JP2013234790A - Water supply heating system - Google Patents

Water supply heating system Download PDF

Info

Publication number
JP2013234790A
JP2013234790A JP2012107191A JP2012107191A JP2013234790A JP 2013234790 A JP2013234790 A JP 2013234790A JP 2012107191 A JP2012107191 A JP 2012107191A JP 2012107191 A JP2012107191 A JP 2012107191A JP 2013234790 A JP2013234790 A JP 2013234790A
Authority
JP
Japan
Prior art keywords
water
water supply
heat pump
water level
supply tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012107191A
Other languages
Japanese (ja)
Inventor
Kazuyuki Otani
和之 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012107191A priority Critical patent/JP2013234790A/en
Publication of JP2013234790A publication Critical patent/JP2013234790A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently supply water to a water tank promptly according to a use load of water stored in the water tank, in a water supply heating system that uses a heat pump.SOLUTION: Water can be supplied to a water tank 3 by a water supply channel 8 through a condenser 14 of a heat pump 4, as well as by a replenishing water channel 9 without using the condenser 14. Output of the heat pump 4 is controlled based on a fluctuation speed of a water level of the water tank 3. Preferably, during supplying water to the water tank 3 through the water supply channel 8, a water supply pump 10 is inverter-controlled based on the temperature detected by a water temperature sensor 22, and the volume of water to be supplied to the condenser 14 is regulated to maintain the water temperature on the outlet side of the condenser 14 at a preset temperature.

Description

本発明は、ヒートポンプを用いた給水加温システムに関するものである。   The present invention relates to a feed water heating system using a heat pump.

従来、下記特許文献1に開示されるように、ボイラ(24)の給水タンク(23)への給水を、ヒートポンプ(12)を用いて加温できるシステムが知られている。このシステムでは、給水タンク(23)は、給水源(21)から給水路を介して給水可能であると共に、給水路から分岐してヒートポンプ給湯器(12)を介しても給水可能である。そして、給水タンク(23)は、第1水位(52L)を下回ると、ヒートポンプ給湯機(12)からの給水が開始され、第1水位より高水位の第2水位(52H)を上回ると、ヒートポンプ給湯機(12)からの給水が停止される。また、第1水位より低水位の第3水位(32L)を下回ると、給水源(21)からの給水が開始され、第3水位より高水位であるが第1水位より低水位の第4水位(32H)を上回ると、給水源(21)からの給水が停止される。   Conventionally, as disclosed in Patent Document 1 below, a system capable of heating water supplied to a water supply tank (23) of a boiler (24) using a heat pump (12) is known. In this system, the water supply tank (23) can supply water from a water supply source (21) via a water supply channel, and can also supply water via a heat pump water heater (12) branched from the water supply channel. When the water supply tank (23) falls below the first water level (52L), water supply from the heat pump water heater (12) is started, and when the water supply tank (23) exceeds the second water level (52H) higher than the first water level, the heat pump Water supply from the water heater (12) is stopped. When the water level is lower than the third water level (32L), which is lower than the first water level, water supply from the water supply source (21) is started, and the fourth water level is higher than the third water level but lower than the first water level. If it exceeds (32H), the water supply from a water supply source (21) will be stopped.

特開2010−25431号公報(請求項4、図2−3)JP 2010-25431 A (Claim 4, FIG. 2-3)

前記特許文献1に記載の発明では、給水タンク内の水位に応じて、ヒートポンプ経由で給水するか、それに加えて直接にも給水するか、あるいはすべての給水を停止するかが切り替えられる。   In the invention described in Patent Document 1, depending on the water level in the water supply tank, whether to supply water via a heat pump, to supply water directly, or to stop all water supply can be switched.

しかしながら、ヒートポンプ経由で給水する場合、ヒートポンプの出力は一定であり、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことができない。   However, when water is supplied via the heat pump, the output of the heat pump is constant, and water supply to the water supply tank cannot be performed quickly and efficiently according to the usage load of the stored water in the water supply tank.

そこで、本発明が解決しようとする課題は、ヒートポンプを用いた給水加温システムにおいて、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことにある。   Therefore, the problem to be solved by the present invention is to quickly and efficiently supply water to the water supply tank according to the use load of the stored water in the water supply tank in the water supply heating system using the heat pump.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、出力を変更可能なヒートポンプと、このヒートポンプの凝縮器を介して給水路により給水可能であると共に、前記凝縮器を介さずに補給水路により給水可能な給水タンクとを備え、前記給水タンク内の水位の変動速度に基づき、前記ヒートポンプの出力を制御することを特徴とする給水加温システムである。   The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is capable of supplying water through a water supply path via a heat pump capable of changing output and a condenser of the heat pump, A water supply heating system comprising: a water supply tank capable of supplying water through a replenishment water channel without passing through the condenser, and controlling an output of the heat pump based on a fluctuation speed of a water level in the water supply tank.

請求項1に記載の発明によれば、給水タンク内の水位の変動速度に基づき、ヒートポンプの出力を制御することで、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことができる。   According to the first aspect of the present invention, by controlling the output of the heat pump based on the fluctuation speed of the water level in the water supply tank, water supply to the water supply tank is performed according to the usage load of the stored water in the water supply tank. It can be done quickly and efficiently.

請求項2に記載の発明は、前記給水路を介した前記給水タンクへの給水中、前記ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、前記凝縮器への通水量を調整することを特徴とする請求項1に記載の給水加温システムである。   According to a second aspect of the present invention, the amount of water flow to the condenser is adjusted so that the water temperature on the outlet side of the condenser of the heat pump is maintained at a set temperature during water supply to the water supply tank via the water supply passage. The feed water warming system according to claim 1, wherein:

請求項2に記載の発明によれば、ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、ヒートポンプの凝縮器への通水量を調整するので、ヒートポンプが高出力であるほど、給水路を介した給水タンクへの給水量は増加する。よって、給水タンク内の水位の変動速度に基づき、ヒートポンプの出力を制御すれば、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことができる。また、給水路を介した給水タンクへの給水中、ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、凝縮器への通水量を調整することで、給水路経由の給水温度を所望に維持することができる。   According to the second aspect of the present invention, the amount of water flow to the condenser of the heat pump is adjusted so that the outlet water temperature of the condenser of the heat pump is maintained at the set temperature. The amount of water supplied to the water tank via the road will increase. Therefore, if the output of the heat pump is controlled based on the fluctuation speed of the water level in the water supply tank, the water supply to the water supply tank can be performed quickly and efficiently according to the usage load of the stored water in the water supply tank. Also, by adjusting the water flow rate to the condenser so that the water temperature on the outlet side of the condenser of the heat pump is maintained at the set temperature during the water supply to the water supply tank via the water supply path, the water supply temperature via the water supply path is adjusted. It can be maintained as desired.

