JPS595037A - Manufacture of porous tetrafluoroethylene resin - Google Patents

Manufacture of porous tetrafluoroethylene resin

Info

Publication number
JPS595037A
JPS595037A JP57114033A JP11403382A JPS595037A JP S595037 A JPS595037 A JP S595037A JP 57114033 A JP57114033 A JP 57114033A JP 11403382 A JP11403382 A JP 11403382A JP S595037 A JPS595037 A JP S595037A
Authority
JP
Japan
Prior art keywords
temperature
stretching
tetrafluoroethylene resin
porous
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57114033A
Other languages
Japanese (ja)
Other versions
JPS6144656B2 (en
Inventor
Shigeru Asako
茂 浅古
Koichi Okita
晃一 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57114033A priority Critical patent/JPS595037A/en
Publication of JPS595037A publication Critical patent/JPS595037A/en
Publication of JPS6144656B2 publication Critical patent/JPS6144656B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/205Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising surface fusion, and bonding of particles to form voids, e.g. sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To provide a uniform fine pore, by stretching a sintered nonporous tetrafluoroethylene resin by three times and below at the temperature under a secondary transition point, then stretching it by two times and more at the temperature above the secondary transition point and below a melting point. CONSTITUTION:After a sintered nonporous tetrafluoroethylene resin is stretched by three times and below at the temperature under a secondary transition point near 130 deg.C, it is stretched by two times and more at the temperature above the secondary transition point and below a melting point and the porous tetrafluoroethylene resin having a uniform and fine pore is obtained. A stretch velocity can be set at will according to a desired pore ratio and pore diameter and if it is in the range in which a uniform temperature and deformation stress are given to the starting material of the tetrafluoroethylene resin to be stretched, the larger the value of the stretch velocity is, the larger the deformation stress is made, so it is suitable for making the resulted pore diameter uniform and fine.

Description

【発明の詳細な説明】 本発明は、フィルター、電解用隔膜、電池用隔膜、ガス
分離用隔膜などの用途に適した均一な微細孔径を有する
多孔質四弗化エチレン樹脂の新規な製造方法に関するも
のである。多孔質四弗化エチレン樹脂は、四弗化エチレ
ン樹脂(以下PTFEと略記する)の優れた耐熱性、耐
薬品性、電気絶縁性、撥水性を生かし、各種フィルター
、隔膜の他、防水通気性材料、電線被覆材料、シール材
料等に利用されている。その製造方法は、既にいくつか
の方法が知られているが、その中で商業的に魅力あるも
のは、延伸操作により多孔質化する方法である。基本的
には、特公昭42−1’1560  で開示されている
PTFE粉末と液体潤滑剤からペースト法でシートある
いはチューブ状に成型したのち未焼成状態で延伸し、つ
いで焼成することにより多孔質化する方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing porous tetrafluoroethylene resin having a uniform micropore size suitable for use in filters, electrolytic membranes, battery membranes, gas separation membranes, etc. It is something. Porous tetrafluoroethylene resin takes advantage of the excellent heat resistance, chemical resistance, electrical insulation, and water repellency of tetrafluoroethylene resin (hereinafter abbreviated as PTFE), and is used in various filters, diaphragms, and other waterproof and breathable materials. It is used for materials, wire covering materials, sealing materials, etc. Several methods are already known for producing the material, but the most commercially attractive method is to make it porous through a stretching operation. Basically, PTFE powder and liquid lubricant disclosed in Japanese Patent Publication No. 42-1'1560 are formed into a sheet or tube shape using a paste method, stretched in an unfired state, and then fired to make them porous. This is the way to do it.

この方法は、l]広い製品形態に適用でき、気孔率の高
い多孔質体を得ることが可能という利点を有するが、反
面極めて微細な孔径、例えば0.1μ より微細な孔径
をもつ多孔質体を得ることが不可能PTFEの製造方法
を提供することにある。
This method has the advantage that it can be applied to a wide range of product forms and that it is possible to obtain porous bodies with high porosity. The object of the present invention is to provide a method for producing PTFE which is impossible to obtain.

