらつき、濾過処理の精度が低下するおそれがある。
[Problems to be Solved by the Present Disclosure]
As the polytetrafluoroethylene used for the porous membrane, it is preferable to use polytetrafluoroethylene having a high molecular weight in order to reduce the diameter of the pores. However, when the molecular weight of polytetrafluoroethylene increases, the molding pressure increases when molding a material for forming a porous membrane containing polytetrafluoroethylene as a main component, making it difficult to perform extrusion molding using a general-purpose apparatus and manufacturing conditions. In addition, since friction between the material forming the porous membrane and the extruder is likely to occur, the pore size of the porous membrane may vary, and the accuracy of the filtration process may decrease.
 本開示は、このような事情に基づいてなされたものであり、孔径のばらつきが小さい多孔質膜を提供することを目的とする。 The present disclosure has been made based on such circumstances, and aims to provide a porous membrane with small variation in pore size.
 [本開示の効果]
 本開示によれば、孔径のばらつきが小さい多孔質膜を提供できる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to provide a porous membrane with small variations in pore size.
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed and described.
 (1)本開示の一態様に係る多孔質膜は、ポリテトラフルオロエチレンを主成分とする多孔質膜であって、昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線が、300℃以上360℃以下の範囲で吸熱ピークを有し、前記吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下である。 (1) A porous film according to one aspect of the present disclosure is a porous film containing polytetrafluoroethylene as a main component, and is obtained by differential scanning calorimetry at a temperature increase rate of 10°C/min. The Run melting curve has an endothermic peak in the range of 300° C. to 360° C., and the difference between the onset temperature and the end set temperature of the endothermic peak is 20° C. or less.
 当該多孔質膜は、ポリテトラフルオロエチレン(以下、PTFEともいう。)を主成分とする多孔質膜であって、示差走査熱量分析で得られる1st.Runの融解曲線の300℃以上360℃以下の範囲に有する吸熱ピークのオンセット温度(吸熱開始温度)とエンドセット温度(吸熱終了温度)との差が20℃以下であることで、PTFE粒子径の粒度分布が狭い。PTFE粒子の粒度分布がブロードであるとPTFE粒子間の隙間が小さくなり、液状潤滑剤が浸透しにくくなる。一方、当該多孔質膜は、PTFE粒子径の粒度分布が狭く、PTFE粒子間の隙間が大きくなるため液状潤滑剤が浸透しやすくなる。その結果、当該多孔質膜の形成材料の押出圧力が低減されて、孔径のばらつきが小さくなるので、当該多孔質膜の濾過処理の精度を向上できる。上記「主成分」とは、質量換算で最も含有量の大きい成分をいい、例えば含有割合が90質量%以上、好ましくは95質量%以上の成分をいう。 The porous membrane is a porous membrane whose main component is polytetrafluoroethylene (hereinafter also referred to as PTFE), and the 1st. Since the difference between the onset temperature (endothermic start temperature) and the endset temperature (endothermic end temperature) of the endothermic peak in the range of 300° C. or higher and 360° C. or lower in the Run melting curve is 20° C. or less, the PTFE particle size has a narrow particle size distribution. If the particle size distribution of the PTFE particles is broad, the gaps between the PTFE particles become small, making it difficult for the liquid lubricant to permeate. On the other hand, the porous membrane has a narrow particle size distribution of the PTFE particle diameter and large gaps between the PTFE particles, so that the liquid lubricant can easily permeate. As a result, the pressure for extruding the material forming the porous membrane is reduced, and the variation in pore size is reduced, so that the accuracy of filtration of the porous membrane can be improved. The above-mentioned "main component" refers to a component having the largest content in terms of mass, for example, a component having a content of 90% by mass or more, preferably 95% by mass or more.
 示差走査熱量分析は、示差走査熱量計(DSC)を用い、以下に示す方法により測定する。試料5mg~30mgを、室温から380℃まで10℃/分の速度で加熱し(パターン1(1st.Run))、その後、380℃から100℃まで-1℃/分の速度で冷却し(パターン2)、その後、100℃から380℃まで10℃/分の速度で加熱した(パターン3(2nd.Run))。パターン1の融解曲線の300℃以上360℃以下の範囲に有する吸熱ピークのエンドセット温度を起点とし、48℃の区間を積分して求めた吸熱量を第1融解熱量とする。また、第1融解熱量と同様に、パターン3の融解曲線の300℃以上360℃以下の範囲に有する吸熱ピークのエンドセット温度を起点とし、48℃の区間を積分して求めた吸熱量を第2融解熱量とする。 Differential scanning calorimetry is measured using a differential scanning calorimeter (DSC) by the method shown below. 5 mg to 30 mg of the sample was heated from room temperature to 380° C. at a rate of 10° C./min (pattern 1 (1st. Run)), then cooled from 380° C. to 100° C. at a rate of −1° C./min (pattern 2), and then heated from 100° C. to 380° C. at a rate of 10° C./min (pattern 3 (2nd. Run)). Starting from the end set temperature of the endothermic peak in the range of 300° C. or higher and 360° C. or lower in the melting curve of Pattern 1, the endothermic amount obtained by integrating the section of 48° C. is defined as the first heat of fusion. As with the first heat of fusion, the end set temperature of the endothermic peak in the range of 300° C. or higher and 360° C. or lower in the melting curve of Pattern 3 is taken as the starting point, and the endothermic value obtained by integrating the section of 48° C. is defined as the second heat of fusion.
 (2)上記(1)において、当該多孔質膜は、前記吸熱ピークの前記オンセット温度と前記エンドセット温度との差が15℃以下であることが好ましい。このように、当該多孔質膜の上記吸熱ピークのオンセット温度とエンドセット温度との差が15℃以下であることによって、当該多孔質膜の形成材料の押出圧力が低減されて、孔径のばらつきをより小さくできる。 (2) In (1) above, the porous membrane preferably has a difference of 15°C or less between the onset temperature and the endset temperature of the endothermic peak. Thus, by setting the difference between the onset temperature and the endset temperature of the endothermic peak of the porous membrane to 15° C. or less, the extrusion pressure of the material forming the porous membrane is reduced, and the variation in pore size can be further reduced.
 (3)上記(1)又は(2)において、当該多孔質膜は、気孔率が40%以上90%以下であることが好ましい。当該多孔質膜は、気孔率が40%以上90%以下であることで、多孔質膜における微粒子の捕捉性能を良好にしつつ、圧力損失の増大を抑制できる。ここで、「気孔率」とは、対象物の体積に対する空孔の総体積の割合をいい、ASTM-D-792に準拠して対象物の密度を測定することで求めることができる。 (3) In (1) or (2) above, the porous membrane preferably has a porosity of 40% or more and 90% or less. When the porous membrane has a porosity of 40% or more and 90% or less, it is possible to suppress an increase in pressure loss while improving the ability of the porous membrane to capture fine particles. Here, "porosity" means the ratio of the total volume of pores to the volume of the object, and can be obtained by measuring the density of the object according to ASTM-D-792.
 (4)上記(1)又は(2)において、当該多孔質膜は、孔径分布の平均流量孔径が69nm以上107nm以下であることが好ましい。当該多孔質膜は、孔径分布の平均流量孔径が69nm以上107nm以下であることで、多孔質膜における微粒子の捕捉性能を良好にしつつ、圧力損失の増大を抑制できる。 (4) In (1) or (2) above, the porous membrane preferably has an average flow pore size of 69 nm or more and 107 nm or less in the pore size distribution. The porous membrane has an average flow pore size of 69 nm or more and 107 nm or less in the pore size distribution, so that it is possible to suppress an increase in pressure loss while improving the performance of trapping fine particles in the porous membrane.
 (5)上記(1)又は(2)において、当該多孔質膜は、孔径分布の孔径比が17%以上49%以下であることが好ましい。当該多孔質膜は、孔径分布の孔径比が17%以上49%以下であることで、積層体の孔径のばらつきが小さく、濾過処理の精度を向上できる。 (5) In (1) or (2) above, the porous membrane preferably has a pore size ratio of 17% or more and 49% or less in the pore size distribution. Since the porous membrane has a pore size ratio of 17% or more and 49% or less in the pore size distribution, the pore size variation of the laminate is small, and the accuracy of the filtration process can be improved.
 (6)本開示の他の態様に係る多孔質膜積層体は、上述の(1)から(5)に記載の当該多孔質膜を1又は複数備える。当該多孔質膜積層体は、当該多孔質膜を備えているので、濾過処理の精度に優れ、精密濾過フィルタとして好適である。 (6) A porous membrane laminate according to another aspect of the present disclosure includes one or more of the porous membranes described in (1) to (5) above. Since the porous membrane laminate includes the porous membrane, the accuracy of the filtration process is excellent, and it is suitable as a microfiltration filter.
 (7)上記(6)において、本開示の他の態様に係る多孔質膜積層体は、ポリテトラフルオロエチレンを主成分とする1又は複数の支持膜をさらに備え、前記支持膜が前記多孔質膜の片面又は両面に積層されていることが好ましい。当該多孔質膜積層体が1又は複数の多孔質の支持膜を備え、上記膜が上記多孔質膜の片面又は両面に積層されていることで、この支持膜が多孔質膜の保護材として機能するため、当該多孔質膜積層体は、捕捉性能を向上しつつ、多孔質膜積層体の機械的強度及び寿命を高めることができる。また、上記支持膜がポリテトラフルオロエチレンを主成分とすることで、耐熱性、化学的安定性等を向上できる。 (7) In (6) above, the porous membrane laminate according to another aspect of the present disclosure further includes one or more support membranes containing polytetrafluoroethylene as a main component, and the support membrane is preferably laminated on one or both sides of the porous membrane. The porous membrane laminate is provided with one or more porous support membranes, and the membrane is laminated on one or both sides of the porous membrane, so that the support membrane functions as a protective material for the porous membrane. Therefore, the porous membrane laminate can increase the mechanical strength and life of the porous membrane laminate while improving the trapping performance. Moreover, heat resistance, chemical stability, etc. can be improved by using polytetrafluoroethylene as a main component of the support film.
 (8)本開示の他の態様に係る多孔質膜の製造方法は、ポリテトラフルオロエチレンの粉末と液状潤滑剤との混練物を成形する工程を備え、前記ポリテトラフルオロエチレンの一次粒子径における最大粒子径と最小粒子径との差が200nm以下である。ここでいう一次粒子径はポリテトラフルオロエチレンの最小単位である。上記ポリテトラフルオロエチレンの一次粒子の粒度分布がブロードであるほど、PTFE粒子同士の隙間が狭く、成形助剤が浸透し難くなり、押出圧力が低くなる。しかしながら、当該多孔質膜の製造方法は、上記ポリテトラフルオロエチレンの一次粒子径における最大粒子径と最小粒子径との差が200nm以下であることで、成形時における液状潤滑剤の浸透性に優れ、押出圧力を低減できる。ここで、最大粒子径及び最小粒子径は、画像解析ソフトImage-Proを使用し、ポリテトラフルオロエチレンの粉末を5万倍で観察したSEM画像の粒度分布により解析できる。 (8) A method for producing a porous membrane according to another aspect of the present disclosure includes a step of forming a kneaded product of polytetrafluoroethylene powder and a liquid lubricant, and the difference between the maximum particle size and the minimum particle size in the primary particle size of the polytetrafluoroethylene is 200 nm or less. The primary particle size referred to here is the minimum unit of polytetrafluoroethylene. The broader the particle size distribution of the primary particles of polytetrafluoroethylene, the narrower the gaps between the PTFE particles, the more difficult it is for the molding aid to permeate, and the lower the extrusion pressure. However, in the method for producing the porous membrane, the difference between the maximum particle size and the minimum particle size in the primary particle size of the polytetrafluoroethylene is 200 nm or less, so that the permeability of the liquid lubricant during molding is excellent, and the extrusion pressure can be reduced. Here, the maximum particle size and the minimum particle size can be analyzed from the particle size distribution of the SEM image obtained by observing the polytetrafluoroethylene powder at 50,000 magnifications using image analysis software Image-Pro.
 (9)上記(8)において、前記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲の融解熱量が、60.0J/g以上であることが好ましい。上記ポリテトラフルオロエチレンの一次粒子の粒度分布がブロードであるほど、ポリテトラフルオロエチレンの粒子内部の結晶化度のばらつきが大きく、DSCの吸熱ピーク幅が広くなる。当該多孔質膜の製造方法においては、上記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲の融解熱量が、60.0J/g以上であることで、ポリテトラフルオロエチレンの粒子内部の結晶化度のばらつきが小さいため、成形時における液状潤滑剤の浸透性がより向上し、押出圧力をより低減できる。 (9) In (8) above, the 1st. The heat of fusion in the range of 300° C. or higher and 360° C. or lower in the Run melting curve is preferably 60.0 J/g or more. The broader the particle size distribution of the primary particles of polytetrafluoroethylene, the greater the variation in crystallinity inside the particles of polytetrafluoroethylene, and the wider the endothermic peak width of DSC. In the method for producing the porous membrane, the 1st. When the heat of fusion in the range of 300 ° C. to 360 ° C. in the Run melting curve is 60.0 J / g or more, the variation in the crystallinity inside the polytetrafluoroethylene particles is small, so that the liquid lubricant penetration during molding can be further improved and the extrusion pressure can be further reduced.