請求項3に記載の発明は、前記給水タンク内の水位上昇時には、水位下降時よりも前記ヒートポンプの出力を減少させるか、水位上昇速度が速いほど前記ヒートポンプの出力を減少させるか、水位上昇速度が設定値以上になると前記ヒートポンプを停止させるかの内、いずれか一以上の制御を行い、前記給水タンク内の水位下降時には、水位上昇時よりも前記ヒートポンプの出力を増加させるか、水位下降速度が速いほど前記ヒートポンプの出力を増加させるか、水位下降速度が設定値以上になると前記補給水路を介しても前記給水タンクへ給水するかの内、いずれか一以上の制御を行うことを特徴とする請求項1または請求項2に記載の給水加温システムである。   According to a third aspect of the present invention, when the water level in the water supply tank rises, the output of the heat pump is reduced compared to when the water level is lowered, or the output of the heat pump is reduced as the water level rise speed is faster, or the water level rise speed When the water level is higher than a set value, the heat pump is stopped, and at least one control is performed, and when the water level in the water supply tank is lowered, the output of the heat pump is increased more than when the water level is raised, The higher the speed is, the more the output of the heat pump is increased, or when the water level lowering speed is equal to or higher than a set value, the water supply tank is supplied with water through the make-up water channel. The feed water warming system according to claim 1 or claim 2.

請求項3に記載の発明によれば、給水タンク内の水位が上昇中か下降中か、給水タンク内の水位の上昇速度または下降速度に基づき、ヒートポンプの出力を制御しつつ給水タンクへの給水を制御することで、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことができる。   According to the third aspect of the present invention, the water supply to the water supply tank is controlled while controlling the output of the heat pump based on whether the water level in the water supply tank is rising or falling, or based on the rising speed or the falling speed of the water level in the water supply tank. By controlling, water supply to the water supply tank can be performed quickly and efficiently according to the usage load of the stored water in the water supply tank.

請求項4に記載の発明は、前記ヒートポンプは、低負荷運転とこれより高出力の高負荷運転とを切り替え可能とされ、前記給水タンク内の水位が上昇中で、且つ水位上昇速度(V)が設定値(V1)以上(V1≦V)である場合、前記ヒートポンプを停止すると共に、前記給水路および前記補給水路を介した前記給水タンクへの給水を停止し、前記給水タンク内の水位が上昇中で、且つ水位上昇速度(V)が設定値(V1)未満(0<V<V1)である場合、前記ヒートポンプを低負荷運転しつつ前記給水路を介して前記給水タンクへ給水し、前記給水タンク内の水位が下降中で、且つ水位下降速度(|V|)が設定値(V1)未満(0<|V|<V1)である場合、前記ヒートポンプを高負荷運転しつつ前記給水路を介して前記給水タンクへ給水し、前記給水タンク内の水位が下降中で、且つ水位下降速度(|V|)が設定値(V1)以上(V1≦|V|)である場合、前記ヒートポンプを高負荷運転しつつ前記給水路を介して前記給水タンクへ給水すると共に、前記補給水路を介しても前記給水タンクへ給水することを特徴とする請求項1〜3のいずれか1項に記載の給水加温システムである。   According to a fourth aspect of the present invention, the heat pump can be switched between a low load operation and a high load operation with a higher output than that, the water level in the water supply tank is rising, and the water level rising speed (V) Is equal to or greater than a set value (V1) (V1 ≦ V), the heat pump is stopped and water supply to the water supply tank is stopped via the water supply channel and the replenishment water channel, and the water level in the water supply tank is reduced. When rising and the water level rising speed (V) is less than a set value (V1) (0 <V <V1), water is supplied to the water supply tank through the water supply path while operating the heat pump at a low load, When the water level in the water supply tank is descending and the water level descending speed (| V |) is less than a set value (V1) (0 <| V | <V1), the water supply is performed while operating the heat pump at a high load. The water tank through the road When water is supplied and the water level in the water supply tank is descending and the water level descending speed (| V |) is equal to or higher than a set value (V1) (V1 ≦ | V |), the heat pump is operated at a high load while The water supply and heating system according to any one of claims 1 to 3, wherein water is supplied to the water supply tank via a water supply path and also supplied to the water supply tank via the replenishment water path. .

請求項4に記載の発明によれば、給水タンク内の水位の変動速度に応じて、ヒートポンプの出力、給水路を介した給水タンクへの給水、および補給水路を介した給水タンクへの給水を切り替えることで、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を簡易に制御することができる。   According to invention of Claim 4, according to the fluctuation speed of the water level in a water supply tank, the output of a heat pump, the water supply to a water supply tank via a water supply channel, and the water supply to a water supply tank via a replenishment water channel are carried out. By switching, the water supply to the water supply tank can be easily controlled according to the usage load of the stored water in the water supply tank.

請求項5に記載の発明は、前記給水タンク内の水位が下限水位を下回ると、前記給水タンク内の水位の変動速度に拘わらず、前記ヒートポンプを作動させつつ前記給水路を介して前記給水タンクへ給水すると共に、前記補給水路を介しても前記給水タンクへ給水し、前記給水タンク内の水位が上限水位を上回ると、前記給水タンク内の水位の変動速度に拘わらず、前記ヒートポンプを停止させると共に、前記給水路および前記補給水路を介した前記給水タンクへの給水を停止することを特徴とする請求項1〜4のいずれか1項に記載の給水加温システムである。   According to a fifth aspect of the present invention, when the water level in the water supply tank falls below a lower limit water level, the water supply tank is operated via the water supply channel while operating the heat pump regardless of the fluctuation speed of the water level in the water supply tank. Water is supplied to the water supply tank via the replenishment water channel, and when the water level in the water supply tank exceeds the upper limit water level, the heat pump is stopped regardless of the fluctuation speed of the water level in the water supply tank. The feed water heating system according to any one of claims 1 to 4, wherein water supply to the water supply tank via the water supply channel and the makeup water channel is stopped.