本発明は、焼成した無孔質PTFEを延伸温度域により
二段に分けて延伸を行い多孔質化することを、特徴とす
る、即ち焼成した無孔質PTFEを130℃近傍の二次
転移点未満の温度で3倍以下の延伸を行い、次いで該二
次転移温度以上で、かつ融点以下め温度で少くとも2倍
以上の延伸を行う製造方法に関するものであり、均一か
つ極めて微細な孔を有する多孔質PTFEを得ることが
できる。焼成により粒子が融着一体化した無孔質PTF
Eを出発材料として低温での第1の延伸を行うことによ
りその大きな引張応力のため、極めて微細なりラックが
全面に数多く形成され、続いて行う高温での第2の延伸
操作では比較的低い応力により微細クラックを核として
クラックが相互に成長していくというメカニズムが推定
される。この様な製造方法は従来全く知られていなかっ
たものであり、以下には本発明をf程順に更に詳細に説
明する。
The present invention is characterized in that the fired non-porous PTFE is stretched in two stages depending on the stretching temperature range to make it porous. This relates to a manufacturing method in which stretching is carried out by a factor of 3 times or less at a temperature below the secondary transition temperature, and then by a factor of at least 2 times or more at a temperature above the secondary transition temperature and below the melting point. It is possible to obtain porous PTFE having the following properties. Non-porous PTF whose particles are fused and integrated by firing
By performing the first stretching at low temperature using E as a starting material, many extremely fine racks are formed over the entire surface due to its large tensile stress, and in the subsequent second stretching operation at high temperature, the stress is relatively low. Therefore, it is assumed that the mechanism is that cracks grow together with micro cracks as nuclei. Such a manufacturing method was completely unknown in the past, and the present invention will be explained in more detail below in order of f.

(1)無孔質PTFEの製造 所望する製品形状に合わせて未焼成PTFE粉末を成形
した後、焼成、冷却する。成形は圧縮成形あるいはラム
押出で行なわれてもよいが、より好ましくは、ファイン
パウダーと液体潤滑剤の混和これが更に20メツシュ程
度の二次粒子に造粒されている。液体潤滑剤はPTFE
表面を濡らすことが出来、かつ成形後蒸発、抽出等によ
り除去することが可能な、例えばソルベントナフサ、ホ
ワイトオイル等が使用できる。又、その配合量は通常P
TFE 100に対し、17〜35重量%の範囲で用い
られる。このI’TFEファインパウダーに液体潤滑剤
が均一かつ十分に分散、浸透された混和物を押出又は/
及び圧延によりフィルム状あるいはチューブ状等の形状
に成形する。次に液体潤滑剤を蒸発あるいは抽出により
除去する。ここで得られる未焼成PTFE成形品は、除
去された液体潤滑剤の部分が空隙として残るため、その
配合量に応じた気孔率を有する多孔質体である。これを
そのまま例えば加熱炉中で焼成すると、溶融した樹脂は
相互に融着し、無孔質となる。この場合押出あるいは圧
延の成形方向に幾分熱収縮する傾向にあるため、それを
収縮しない様に焼成することが好ましい。従って通常の
焼成方法では、長さ方向が幾分収縮するものの断面は、
成形時とほぼ同じ寸法二駄イえ、長さ方向は収縮しない
様に保持したまま焼成することにより、より薄膜化され
たフィルムあるいはチューブ等の無孔質化のより完全な
焼成品を得ることもできる。フィルムでは例えば熱ロー
ル間を通すことにより、チューブでは、該チューブの外
径より細いグイと内径より太い浮遊ダイで引抜くことで
この圧縮力を与えることが出来る。
(1) Production of non-porous PTFE Unfired PTFE powder is shaped into a desired product shape, then fired and cooled. Molding may be carried out by compression molding or ram extrusion, but more preferably, fine powder and liquid lubricant are mixed and this is further granulated into secondary particles of about 20 mesh. Liquid lubricant is PTFE
For example, solvent naphtha, white oil, etc., which can wet the surface and which can be removed by evaporation, extraction, etc. after molding, can be used. In addition, its blending amount is usually P
It is used in an amount of 17 to 35% by weight based on 100 TFE. This I'TFE fine powder is extruded or/
Then, it is formed into a film or tube shape by rolling. The liquid lubricant is then removed by evaporation or extraction. The green PTFE molded article obtained here is a porous body having a porosity depending on the amount of the liquid lubricant mixed, since the removed portion of the liquid lubricant remains as voids. When this is fired as it is, for example, in a heating furnace, the molten resins fuse together and become non-porous. In this case, since it tends to undergo some heat shrinkage in the direction of extrusion or rolling, it is preferable to sinter it so that it does not shrink. Therefore, in the normal firing method, although the length direction shrinks somewhat, the cross section is
By firing the product with almost the same dimensions as when molded and keeping it in the longitudinal direction so as not to shrink, it is possible to obtain a more complete fired product with thinner films or tubes that are non-porous. You can also do it. This compressive force can be applied to a film, for example, by passing it between heated rolls, and to a tube, by drawing it out with a gouer that is thinner than the outer diameter of the tube and a floating die that is thicker than the inner diameter of the tube.