 (10)上記(8)において、前記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲を有する吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下であることが好ましい。当該多孔質膜の製造方法においては、上記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲を有する吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下であることで、多孔質膜の製造時の押出圧力が良好な範囲に低減され、孔径のばらつきも小さくできる。 (10) In (8) above, the 1st. The difference between the onset temperature and the endset temperature of the endothermic peak having a range of 300° C. to 360° C. in the Run melting curve is preferably 20° C. or less. In the method for producing the porous membrane, the 1st. When the difference between the onset temperature and the end-set temperature of the endothermic peak having a range of 300° C. or higher and 360° C. or lower in the Run melting curve is 20° C. or less, the extrusion pressure during the production of the porous membrane can be reduced to a favorable range, and the pore size variation can be reduced.
[本開示の実施形態の詳細]
 以下、本開示の好適な実施形態について、図面を参照しつつ説明する。
[Details of the embodiment of the present disclosure]
Preferred embodiments of the present disclosure will be described below with reference to the drawings.
<多孔質膜>
 図1は、本開示の一実施形態に係る多孔質膜を示す模式的部分断面図である。多孔質膜1は、ポリテトラフルオロエチレンを主成分とする2軸延伸多孔質膜から構成される。この2軸延伸多孔質膜は、PTFEを主成分とするシートの表面を直交する2方向に延伸して多孔質化したものである。多孔質膜1は、微細な不純物の透過を防止しつつ、濾過液を厚さ方向に透過させる。
<Porous membrane>
FIG. 1 is a schematic partial cross-sectional view showing a porous membrane according to one embodiment of the present disclosure. The porous membrane 1 is composed of a biaxially stretched porous membrane containing polytetrafluoroethylene as a main component. This biaxially stretched porous membrane is made porous by stretching the surface of a sheet containing PTFE as a main component in two directions perpendicular to each other. The porous membrane 1 allows the filtrate to permeate in the thickness direction while preventing permeation of fine impurities.
 上記PTFE粉末としては、高分子量のものが好ましい。高分子量のPTFE粉末を用いることで、延伸時に空孔が過度に拡がることやシートの開裂を防止しつつ繊維状骨格の成長を促進することができる。また、シート内の結節を減らして、微小な空孔が緻密に形成された多孔質膜を形成することができる。  As the PTFE powder, one with a high molecular weight is preferable. The use of high-molecular-weight PTFE powder can promote the growth of the fibrous skeleton while preventing excessive expansion of pores and tearing of the sheet during stretching. In addition, it is possible to reduce the number of nodules in the sheet and form a porous membrane in which fine pores are densely formed.
 上記PTFE粉末としては、高分子量のものが好ましい。高分子量のPTFE粉末を用いることで、延伸時に空孔が過度に拡がることや膜の開裂を防止しつつ繊維状骨格の成長を促進することができる。また、膜内の結節を減らして、微小な空孔が緻密に形成された多孔質膜を形成することができる。  As the PTFE powder, one with a high molecular weight is preferable. The use of high-molecular-weight PTFE powder can promote growth of the fibrous skeleton while preventing excessive pore expansion and membrane cleavage during stretching. In addition, it is possible to reduce the number of nodules in the membrane and form a porous membrane in which minute pores are densely formed.
 多孔質膜1を形成するPTFE粉末の数平均分子量の下限としては、1200万が好ましく、2000万がより好ましい。一方、多孔質膜1を形成するPTFE粉末の数平均分子量の上限としては、5000万が好ましく、4000万がより好ましい。多孔質膜1を形成するPTFE粉末の数平均分子量が上記下限未満の場合、多孔質膜1の孔径が大きくなり、濾過処理の精度が低下するおそれがある。一方、多孔質膜1を形成するPTFE粉末の数平均分子量が上記上限を超える場合、膜の形成が困難になるおそれがある。なお、「数平均分子量」は、成形品の比重より求めたものであるが、PTFEの分子量は測定方法によりバラツキが大きく正確な測定が困難であるため、測定方法によっては上記した範囲とはならない場合もある。 The lower limit of the number average molecular weight of the PTFE powder forming the porous membrane 1 is preferably 12 million, more preferably 20 million. On the other hand, the upper limit of the number average molecular weight of the PTFE powder forming the porous membrane 1 is preferably 50 million, more preferably 40 million. If the number-average molecular weight of the PTFE powder forming the porous membrane 1 is less than the above lower limit, the pore size of the porous membrane 1 may become large and the accuracy of the filtration process may deteriorate. On the other hand, if the number average molecular weight of the PTFE powder forming the porous membrane 1 exceeds the upper limit, formation of the membrane may become difficult. The "number-average molecular weight" is obtained from the specific gravity of the molded product, but the molecular weight of PTFE varies greatly depending on the measurement method and is difficult to measure accurately.
 多孔質膜1の昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線が、300℃以上360℃以下の範囲で吸熱ピークを有し、上記吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下であり、15℃以下であることがより好ましい。上記吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下であることで、PTFE粒子径の粒度分布が狭く、粒子間の隙間が大きくなるため液状潤滑剤が浸透しやすくなる。その結果、多孔質膜1の形成材料の押出圧力が低減されて、成形された多孔質膜1の孔径のばらつきが小さくなるので、濾過処理の精度を向上できる。上記吸熱ピークのオンセット温度とエンドセット温度との差は、低いほど好ましいが、製法上の観点で、5℃以上、7℃以上とすることができる。上記吸熱ピークのオンセット温度とエンドセット温度との差は、5℃以上20℃以下、7℃以上15℃以下であり得る。多孔質膜1の1st.Runの融解曲線の300℃以上360℃以下の範囲における吸熱ピークのオンセット温度とエンドセット温度は、例えば原料となるPTFEの分子量、結晶化度、1次粒子径等の選択により調整することができる。  The 1st. The Run melting curve has an endothermic peak in the range of 300° C. to 360° C., and the difference between the onset temperature and the end set temperature of the endothermic peak is preferably 20° C. or less, more preferably 15° C. or less. When the difference between the onset temperature and the endset temperature of the endothermic peak is 20° C. or less, the particle size distribution of the PTFE particles is narrowed, and the gaps between the particles become large, so that the liquid lubricant can easily permeate. As a result, the extrusion pressure of the forming material of the porous membrane 1 is reduced, and the variation in the pore diameter of the molded porous membrane 1 is reduced, so that the accuracy of the filtration process can be improved. The difference between the onset temperature and the endset temperature of the endothermic peak is preferably as low as possible. The difference between the onset temperature and the endset temperature of the endothermic peak may be 5°C or more and 20°C or less, or 7°C or more and 15°C or less. Porous membrane 1 1st. The onset temperature and endset temperature of the endothermic peak in the range of 300° C. or higher and 360° C. or lower in the Run melting curve can be adjusted, for example, by selecting the molecular weight, crystallinity, primary particle size, etc. of the raw material PTFE.
 多孔質膜1の昇温速度10℃/分の示差走査熱量分析で得られる2nd.Runの融解熱量(第2融解熱量)の下限としては、10J/gが好ましく、14J/gがより好ましい。一方、多孔質膜1を形成するPTFE粉末の2nd.Runの融解熱量の上限としては、23J/gが好ましく、18J/gがより好ましい。多孔質膜1の第2融解熱量が上記下限未満の場合、多孔質膜1の孔径が大きくなり、濾過処理の精度が低下するおそれがある。一方、多孔質膜1の第2融解熱量が上記上限を超える場合、膜の形成が困難になるおそれがある。  The second. The lower limit of the run heat of fusion (second heat of fusion) is preferably 10 J/g, more preferably 14 J/g. On the other hand, the 2nd. The upper limit of the heat of fusion in Run is preferably 23 J/g, more preferably 18 J/g. If the second heat of fusion of the porous membrane 1 is less than the above lower limit, the pore size of the porous membrane 1 becomes large, and there is a risk that the accuracy of the filtration process will decrease. On the other hand, when the second heat of fusion of the porous membrane 1 exceeds the upper limit, formation of the membrane may become difficult.
 多孔質膜1の平均厚さの下限としては、2μmが好ましく、5μmがより好ましい。一方、多孔質膜1の平均厚さの上限としては、50μmが好ましく、40μmがより好ましい。上記平均厚さが上記下限に満たないと、多孔質膜1の強度が不十分となるおそれがある。一方、上記平均厚さが上記上限を超えると、多孔質膜1が不必要に厚くなり、濾過液を透過させる際の圧力損失が大きくなるおそれがある。多孔質膜1の平均厚さが上記範囲であることで、多孔質膜1の強度及び濾過処理効率を両立させることができる。「平均厚さ」は、任意の10点の厚さの平均値をいい、標準型デジタルシックネスゲージを使用して測定される。 The lower limit of the average thickness of the porous membrane 1 is preferably 2 µm, more preferably 5 µm. On the other hand, the upper limit of the average thickness of the porous membrane 1 is preferably 50 µm, more preferably 40 µm. If the average thickness is less than the lower limit, the strength of the porous membrane 1 may be insufficient. On the other hand, if the average thickness exceeds the upper limit, the porous membrane 1 becomes unnecessarily thick, which may increase the pressure loss when the filtrate is permeated. When the average thickness of the porous membrane 1 is within the above range, both strength and filtration efficiency of the porous membrane 1 can be achieved. "Average thickness" refers to the average value of ten arbitrary thicknesses, measured using a standard digital thickness gauge.
 多孔質膜1の孔径分布の平均流量孔径の上限としては、107nm以下であることが好ましく、90nm以下であることがより好ましく、73nm以下であることが更に好ましい。多孔質膜1の平均流量孔径の上限が107nm以下であることで、多孔質膜1における微粒子の捕捉性能が優れる。一方、多孔質膜1の孔径分布の平均流量孔径の下限としては、69nm以上であることが好ましく、70nm以上であることがより好ましく、71nm以上であることが更に好ましい。多孔質膜1の平均流量孔径が上記下限未満の場合、多孔質膜1の圧力損失が増大するおそれがある。多孔質膜1の孔径分布の平均流量孔径は、69nm以上107nm以下であることが好ましく、70nm以上90nm以下であることがより好ましく、71nm以上73nm以下であることが更に好ましい。「平均流量孔径」は、後述するように、ASTM F316-03、JIS-K3832:1990に準拠して、細孔直径分布測定装置(例えばPMI社製パームポロメータ「CFP-1500A」)により測定された孔径分布から算出することができる。 The upper limit of the average flow pore size in the pore size distribution of the porous membrane 1 is preferably 107 nm or less, more preferably 90 nm or less, and even more preferably 73 nm or less. When the upper limit of the average flow pore diameter of the porous membrane 1 is 107 nm or less, the fine particle trapping performance of the porous membrane 1 is excellent. On the other hand, the lower limit of the average flow pore size in the pore size distribution of the porous membrane 1 is preferably 69 nm or more, more preferably 70 nm or more, and even more preferably 71 nm or more. If the average flow pore diameter of the porous membrane 1 is less than the above lower limit, the pressure loss of the porous membrane 1 may increase. The average flow pore size of the pore size distribution of the porous membrane 1 is preferably 69 nm or more and 107 nm or less, more preferably 70 nm or more and 90 nm or less, and even more preferably 71 nm or more and 73 nm or less. The "average flow pore diameter" can be calculated from the pore diameter distribution measured by a pore diameter distribution measuring device (for example, PMI Perm Porometer "CFP-1500A") in accordance with ASTM F316-03, JIS-K3832: 1990, as described later.
 多孔質膜1の孔径分布の孔径比の上限としては、49%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることが更に好ましい。多孔質膜1の孔径分布の孔径比の上限が、49%以下であることで、濾過処理の精度を向上することができる。多孔質膜1の孔径分布の孔径比の下限としては、17%以上であることが好ましく、18%以上であることがより好ましく、19%以上であることが更に好ましい。多孔質膜1の孔径分布の孔径比の下限が17%以上であることで、圧力損失を増大することができる。多孔質膜1の孔径分布の孔径比は17%以上49%以下であることが好ましく、18%以上40%以下であることがより好ましく、19%以上30%以下であることが更に好ましい。多孔質膜1の孔径分布の孔径比は、後述の方法により求めることができる。 The upper limit of the pore size ratio of the pore size distribution of the porous membrane 1 is preferably 49% or less, more preferably 40% or less, and even more preferably 30% or less. When the upper limit of the pore size ratio of the pore size distribution of the porous membrane 1 is 49% or less, the accuracy of the filtration process can be improved. The lower limit of the pore size ratio of the pore size distribution of the porous membrane 1 is preferably 17% or more, more preferably 18% or more, and even more preferably 19% or more. When the lower limit of the pore size ratio of the pore size distribution of the porous membrane 1 is 17% or more, the pressure loss can be increased. The pore size ratio of the pore size distribution of the porous membrane 1 is preferably 17% or more and 49% or less, more preferably 18% or more and 40% or less, and even more preferably 19% or more and 30% or less. The pore size ratio of the pore size distribution of the porous membrane 1 can be obtained by the method described later.