請求項5に記載の発明によれば、給水タンク内の水位が下限水位を下回ると、給水路および補給水路を介して給水タンクへ強制的に給水する一方、給水タンク内の水位が上限水位を上回ると、給水路および補給水路を介した給水タンクへの給水を強制的に停止する。これにより、給水タンク内の水位を最低限以上に保つと共に、オーバーフローするのを防止することができる。   According to the invention described in claim 5, when the water level in the water supply tank falls below the lower limit water level, water is forcibly supplied to the water supply tank via the water supply channel and the makeup water channel, while the water level in the water supply tank has the upper limit water level. If it exceeds, water supply to the water supply tank through the water supply channel and the supply water channel will be forcibly stopped. Thereby, while maintaining the water level in a water supply tank more than the minimum, it can prevent overflowing.

請求項6に記載の発明は、前記ヒートポンプの蒸発器に通される熱源流体の温度に基づき、前記ヒートポンプの低負荷運転時の出力を調整することを特徴とする請求項4に記載の給水加温システムである。   The invention according to claim 6 adjusts the output at the time of low load operation of the heat pump based on the temperature of the heat source fluid passed through the evaporator of the heat pump. It is a temperature system.

請求項6に記載の発明によれば、熱源流体の温度を考慮してヒートポンプの低負荷運転時の出力を調整することで、熱源流体の温度変化に拘わらず、給水路を介した給水タンクへの給水流量を安定させることができる。   According to the sixth aspect of the present invention, by adjusting the output at the time of low load operation of the heat pump in consideration of the temperature of the heat source fluid, regardless of the temperature change of the heat source fluid, to the water supply tank via the water supply channel The feed water flow rate can be stabilized.

さらに、請求項7に記載の発明は、前記ヒートポンプの蒸発器に通される熱源流体の量が設定を下回ると、前記ヒートポンプの運転を停止すると共に、前記蒸発器への熱源流体の供給を停止することを特徴とする請求項1〜6のいずれか1項に記載の給水加温システムである。   Further, the invention according to claim 7 stops the operation of the heat pump and stops the supply of the heat source fluid to the evaporator when the amount of the heat source fluid passed through the evaporator of the heat pump falls below a setting. It is a feed water heating system of any one of Claims 1-6 characterized by the above-mentioned.

請求項7に記載の発明によれば、ヒートポンプの熱源流体がなくなると、ヒートポンプの運転を停止することができる。   According to the seventh aspect of the present invention, when the heat source fluid of the heat pump is exhausted, the operation of the heat pump can be stopped.

本発明によれば、ヒートポンプを用いた給水加温システムにおいて、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, in the feed water heating system using a heat pump, the water supply to a water supply tank can be rapidly and efficiently performed according to the use load of the stored water in a water supply tank.

本発明の給水加温システムの一実施例を示す概略図である。It is the schematic which shows one Example of the feed water heating system of this invention. 図1の給水加温システムの制御方法の一例を示す図である。It is a figure which shows an example of the control method of the feed water heating system of FIG.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の給水加温システム1の一実施例を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of a feed water warming system 1 of the present invention.

本実施例の給水加温システム1は、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムであり、ボイラ2への給水を貯留する給水タンク3と、この給水タンク3への給水を貯留する補給水タンク5と、この補給水タンク5から給水タンク3への給水を加温するヒートポンプ4と、このヒートポンプ4の熱源としての熱源水(たとえば廃温水)を貯留する熱源水タンク6とを備える。   The feed water warming system 1 of the present embodiment is a system that can heat the feed water to the feed water tank 3 of the boiler 2 with the heat pump 4. The feed water tank 3 that stores the feed water to the boiler 2, and the feed water tank 3 A replenishment water tank 5 for storing water supply, a heat pump 4 for heating water supplied from the replenishment water tank 5 to the water supply tank 3, and a heat source water tank for storing heat source water (for example, waste hot water) as a heat source of the heat pump 4. 6.

ボイラ2は、蒸気ボイラであり、給水タンク3からの給水を加熱して蒸気にする。ボイラ2は、典型的には、蒸気の圧力を所望に維持するように、燃焼量を調整される。また、ボイラ2は、缶体内の水位を所望に維持するように、給水タンク3からボイラ2への給水路に設けたポンプ7が制御される。ボイラ2からの蒸気は、各種の蒸気使用設備(図示省略)へ送られるが、蒸気使用設備からのドレン(蒸気の凝縮水)を給水タンク3へ戻してもよい。   The boiler 2 is a steam boiler, and heats the feed water from the feed water tank 3 into steam. The boiler 2 is typically adjusted in combustion quantity so as to maintain the desired steam pressure. Moreover, the pump 7 provided in the water supply path from the water supply tank 3 to the boiler 2 is controlled so that the boiler 2 may maintain the water level in a can body as desired. The steam from the boiler 2 is sent to various steam use facilities (not shown), but drain (condensed water of steam) from the steam use facility may be returned to the water supply tank 3.

給水タンク3は、補給水タンク5から、ヒートポンプ4を介して給水路8により給水可能であると共に、ヒートポンプ4を介さずに補給水路9により給水可能である。給水路8に設けた給水ポンプ10と、補給水路9に設けた補給水ポンプ11との作動を制御することで、給水路8と補給水路9との内、いずれか一方または双方を介して、補給水タンク5から給水タンク3へ給水可能である。給水路8には、給水ポンプ10より下流に、廃熱回収熱交換器12とヒートポンプ4とが順に設けられている。   The water supply tank 3 can be supplied with water from the make-up water tank 5 via the heat pump 4 through the water supply path 8 and can be supplied through the make-up water path 9 without going through the heat pump 4. By controlling the operation of the water supply pump 10 provided in the water supply path 8 and the makeup water pump 11 provided in the makeup water path 9, via either one or both of the water supply path 8 and the makeup water path 9, Water can be supplied from the makeup water tank 5 to the water supply tank 3. In the water supply passage 8, a waste heat recovery heat exchanger 12 and a heat pump 4 are sequentially provided downstream from the water supply pump 10.