焼成された後、成形品は冷却されるが、その冷却速度に
よって成形品の結晶化度が変化してくる。
After being fired, the molded product is cooled, and the degree of crystallinity of the molded product changes depending on the cooling rate.

結晶化度は用いた樹脂の分子量にも幾分関係するが、一
般には急冷した場合、50〜6o96の結晶化度になる
。これを徐冷しん場合、冷却速度を遅くするほど結晶化
度が高くなる。本発明のより好ましい実施においては、
結晶化度は高いことが必要であり、焼成した後において
も6596以上の結晶化度を有する無孔質PTFEが次
の工程の延伸過程でより均一かつ微細な孔をもった多孔
質PTFEを与えることが判った。結晶化度を上げるも
う一つの手段としては、焼成したPTFE成形品を再び
融点温度以上から熱分解・劣化が始まる8 80 ’C
以下の温度に加熱後徐冷してもよい。
The degree of crystallinity is somewhat related to the molecular weight of the resin used, but generally, when rapidly cooled, the degree of crystallinity is 50 to 6o96. When this is slowly cooled, the slower the cooling rate, the higher the degree of crystallinity. In a more preferred implementation of the invention,
It is necessary to have a high crystallinity, and non-porous PTFE with a crystallinity of 6596 or higher even after firing will yield porous PTFE with more uniform and finer pores in the next drawing process. It turned out that. Another way to increase the crystallinity is to heat the fired PTFE molded product again at 880'C, where thermal decomposition and deterioration begin at a temperature above the melting point.
It may be heated to the following temperature and then slowly cooled.

いずれにしても融点近傍での冷却速度が結晶化度・の結
果、より均一でかつ微細な孔の生長とより少ない破断の
発生につながると考えられる。
In any case, it is thought that the cooling rate near the melting point will lead to more uniform and fine pore growth and fewer fractures as a result of the crystallinity.

(2)焼成した無孔質PTF Eの延伸」1記(1)の
工程で得た無孔質PTFEをまず第1に130℃近傍の
二次転移点未満の温度で8倍以下の延伸を行う。この低
温での延伸操作はPTFEの変形に対して極めて高い応
力を必要とし、非晶質と結晶質の界面に極めて微細なり
ラックを発生せしめる。従って延伸温度が低いほど生成
するクラックに微細性と均一性を与え、より好ましくは
60°C以下で行なわれる。又この低温延伸は、最大で
3倍までの延伸倍率の範囲で行うが1.2倍から2倍の
範囲で行う方が破断の発生頻度を下げる上で好ましい。
(2) Stretching of fired non-porous PTFE" The non-porous PTFE obtained in step 1 (1) is first stretched by 8 times or less at a temperature below the secondary transition point near 130°C. conduct. This low temperature stretching operation requires extremely high stress to deform the PTFE and causes extremely fine racks to form at the amorphous-crystalline interface. Therefore, the lower the stretching temperature, the finer and more uniform the generated cracks, and the stretching is preferably carried out at 60°C or lower. The low-temperature stretching is performed at a stretching ratio of up to 3 times, but it is preferable to perform it at a stretching ratio of 1.2 times to 2 times in order to reduce the frequency of breakage.

その理由は、延伸倍率を高くすると発生するクラックの
数は増えずに専ら大きさだけが増え、結局、破断を生じ
やすくしてしまう。それ故低温における第1の延伸だけ
で得られる多孔質PTFEは、極めて気孔率が低いもの
が、更に延伸倍率を無理に大きくしたものでは孔径のバ
ラツキの大きいものしか得られない。
The reason for this is that when the stretching ratio is increased, the number of cracks that occur does not increase, but only the size of the cracks increases, which ultimately makes them more likely to break. Therefore, porous PTFE obtained only by the first stretching at a low temperature has an extremely low porosity, but if the stretching ratio is further increased forcibly, only the pore diameters can vary widely.