 多孔質膜1の気孔率の上限としては、90%以下であることが好ましく、85%以下であることがより好ましい。一方、多孔質膜1の気孔率の下限としては、40%以上であることが好ましく、50%以上であることがより好ましい。多孔質膜1の気孔率が90%を超える場合、多孔質膜1における微粒子の捕捉性能が不十分となるおそれがある。一方、多孔質膜1の気孔率が40%未満の場合、多孔質膜1の圧力損失が増大するおそれがある。多孔質膜1の気孔率は、40%以上90%以下であることが好ましく、50%以上85%以下であることがより好ましい。 The upper limit of the porosity of the porous membrane 1 is preferably 90% or less, more preferably 85% or less. On the other hand, the lower limit of the porosity of the porous membrane 1 is preferably 40% or more, more preferably 50% or more. If the porosity of the porous membrane 1 exceeds 90%, there is a risk that the ability of the porous membrane 1 to capture fine particles will be insufficient. On the other hand, if the porosity of the porous membrane 1 is less than 40%, the pressure loss of the porous membrane 1 may increase. The porosity of the porous membrane 1 is preferably 40% or more and 90% or less, more preferably 50% or more and 85% or less.
 多孔質膜1は、PTFEの他、本開示の所望の効果を損ねない範囲でその他のフッ素樹脂や添加剤を含有していてもよい。 In addition to PTFE, the porous membrane 1 may contain other fluororesins and additives within a range that does not impair the desired effects of the present disclosure.
[多孔質膜の製造方法]
 当該多孔質膜の製造方法の一実施形態について説明する。当該多孔質膜の製造方法は、PTFEの粉末と液状潤滑剤との混練物を成形する工程と、成形体を延伸する工程とを備えている。
[Method for producing porous membrane]
An embodiment of the method for producing the porous membrane will be described. The method for producing the porous membrane includes the steps of forming a kneaded product of PTFE powder and liquid lubricant, and stretching the formed body.
(成形する工程)
 成形工程では乳化重合等により製造されたPTFEの粉末と液状潤滑剤との混練物を押出してシートを成形する。原料のPTFEの粒子とは、PTFEの微細粒子からなる粉体である。PTFEの粉末としては、例えば、PTFEの微細粒子からなる粉体であり乳化重合により製造されるPTFEファインパウダーや懸濁重合により製造されるPTFEモールディングパウダーを挙げることができる。
(Process of molding)
In the forming step, a kneaded mixture of PTFE powder produced by emulsion polymerization or the like and a liquid lubricant is extruded to form a sheet. The raw material PTFE particles are powder composed of fine PTFE particles. Examples of the PTFE powder include PTFE fine powder, which is a powder composed of fine particles of PTFE and produced by emulsion polymerization, and PTFE molding powder produced by suspension polymerization.
 上記液状潤滑剤としては、従来から押出し法で用いられている各種潤滑剤を使用することができる。この液状潤滑剤としては、例えばソルベントナフサ、ホワイトオイルなどの石油系溶剤、ウンデカンなどの炭化水素油、トルオール、キシロールなどの芳香族炭化水素類、アルコール類、ケトン類、エステル類、シリコーンオイル、フルオロクロロカーボンオイル、これらの溶剤にポリイソブチレン、ポリイソプレンなどのポリマーを溶かした溶液、表面活性剤を含む水又は水溶液等が挙げられ、これらを単一で又は2種以上混合して用いることができる。ただし、混合の均一性の観点からは、単一成分の液状潤滑剤を用いることが好ましい。 Various lubricants conventionally used in the extrusion method can be used as the liquid lubricant. Examples of the liquid lubricant include petroleum solvents such as solvent naphtha and white oil, hydrocarbon oils such as undecane, aromatic hydrocarbons such as toluol and xylol, alcohols, ketones, esters, silicone oils, fluorochlorocarbon oils, solutions obtained by dissolving polymers such as polyisobutylene and polyisoprene in these solvents, water or aqueous solutions containing surfactants, and the like. However, from the viewpoint of mixing uniformity, it is preferable to use a single-component liquid lubricant.
 上記液状潤滑剤のPTFE粉末100質量部に対する混合量の下限としては、10質量部が好ましく、16質量部がより好ましい。一方、液状潤滑剤の混合量の上限としては、40質量部が好ましく、25質量部がより好ましい。液状潤滑剤の混合量が10質量部未満の場合、押出が困難になるおそれがある。逆に、液状潤滑剤の混合量が40質量部を超える場合、後述する圧縮成形が困難になるおそれがある。 The lower limit of the amount of the liquid lubricant mixed with 100 parts by mass of the PTFE powder is preferably 10 parts by mass, more preferably 16 parts by mass. On the other hand, the upper limit of the mixed amount of the liquid lubricant is preferably 40 parts by mass, more preferably 25 parts by mass. If the amount of the liquid lubricant mixed is less than 10 parts by mass, extrusion may become difficult. Conversely, if the amount of the liquid lubricant mixed exceeds 40 parts by mass, compression molding, which will be described later, may become difficult.
 多孔質膜の形成材料には、液状潤滑剤の他に目的に応じて、他の添加剤を含ませてもよい。他の添加剤としては、例えば着色のための顔料、耐磨耗性改良、低温流れ防止、気孔生成容易化等のためのカーボンブラック、グラファイト、シリカ粉、ガラス粉、ガラス繊維、ケイ酸塩類や炭酸塩類などの無機充填剤、金属粉、金属酸化物粉、金属硫化物粉等を挙げることができる。また、多孔質構造の生成を助けるために、加熱、抽出、溶解等により除去又は分解される物質、例えば塩化アンモニウム、塩化ナトリウム、PTFE以外のプラスチック、ゴム等を粉末又は溶液の状態で配合してもよい。 The material for forming the porous film may contain other additives in addition to the liquid lubricant, depending on the purpose. Examples of other additives include pigments for coloring, carbon black, graphite, silica powder, glass powder, glass fiber, inorganic fillers such as silicates and carbonates, metal powders, metal oxide powders, and metal sulfide powders for improving wear resistance, preventing cold flow, and facilitating pore formation. In addition, in order to assist the formation of the porous structure, substances that can be removed or decomposed by heating, extraction, dissolution, etc., such as ammonium chloride, sodium chloride, plastics other than PTFE, rubber, etc., may be blended in the form of powder or solution.
 本工程では、まず上記PTFE粉末と液状潤滑剤とを混合後に圧縮成形機により一次成形体であるブロック体に圧縮成形する。次に、このブロック体を室温(例えば25℃)以上50℃以下で例えば10mm/分以上30mm/分以下の速度でシート状に押出成形する。さらに、このシート状体をカレンダーロール等で圧延することで、平均厚さが250μm以上350μm以下のPTFEシートを得る。 In this process, first, the PTFE powder and the liquid lubricant are mixed, and then compression-molded into a block body, which is a primary molded body, by a compression molding machine. Next, this block is extruded into a sheet at a temperature of room temperature (eg, 25° C.) to 50° C. at a speed of, for example, 10 mm/min to 30 mm/min. Furthermore, by rolling this sheet-like body with a calender roll or the like, a PTFE sheet having an average thickness of 250 μm or more and 350 μm or less is obtained.
 上記ポリテトラフルオロエチレンの一次粒子径における最大粒子径と最小粒子径との差としては、200nm以下であり、190nm以下が好ましい。当該多孔質膜の製造方法は、上記ポリテトラフルオロエチレンの一次粒子径における最大粒子径と最小粒子径との差が200nm以下であることで、成形時における液状潤滑剤の浸透性に優れ、押出圧力を低減できる。 The difference between the maximum particle size and the minimum particle size in the primary particle size of the polytetrafluoroethylene is 200 nm or less, preferably 190 nm or less. In the method for producing the porous membrane, the difference between the maximum particle size and the minimum particle size in the primary particle size of the polytetrafluoroethylene is 200 nm or less, so that the liquid lubricant has excellent permeability during molding and the extrusion pressure can be reduced.
 当該多孔質膜の製造方法においては、上記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲の融解熱量としては、60.0J/g以上が好ましく、62.0J/g以上がより好ましい。上記ポリテトラフルオロエチレンの一次粒子の粒度分布がブロードであるほど、ポリテトラフルオロエチレンの粒子内部の結晶化度のばらつきが大きく、DSCの吸熱ピーク幅が広くなる。当該多孔質膜の製造方法においては、上記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲の融解熱量が、60.0J/g以上であることで、ポリテトラフルオロエチレンの粒子内部の結晶化度のばらつきが小さいため、成形時における液状潤滑剤の浸透性がより向上し、押出圧力をより低減できる。  In the method for producing the porous membrane, the 1st. The heat of fusion in the range of 300° C. to 360° C. in the Run melting curve is preferably 60.0 J/g or more, more preferably 62.0 J/g or more. The broader the particle size distribution of the primary particles of polytetrafluoroethylene, the greater the variation in crystallinity inside the particles of polytetrafluoroethylene, and the wider the endothermic peak width of DSC. In the method for producing the porous membrane, the 1st. When the heat of fusion in the range of 300 ° C. to 360 ° C. in the Run melting curve is 60.0 J / g or more, the variation in the crystallinity inside the polytetrafluoroethylene particles is small, so that the liquid lubricant penetration during molding can be further improved and the extrusion pressure can be further reduced.
 当該多孔質膜の製造方法においては、上記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲を有する吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下であることが好ましく、15℃以下であることがより好ましい。上記吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下であることで、PTFE粒子径の粒度分布が狭く、粒子間の隙間が大きくなるため液状潤滑剤が浸透しやすくなる。その結果、多孔質膜1の形成材料の押出圧力が低減されて、成形された多孔質膜1の孔径のばらつきが小さくなるので、濾過処理の精度を向上できる。  In the method for producing the porous membrane, the 1st. The difference between the onset temperature and the endset temperature of the endothermic peak having a range of 300° C. to 360° C. in the Run melting curve is preferably 20° C. or less, more preferably 15° C. or less. When the difference between the onset temperature and the endset temperature of the endothermic peak is 20° C. or less, the particle size distribution of the PTFE particles is narrowed, and the gaps between the particles become large, so that the liquid lubricant can easily permeate. As a result, the extrusion pressure of the forming material of the porous membrane 1 is reduced, and the variation in the pore diameter of the molded porous membrane 1 is reduced, so that the accuracy of the filtration process can be improved.
 このPTFEシートが含む液状潤滑剤はシートの延伸後に除去してもよいが、延伸前に除去することが好ましい。液状潤滑剤の除去は、加熱、抽出、溶解等により行うことができる。加熱を行う場合、例えば130℃以上220℃以下の熱ロールでPTFEシートをロールすることで液状潤滑剤を除去することができる。液状潤滑剤としてシリコーンオイルやフルオロクロロカーボンオイル等の比較的沸点が高いものを用いる場合は、抽出による除去が好適である。 The liquid lubricant contained in the PTFE sheet may be removed after stretching the sheet, but it is preferably removed before stretching. The liquid lubricant can be removed by heating, extraction, dissolution, or the like. When heating, for example, the liquid lubricant can be removed by rolling the PTFE sheet with a hot roll at 130° C. or higher and 220° C. or lower. When using a liquid lubricant having a relatively high boiling point such as silicone oil or fluorochlorocarbon oil, removal by extraction is suitable.
(延伸する工程)
 本工程では、成形体である上記PTFEシートを2軸延伸する。本工程により、気孔が形成され、多孔質膜を得ることができる。本工程では、縦方向(流れ方向)及び縦方向と直交する横方向(幅方向)に順次PTFEシートを延伸することで、2軸延伸多孔質膜を得る。
(Step of stretching)
In this step, the PTFE sheet, which is a molded body, is biaxially stretched. Through this step, pores are formed and a porous membrane can be obtained. In this step, a biaxially stretched porous membrane is obtained by sequentially stretching the PTFE sheet in the machine direction (flow direction) and the transverse direction (width direction) perpendicular to the machine direction.
 PTFEシートの延伸は多孔質構造を緻密にするため高温で行うことが好ましい。延伸時の温度の下限としては、60℃が好ましく、120℃がより好ましい。一方、延伸時の温度の上限としては、300℃が好ましく、280℃がより好ましい。延伸時の温度が60℃未満の場合、孔径が大きくなり過ぎるおそれがある。逆に、延伸時の温度が300℃を超える場合、孔径が小さくなり過ぎるおそれがある。 It is preferable to stretch the PTFE sheet at a high temperature in order to make the porous structure dense. The lower limit of the temperature during stretching is preferably 60°C, more preferably 120°C. On the other hand, the upper limit of the temperature during stretching is preferably 300°C, more preferably 280°C. If the temperature during stretching is less than 60°C, the pore size may become too large. Conversely, if the temperature during stretching exceeds 300°C, the pore size may become too small.
 さらに、2軸延伸多孔質膜は延伸後に熱固定を行うことが好ましい。熱固定を行うことで2軸延伸多孔質膜の収縮を防止し、多孔質構造をより確実に維持することができる。熱固定の具体的な方法としては、例えば2軸延伸多孔質膜の両端を固定し、200℃以上500℃以下の温度下で0.1分以上20分以下保持する方法を用いることができる。なお、延伸を多段で行う場合、各段の後に熱固定を行うことが好ましい。 Furthermore, the biaxially stretched porous membrane is preferably heat-set after stretching. By performing heat setting, shrinkage of the biaxially stretched porous membrane can be prevented, and the porous structure can be more reliably maintained. As a specific method of heat setting, for example, a method of fixing both ends of the biaxially stretched porous membrane and holding at a temperature of 200° C. or higher and 500° C. or lower for 0.1 minute or longer and 20 minutes or shorter can be used. When stretching is performed in multiple stages, heat setting is preferably performed after each stage.