給水ポンプ10は、本実施例では、インバータにより回転数を制御可能とされる。給水ポンプ10の回転数を変更することで、給水路8を介した給水タンク3への給水量を調整することができる。一方、補給水ポンプ11は、本実施例では、オンオフ制御される。   In the present embodiment, the feed water pump 10 can control the rotation speed by an inverter. By changing the rotation speed of the water supply pump 10, the amount of water supplied to the water supply tank 3 via the water supply path 8 can be adjusted. On the other hand, the makeup water pump 11 is on / off controlled in this embodiment.

補給水タンク5は、給水タンク3への給水を貯留する。補給水タンク5への給水として、本実施例では軟水が用いられる。すなわち、軟水器(図示省略)にて水中の硬度分を除去された軟水は、補給水タンク5に供給され貯留される。補給水タンク5の水位に基づき軟水器からの給水を制御することで、補給水タンク5の水位は所望に維持される。   The makeup water tank 5 stores water supplied to the water supply tank 3. In this embodiment, soft water is used as the water supply to the makeup water tank 5. That is, the soft water from which the water hardness has been removed by the water softener (not shown) is supplied to the makeup water tank 5 and stored. By controlling the water supply from the water softener based on the water level of the makeup water tank 5, the water level of the makeup water tank 5 is maintained as desired.

ヒートポンプ4は、蒸気圧縮式のヒートポンプであり、圧縮機13、凝縮器14、膨張弁15および蒸発器16が順次環状に接続されて構成される。そして、圧縮機13は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器14は、圧縮機13からのガス冷媒を凝縮液化する。さらに、膨張弁15は、凝縮器14からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器16は、膨張弁15からの冷媒の蒸発を図る。   The heat pump 4 is a vapor compression heat pump, and is configured by sequentially connecting a compressor 13, a condenser 14, an expansion valve 15, and an evaporator 16 in an annular shape. The compressor 13 compresses the gas refrigerant to a high temperature and a high pressure. The condenser 14 condenses and liquefies the gas refrigerant from the compressor 13. Further, the expansion valve 15 allows the liquid refrigerant from the condenser 14 to pass through, thereby reducing the pressure and temperature of the refrigerant. The evaporator 16 then evaporates the refrigerant from the expansion valve 15.

従って、ヒートポンプ4は、蒸発器16において、冷媒が外部から熱を奪って気化する一方、凝縮器14において、冷媒が外部へ放熱して凝縮することになる。これを利用して、本実施例では、ヒートポンプ4は、蒸発器16において、熱源として熱源供給路20を通る熱源水から熱をくみ上げ、凝縮器14において、給水路8の水を加温する。   Therefore, in the heat pump 4, in the evaporator 16, the refrigerant takes heat from the outside and vaporizes, while in the condenser 14, the refrigerant dissipates heat to the outside and condenses. Using this, in this embodiment, the heat pump 4 draws heat from the heat source water passing through the heat source supply path 20 as a heat source in the evaporator 16, and warms the water in the water supply path 8 in the condenser 14.

ヒートポンプ4は、凝縮器14と膨張弁15との間に、所望により過冷却器17を設けてもよい。過冷却器17は、凝縮器14から膨張弁15への冷媒と、凝縮器14への給水との間接熱交換器である。過冷却器17により、凝縮器14への給水で、凝縮器14から膨張弁15への冷媒を過冷却することができると共に、凝縮器14から膨張弁15への冷媒で、凝縮器14への給水を加温することができる。ヒートポンプ4の冷媒は、凝縮器14において潜熱を放出し、過冷却器17において顕熱を放出する。   The heat pump 4 may be provided with a supercooler 17 between the condenser 14 and the expansion valve 15 as desired. The supercooler 17 is an indirect heat exchanger between the refrigerant from the condenser 14 to the expansion valve 15 and the feed water to the condenser 14. The subcooler 17 can supercool the refrigerant from the condenser 14 to the expansion valve 15 by supplying water to the condenser 14, and can supply the refrigerant to the condenser 14 by the refrigerant from the condenser 14 to the expansion valve 15. The water supply can be heated. The refrigerant of the heat pump 4 releases latent heat in the condenser 14 and releases sensible heat in the subcooler 17.

その他、ヒートポンプ4には、圧縮機13の入口側にアキュムレータを設置したり、圧縮機13の出口側に油分離器を設置したり、凝縮器14の出口側(凝縮器14と過冷却器17との間)に受液器を設置したりしてもよい。   In addition, in the heat pump 4, an accumulator is installed on the inlet side of the compressor 13, an oil separator is installed on the outlet side of the compressor 13, or the outlet side of the condenser 14 (the condenser 14 and the subcooler 17 A receiver may be installed between the two).

ところで、ヒートポンプ4は、その出力(圧縮機13の容量)を変更可能とされている。本実施例では、圧縮機13のモータの回転数をインバータで変更することで、ヒートポンプ4は、低負荷運転とこれより高出力の高負荷運転とを切り替え可能とされている。たとえば、高負荷運転では全負荷運転(100%出力)され、低負荷運転では高負荷運転よりも低負荷運転(たとえば50%出力)される。   By the way, the heat pump 4 can change its output (the capacity of the compressor 13). In the present embodiment, the heat pump 4 can be switched between a low load operation and a high load operation with a higher output by changing the rotation speed of the motor of the compressor 13 with an inverter. For example, full load operation (100% output) is performed in a high load operation, and low load operation (for example, 50% output) is performed in a low load operation rather than a high load operation.

熱源水タンク6は、ヒートポンプの熱源としての熱源水を貯留する。熱源水とは、たとえば廃温水(工場などから排出される温水)である。なお、熱源水タンク6には、熱源水の供給路18が設けられると共に、所定以上の水をあふれさせるオーバーフロー路19が設けられている。   The heat source water tank 6 stores heat source water as a heat source of the heat pump. The heat source water is, for example, waste hot water (hot water discharged from a factory or the like). The heat source water tank 6 is provided with a heat source water supply path 18 and an overflow path 19 for overflowing a predetermined amount or more of water.