−[て相互に成長し、膜の両表面に貫通した均一孔が発
生することになる。
- [and will grow together, resulting in uniform pores penetrating both surfaces of the film.

高温延伸は、少くとも2倍以上の延伸倍率で行う。The high temperature stretching is performed at a stretching ratio of at least 2 times or more.

これ以下の延伸倍率では微細孔の成長が不十分であり、
一般に延伸倍率が高いほど、気孔率は増大する。具体的
な延伸倍率の設定は、低温延伸における延伸倍率と合わ
せて考慮される。通常低温延伸は少ない倍率で高温延伸
は高い倍率で行うことが好ましく、更に好適な条件とし
ては低温での延伸倍率と高温での延伸倍率の比が2倍と
4倍という様にl:2以上の値で行うのがよい。
If the stretching ratio is lower than this, the growth of micropores will be insufficient.
Generally, the higher the stretching ratio, the higher the porosity. The setting of the specific stretching ratio is considered together with the stretching ratio in low-temperature stretching. Generally, it is preferable to carry out low-temperature stretching at a low stretching ratio and high-temperature stretching at a high stretching ratio.More preferable conditions include l:2 or higher, such as a ratio of the stretching ratio at low temperature to the stretching ratio at high temperature of 2 times and 4 times. It is best to use the value .

延伸速度は所望の気孔率及び孔径により任意に設定でき
るが、延伸される出発材料のPTFEに均一  −な温
度と変形応力を与えられる範囲であれば、延伸速度の値
が大きい程、変形応力を大きくし、結果として発生する
孔径を均一にし、微細孔径とするうえで好ましい。
The stretching speed can be set arbitrarily depending on the desired porosity and pore diameter, but as long as a uniform temperature and deformation stress can be applied to the starting material PTFE to be stretched, the higher the stretching speed, the more the deformation stress can be reduced. It is preferable to increase the size of the pores, make the resulting pore diameter uniform, and make the pore diameter microscopic.

一方、高温延伸だけで所望する均一微細な孔を有する多
孔質PTF Eを得ることはできない。即ち高温下の延
伸を行うと、いわゆるネッキングとなり、はとんど気孔
率は増大せずに専ら成形品断面1、凝るにすぎない。結
論として高い応力が作用す□、ゆ る低温延伸と結晶、非晶間のすべり特性がよい高温延伸
を組み合せることにより初めて均一かつ微実施例1゜ PTFEファインパウダー(ダイキン工業社製、9− 商品名F104.) 100重量部に対して液体潤滑剤
(シェル石油社製、ナフサA5)27重量部を混和し、
該混和物を予備成形後、丸棒状に押出し、ロール圧延で
厚さ0,1朋のフィルムを得た。
On the other hand, it is not possible to obtain porous PTFE having desired uniform fine pores only by high-temperature stretching. That is, when stretching is carried out at high temperatures, so-called necking occurs, and the porosity does not increase at all, but only the cross section of the molded product becomes stiff. In conclusion, by combining gentle low-temperature stretching with high stress and high-temperature stretching with good sliding properties between crystals and amorphous, uniform and fine Example 1゜PTFE Fine Powder (manufactured by Daikin Industries, Ltd., 9-product) can be produced. Name F104.) 27 parts by weight of a liquid lubricant (manufactured by Shell Oil Company, naphtha A5) is mixed with 100 parts by weight,
After preforming the mixture, it was extruded into a round bar shape and rolled into a film with a thickness of 0.1 mm.

次に該フィルムを160〜200℃に加熱し、ナフサを
揮発除去した後、355〜870℃の焼成炉と3o。
Next, the film was heated to 160 to 200°C to volatilize and remove the naphtha, and then placed in a firing furnace at 355 to 870°C.