 製造された多孔質膜の構成については上述の通りであるので、重複する説明を省略する。 Since the configuration of the manufactured porous membrane is as described above, redundant description will be omitted.
 当該多孔質膜によれば、製造時の押出圧力が低減され、孔径のばらつきが小さいので、高い濾過処理の精度が要求されるフィルタ等として好適に用いることができる。 According to the porous membrane, the extrusion pressure during manufacturing is reduced and the variation in pore size is small, so it can be suitably used as a filter or the like that requires high filtration accuracy.
<多孔質膜積層体>
 当該多孔質膜積層体10,20は、上述の当該多孔質膜1を備える。当該多孔質膜積層体10,20は当該多孔質膜1を1又は複数備える(図2~図12)。
<Porous membrane laminate>
The porous membrane laminates 10 and 20 include the porous membrane 1 described above. The porous membrane laminate 10, 20 includes one or more porous membranes 1 (FIGS. 2 to 12).
 当該多孔質膜積層体は、1又は複数の支持膜をさらに備え、該支持膜が該多孔質膜の片面又は両面に積層されていることが好ましい。これによって、多孔質膜積層体の強度を向上することができる。 It is preferable that the porous membrane laminate further comprises one or more supporting membranes, and the supporting membranes are laminated on one side or both sides of the porous membrane. This can improve the strength of the porous membrane laminate.
 図2は、本開示の一実施形態に係る多孔質膜積層体を示す模式的部分断面図である。図2に示す多孔質膜積層体10は、多孔質膜1と、上記多孔質膜1の片面に積層されている多孔質の支持膜2とを備えている。「多孔質膜積層体10は、多孔質膜1と、上記多孔質膜1の片面に積層されている多孔質の支持膜2とを備えている」とは、「多孔質膜積層体10は、上記多孔質膜1からなる第1の多孔質膜1と、ポリテトラフルオロエチレンを主成分とする第1の支持膜2と、からなり、該第1の支持膜2の1つの主面上に、該第1の多孔質膜1を配置してなる」と言い換えることができる。該多孔質膜積層体10においては、上記多孔質膜1の片面に積層されている多孔質の支持膜2を備え、多孔質膜1が支持膜2に支持されているので、機械強度を向上でき、且つ濾過目詰まり抑制することできる。 FIG. 2 is a schematic partial cross-sectional view showing a porous membrane laminate according to one embodiment of the present disclosure. A porous membrane laminate 10 shown in FIG. 2 includes a porous membrane 1 and a porous support membrane 2 laminated on one side of the porous membrane 1 . “The porous membrane laminate 10 includes the porous membrane 1 and the porous support film 2 laminated on one side of the porous membrane 1” can be rephrased as “the porous membrane laminate 10 comprises the first porous membrane 1 made of the porous membrane 1 and the first support film 2 mainly composed of polytetrafluoroethylene, and the first porous membrane 1 is arranged on one main surface of the first support film 2.” The porous membrane laminate 10 is provided with the porous support membrane 2 laminated on one side of the porous membrane 1, and the porous membrane 1 is supported by the support membrane 2, so that the mechanical strength can be improved and clogging of the filter can be suppressed.
 多孔質の支持膜2は多孔質体であり、ポリテトラフルオロエチレンを主成分とすることが好ましい。支持膜2がポリテトラフルオロエチレンを主成分とすることで、耐熱性、化学的安定性等を向上できる。 The porous support film 2 is a porous body, and preferably contains polytetrafluoroethylene as a main component. By using polytetrafluoroethylene as the main component of the support film 2, heat resistance, chemical stability, etc. can be improved.
 支持膜2の平均厚さの上限としては、20μmが好ましく、15μmがより好ましい。一方、支持膜2の平均厚さの下限としては、2μmが好ましく、5μmがより好ましい。支持膜2の平均厚さが20μmを超える場合、多孔質膜積層体10の圧力損失が増大するおそれがある。一方、支持膜2の平均厚さが2μm未満の場合、多孔質膜積層体10の強度が不十分となるおそれがある。 The upper limit of the average thickness of the support film 2 is preferably 20 µm, more preferably 15 µm. On the other hand, the lower limit of the average thickness of the support film 2 is preferably 2 μm, more preferably 5 μm. If the average thickness of the support membrane 2 exceeds 20 μm, the pressure loss of the porous membrane laminate 10 may increase. On the other hand, if the average thickness of the support film 2 is less than 2 μm, the strength of the porous membrane laminate 10 may be insufficient.
 支持膜2の平均流量孔径の下限としては、0.08μmが好ましく、0.10μmがより好ましい。一方、上記平均流量孔径の上限としては、3.00μmが好ましく、1.50μmがより好ましい。支持膜2の平均流量孔径が0.08μm未満の場合、多孔質膜積層体10の圧力損失が増大するおそれがある。一方、支持膜2の平均流量孔径が3.00μmを超える場合、支持膜2の強度が不十分となるおそれがある。 The lower limit of the average flow pore size of the support membrane 2 is preferably 0.08 µm, more preferably 0.10 µm. On the other hand, the upper limit of the mean flow pore size is preferably 3.00 μm, more preferably 1.50 μm. If the average flow pore size of the support membrane 2 is less than 0.08 μm, the pressure loss of the porous membrane laminate 10 may increase. On the other hand, if the average flow pore size of the support membrane 2 exceeds 3.00 μm, the strength of the support membrane 2 may be insufficient.
 当該多孔質膜積層体20は、3層構造でもよく、例えば最外層に配設される1対の支持膜2と、この1対の支持膜2間に配設される1の多孔質膜1との合計3層を有していてもよい。また、当該多孔質膜積層体20は、4層以上の構造としてもよい。図4~図12に例示する。 The porous membrane laminate 20 may have a three-layer structure, and may have a total of three layers, for example, a pair of support membranes 2 arranged as the outermost layers and a porous membrane 1 arranged between the pair of support membranes 2. Also, the porous membrane laminate 20 may have a structure of four or more layers. Examples are shown in FIGS.
 当該多孔質膜積層体は、複数の上記多孔質膜と、複数の上記支持膜とを備え、上記多孔質膜及び上記支持膜が交互に積層されており、上記支持膜が両端に配置されることが好ましい。当該多孔質膜積層体において、当該多孔質膜及び上記支持膜が交互に積層されており、上記支持膜が両端に配置されることで、多孔質膜積層体の捕捉性能、機械的強度及び寿命をより高めることができる。 It is preferable that the porous membrane laminate includes a plurality of the porous membranes and a plurality of the supporting membranes, the porous membranes and the supporting membranes being alternately laminated, and the supporting membranes being arranged at both ends. In the porous membrane laminate, the porous membrane and the support membrane are alternately laminated, and the support membranes are arranged at both ends, so that the trapping performance, mechanical strength and life of the porous membrane laminate can be further enhanced.
 当該多孔質膜積層体が、例えば5層構造を有する場合、複数の上記多孔質膜と、複数の上記支持膜とを備え、上記多孔質膜及び上記支持膜が交互に積層され、かつ両端部に上記支持膜が積層されていることが好ましい。図6は、本開示の他の実施形態に係る多孔質膜積層体を示す模式的部分断面図である。図6に示す多孔質膜積層体20においては、最外層の1対の支持膜2間に2層の多孔質膜1を積層し、さらにこの1対の多孔質膜1の間に支持膜2を積層した5層構造を有する。このように、多孔質膜1及び支持膜2が交互に積層され、かつ両端部に支持膜2が積層されていることで、多孔質膜積層体20の捕捉性能、機械的強度及び寿命をより高めることができる。 When the porous membrane laminate has, for example, a five-layer structure, it preferably includes a plurality of the porous membranes and a plurality of the supporting membranes, the porous membranes and the supporting membranes being alternately laminated, and the supporting membranes being laminated at both ends. FIG. 6 is a schematic partial cross-sectional view showing a porous membrane laminate according to another embodiment of the present disclosure. The porous membrane laminate 20 shown in FIG. 6 has a five-layer structure in which two layers of the porous membrane 1 are laminated between the pair of support membranes 2 of the outermost layer, and the support membrane 2 is further laminated between the pair of porous membranes 1. In this way, the porous membrane 1 and the support membrane 2 are alternately laminated, and the support membrane 2 is laminated on both ends, so that the trapping performance, mechanical strength and life of the porous membrane laminate 20 can be further enhanced.
 例えば、図3に示される様に、上記多孔質膜積層体10は、上記多孔質膜1からなる第1の多孔質膜1と、上記多孔質膜1からなる第2の多孔質膜1と、からなり、該第1の多孔質膜1の1つの主面上に、該第2の多孔質膜1を配置してなることができる。これによって、該多孔質膜積層体10の機械強度を向上し、且つ微粒子の捕捉性能(繊維での粒子捕捉確率)を向上することができる。なお、ここで、該第1の多孔質膜1と、該第2の多孔質膜1とは、同一の構成であっても良く、異なる構成であっても良い。 For example, as shown in FIG. 3, the porous membrane laminate 10 is composed of a first porous membrane 1 made of the porous membrane 1 and a second porous membrane 1 made of the porous membrane 1, and the second porous membrane 1 can be arranged on one main surface of the first porous membrane 1. As a result, the mechanical strength of the porous membrane laminate 10 can be improved, and the fine particle trapping performance (probability of trapping particles by fibers) can be improved. Here, the first porous film 1 and the second porous film 1 may have the same structure or different structures.
 また、例えば図4に示される様に、上記多孔質膜積層体20は、上記多孔質膜1からなる第1の多孔質膜1と、ポリテトラフルオロエチレンを主成分とする第1の支持膜2と、ポリテトラフルオロエチレンを主成分とする第2の支持膜2とからなり、該第1の支持膜2の1つの主面上に、該第1の多孔質膜1と、該第2の支持膜2と、を上記の順で配置してなることができる。これによって、該多孔質膜積層体20の機械強度を向上し、且つ濾過目詰まりを抑制し、且つ外傷による粒子捕捉性能の低下を抑制することができる。なお、ここで、該第1の支持膜2と、該第2の支持膜2とは、同一の構成であっても良く、異なる構成であっても良い。 Further, as shown in FIG. 4, for example, the porous membrane laminate 20 includes a first porous membrane 1 made of the porous membrane 1, a first supporting membrane 2 mainly composed of polytetrafluoroethylene, and a second supporting membrane 2 mainly composed of polytetrafluoroethylene. As a result, the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, and deterioration of particle trapping performance due to trauma can be suppressed. Here, the first support film 2 and the second support film 2 may have the same structure or different structures.
 また、例えば図5に示される様に、上記多孔質膜積層体20は、上記多孔質膜1からなる第1の多孔質膜1と、上記多孔質膜1からなる第2の多孔質膜1と、ポリテトラフルオロエチレンを主成分とする第1の支持膜2と、からなり、該第1の支持膜2の1つの主面上に、該第1の多孔質膜1と、該第2の多孔質膜1と、を上記の順で配置してなることができる。これによって、該多孔質膜積層体20の機械強度を向上し、且つ濾過目詰まりを抑制し、且つ微粒子の捕捉性能(繊維での粒子捕捉確率)を向上することができる。なお、ここで、該第1の多孔質膜1と、該第2の多孔質膜1とは、同一の構成であっても良く、異なる構成であっても良い。 Further, as shown in FIG. 5, for example, the porous membrane laminate 20 is composed of a first porous membrane 1 made of the porous membrane 1, a second porous membrane 1 made of the porous membrane 1, and a first supporting membrane 2 containing polytetrafluoroethylene as a main component. As a result, the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, and the fine particle trapping performance (probability of trapping particles by fibers) can be improved. Here, the first porous film 1 and the second porous film 1 may have the same structure or different structures.
 また、例えば図6に示される様に、上記多孔質膜積層体20は、上記多孔質膜1からなる第1の多孔質膜1と、上記多孔質膜1からなる第2の多孔質膜1と、ポリテトラフルオロエチレンを主成分とする第1の支持膜2と、ポリテトラフルオロエチレンを主成分とする第2の支持膜2と、からなり、該第1の支持膜2の1つの主面上に、該第1の多孔質膜1と、該第2の多孔質膜1と、該第2の支持膜2と、を上記の順で配置してなることができる。これによって、該多孔質膜積層体20の機械強度を向上し、且つ濾過目詰まりを抑制し、且つ微粒子の捕捉性能(繊維での粒子捕捉確率)を向上し、且つ外傷による粒子捕捉性能の低下を抑制することができる。なお、ここで、該第1の多孔質膜1と、該第2の多孔質膜1とは、同一の構成であっても良く、異なる構成であっても良い。また、該第1の支持膜2と、該第2の支持膜2とは、同一の構成であっても良く、異なる構成であっても良い。 Further, as shown in FIG. 6, for example, the porous membrane laminate 20 comprises a first porous membrane 1 made of the porous membrane 1, a second porous membrane 1 made of the porous membrane 1, a first supporting membrane 2 mainly composed of polytetrafluoroethylene, and a second supporting membrane 2 mainly composed of polytetrafluoroethylene. 1 and the second support film 2 can be arranged in the above order. As a result, the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, the fine particle trapping performance (probability of trapping particles by fibers) can be improved, and deterioration of the particle trapping performance due to trauma can be suppressed. Here, the first porous film 1 and the second porous film 1 may have the same structure or different structures. Further, the first support film 2 and the second support film 2 may have the same structure or different structures.