熱源水タンク6の水は、熱源供給路20を介して、ヒートポンプ4の蒸発器16を通された後、廃熱回収熱交換器12を通される。熱源供給路20には、蒸発器16より上流側に熱源供給ポンプ21が設けられており、この熱源供給ポンプ21を作動させることで、熱源水タンク6からの熱源水を、蒸発器16と廃熱回収熱交換器12とに順に通すことができる。   The water in the heat source water tank 6 passes through the evaporator 16 of the heat pump 4 through the heat source supply path 20 and then passes through the waste heat recovery heat exchanger 12. The heat source supply path 20 is provided with a heat source supply pump 21 on the upstream side of the evaporator 16. By operating the heat source supply pump 21, the heat source water from the heat source water tank 6 is discarded with the evaporator 16. The heat recovery heat exchanger 12 can be passed through in order.

なお、廃熱回収熱交換器12は、補給水タンク5から過冷却器17への給水と、蒸発器16からの熱源水との間接熱交換器である。本実施例の場合、補給水タンク5から給水路8を介した給水タンク3への給水は、補給水タンク5から、廃熱回収熱交換器12、過冷却器17および凝縮器14を順に通された後、給水タンク3へ供給される。   The waste heat recovery heat exchanger 12 is an indirect heat exchanger for supplying water from the makeup water tank 5 to the supercooler 17 and heat source water from the evaporator 16. In the case of the present embodiment, the water supply from the makeup water tank 5 to the water supply tank 3 through the water supply channel 8 is sequentially passed from the makeup water tank 5 through the waste heat recovery heat exchanger 12, the supercooler 17 and the condenser 14. Then, the water is supplied to the water supply tank 3.

給水路8には、凝縮器14の出口側に、水温センサ22が設けられる。この水温センサ22は、凝縮器14を通過後の水温を検出する。水温センサ22の検出温度に基づき、給水ポンプ10が制御される。ここでは、給水ポンプ10は、水温センサ22の検出温度を設定温度T1(たとえば75℃)に維持するようにインバータ制御される。つまり、給水路8を介した給水タンク3への給水は、水温センサ22の検出温度を設定温度T1に維持するように、流量が調整される。但し、場合により、このような水温センサ22による流量調整制御を省略することもできる。   In the water supply path 8, a water temperature sensor 22 is provided on the outlet side of the condenser 14. The water temperature sensor 22 detects the water temperature after passing through the condenser 14. Based on the temperature detected by the water temperature sensor 22, the water supply pump 10 is controlled. Here, the feed water pump 10 is inverter-controlled so as to maintain the temperature detected by the water temperature sensor 22 at a set temperature T1 (for example, 75 ° C.). That is, the flow rate of water supplied to the water supply tank 3 through the water supply path 8 is adjusted so that the temperature detected by the water temperature sensor 22 is maintained at the set temperature T1. However, in some cases, such flow rate adjustment control by the water temperature sensor 22 can be omitted.

給水タンク3には、給水タンク3内の水位の変動速度の監視手段が設けられている。この監視手段は、その構成を特に問わないが、本実施例では、水位に応じた出力を得られるアナログ式の水位検出器23とされている。具体的には、給水タンク3内の水位に応じて水圧が変わることを利用した水圧式の水位検出器を用いることができるが、これに代えて圧力センサを用いることもできる。あるいは、静電容量式の水位検出器を用いることもできる。   The water supply tank 3 is provided with means for monitoring the fluctuation speed of the water level in the water supply tank 3. The configuration of the monitoring means is not particularly limited. In this embodiment, the monitoring means is an analog water level detector 23 that can obtain an output corresponding to the water level. Specifically, a water pressure type water level detector using the fact that the water pressure changes according to the water level in the water supply tank 3 can be used, but a pressure sensor can be used instead. Alternatively, a capacitive water level detector can be used.

なお、水位の変動速度Vとは、単位時間当たりの水位変化であるが、所定時間内の変動水位、言い換えれば一定時間内の水位変動幅ということもできる。詳細は図2に基づき後述するが、本実施例では、所定時間内に水位が上昇すれば、変動速度Vをプラスとし、所定時間内に水位が下降すれば、変動速度Vをマイナスとする。従って、プラスの変動速度Vを上昇速度、マイナスの変動速度Vを下降速度ということができる。そして、下降速度という場合、水位は下降中であることが自明であるから、変動速度Vの絶対値|V|を用いることにする。つまり、変動速度Vという場合には、プラスの場合もあるし、マイナスの場合もあるが、上昇速度ないし下降速度という場合には、変動速度Vの絶対値|V|として常にプラスとなる。   The fluctuation speed V of the water level is a change in the water level per unit time, but can also be referred to as a fluctuation water level within a predetermined time, in other words, a fluctuation range of the water level within a certain time. Although details will be described later with reference to FIG. 2, in this embodiment, if the water level rises within a predetermined time, the fluctuation speed V is positive, and if the water level falls within the predetermined time, the fluctuation speed V is negative. Accordingly, it can be said that the positive fluctuation speed V is an ascending speed and the negative fluctuation speed V is a descending speed. And when it is called a descending speed, it is obvious that the water level is descending, so the absolute value | V | of the fluctuation speed V is used. That is, in the case of the fluctuation speed V, it may be positive or negative, but in the case of the ascending speed or the falling speed, the absolute value | V | of the fluctuation speed V is always positive.

水位検出器23は、さらに、給水タンク3内の水位が下限水位を下回ったことを検知すると共に、給水タンク3内の水位が上限水位を上回ったことを検知する。これにより、給水タンク3内の水位が万一不足したり、逆に万一オーバーフローしたりする前に、未然に検知することができる。なお、下限水位や上限水位を検出するための水位検出器は、水位変動速度を監視するための水位検出器と別に構成してもよい。   The water level detector 23 further detects that the water level in the water supply tank 3 has fallen below the lower limit water level, and also detects that the water level in the water supply tank 3 has exceeded the upper limit water level. As a result, it is possible to detect the water level in the water supply tank 3 before it runs out of water or overflows. The water level detector for detecting the lower limit water level and the upper limit water level may be configured separately from the water level detector for monitoring the water level fluctuation speed.