〜340’Cの徐冷炉を通過させ、厚さQ、l mx、
結晶化度68%の無孔質PTFEを得た。このフィルム
を出発材として、まず初めに温度20℃において、表1
に示すように長さ方向に1.2倍以上から3倍までの延
伸を行なった。3倍より高い倍率の延伸を行なうとフィ
ルムは、しばしば破断し、不安定な状態であった。次に
低温延伸されたフィルムを180℃から280°Cの温
度範囲で同じ方向に2倍以表−1に示した。この比較例
では生成した孔が0.1μよ゛りも大きくなるか、また
は気孔率の低い多孔10− 質フィルムを得るにとどまつゼいる。
Passed through a slow cooling furnace at ~340'C, thickness Q, l mx,
Non-porous PTFE with a crystallinity of 68% was obtained. Using this film as a starting material, first, at a temperature of 20°C, Table 1
As shown in Figure 2, stretching was carried out in the length direction from 1.2 times or more to 3 times. When stretched at a ratio higher than 3 times, the film often broke and was unstable. Next, the low-temperature stretched film was stretched twice or more in the same direction in the temperature range of 180°C to 280°C as shown in Table-1. In this comparative example, the pores formed were larger than 0.1 μm, or only a porous 10-based film with a low porosity was obtained.

ここで各物性の測定方法について説明する。結晶化度は
、該PTF Eの比重をアセトン中で測定し、比重と結
晶化度の関係から求めた。この比重と結晶化度の関係は
X線回折および赤外線吸収スペクトル法によって求めら
れる。
Here, methods for measuring each physical property will be explained. The degree of crystallinity was determined by measuring the specific gravity of the PTFE in acetone and from the relationship between the specific gravity and the degree of crystallinity. The relationship between specific gravity and crystallinity is determined by X-ray diffraction and infrared absorption spectroscopy.

多孔質PTFEの気孔率は、水中浮遊法によって比重を
測定し、出発材との比重と比較して算出した。
The porosity of the porous PTFE was calculated by measuring the specific gravity by an underwater floating method and comparing it with the specific gravity of the starting material.

生成孔の大きさの測定は、水銀ポロシメーターを用いて
行なえるが、又5,000倍以上で撮映した電子顕微鏡
写真により評価することもできる。又孔が貫通孔である
かどうかの簡易判定法としては、PTFEを濡らすこと
が可能な溶剤を該成形品に滴下し、それが浸透して該成
形品が透明化すれば貫通孔であることがわかる。
The size of the generated pores can be measured using a mercury porosimeter, but it can also be evaluated using an electron micrograph taken at a magnification of 5,000 times or more. A simple method for determining whether a hole is a through hole is to drop a solvent capable of wetting PTFE onto the molded product, and if the solvent permeates and the molded product becomes transparent, it is a through hole. I understand.

いなかった。did not exist.

×2)孔の大きさのバラツキが大きい。×2) There is large variation in hole size.

実施例2゜ 実施例1と同じ方法で製造した0、1mi厚さの未焼成
PTFEフィルムを第1図に示す様なエンドレスベルト
上に圧縮力を与えながら貼りつける。
Example 2 An unfired PTFE film with a thickness of 0.1 mm produced in the same manner as in Example 1 is pasted onto an endless belt as shown in FIG. 1 while applying a compressive force.

ここで第1図に従って焼成工程を説明すると、■の供給
ロールから未焼成PTF Eフィルム9が送り出され、
圧着ロール2によりエンドレスベルト8」二に圧着され
る。加熱ロール8の伝熱により焼成であった。これを用
い表−2に示す条件で低温延伸と高温延伸を続けて行な
い、表−2に併記しん多孔質特性のフィルムを得た。
Here, to explain the firing process according to FIG. 1, the unfired PTF E film 9 is sent out from the supply roll (2)
It is crimped onto the endless belt 8'' by the crimping roll 2. Firing was performed by heat transfer from the heating roll 8. Using this, low-temperature stretching and high-temperature stretching were successively carried out under the conditions shown in Table 2 to obtain a film with the porous properties shown in Table 2.