 また、例えば図7に示される様に、上記多孔質膜積層体20は、上記多孔質膜1からなる第1の多孔質膜1と、上記多孔質膜1からなる第2の多孔質膜1と、上記多孔質膜1からなる第3の多孔質膜1と、ポリテトラフルオロエチレンを主成分とする第1の支持膜2と、からなり、該第1の支持膜2の1つの主面上に、該第1の多孔質膜1と、該第2の多孔質膜1と、該第3の多孔質膜1と、を上記の順で配置してなることができる。これによって、該多孔質膜積層体20の機械強度を向上し、且つ濾過目詰まりを抑制し、且つ微粒子の捕捉性能(繊維での粒子捕捉確率)を向上することができる。なお、ここで、該第1の多孔質膜1と、該第2の多孔質膜1と、該第3の多孔質膜1とは、それぞれ同一の構成であっても良く、異なる構成であっても良い。 Further, as shown in FIG. 7, for example, the porous membrane laminate 20 comprises a first porous membrane 1 made of the porous membrane 1, a second porous membrane 1 made of the porous membrane 1, a third porous membrane 1 made of the porous membrane 1, and a first support membrane 2 containing polytetrafluoroethylene as a main component. 1 and the third porous membrane 1 can be arranged in the above order. As a result, the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, and the fine particle trapping performance (probability of trapping particles by fibers) can be improved. Here, the first porous film 1, the second porous film 1, and the third porous film 1 may have the same configuration or different configurations.
 また、例えば図8に示される様に、上記多孔質膜積層体20は、上記多孔質膜1からなる第1の多孔質膜1と、上記多孔質膜1からなる第2の多孔質膜1と、ポリテトラフルオロエチレンを主成分とする第1の支持膜2と、ポリテトラフルオロエチレンを主成分とする第2の支持膜2と、ポリテトラフルオロエチレンを主成分とする第3の支持膜2と、からなり、該第1の支持膜2の1つの主面上に、該第1の多孔質膜1と、該第2の支持膜2と、該第2の多孔質膜1と、該第3の支持膜2と、を上記の順で配置してなることができる。これによって、該多孔質膜積層体20の機械強度を向上し、且つ濾過目詰まりを抑制し、且つ外傷による粒子捕捉性能の低下を抑制することができる。なお、ここで、該第1の多孔質膜1と、該第2の多孔質膜1とは、同一の構成であっても良く、異なる構成であっても良い。また、該第1の支持膜2と、該第2の支持膜2と、該第3の支持膜2とは、それぞれ同一の構成であっても良く、異なる構成であっても良い。 Further, as shown in FIG. 8, for example, the porous membrane laminate 20 is composed of a first porous membrane 1 composed of the porous membrane 1, a second porous membrane 1 composed of the porous membrane 1, a first supporting membrane 2 mainly composed of polytetrafluoroethylene, a second supporting membrane 2 mainly composed of polytetrafluoroethylene, and a third supporting membrane 2 mainly composed of polytetrafluoroethylene. The first porous membrane 1, the second supporting membrane 2, the second porous membrane 1, and the third supporting membrane 2 can be arranged in the above order. As a result, the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, and deterioration of particle trapping performance due to trauma can be suppressed. Here, the first porous film 1 and the second porous film 1 may have the same structure or different structures. Further, the first supporting film 2, the second supporting film 2, and the third supporting film 2 may have the same structure or different structures.
 また、例えば図9に示される様に、上記多孔質膜積層体20は、上記多孔質膜1からなる第1の多孔質膜1と、上記多孔質膜1からなる第2の多孔質膜1と、上記多孔質膜1からなる第3の多孔質膜1と、ポリテトラフルオロエチレンを主成分とする第1の支持膜2と、ポリテトラフルオロエチレンを主成分とする第2の支持膜2と、からなり、該第1の支持膜2の1つの主面上に、該第1の多孔質膜1と、該第2の多孔質膜1と、該第3の多孔質膜1と、該第2の支持膜2と、を上記の順で配置してなることができる。これによって、該多孔質膜積層体20の機械強度を向上し、且つ濾過目詰まりを抑制し、且つ微粒子の捕捉性能(繊維での粒子捕捉確率)を向上し、且つ外傷による粒子捕捉性能の低下を抑制することができる。なお、ここで、該第1の多孔質膜1と、該第2の多孔質膜1と、該第3の多孔質膜1とは、それぞれ同一の構成であっても良く、異なる構成であっても良い。また、該第1の支持膜2と、該第2の支持膜2とは、同一の構成であっても良く、異なる構成であっても良い。 Further, as shown in FIG. 9, for example, the porous membrane laminate 20 is composed of a first porous membrane 1 composed of the porous membrane 1, a second porous membrane 1 composed of the porous membrane 1, a third porous membrane 1 composed of the porous membrane 1, a first supporting membrane 2 mainly composed of polytetrafluoroethylene, and a second supporting membrane 2 mainly composed of polytetrafluoroethylene. The first porous membrane 1, the second porous membrane 1, the third porous membrane 1, and the second support membrane 2 can be arranged in the above order. As a result, the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, the fine particle trapping performance (probability of trapping particles by fibers) can be improved, and deterioration of the particle trapping performance due to trauma can be suppressed. Here, the first porous film 1, the second porous film 1, and the third porous film 1 may have the same configuration or different configurations. Further, the first support film 2 and the second support film 2 may have the same structure or different structures.
 また、例えば図10に示される様に、上記多孔質膜積層体20は、上記多孔質膜1からなる第1の多孔質膜1と、ポリテトラフルオロエチレンを主成分とする第1の支持膜2と、ポリテトラフルオロエチレンを主成分とする第2の支持膜2と、ポリテトラフルオロエチレンを主成分とする第3の支持膜2と、ポリテトラフルオロエチレンを主成分とする第4の支持膜2と、からなり、該第1の支持膜2の1つの主面上に、該第2の支持膜2と、該第1の多孔質膜1と、該第3の支持膜2と、該第4の支持膜2と、を上記の順で配置してなることができる。これによって、該多孔質膜積層体20の機械強度を向上し、且つ濾過目詰まりを抑制し、且つ外傷による粒子捕捉性能の低下を抑制することができる。なお、ここで、該第1の支持膜2と、該第2の支持膜2と、該第3の支持膜2と、該第4の支持膜2とは、それぞれ同一の構成であっても良く、異なる構成であっても良い。 Further, as shown in FIG. 10, for example, the porous membrane laminate 20 comprises a first porous membrane 1 made of the porous membrane 1, a first support film 2 mainly composed of polytetrafluoroethylene, a second support film 2 mainly composed of polytetrafluoroethylene, a third support film 2 mainly composed of polytetrafluoroethylene, and a fourth support film 2 mainly composed of polytetrafluoroethylene. The second support film 2, the first porous film 1, the third support film 2, and the fourth support film 2 can be arranged in the above order. As a result, the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, and deterioration of particle trapping performance due to trauma can be suppressed. Here, the first supporting film 2, the second supporting film 2, the third supporting film 2, and the fourth supporting film 2 may have the same configuration or different configurations.
 また、例えば図11に示される様に、上記多孔質膜積層体20は、上記多孔質膜1からなる第1の多孔質膜1と、上記多孔質膜1からなる第2の多孔質膜1と、上記多孔質膜1からなる第3の多孔質膜1と、ポリテトラフルオロエチレンを主成分とする第1の支持膜2と、ポリテトラフルオロエチレンを主成分とする第2の支持膜2と、ポリテトラフルオロエチレンを主成分とする第3の支持膜2と、ポリテトラフルオロエチレンを主成分とする第4の支持膜2と、からなり、該第1の支持膜2の1つの主面上に、該第1の多孔質膜1と、該第2の支持膜2と、該第2の多孔質膜1と、該第3の支持膜2と、該第3の多孔質膜1と、該第4の支持膜2と、を上記の順で配置してなることができる。これによって、該多孔質膜積層体の機械強度を向上し、且つ濾過目詰まりを抑制し、且つ外傷による粒子捕捉性能の低下を抑制することができる。なお、ここで、該第1の多孔質膜1と、該第2の多孔質膜1と、該第3の多孔質膜1とは、それぞれ同一の構成であっても良く、異なる構成であっても良い。また、該第1の支持膜2と、該第2の支持膜2と、該第3の支持膜2と、該第4の支持膜2とは、それぞれ同一の構成であっても良く、異なる構成であっても良い。 Further, as shown in FIG. 11, for example, the porous membrane laminate 20 includes a first porous membrane 1 composed of the porous membrane 1, a second porous membrane 1 composed of the porous membrane 1, a third porous membrane 1 composed of the porous membrane 1, a first supporting membrane 2 composed mainly of polytetrafluoroethylene, a second supporting membrane 2 composed mainly of polytetrafluoroethylene, a third supporting membrane 2 composed mainly of polytetrafluoroethylene, and a polytetrafluoroethylene. and a fourth support film 2 containing fluoroethylene as a main component, wherein the first porous film 1, the second support film 2, the second porous film 1, the third support film 2, the third porous film 1, and the fourth support film 2 are arranged in the above order on one main surface of the first support film 2. As a result, the mechanical strength of the porous membrane laminate can be improved, filter clogging can be suppressed, and deterioration of particle trapping performance due to trauma can be suppressed. Here, the first porous film 1, the second porous film 1, and the third porous film 1 may have the same configuration or different configurations. Further, the first supporting film 2, the second supporting film 2, the third supporting film 2, and the fourth supporting film 2 may have the same configuration or different configurations.
 また、例えば図12に示される様に、上記多孔質膜積層体20は、上記多孔質膜1からなる第1の多孔質膜1と、上記多孔質膜1からなる第2の多孔質膜1と、上記多孔質膜1からなる第3の多孔質膜1と、上記多孔質膜1からなる第4の多孔質膜1と、上記多孔質膜1からなる第5の多孔質膜1と、ポリテトラフルオロエチレンを主成分とする第1の支持膜2と、ポリテトラフルオロエチレンを主成分とする第2の支持膜2と、からなり、該第1の支持膜2の1つの主面上に、該第1の多孔質膜1と、該第2の多孔質膜1と、該第3の多孔質膜1と、該第4の多孔質膜1と、該第5の多孔質膜1と、該第2の支持膜2と、を上記の順で配置してなることができる。これによって、該多孔質膜積層体20の機械強度を向上し、且つ濾過目詰まりを抑制し、且つ微粒子の捕捉性能(繊維での粒子捕捉確率)を向上し、且つ外傷による粒子捕捉性能の低下を抑制することができる。なお、ここで、該第1の多孔質膜1と、該第2の多孔質膜1と、該第3の多孔質膜1と、該第4の多孔質膜1と、該第5の多孔質膜1とは、それぞれ同一の構成であっても良く、異なる構成であっても良い。また、該第1の支持膜2と、該第2の支持膜2とは、同一の構成であっても良く、異なる構成であっても良い。 Further, as shown in FIG. 12, for example, the porous membrane laminate 20 includes a first porous membrane 1 composed of the porous membrane 1, a second porous membrane 1 composed of the porous membrane 1, a third porous membrane 1 composed of the porous membrane 1, a fourth porous membrane 1 composed of the porous membrane 1, a fifth porous membrane 1 composed of the porous membrane 1, a first support membrane 2 composed mainly of polytetrafluoroethylene, and polytetrafluoroethylene. and a second support film 2 containing fluoroethylene as a main component, wherein the first porous film 1, the second porous film 1, the third porous film 1, the fourth porous film 1, the fifth porous film 1, and the second support film 2 are arranged in the above order on one main surface of the first support film 2. As a result, the mechanical strength of the porous membrane laminate 20 can be improved, filter clogging can be suppressed, the fine particle trapping performance (probability of trapping particles by fibers) can be improved, and deterioration of the particle trapping performance due to trauma can be suppressed. Here, the first porous film 1, the second porous film 1, the third porous film 1, the fourth porous film 1, and the fifth porous film 1 may have the same configuration or different configurations. Further, the first support film 2 and the second support film 2 may have the same structure or different structures.
[多孔質膜積層体の製造方法]
 当該多孔質膜積層体が例えば当該多孔質膜及び支持膜を備える場合の当該多孔質膜積層体の製造方法の一実施形態について説明する。当該多孔質膜積層体の製造方法は、多孔質膜を積層する工程を備えている。
[Manufacturing method of porous membrane laminate]
An embodiment of a method for producing a porous membrane laminate including, for example, the porous membrane and a support membrane will be described. The method for manufacturing the porous membrane laminate includes a step of laminating the porous membrane.
(積層する工程)
 本工程では、当該多孔質膜を例えば支持膜の片面に積層し、これらを加熱することにより、多孔質膜積層体が形成される。
(Lamination process)
In this step, the porous membrane laminate is formed by, for example, laminating the porous membrane on one side of the support membrane and heating them.
 当該多孔質膜を上記支持膜に積層する方法としては、例えば加熱により融着する方法、接着剤又は粘着剤を使用して接着する方法等を挙げることができる。 Examples of the method of laminating the porous membrane on the support membrane include a method of fusion bonding by heating, a method of bonding using an adhesive or a pressure-sensitive adhesive, and the like.