熱源水タンク6には、設定よりも水位が下がったことを検知する水位検出器24が設けられている。水位検出器24の構成は特に問わないが、本実施例では電極式水位検出器とされる。つまり、熱源水タンク6には、低水位検出電極棒25が差し込まれており、熱源水の水位が設定を下回っていないかを監視する。また、熱源水タンク6には、熱源水の温度を検出する熱源温度センサ26を設けておいてもよい。   The heat source water tank 6 is provided with a water level detector 24 that detects that the water level has dropped below the setting. The configuration of the water level detector 24 is not particularly limited, but in the present embodiment, an electrode type water level detector is used. That is, the low water level detection electrode rod 25 is inserted into the heat source water tank 6, and it is monitored whether the water level of the heat source water is below the setting. The heat source water tank 6 may be provided with a heat source temperature sensor 26 that detects the temperature of the heat source water.

次に、本実施例の給水加温システム1の制御(運転方法)について説明する。以下に説明する一連の制御は、図示しない制御器を用いて自動でなされる。   Next, control (operation method) of the feed water heating system 1 of the present embodiment will be described. A series of control described below is automatically performed using a controller (not shown).

図2は、本実施例の給水加温システム1の制御方法の一例を示す図である。この図に示すように、給水タンク3の水位の変動速度Vに基づき、ヒートポンプ4(特にその圧縮機13)および給水ポンプ10と、補給水ポンプ11とが制御される。   FIG. 2 is a diagram illustrating an example of a control method of the feed water heating system 1 according to the present embodiment. As shown in this figure, the heat pump 4 (particularly the compressor 13), the feed water pump 10, and the makeup water pump 11 are controlled based on the fluctuation speed V of the water level in the feed water tank 3.

ヒートポンプ4の出力は、給水タンク3内の水位の変動速度Vに基づき制御される。給水タンク3内の水位上昇時には、水位下降時よりもヒートポンプ4の出力を減少させるか、水位上昇速度|V|が速いほどヒートポンプ4の出力を減少させるか、水位上昇速度|V|が設定値V1以上になる(設定値V1より速くなる)とヒートポンプ4を停止させるかの内、いずれか一以上の制御を行うのがよい。逆に、給水タンク3内の水位下降時には、水位上昇時よりもヒートポンプ4の出力を増加させるか、水位下降速度|V|が速いほどヒートポンプ4の出力を増加させるか、水位下降速度|V|が設定値V1以上になる(設定値V1より速くなる)と補給水路9を介しても給水タンク3へ給水するかの内、いずれか一以上の制御を行うのがよい。なお、水位の変動速度V(水位上昇速度|V|、水位下降速度|V|)は、制御器が一定時間ごとに、水位検出器23からの検出信号に基づき求める。   The output of the heat pump 4 is controlled based on the fluctuation speed V of the water level in the water supply tank 3. When the water level in the water supply tank 3 rises, the output of the heat pump 4 is decreased than when the water level is lowered, or the output of the heat pump 4 is reduced as the water level rise speed | V | is faster, or the water level rise speed | V | It is preferable to perform at least one control of stopping the heat pump 4 when it becomes V1 or higher (faster than the set value V1). Conversely, when the water level in the water supply tank 3 is lowered, the output of the heat pump 4 is increased more than when the water level is raised, or the output of the heat pump 4 is increased as the water level lowering speed | V | is faster, or the water level lowering speed | V | When the value becomes equal to or higher than the set value V1 (becomes faster than the set value V1), it is preferable to control at least one of the water supply to the water supply tank 3 through the replenishment water channel 9. The fluctuation level V of the water level (water level rising speed | V |, water level falling speed | V |) is determined by the controller based on the detection signal from the water level detector 23 at regular intervals.

本実施例では、水位変動速度Vに応じて、図2に示すように制御される。ここで、ヒートポンプ4は、その圧縮機13の作動の有無により、運転と停止が切り替えられる。また、前述したように、本実施例では、ヒートポンプ4は、高負荷運転(典型的には全負荷運転=100%出力)、低負荷運転(たとえば50%出力)、および停止(0%出力)の三位置で制御される。さらに、給水ポンプ10は、ヒートポンプ4の作動に連動し、ヒートポンプ4の作動中は給水ポンプ10も作動し、ヒートポンプ4の停止中は給水ポンプ10も停止する。但し、前述したように、給水ポンプ10は、作動中、水温センサ22の検出温度を所望に維持するように、回転数をインバータ制御される。その結果、ヒートポンプ4の高負荷運転時は低負荷運転時よりも多い流量で、給水路8を介して給水タンク3へ給水可能となる。   In the present embodiment, the control is performed as shown in FIG. Here, the heat pump 4 is switched between operation and stop depending on whether or not the compressor 13 is activated. Further, as described above, in this embodiment, the heat pump 4 is operated at a high load (typically full load operation = 100% output), a low load operation (for example, 50% output), and stopped (0% output). Are controlled in three positions. Further, the feed water pump 10 is interlocked with the operation of the heat pump 4, the feed water pump 10 is also operated while the heat pump 4 is being operated, and the feed water pump 10 is also stopped while the heat pump 4 is being stopped. However, as described above, the rotation speed of the water supply pump 10 is inverter-controlled so as to maintain a desired temperature detected by the water temperature sensor 22 during operation. As a result, it is possible to supply water to the water supply tank 3 through the water supply path 8 at a higher flow rate during high load operation of the heat pump 4 than during low load operation.

以下、図2の制御について、さらに詳細に説明する。なお、Vとは、給水タンク3内の水位の変動速度であり、前述したように、水位上昇中はプラス、水位下降中はマイナスの値をとる。また、V1とは、制御器に予め設定された設定値(設定速度)である。   Hereinafter, the control of FIG. 2 will be described in more detail. Note that V is the fluctuation speed of the water level in the water supply tank 3, and takes a positive value while the water level is rising and a negative value while the water level is falling, as described above. V1 is a set value (set speed) preset in the controller.