実施例1と同じ混和物を用い、予備成形後、外径4 B
、内径3 myttのチューブを押出し、乾燥炉、焼成
炉、徐冷炉を通過させて、上記寸法で結晶化度741%
の無孔質PTFEチューブを得た。このチー13− ユーズを用い表−3に示す条件で低温延伸と高温延伸を
続けて行い、表−3に併記した多孔質特性のチューブを
得た。
Using the same mixture as in Example 1, after preforming, the outer diameter was 4 B.
, a tube with an inner diameter of 3 mytt was extruded and passed through a drying furnace, a firing furnace, and a slow cooling furnace to obtain a crystallinity of 741% with the above dimensions.
A non-porous PTFE tube was obtained. Using this Chee 13-use, low-temperature stretching and high-temperature stretching were successively carried out under the conditions shown in Table 3 to obtain tubes with porous properties shown in Table 3.

実施例1と同一方法により0.1111M厚さの未焼成
PTFEフィルムを得た後、加熱炉に通し、焼成後、直
ちに室温下で冷却した場合(試料Aとする)、70℃/
hr  の冷却速度で徐冷した場合(試料B)、更に1
5°C/hr  の冷却速度で徐冷した場合(試料C)
と3種類の冷却速度を変えた無孔質フィルムを製造した
After obtaining an unsintered PTFE film with a thickness of 0.1111M by the same method as in Example 1, it was passed through a heating furnace and immediately cooled at room temperature after firing (referred to as sample A).
When slowly cooling at a cooling rate of hr (sample B), an additional 1
When slowly cooling at a cooling rate of 5°C/hr (sample C)
Nonporous films were manufactured using three different cooling rates.

各試料の結晶化度を測定すると、試料Aが55%、試料
Bが65%、試料Cが71%であった。次に各試料を表
−4,に示す条件で低温延伸と高温延伸を続けて行い、
表−4に併記した多孔質特性のフィルムを得た。
When the crystallinity of each sample was measured, sample A was 55%, sample B was 65%, and sample C was 71%. Next, each sample was sequentially subjected to low-temperature stretching and high-temperature stretching under the conditions shown in Table 4.
A film with porous properties shown in Table 4 was obtained.

×1)延伸中破断が生じやすい。×1) Breakage easily occurs during stretching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、厚さ方向に圧縮を与え、焼成無孔質化するの
に適当な装置を模式的に例示する。 1は供給ロール、2は圧着ロール、3は加熱ロール、4
・は冷却ロール、5は引取ロール、6は巻取ロール、7
′ハ徐冷炉、8ハエンドレスベルト、97j1図 189−
FIG. 1 schematically illustrates an apparatus suitable for applying compression in the thickness direction and firing to make the material non-porous. 1 is a supply roll, 2 is a pressure roll, 3 is a heating roll, 4
・ is a cooling roll, 5 is a take-up roll, 6 is a take-up roll, 7
'C Annealing furnace, 8C Endless belt, 97j1 Figure 189-

Claims (6)

【特許請求の範囲】[Claims] (1)焼成した無孔質四弗化エチレン樹脂をII)°C
近傍の二次転移点未満の温度(以下低温という)で8倍
以下の延伸を行ない、次いで該二次転移温度以上でかつ
融点以下の温度(以下高温という)で少なくとも2倍以
上の延伸を行なうことを特徴とする多孔質四弗化エチレ
ン樹脂の製造方法。
(1) Calculated non-porous tetrafluoroethylene resin II) °C
Stretching is performed by 8 times or less at a temperature below the nearby secondary transition point (hereinafter referred to as low temperature), and then stretching is performed at least 2 times or more at a temperature above the secondary transition temperature and below the melting point (hereinafter referred to as high temperature). A method for producing porous tetrafluoroethylene resin, characterized by:
(2)低温での延伸を60℃以下の温度で行なうことを
特徴とする特許請求の範囲第一項の製造方法。
(2) The manufacturing method according to claim 1, characterized in that the low-temperature stretching is carried out at a temperature of 60° C. or lower.
(3)低温での延伸を1.2倍から2倍の範囲で行なう
ことを特徴とする特許請求の範囲第一項の製造方法。
(3) The manufacturing method according to claim 1, wherein the stretching at low temperature is performed in a range of 1.2 to 2 times.
(4)低温での延伸倍率と高温での延伸倍率の比が1:
2以上の値であることを特徴とする特許請求の範囲第一
項の製造方法。
(4) The ratio of the draw ratio at low temperature to the draw ratio at high temperature is 1:
The manufacturing method according to claim 1, wherein the value is 2 or more.
(5)延伸される無孔質四弗化エチレン樹脂が結晶化度
65%以上となる様に熱処理されていること=1− を特徴とする特許請求の範囲第一項の製造方法。
(5) The manufacturing method according to claim 1, characterized in that the nonporous tetrafluoroethylene resin to be stretched is heat-treated to have a crystallinity of 65% or more = 1-.
(6)延伸される無孔質四弗化エチレン樹脂が液体潤滑
剤を用いたペースト法で成型されたのち焼成されたもの
であることを特徴とする特許請求の範徴とする特許請求
の範囲第一項の製造方法。
(6) Claims characterized in that the non-porous tetrafluoroethylene resin to be stretched is molded by a paste method using a liquid lubricant and then fired. Manufacturing method of paragraph 1.
JP57114033A 1982-07-02 1982-07-02 Manufacture of porous tetrafluoroethylene resin Granted JPS595037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57114033A JPS595037A (en) 1982-07-02 1982-07-02 Manufacture of porous tetrafluoroethylene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57114033A JPS595037A (en) 1982-07-02 1982-07-02 Manufacture of porous tetrafluoroethylene resin