 加熱により融着する方法としては、具体的には、まず当該多孔質膜を例えば支持膜の片面に積層し、この積層体を加熱することで各層を境界で熱融着させて一体化し、多孔質膜積層体を得る。この加熱温度の下限としては、PTFEのガラス転移点である327℃が好ましく、360℃がより好ましい。一方、加熱温度の上限としては、400℃が好ましい。加熱温度が327℃未満の場合、各層の熱融着が不十分となるおそれがある。一方、加熱温度が400℃を超える場合、各層が変形するおそれがある。また、上記加熱時間としては、0.5分以上3分以下が好ましい。 Specifically, the porous membrane is first laminated on one side of a support film, for example, and this laminate is heated to thermally fuse and integrate each layer at the boundary to obtain a porous membrane laminate. The lower limit of the heating temperature is preferably 327°C, which is the glass transition point of PTFE, and more preferably 360°C. On the other hand, the upper limit of the heating temperature is preferably 400°C. If the heating temperature is less than 327° C., there is a possibility that the layers will be insufficiently heat-sealed. On the other hand, if the heating temperature exceeds 400°C, each layer may be deformed. Moreover, the heating time is preferably 0.5 minutes or more and 3 minutes or less.
 接着剤又は粘着剤を使用して接着する方法における接着剤や粘着剤としては、耐熱性、耐薬品性等の観点から、溶剤可溶性又は熱可塑性を有するフッ素樹脂又はフッ素ゴムが好ましい。 From the viewpoint of heat resistance, chemical resistance, etc., fluororesin or fluororubber having solvent solubility or thermoplasticity is preferable as the adhesive or adhesive in the method of bonding using an adhesive or adhesive.
(親水化処理)
 上述のようにして得られた多孔質膜積層体に対し、親水化処理を行ってもよい。この親水化処理は、多孔質膜積層体に親水性材料を含浸し、架橋するものである。この親水性材料としては、ポリビニルアルコール(PVA)、エチレンビニルアルコール共重合体(EVOH)、アクリレート樹脂等を挙げることができる。この中でも、PTFEの繊維表面に吸着し易く、含浸を均一的に行えるPVAが好ましい。
(hydrophilic treatment)
Hydrophilization treatment may be performed on the porous membrane laminate obtained as described above. In this hydrophilization treatment, the porous membrane laminate is impregnated with a hydrophilic material and crosslinked. Examples of the hydrophilic material include polyvinyl alcohol (PVA), ethylene vinyl alcohol copolymer (EVOH), acrylate resin, and the like. Among these, PVA is preferable because it is easily adsorbed on the fiber surface of PTFE and can be uniformly impregnated.
 上記親水化処理は、具体的には例えば次の手順で行うことができる。まず、多孔質膜積層体をイソプロピルアルコール(IPA)に0.25分以上2分以下浸漬した後、濃度が0.5質量%以上0.8質量%以下のPVA水溶液に5分以上10分以下浸漬する。その後、多孔質膜積層体を純水に2分以上5分以下浸漬した後に、架橋剤の添加又は電子線の照射により架橋を行う。この架橋後、多孔質膜積層体を純水で水洗し、常温(25℃)以上80℃以下で乾燥することで、多孔質膜積層体の表面を親水化できる。なお、上記架橋剤としては、例えばグルタルアルデヒド架橋、テレフタルアルデヒド架橋等を形成するものが用いられる。また、上記電子線としては、例えば6Mradのものを用いることができる。 Specifically, the hydrophilization treatment can be performed, for example, by the following procedure. First, the porous membrane laminate is immersed in isopropyl alcohol (IPA) for 0.25 to 2 minutes, and then immersed in an aqueous PVA solution having a concentration of 0.5 to 0.8 mass % for 5 to 10 minutes. After that, the porous membrane laminate is immersed in pure water for 2 minutes or more and 5 minutes or less, and then crosslinking is performed by adding a crosslinking agent or irradiating electron beams. After the cross-linking, the porous membrane laminate is washed with pure water and dried at room temperature (25° C.) or higher and 80° C. or lower to make the surface of the porous membrane laminate hydrophilic. As the cross-linking agent, for example, one that forms glutaraldehyde cross-linking, terephthalaldehyde cross-linking, or the like is used. Further, as the electron beam, for example, an electron beam of 6 Mrad can be used.
 当該多孔質膜積層体によれば、当該多孔質膜を1又は複数備えることで、濾過処理の精度に優れる。また当該多孔質膜積層体によれば、ポリテトラフルオロエチレンを主成分とする1又は複数の支持膜をさらに備え、上記支持膜が上記多孔質膜の片面又は両面に積層されていることで、この支持膜が多孔質膜の保護材として機能するため、当該多孔質膜積層体は、捕捉性能を向上しつつ、多孔質膜積層体の機械的強度及び寿命を高めることができる。また、上記支持膜がポリテトラフルオロエチレンを主成分とすることで、耐熱性、化学的安定性等を向上できる。従って、半導体関連分野、液晶関連分野及び食品医療関連分野における洗浄、剥離、薬液供給等の用途に用いる分散媒及び気体の精密濾過フィルタに好適である。 According to the porous membrane laminate, by providing one or a plurality of the porous membranes, the accuracy of filtration processing is excellent. In addition, according to the porous membrane laminate, one or a plurality of supporting membranes containing polytetrafluoroethylene as a main component are further provided, and the supporting membrane is laminated on one or both sides of the porous membrane, so that the supporting membrane functions as a protective material for the porous membrane. Therefore, the porous membrane laminate can improve the trapping performance and increase the mechanical strength and life of the porous membrane laminate. Moreover, heat resistance, chemical stability, etc. can be improved by using polytetrafluoroethylene as a main component of the support film. Therefore, it is suitable for a dispersion medium and gas precision filtration filter used for cleaning, peeling, chemical supply, etc. in the semiconductor-related field, the liquid crystal-related field, and the food and medical-related field.
[その他の実施形態]
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other embodiments]
It should be considered that the embodiments disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is not limited to the configurations of the above-described embodiments, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 [付記1]
 ポリテトラフルオロエチレンを主成分とする多孔質膜であって、
 昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線が、300℃以上360℃以下の範囲で吸熱ピークを有し、
 前記吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下である多孔質膜。
[Appendix 1]
A porous membrane containing polytetrafluoroethylene as a main component,
1st. obtained by differential scanning calorimetry at a heating rate of 10° C./min. The melting curve of Run has an endothermic peak in the range of 300 ° C. or higher and 360 ° C. or lower,
The porous membrane, wherein the difference between the onset temperature and the endset temperature of the endothermic peak is 20°C or less.
 [付記2]
 前記吸熱ピークの前記オンセット温度と前記エンドセット温度との差が15℃以下である付記1に記載の多孔質膜。
[Appendix 2]
The porous membrane according to appendix 1, wherein the difference between the onset temperature and the endset temperature of the endothermic peak is 15° C. or less.
 [付記3]
 気孔率が40%以上90%以下である付記1又は付記2に記載の多孔質膜。
[Appendix 3]
The porous membrane according to appendix 1 or appendix 2, which has a porosity of 40% or more and 90% or less.
 [付記4]
 孔径分布の平均流量孔径が69nm以上107nm以下である付記1または付記2に記載の多孔質膜。
[Appendix 4]
The porous membrane according to appendix 1 or appendix 2, wherein the mean flow pore size of the pore size distribution is 69 nm or more and 107 nm or less.
 [付記5]
 孔径分布の孔径比が17%以上49%以下である付記1または付記2に記載の多孔質膜。
[Appendix 5]
The porous membrane according to appendix 1 or appendix 2, wherein the pore size ratio in the pore size distribution is 17% or more and 49% or less.
 [付記6]
 付記1から付記5のいずれか1項に記載の多孔質膜を1又は複数備える多孔質膜積層体。
[Appendix 6]
A porous membrane laminate comprising one or a plurality of porous membranes according to any one of Appendixes 1 to 5.
 [付記7]
 ポリテトラフルオロエチレンを主成分とする1又は複数の支持膜をさらに備え、前記支持膜が前記多孔質膜の片面又は両面に積層されている付記6に記載の多孔質膜積層体。
[Appendix 7]
7. The porous membrane laminate according to appendix 6, further comprising one or a plurality of supporting films containing polytetrafluoroethylene as a main component, wherein the supporting films are laminated on one side or both sides of the porous membrane.
 [付記8]
 ポリテトラフルオロエチレンの粉末と液状潤滑剤との混練物を成形する工程を備え、
 前記ポリテトラフルオロエチレンの一次粒子径における最大粒子径と最小粒子径との差が200nm以下である多孔質膜の製造方法。
[Appendix 8]
A step of forming a kneaded product of polytetrafluoroethylene powder and a liquid lubricant,
A method for producing a porous membrane, wherein the difference between the maximum particle size and the minimum primary particle size of the polytetrafluoroethylene is 200 nm or less.
 [付記9]
 前記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲の融解熱量が、60.0J/g以上である付記8に記載の多孔質膜の製造方法。
[Appendix 9]
1 st. 9. The method for producing a porous membrane according to appendix 8, wherein the heat of fusion in the range of 300° C. or higher and 360° C. or lower in the Run melting curve is 60.0 J/g or more.
 [付記10]
 前記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲を有する吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下である付記8に記載の多孔質膜の製造方法。
[Appendix 10]
1 st. 9. The method for producing a porous membrane according to appendix 8, wherein the difference between the onset temperature and the endset temperature of the endothermic peak having a range of 300° C. or more and 360° C. or less in the Run melting curve is 20° C. or less.
 [付記11]
 付記1から付記5のいずれか1項に記載の多孔質膜からなる第1の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第2の多孔質膜と、からなり、
 前記第1の多孔質膜の1つの主面上に、前記第2の多孔質膜を配置してなる、多孔質膜積層体。
[Appendix 11]
A first porous film made of the porous film according to any one of Appendices 1 to 5, and a second porous film made of the porous film according to any one of Appendices 1 to 5,
A porous membrane laminate in which the second porous membrane is arranged on one main surface of the first porous membrane.
 [付記12]
 付記1から付記5のいずれか1項に記載の多孔質膜からなる第1の多孔質膜と、ポリテトラフルオロエチレンを主成分とする第1の支持膜と、ポリテトラフルオロエチレンを主成分とする第2の支持膜とからなり、
 前記第1の支持膜の1つの主面上に、前記第1の多孔質膜と、前記第2の支持膜と、を前記の順で配置してなる、多孔質膜積層体。
[Appendix 12]
A first porous film made of the porous film according to any one of Appendices 1 to 5, a first support film containing polytetrafluoroethylene as a main component, and a second support film containing polytetrafluoroethylene as a main component,
A porous membrane laminate in which the first porous membrane and the second supporting membrane are arranged in the order described above on one main surface of the first supporting membrane.
 [付記13]
 付記1から付記5のいずれか1項に記載の多孔質膜からなる第1の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第2の多孔質膜と、ポリテトラフルオロエチレンを主成分とする第1の支持膜と、からなり、
 前記第1の支持膜の1つの主面上に、前記第1の多孔質膜と、前記第2の多孔質膜と、を前記の順で配置してなる、多孔質膜積層体。
[Appendix 13]
A first porous film made of the porous film according to any one of Appendices 1 to 5, a second porous film made of the porous film according to any one of Appendices 1 to 5, and a first support film containing polytetrafluoroethylene as a main component,
A porous membrane laminate in which the first porous membrane and the second porous membrane are arranged in the order described above on one main surface of the first supporting membrane.
 [付記14]
 付記1から付記5のいずれか1項に記載の多孔質膜からなる第1の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第2の多孔質膜と、ポリテトラフルオロエチレンを主成分とする第1の支持膜と、ポリテトラフルオロエチレンを主成分とする第2の支持膜と、からなり、
 前記第1の支持膜の1つの主面上に、前記第1の多孔質膜と、前記第2の多孔質膜と、前記第2の支持膜と、を前記の順で配置してなる、多孔質膜積層体。
[Appendix 14]
A first porous film made of the porous film according to any one of Appendices 1 to 5, a second porous film made of the porous film according to any one of Appendices 1 to 5, a first support film containing polytetrafluoroethylene as a main component, and a second support film containing polytetrafluoroethylene as a main component,
A porous membrane laminate in which the first porous membrane, the second porous membrane, and the second supporting membrane are arranged in the order described above on one main surface of the first supporting membrane.
 [付記15]
 付記1から付記5のいずれか1項に記載の多孔質膜からなる第1の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第2の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第3の多孔質膜と、ポリテトラフルオロエチレンを主成分とする第1の支持膜と、からなり、
 前記第1の支持膜の1つの主面上に、前記第1の多孔質膜と、前記第2の多孔質膜と、前記第3の多孔質膜と、を前記の順で配置してなる、多孔質膜積層体。
[Appendix 15]
A first porous film made of the porous film according to any one of Appendices 1 to 5, a second porous film made of the porous film according to any one of Appendices 1 to 5, a third porous film made of the porous film according to any one of Appendices 1 to 5, and a first support film containing polytetrafluoroethylene as a main component,
A porous membrane laminate in which the first porous membrane, the second porous membrane, and the third porous membrane are arranged in the order described above on one main surface of the first supporting membrane.