(1)V1≦Vの場合。
給水タンク3内の水位が上昇中で、且つ水位の上昇速度|V|が設定値V1以上(V1≦|V|)である場合、ヒートポンプ4を停止すると共に、給水ポンプ10を停止して、給水路8を介した給水タンク3への給水を停止する。この際、補給水ポンプ11も作動を停止しており、補給水路9を介しても給水タンク3へ給水されない。これにより、給水路8および補給水路9を介した給水タンク3への給水が停止される。
(1) When V1 ≦ V.
When the water level in the water supply tank 3 is rising and the water level rising speed | V | is not less than the set value V1 (V1 ≦ | V |), the heat pump 4 is stopped and the water supply pump 10 is stopped, Water supply to the water supply tank 3 through the water supply path 8 is stopped. At this time, the operation of the makeup water pump 11 is also stopped, and water is not supplied to the water supply tank 3 through the makeup water channel 9. Thereby, the water supply to the water supply tank 3 through the water supply path 8 and the replenishment water path 9 is stopped.

(2)0<V<V1の場合。
給水タンク3内の水位が上昇中で、且つ水位の上昇速度|V|が設定値V1未満(0<|V|<V1)である場合、ヒートポンプ4を低負荷運転しつつ給水路8を介して給水タンク3へ給水する。この際、補給水ポンプ11は作動を停止しており、補給水路9を介しては給水タンク3へ給水されない。
(2) When 0 <V <V1.
When the water level in the water supply tank 3 is rising and the water level rising speed | V | is less than the set value V1 (0 <| V | <V1), the heat pump 4 is operated at a low load via the water supply path 8. To supply water to the water supply tank 3. At this time, the makeup water pump 11 stops operating, and water is not supplied to the feed water tank 3 through the makeup water channel 9.

(3)−V1<V<0の場合。
給水タンク3内の水位が下降中で、且つ水位の下降速度|V|が設定値V1未満(0<|V|<V1)である場合、ヒートポンプ4を高負荷運転しつつ給水路8を介して給水タンク3へ給水する。この際、補給水ポンプ11は作動を停止しており、補給水路9を介しては給水タンク3へ給水されない。
(3) When -V1 <V <0.
When the water level in the water supply tank 3 is descending and the water level descending speed | V | is less than the set value V1 (0 <| V | <V1), the heat pump 4 is operated through the water supply channel 8 while operating at a high load. To supply water to the water supply tank 3. At this time, the makeup water pump 11 stops operating, and water is not supplied to the feed water tank 3 through the makeup water channel 9.

(4)V≦−V1
給水タンク3内の水位が下降中で、且つ水位の下降速度|V|が設定値V1以上(V1≦|V|)である場合、ヒートポンプ4を高負荷運転しつつ給水路8を介して給水タンク3へ給水すると共に、補給水ポンプ11も作動させて、補給水路9を介しても給水タンク3へ給水する。
(4) V ≦ −V1
When the water level in the water supply tank 3 is lowering and the water level lowering speed | V | is equal to or higher than the set value V1 (V1 ≦ | V |), water is supplied through the water supply path 8 while operating the heat pump 4 at a high load. While supplying water to the tank 3, the replenishment water pump 11 is also operated to supply water to the water supply tank 3 via the replenishment water channel 9.

以上の(1)〜(4)では、V=0、つまり給水タンク3内の水位が変動しない場合については言及しなかったが、この場合は、制御を変更しなくてよい。つまり、たとえば、上記(3)のとおり、−V1<V<0であるとして、ヒートポンプ4を高負荷運転しつつ給水路8を介して給水タンク3へ給水中、水位の変動がなくなった場合、次に水位が変動するまで、現状の制御を維持(ここではヒートポンプ4を高負荷運転)すればよい。但し、水位の変動がなくなった場合、ヒートポンプ4を低負荷運転しつつ給水路8を介して給水タンク3へ給水するようにしてもよい。つまり、上記(2)の制御を行う条件として、「0<V<V1」としたが、これを「0≦V<V1」(0≦|V|<V1)としてもよい。   In the above (1) to (4), V = 0, that is, the case where the water level in the water supply tank 3 does not fluctuate was not mentioned, but in this case, the control need not be changed. That is, for example, as described in (3) above, assuming that −V1 <V <0, the water level does not change during water supply to the water supply tank 3 via the water supply path 8 while operating the heat pump 4 at a high load. Next, the current control may be maintained (here, the heat pump 4 is operated at a high load) until the water level fluctuates. However, when the fluctuation of the water level disappears, the heat pump 4 may be supplied to the water supply tank 3 through the water supply path 8 while operating at a low load. That is, although the condition for performing the control (2) is “0 <V <V1”, this may be “0 ≦ V <V1” (0 ≦ | V | <V1).

本実施例の給水加温システム1は、上述のとおり制御されるのであるが、ヒートポンプ4を運転して、補給水タンク5から給水路8を介して給水タンク3へ給水する際、補給水タンク5からの給水は、廃熱回収熱交換器12、過冷却器17および凝縮器14により徐々に加温されて、所定温度で給水タンク3へ供給される。給水タンク3とヒートポンプ4との間で水を循環させる場合と比較して、補給水タンク5から給水タンク3への一回の通過(ワンススルー)で給水を加温するので、ヒートポンプ4を通過する前後の給水の温度差を確保して、ヒートポンプ4の成績係数(COP)の向上を図ることができる。さらに、ヒートポンプ4と廃熱回収熱交換器12とにより、給水加温システム1のシステム効率の向上を図ることができる。   The feed water warming system 1 of the present embodiment is controlled as described above. When the heat pump 4 is operated to feed water from the make-up water tank 5 to the feed water tank 3 through the feed water path 8, the make-up water tank The feed water from 5 is gradually heated by the waste heat recovery heat exchanger 12, the supercooler 17 and the condenser 14, and is supplied to the feed water tank 3 at a predetermined temperature. Compared with the case where water is circulated between the water supply tank 3 and the heat pump 4, the water supply is heated by a single pass (once through) from the makeup water tank 5 to the water supply tank 3, so that it passes through the heat pump 4. It is possible to secure a temperature difference between before and after the water supply and improve the coefficient of performance (COP) of the heat pump 4. Furthermore, the system efficiency of the feed water heating system 1 can be improved by the heat pump 4 and the waste heat recovery heat exchanger 12.