Publications (2)

Publication Number Publication Date
JPS595037A true JPS595037A (en) 1984-01-11
JPS6144656B2 JPS6144656B2 (en) 1986-10-03

Family

ID=14627344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114033A Granted JPS595037A (en) 1982-07-02 1982-07-02 Manufacture of porous tetrafluoroethylene resin

Country Status (1)

Country Link
JP (1) JPS595037A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466701A (en) * 1981-08-25 1984-08-21 Optrex Corporation Highly reliable electrooptical device and process for manufacturing the same
JPS61209096A (en) * 1985-03-09 1986-09-17 Shimizu Constr Co Ltd Treatment of waste water
JPS62244493A (en) * 1986-04-16 1987-10-24 Totoku Electric Co Ltd Apparatus for recirculating and purifying water
JPS62279920A (en) * 1986-05-28 1987-12-04 Daikin Ind Ltd Porous heat-shrinkable tetrafluoroethylene polymer pipe and its manufacture
JPS6428446A (en) * 1987-07-23 1989-01-31 Matsushita Electric Ind Co Ltd Remote controller
WO1989000879A1 (en) * 1987-07-30 1989-02-09 Toray Industries, Inc. Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
JP2005106286A (en) * 2003-09-09 2005-04-21 Kanagawa Acad Of Sci & Technol Slide type valve device
JP2013237808A (en) * 2012-05-16 2013-11-28 Sumitomo Electric Fine Polymer Inc Micropore film made of modified polytetrafluoroethylene and method of manufacturing the same, porous resin film composite, and filter element
JP2017205961A (en) * 2016-05-19 2017-11-24 住友電工ファインポリマー株式会社 Method for producing fluororesin coating body
WO2018221688A1 (en) * 2017-05-31 2018-12-06 日東電工株式会社 Polytetrafluoroethylene porous film
WO2023054723A1 (en) * 2021-09-30 2023-04-06 ダイキン工業株式会社 Polytetrafluoroethylene fine powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094579A (en) 2008-10-14 2010-04-30 Sumitomo Electric Fine Polymer Inc Method of manufacturing porous fluororesin thin film and porous fluororesin thin film