 [付記16]
 付記1から付記5のいずれか1項に記載の多孔質膜からなる第1の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第2の多孔質膜と、ポリテトラフルオロエチレンを主成分とする第1の支持膜と、ポリテトラフルオロエチレンを主成分とする第2の支持膜と、ポリテトラフルオロエチレンを主成分とする第3の支持膜と、からなり、
 前記第1の支持膜の1つの主面上に、前記第1の多孔質膜と、前記第2の支持膜と、前記第2の多孔質膜と、前記第3の支持膜と、を前記の順で配置してなる、多孔質膜積層体。
[Appendix 16]
A first porous film made of the porous film according to any one of Appendices 1 to 5; a second porous film made of the porous film according to any one of Appendices 1 to 5; a first support film containing polytetrafluoroethylene as a main component; a second support film containing polytetrafluoroethylene as a main component;
A porous membrane laminate in which the first porous membrane, the second supporting membrane, the second porous membrane, and the third supporting membrane are arranged in the order described above on one main surface of the first supporting membrane.
 [付記17]
 付記1から付記5のいずれか1項に記載の多孔質膜からなる第1の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第2の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第3の多孔質膜と、ポリテトラフルオロエチレンを主成分とする第1の支持膜と、ポリテトラフルオロエチレンを主成分とする第2の支持膜と、からなり、
 前記第1の支持膜の1つの主面上に、前記第1の多孔質膜と、前記第2の多孔質膜と、前記第3の多孔質膜と、前記第2の支持膜と、を前記の順で配置してなる、多孔質膜積層体。
[Appendix 17]
A first porous film made of the porous film according to any one of Appendices 1 to 5; a second porous film made of the porous film according to any one of Appendices 1 to 5; a third porous film made of the porous film according to any one of Appendices 1 to 5;
A porous membrane laminate in which the first porous membrane, the second porous membrane, the third porous membrane, and the second supporting membrane are arranged in the order described above on one main surface of the first supporting membrane.
 [付記18]
 付記1から付記5のいずれか1項に記載の多孔質膜からなる第1の多孔質膜と、ポリテトラフルオロエチレンを主成分とする第1の支持膜と、ポリテトラフルオロエチレンを主成分とする第2の支持膜と、ポリテトラフルオロエチレンを主成分とする第3の支持膜と、ポリテトラフルオロエチレンを主成分とする第4の支持膜と、からなり、
 前記第1の支持膜の1つの主面上に、前記第2の支持膜と、前記第1の多孔質膜と、前記第3の支持膜と、前記第4の支持膜と、を前記の順で配置してなる、多孔質膜積層体。
[Appendix 18]
A first porous film made of the porous film according to any one of Appendices 1 to 5, a first support film containing polytetrafluoroethylene as a main component, a second support film containing polytetrafluoroethylene as a main component, a third support film containing polytetrafluoroethylene as a main component, and a fourth support film containing polytetrafluoroethylene as a main component,
A porous membrane laminate in which the second supporting membrane, the first porous membrane, the third supporting membrane, and the fourth supporting membrane are arranged in the order described above on one main surface of the first supporting membrane.
 [付記19]
 付記1から付記5のいずれか1項に記載の多孔質膜からなる第1の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第2の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第3の多孔質膜と、ポリテトラフルオロエチレンを主成分とする第1の支持膜と、ポリテトラフルオロエチレンを主成分とする第2の支持膜と、ポリテトラフルオロエチレンを主成分とする第3の支持膜と、ポリテトラフルオロエチレンを主成分とする第4の支持膜と、からなり、
 前記第1の支持膜の1つの主面上に、前記第1の多孔質膜と、前記第2の支持膜と、前記第2の多孔質膜と、前記第3の支持膜と、前記第3の多孔質膜と、前記第4の支持膜と、を前記の順で配置してなる、多孔質膜積層体。
[Appendix 19]
A first porous film comprising the porous film according to any one of Appendices 1 to 5; a second porous film comprising the porous film according to any one of Appendices 1 to 5; a third porous film comprising the porous film according to any one of Appendices 1 to 5; and a fourth support film mainly composed of polytetrafluoroethylene,
A porous membrane laminate in which the first porous membrane, the second supporting membrane, the second porous membrane, the third supporting membrane, the third porous membrane, and the fourth supporting membrane are arranged in the order described above on one main surface of the first supporting membrane.
 [付記20]
 付記1から付記5のいずれか1項に記載の多孔質膜からなる第1の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第2の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第3の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第4の多孔質膜と、付記1から付記5のいずれか1項に記載の多孔質膜からなる第5の多孔質膜と、ポリテトラフルオロエチレンを主成分とする第1の支持膜と、ポリテトラフルオロエチレンを主成分とする第2の支持膜と、からなり、
 前記第1の支持膜の1つの主面上に、前記第1の多孔質膜と、前記第2の多孔質膜と、前記第3の多孔質膜と、前記第4の多孔質膜と、前記第5の多孔質膜と、前記第2の支持膜と、を前記の順で配置してなる、多孔質膜積層体。
[Appendix 20]
A first porous film comprising the porous film according to any one of Appendices 1 to 5; a second porous film comprising the porous film according to any one of Appendices 1 to 5; a third porous film comprising the porous film according to any one of Appendices 1 to 5; a fourth porous film comprising the porous film according to any one of Appendices 1 to 5; A fifth porous film made of the porous film according to item 1, a first support film containing polytetrafluoroethylene as a main component, and a second support film containing polytetrafluoroethylene as a main component,
A porous membrane laminate in which the first porous membrane, the second porous membrane, the third porous membrane, the fourth porous membrane, the fifth porous membrane, and the second supporting membrane are arranged in the order described above on one main surface of the first supporting membrane.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
<多孔質膜>
[試験No.1]
(成形工程)
 原料粉末として表1に示すPTFEファインパウダーA(第2融解熱量15.8J/g、分子量約2800万)を用いた。ここで使用されるPTFEファインパウダーAは、テトラフルオロエチレンを乳化重合して生成したPTFE粒子(一次粒子)からなるもの(乳化重合品)を乾燥し、造粒した粉体である。PTFEファインパウダーAの比重及び示差走査熱量計(島津製作所社製「DSC-60A」)による示差走査熱量分析結果を表1に示す。なお、示差走査熱量計による示差走査熱量分析は、上述の方法により行った。
<Porous membrane>
[Test No. 1]
(Molding process)
PTFE fine powder A (second heat of fusion: 15.8 J/g, molecular weight: about 28,000,000) shown in Table 1 was used as the raw material powder. The PTFE fine powder A used here is a powder obtained by drying and granulating PTFE particles (primary particles) produced by emulsion polymerization of tetrafluoroethylene (emulsion polymerization product). Table 1 shows the specific gravity of PTFE fine powder A and the results of differential scanning calorimetry using a differential scanning calorimeter (“DSC-60A” manufactured by Shimadzu Corporation). In addition, differential scanning calorimetry by a differential scanning calorimeter was performed by the above-mentioned method.
 PTFEファインパウダー100質量部に対し、液状潤滑剤としてのナフサ(出光石油社製「スーパーゾルFP-25」、沸点:50℃~180℃)18質量部の割合で混錬した。次に、上記混錬物を成形機に入れて圧縮成形し、ブロック状成形物(一次成形体)を得た。次に、該ブロック状成形物を連続的にシート状に押出成形した後、圧延ローラに通し、さらに液状潤滑剤を除去するために加熱ロール(130℃~220℃)に通してロールに巻き取り、平均厚さ320μmのPTFEシートを形成した。次に、ロール温度250℃~280℃で縦方向(流れ方向)に4倍延伸した。続いて縦延伸後のフィルムの横方向(幅方向)の両端をチャックで掴み、流れ方向とは垂直な方向である横方向に150℃の雰囲気下で25倍延伸を行ったそのまま285℃で0.25~1分間保持して熱固定を行った。この延伸により、厚さ7μmの試験No.1の多孔質膜を得た。
 このように延伸されたシートを360℃の加熱炉を通過させて1.5分間焼結し、試験No.1の多孔質膜を得た。
18 parts by mass of naphtha (“Supersol FP-25” manufactured by Idemitsu Oil Co., Ltd., boiling point: 50° C. to 180° C.) as a liquid lubricant was kneaded with 100 parts by mass of PTFE fine powder. Next, the kneaded material was placed in a molding machine and compression molded to obtain a block-shaped molded product (primary molded product). Next, the block-shaped molding was continuously extruded into a sheet, passed through a rolling roller, passed through a heating roll (130° C. to 220° C.) to remove the liquid lubricant, and wound around a roll to form a PTFE sheet having an average thickness of 320 μm. Next, the film was stretched 4 times in the machine direction (machine direction) at a roll temperature of 250°C to 280°C. Subsequently, both ends of the longitudinally stretched film in the lateral direction (width direction) were gripped with chucks, and the film was stretched 25 times in an atmosphere of 150 ° C. in the lateral direction, which is the direction perpendicular to the machine direction. By this stretching, test no. A porous membrane of No. 1 was obtained.
The sheet thus stretched was passed through a heating furnace at 360° C. and sintered for 1.5 minutes. A porous membrane of No. 1 was obtained.
[試験No.2]
 原料粉末として表1に示す比重及び示差走査熱量分析結果を有するPTFEファインパウダーB(第2融解熱量17.0J/g、分子量約2300万)を用い、PTFEファインパウダー100質量部に対し、液状潤滑剤としてのナフサを16質量部の割合で混錬したこと、並びに、縦延伸は4倍の延伸倍率とし、横延伸は21倍の延伸倍率としたこと以外は、No.1の多孔質膜と同様の工程により試験No.2の多孔質膜を得た。
[Test No. 2]
PTFE fine powder B (second heat of fusion: 17.0 J/g, molecular weight: about 23,000,000) having a specific gravity and differential scanning calorimetry results shown in Table 1 was used as the raw material powder, and 100 parts by mass of the PTFE fine powder was kneaded with 16 parts by mass of naphtha as a liquid lubricant. Test No. 1 by the same process as the porous membrane of Test No. 1. No. 2 porous membrane was obtained.
[試験No.3]
 原料粉末として表1に示す比重及び示差走査熱量分析結果を有するPTFEファインパウダーC(第2融解熱量16.8J/g、分子量約2200万)を用い、PTFEファインパウダー100質量部に対し、液状潤滑剤としてのナフサを16質量部の割合で混錬したこと、並びに、縦延伸は6倍の延伸倍率とし、横延伸は25倍の延伸倍率としたこと以外は、No.1の多孔質膜と同様の工程により試験No.3の多孔質膜を得た。
[Test No. 3]
PTFE fine powder C (second heat of fusion 16.8 J/g, molecular weight of about 22 million) having a specific gravity and differential scanning calorimetry results shown in Table 1 was used as the raw material powder, and 100 parts by mass of PTFE fine powder was kneaded with 16 parts by mass of naphtha as a liquid lubricant. Test No. 1 by the same process as the porous membrane of Test No. 1. No. 3 porous membrane was obtained.
<評価>
[押出圧力]
 キャピラリーレオメータ(マルバーン社製「RH7」)を用い、以下に示す方法により測定した。PTFEファインパウダーA、B及びC100質量部に対し、液状潤滑剤としてイソパラフィン系炭化水素(出光スーパーゾルFP-25)を使用し、20質量部の割合で混錬した。次に、上記混錬物を直径15mmのバレル部に充填し、キャピラリーダイスを使用して測定温度50℃にて100mm/分の速度で押し出した時の圧力を測定した。キャピラリーダイスは流入角90°で、キャピラリーダイの長さ0.25mm、内径2.0mmを使用した。
<Evaluation>
[Extrusion pressure]
Using a capillary rheometer ("RH7" manufactured by Malvern), measurement was performed by the method shown below. 20 parts by mass of isoparaffinic hydrocarbon (Idemitsu Supersol FP-25) was used as a liquid lubricant and kneaded with 100 parts by mass of PTFE fine powders A, B and C. Next, the kneaded material was filled in a barrel portion having a diameter of 15 mm, and was extruded at a measurement temperature of 50° C. at a speed of 100 mm/min using a capillary die, and the pressure was measured. A capillary die with an inlet angle of 90° and a capillary die length of 0.25 mm and an inner diameter of 2.0 mm was used.
[平均流量孔径および孔径比]
 初めに、試験No.1~試験No.3の多孔質膜について、ASTM F316-03、JIS-K3832:1990に準拠して、試薬として表面張力15.9mN/mのプロピレン,1,1,2,3,3,3酸化ヘキサフッ酸(PMI社製「GALWICK」)を用い、細孔径分布測定器(PMI社製パームポロメータ「CFP-1500A」)にて、孔径分布を測定した。そして、孔径分布から最大孔径[nm]と平均流量孔径[nm]を求め、下記式から孔径比[%]を算出した。孔径比が大きくなるほど多孔質膜の孔径のばらつきが大きく、多孔質膜の濾過処理の精度が低下することを意味する。
 孔径比[%]={(最大孔径-平均流量孔径)/平均流量孔径}×100
[Average flow pore size and pore size ratio]
First, test no. 1 to test No. For the porous membrane No. 3, propylene, 1,1,2,3,3,3 hexafluoric acid with a surface tension of 15.9 mN/m (“GALWICK” manufactured by PMI) was used as a reagent in accordance with ASTM F316-03 and JIS-K3832: 1990, and the pore size distribution was measured using a pore size distribution measuring device (perm porometer “CFP-1500A” manufactured by PMI). Then, the maximum pore diameter [nm] and the average flow pore diameter [nm] were obtained from the pore diameter distribution, and the pore diameter ratio [%] was calculated from the following formula. The larger the pore diameter ratio, the greater the variation in the pore diameters of the porous membrane, which means that the accuracy of the filtration treatment of the porous membrane is lowered.