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466701A (en) * 1981-08-25 1984-08-21 Optrex Corporation Highly reliable electrooptical device and process for manufacturing the same
JPS61209096A (en) * 1985-03-09 1986-09-17 Shimizu Constr Co Ltd Treatment of waste water
JPS62244493A (en) * 1986-04-16 1987-10-24 Totoku Electric Co Ltd Apparatus for recirculating and purifying water
JPH0533650B2 (en) * 1986-05-28 1993-05-20 Daikin Ind Ltd
JPS62279920A (en) * 1986-05-28 1987-12-04 Daikin Ind Ltd Porous heat-shrinkable tetrafluoroethylene polymer pipe and its manufacture
JPS6428446A (en) * 1987-07-23 1989-01-31 Matsushita Electric Ind Co Ltd Remote controller
US5286324A (en) * 1987-07-30 1994-02-15 Toray Industries, Inc. Polytetrafluoroethylene resin porous membrane, separator making use of the porous membrane and methods of producing the porous membrane and the separator
US5158680A (en) * 1987-07-30 1992-10-27 Toray Industries, Inc. Polytetrafluoroethylene resin porous membrane, separator making use of the porous membrane and methods of producing the porous membrane and the separator
EP0343247B1 (en) * 1987-07-30 1993-03-03 Toray Industries, Inc. Porous polytetrafluoroethylene membrane, separating apparatus using same, and process for their production
EP0343247A1 (en) * 1987-07-30 1989-11-29 Toray Industries, Inc. Porous polytetrafluoroethylene membrane, separating apparatus using same, and process for their production
WO1989000879A1 (en) * 1987-07-30 1989-02-09 Toray Industries, Inc. Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
JP2005106286A (en) * 2003-09-09 2005-04-21 Kanagawa Acad Of Sci & Technol Slide type valve device
JP2013237808A (en) * 2012-05-16 2013-11-28 Sumitomo Electric Fine Polymer Inc Micropore film made of modified polytetrafluoroethylene and method of manufacturing the same, porous resin film composite, and filter element
JP2017205961A (en) * 2016-05-19 2017-11-24 住友電工ファインポリマー株式会社 Method for producing fluororesin coating body
WO2018221688A1 (en) * 2017-05-31 2018-12-06 日東電工株式会社 Polytetrafluoroethylene porous film
JP2018204006A (en) * 2017-05-31 2018-12-27 日東電工株式会社 Polytetrafluoroethylene porous film
CN110691811A (en) * 2017-05-31 2020-01-14 日东电工株式会社 Porous polytetrafluoroethylene film
EP3632971A4 (en) * 2017-05-31 2021-03-03 Nitto Denko Corporation Polytetrafluoroethylene porous film
CN110691811B (en) * 2017-05-31 2022-05-06 日东电工株式会社 Porous polytetrafluoroethylene film
WO2023054723A1 (en) * 2021-09-30 2023-04-06 ダイキン工業株式会社 Polytetrafluoroethylene fine powder
JP2023051890A (en) * 2021-09-30 2023-04-11 ダイキン工業株式会社 Polytetrafluoroethylene fine powder

Also Published As

Publication number Publication date
JPS6144656B2 (en) 1986-10-03

Similar Documents

Publication Publication Date Title
US5102921A (en) Polytetrafluoroethylene porous material and process for producing the same
US4707314A (en) Process for producing polytetrafluoroethylene porous films
US5026513A (en) Process for making rapidly recoverable PTFE
US4830062A (en) Porous heat-shrinkable tetrafluoroethylene polymer tube and process for producing the same
TWI374161B (en) Polytetrafluoroethylene porous film having elastic recovery in the direction of film thickness, process for producing it, and the use of the porous film
JPS595037A (en) Manufacture of porous tetrafluoroethylene resin
EP0313263A2 (en) Rapid recoverable PTFE and a process for its manufacture
JPH027967B2 (en)
JP2001011224A (en) Preparation of porous tube and usage of porous tube
EP0069577A2 (en) Process for the production of string-like porous material
JP2533229B2 (en) Polytetrafluoroethylene porous body and method for producing the same
JPH07119303B2 (en) Method for producing tetrafluoroethylene resin porous membrane
JPH0353103B2 (en)
US5911926A (en) Porous material of polytetrafluoroethylene and production process thereof
JPH05214140A (en) Porous film made of polytetrafluoroethylene and its production
JP2007016058A (en) Method for producing porous polytetrafluoroethylene membrane and porous polytetrafluoroethylene membrane
EP0418155A2 (en) Porous material of polytetrafluoroethylene and process for producing the same
WO2017090247A1 (en) Polytetrafluoroethylene porous film
JP3221074B2 (en) Method for producing continuous molded article of high crystallinity polytetrafluoroethylene
KR102267597B1 (en) Porous fluorine resin film and method for preparing the same
JP3539441B2 (en) Porous ethylene tetrafluoride resin and method for producing the same
CN106584878A (en) Polyphenylene sulfide microporous membrane containing lamella structure and preparation method thereof
JPH1135716A (en) Production of porous polytetrafluoroethylene film
JPS60104319A (en) Polytetrafluoroethylene porous material and manufacture thereof
JP3539440B2 (en) Polytetrafluoroethylene porous body and method for producing the same