Pore diameter ratio [%] = {(maximum pore diameter - average flow pore diameter) / average flow pore diameter} x 100
[気孔率]
 気孔率は、ASTM-D-792に準拠して試験No.1~試験No.3の多孔質膜の密度を測定し、各多孔質膜の体積に対する空孔の総体積の割合を求めた。具体的には、以下の手順で気孔率を算出した。初めに、試験No.1~試験No.3の各多孔質膜をΦ60mmの円形に打ち抜いて試料を作製した後に、質量[g]と厚さ[mm]を測定した。質量は質量天秤を用いて測定し、厚さはデジタルシックネスゲージを用いて測定した。そして、下記式から気孔率[%]を算出した。
 気孔率[%]=[1-{質量/(試料の片面の面積×厚さ×比重2.17)}]×100
[Porosity]
Porosity is determined by test No. according to ASTM-D-792. 1 to test No. The density of the porous membrane of No. 3 was measured, and the ratio of the total volume of pores to the volume of each porous membrane was obtained. Specifically, the porosity was calculated by the following procedure. First, test no. 1 to test No. 3 was punched into a circle of Φ60 mm to prepare a sample, and then the mass [g] and thickness [mm] were measured. Mass was measured using a mass balance and thickness was measured using a digital thickness gauge. Then, the porosity [%] was calculated from the following formula.
Porosity [%] = [1-{mass / (area of one side of sample x thickness x specific gravity 2.17)}] x 100
 試験No.1~試験No.3の多孔質膜の押出圧力、孔径比及び気孔率の評価結果を表1に示す。 "Test No. 1 to test No. Table 1 shows the evaluation results of the extrusion pressure, pore diameter ratio and porosity of the porous membrane No. 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲を有する吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下である試験No.1及び試験No.2の多孔質膜は試験No.3の多孔質膜に比べて押出圧力及び孔径比が低かった。このことから、試験No.1及び試験No.2の多孔質膜は、多孔質膜の孔径のばらつきが小さく、高精度の濾過処理性能を有することがわかる。特に、試験No.1の多孔質膜においては、原料であるPTFEファインパウダーAの2nd.Runの融解熱量が低く、PTFEファインパウダーAが最も分子量が高いにもかかわらず、1st.Runの融解曲線の300℃以上360℃以下の範囲に有する吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下であることで、多孔質膜の製造時の押出圧力が良好な範囲に低減され、孔径のばらつきも小さくなった。
 また、試験No.1及び試験No.2は、一次粒子径における最大粒子径と最小粒子径との差が200nm以下であり、昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲の融解熱量が60.0J/g以上であるPTFEファインパウダーを原料に用いることで、成形時における液状潤滑剤の浸透性がより向上し、押出圧力をより低減できたと考えられる。
As shown in Table 1, the 1st. Test No. in which the difference between the onset temperature and the endset temperature of the endothermic peak having a range of 300° C. or higher and 360° C. or lower in the Run melting curve is 20° C. or lower. 1 and test no. The porous membrane of Test No. 2 was tested. The extrusion pressure and pore size ratio were lower than the porous membrane of No. 3. From this, Test No. 1 and test no. The porous membrane of No. 2 has a small variation in pore diameter and has high-precision filtration performance. In particular, test no. In the porous membrane of No. 1, 2nd. Although Run has a low heat of fusion and PTFE fine powder A has the highest molecular weight, 1st. When the difference between the onset temperature and the endset temperature of the endothermic peak in the range of 300° C. or higher and 360° C. or lower in the Run melting curve is 20° C. or less, the extrusion pressure during the production of the porous membrane is reduced to a favorable range, and the variation in pore size is also reduced.
Also, test no. 1 and test no. 2 has a difference of 200 nm or less between the maximum particle size and the minimum particle size in the primary particle size, and is obtained by differential scanning calorimetry at a heating rate of 10° C./min. By using PTFE fine powder with a heat of fusion of 60.0 J/g or more in the range of 300° C. or higher and 360° C. or lower in the melting curve of Run as a raw material, it is believed that the permeability of the liquid lubricant during molding was further improved, and the extrusion pressure could be further reduced.
 以上の結果から、当該多孔質膜は製造時の押出圧力が低減され、孔径のばらつきが小さいので、高精度の濾過処理性能が要求されるフィルタ等として好適に用いることができる。 From the above results, the porous membrane can be suitably used as a filter or the like that requires high-precision filtration performance, because the extrusion pressure during manufacturing is reduced and the variation in pore size is small.
1 多孔質膜、2 支持膜、10,20 多孔質膜積層体。 1 Porous membrane, 2 Supporting membrane, 10, 20 Porous membrane laminate.

Claims (10)

  1.  ポリテトラフルオロエチレンを主成分とする多孔質膜であって、
     昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線が、300℃以上360℃以下の範囲で吸熱ピークを有し、
     前記吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下である多孔質膜。
    A porous membrane containing polytetrafluoroethylene as a main component,
    1st. obtained by differential scanning calorimetry at a heating rate of 10° C./min. The melting curve of Run has an endothermic peak in the range of 300 ° C. or higher and 360 ° C. or lower,
    The porous membrane, wherein the difference between the onset temperature and the endset temperature of the endothermic peak is 20°C or less.
  2.  前記吸熱ピークの前記オンセット温度と前記エンドセット温度との差が15℃以下である請求項1に記載の多孔質膜。 The porous membrane according to claim 1, wherein the difference between the onset temperature and the endset temperature of the endothermic peak is 15°C or less.
  3.  気孔率が40%以上90%以下である請求項1又は請求項2に記載の多孔質膜。 The porous membrane according to claim 1 or claim 2, which has a porosity of 40% or more and 90% or less.
  4.  孔径分布の平均流量孔径が69nm以上107nm以下である請求項1または請求項2に記載の多孔質膜。 The porous membrane according to claim 1 or 2, wherein the average flow pore size of the pore size distribution is 69 nm or more and 107 nm or less.
  5.  孔径分布の孔径比が17%以上49%以下である請求項1または請求項2に記載の多孔質膜。 The porous membrane according to claim 1 or claim 2, wherein the pore size ratio of the pore size distribution is 17% or more and 49% or less.
  6.  請求項1から請求項5のいずれか1項に記載の多孔質膜を1又は複数備える多孔質膜積層体。 A porous membrane laminate comprising one or a plurality of porous membranes according to any one of claims 1 to 5.
  7.  ポリテトラフルオロエチレンを主成分とする1又は複数の支持膜をさらに備え、前記支持膜が前記多孔質膜の片面又は両面に積層されている請求項6に記載の多孔質膜積層体。 The porous membrane laminate according to claim 6, further comprising one or more supporting membranes containing polytetrafluoroethylene as a main component, and the supporting membranes being laminated on one side or both sides of the porous membrane.
  8.  ポリテトラフルオロエチレンの粉末と液状潤滑剤との混練物を成形する工程を備え、
     前記ポリテトラフルオロエチレンの一次粒子径における最大粒子径と最小粒子径との差が200nm以下である多孔質膜の製造方法。
    A step of forming a kneaded product of polytetrafluoroethylene powder and a liquid lubricant,
    A method for producing a porous membrane, wherein the difference between the maximum particle size and the minimum primary particle size of the polytetrafluoroethylene is 200 nm or less.
  9.  前記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲の融解熱量が、60.0J/g以上である請求項8に記載の多孔質膜の製造方法。 obtained by differential scanning calorimetry at a temperature elevation rate of 10°C/min for the polytetrafluoroethylene, the 1st. 9. The method for producing a porous membrane according to claim 8, wherein the heat of fusion in the range of 300° C. or higher and 360° C. or lower in the Run melting curve is 60.0 J/g or more.
  10.  前記ポリテトラフルオロエチレンの昇温速度10℃/分の示差走査熱量分析で得られる1st.Runの融解曲線における300℃以上360℃以下の範囲を有する吸熱ピークのオンセット温度とエンドセット温度との差が20℃以下である請求項8に記載の多孔質膜の製造方法。 obtained by differential scanning calorimetry at a temperature elevation rate of 10°C/min for the polytetrafluoroethylene, the 1st. 9. The method for producing a porous membrane according to claim 8, wherein the difference between the onset temperature and the endset temperature of the endothermic peak having a range of 300° C. or more and 360° C. or less in the Run melting curve is 20° C. or less.
PCT/JP2022/039922 2022-01-20 2022-10-26 Porous membrane, porous membrane laminate, and production method for porous membrane WO2023139868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007434 2022-01-20
JP2022-007434 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023139868A1 true WO2023139868A1 (en) 2023-07-27

Family

ID=87348021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039922 WO2023139868A1 (en) 2022-01-20 2022-10-26 Porous membrane, porous membrane laminate, and production method for porous membrane

Country Status (2)

Country Link
TW (1) TW202335733A (en)
WO (1) WO2023139868A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174452A (en) * 1989-09-12 1991-07-29 Sumitomo Electric Ind Ltd Porous article of polytetrafluoroethylene and preparation thereof
JP2012144717A (en) * 2010-12-21 2012-08-02 Daikin Industries Ltd Polytetrafluoroethylene mixture
JP2015009220A (en) * 2013-07-01 2015-01-19 住友電工ファインポリマー株式会社 Porous polytetrafluoroethylene membrane and production method of the same
JP2015128061A (en) * 2013-11-29 2015-07-09 旭化成イーマテリアルズ株式会社 Polymer electrolyte membrane
JP2015226877A (en) * 2014-05-30 2015-12-17 住友電工ファインポリマー株式会社 Porous filter
JP2017193112A (en) * 2016-04-20 2017-10-26 住友電工ファインポリマー株式会社 Laminate and production method of laminate
JP2021178948A (en) * 2020-05-08 2021-11-18 三井・ケマーズ フロロプロダクツ株式会社 Porous membrane composed of polytetrafluoroethylene and/or modified polytetrafluoroethylene having high strength and small pore diameter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174452A (en) * 1989-09-12 1991-07-29 Sumitomo Electric Ind Ltd Porous article of polytetrafluoroethylene and preparation thereof
JP2012144717A (en) * 2010-12-21 2012-08-02 Daikin Industries Ltd Polytetrafluoroethylene mixture
JP2015009220A (en) * 2013-07-01 2015-01-19 住友電工ファインポリマー株式会社 Porous polytetrafluoroethylene membrane and production method of the same
JP2015128061A (en) * 2013-11-29 2015-07-09 旭化成イーマテリアルズ株式会社 Polymer electrolyte membrane
JP2015226877A (en) * 2014-05-30 2015-12-17 住友電工ファインポリマー株式会社 Porous filter
JP2017193112A (en) * 2016-04-20 2017-10-26 住友電工ファインポリマー株式会社 Laminate and production method of laminate
JP2021178948A (en) * 2020-05-08 2021-11-18 三井・ケマーズ フロロプロダクツ株式会社 Porous membrane composed of polytetrafluoroethylene and/or modified polytetrafluoroethylene having high strength and small pore diameter

Also Published As

Publication number Publication date
TW202335733A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
KR0150640B1 (en) Process for producing multilayer polytetra-fluoroethylene porous membrane
JP5158522B2 (en) Method for producing fluororesin thin film
TWI526243B (en) Porous multi - layer filter
RU2124391C1 (en) Method of manufacturing multilayer polytetrafluoroethylene porous membrane and half-sintered polytetrafluoroethylene multilayer film
CA2650680C (en) Gas separation membrane
WO2010092938A1 (en) Porous multilayer filter and method for producing same
TWI706977B (en) Method for preparing porous membrane of fluorine-based resin and porous membrane of fluorine-based resin
CN104220500B (en) Fluororesin microporous membrane, its manufacture method and use the filter cell of this fluororesin microporous membrane
KR20140105720A (en) Porous polytetrafluoroethylene resin film, porous polytetrafluoroethylene resin film composite, and separation membrane element
JP6338054B2 (en) Method for producing porous filter
JP2014042869A (en) Porous multi-layer filter
JP5873389B2 (en) Method for producing modified polytetrafluoroethylene microporous membrane
JPH03179039A (en) Production of multilayered porous membrane of polytetrafluoroethylene
WO2023139868A1 (en) Porous membrane, porous membrane laminate, and production method for porous membrane
JP2017193112A (en) Laminate and production method of laminate
WO2023139869A1 (en) Porous membrane and porous membrane laminate
US11872531B2 (en) Fluorine-based resin porous membrane and method for preparing the same
WO2023162368A1 (en) Porous membrane laminate
KR102145535B1 (en) Preparation method of porous fluorine resin sheet and porous fluorine resin sheet
WO2021235118A1 (en) Porous film laminate, filter element, and production method for porous film laminate
WO2019107746A1 (en) Method for producing fluorine-based resin porous film
JPH08174738A (en) Porous tetrafluoroethylene resin laminate and production thereof
JP2012192308A (en) Crystallizable polymer microporous membrane and method for manufacturing the same, and filtration film and filtration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922020

Country of ref document: EP

Kind code of ref document: A1