ところで、水位変動速度Vの要件により、給水ポンプ10や補給水ポンプ11が停止中でも、万一、給水タンク3内の水位が下限水位を下回ると、給水ポンプ10や補給水ポンプ11を作動させるのがよい。具体的には、給水タンク3内の水位が下がり、水位検出器23が下限水位を下回ったことを検知すると、給水タンク3内の水位の変動速度Vに拘わらず、所定水位に戻るまで、または所定時間経過するまで、ヒートポンプ4を高負荷運転させつつ給水路8を介して給水タンク3へ給水すると共に、補給水ポンプ11を作動させて補給水路9を介しても給水タンク3へ給水して、給水タンク3内の水位を回復させるのがよい。そして、その後、通常の制御(水位変動速度Vに基づく制御)に戻せばよい。このようにして、給水タンク3内の貯留水の枯渇を未然に防止することができる。   By the way, due to the requirement of the water level fluctuation speed V, even if the feed water pump 10 and the makeup water pump 11 are stopped, if the water level in the feed water tank 3 falls below the lower limit water level, the feed water pump 10 and the makeup water pump 11 are operated. Is good. Specifically, when it is detected that the water level in the water supply tank 3 has dropped and the water level detector 23 has fallen below the lower limit water level, the water level in the water supply tank 3 returns to the predetermined water level regardless of the fluctuation speed V of the water level, or Until the predetermined time elapses, water is supplied to the water supply tank 3 through the water supply path 8 while operating the heat pump 4 at a high load, and the water supply tank 3 is also operated to supply water to the water supply tank 3 through the supply water path 9. It is preferable to restore the water level in the water supply tank 3. Then, after that, it is only necessary to return to normal control (control based on the water level fluctuation speed V). In this way, depletion of the stored water in the water supply tank 3 can be prevented beforehand.

逆に、水位変動速度Vの要件により、給水ポンプ10や補給水ポンプ11が運転中でも、万一、給水タンク3内の水位が上限水位を上回ると、給水ポンプ10や補給水ポンプ11を停止させるのがよい。具体的には、給水タンク3内の水位が上がり、水位検出器23が上限水位を上回ったことを検知すると、給水タンク3内の水位の変動速度Vに拘わらず、所定水位に戻るまで、または所定時間経過するまで、ヒートポンプ4を停止させると共に、給水路8および補給水路9を介した給水タンク3への給水を停止するのがよい。そして、その後、通常の制御(水位変動速度Vに基づく制御)に戻せばよい。このようにして、給水タンク3からのオーバーフローを未然に防止することができる。   On the contrary, due to the requirement of the water level fluctuation speed V, even if the feed water pump 10 and the makeup water pump 11 are in operation, if the water level in the feed water tank 3 exceeds the upper limit water level, the feed water pump 10 and the makeup water pump 11 are stopped. It is good. Specifically, when the water level in the water supply tank 3 rises and the water level detector 23 detects that the water level has exceeded the upper limit water level, the water level in the water supply tank 3 returns to a predetermined water level regardless of the fluctuation speed V of the water level, or It is preferable to stop the heat pump 4 and stop water supply to the water supply tank 3 through the water supply path 8 and the replenishment water path 9 until a predetermined time elapses. Then, after that, it is only necessary to return to normal control (control based on the water level fluctuation speed V). In this way, overflow from the water supply tank 3 can be prevented in advance.

また、万一、熱源水タンク6内の水位が下限水位を下回ると、ヒートポンプ4を停止すると共に、熱源供給ポンプ21を停止するのがよい。具体的には、熱源水タンク6内の水位が下がり、低水位検出電極棒25が水位を検知しなくなると、ヒートポンプ4の運転を停止すると共に、熱源供給ポンプ21を停止して蒸発器16への熱源水の供給を停止するのがよい。   If the water level in the heat source water tank 6 falls below the lower limit water level, the heat pump 4 and the heat source supply pump 21 should be stopped. Specifically, when the water level in the heat source water tank 6 falls and the low water level detection electrode rod 25 no longer detects the water level, the operation of the heat pump 4 is stopped and the heat source supply pump 21 is stopped to the evaporator 16. It is better to stop the supply of heat source water.

さらに、ヒートポンプ4の運転中、つまり給水路8を介した給水タンク3への給水中、熱源水タンク6内の水温を熱源温度センサ26で監視して、その温度に基づきヒートポンプ4(特に低負荷運転時)の出力を調整(補正)してもよい。つまり、ヒートポンプ4の出力%を熱源温度センサ26の検出温度に応じて変更してもよい。ヒートポンプ4の熱源としての熱源水の温度が高温なほど、ヒートポンプ4の運転時の出力%を下げることができる。熱源水の温度を考慮してヒートポンプ4の運転時の出力を調整することで、熱源水の温度変化に拘わらず、給水路8を介した給水タンク3への給水流量を安定させることができる。   Further, during operation of the heat pump 4, that is, water supply to the water supply tank 3 through the water supply path 8, the water temperature in the heat source water tank 6 is monitored by the heat source temperature sensor 26, and the heat pump 4 (particularly low load) is monitored based on the temperature. The output during operation may be adjusted (corrected). That is, the output% of the heat pump 4 may be changed according to the temperature detected by the heat source temperature sensor 26. The higher the temperature of the heat source water as the heat source of the heat pump 4, the lower the output% during operation of the heat pump 4. By adjusting the output during operation of the heat pump 4 in consideration of the temperature of the heat source water, the water supply flow rate to the water supply tank 3 through the water supply path 8 can be stabilized regardless of the temperature change of the heat source water.

なお、給水加温システム1の運転中、何らかのトラブルが発生した場合、ヒートポンプ4の運転を停止すると共に、熱源供給ポンプ21を停止して蒸発器16への熱源流体の供給を停止するのがよい。たとえば、補給水タンク5内の水位が万一、下限水位を下回った場合、ヒートポンプ4の運転を停止すると共に、熱源供給ポンプ21を停止して蒸発器16への熱源流体の供給を停止するのがよい。また、給水路8を介した給水中に、給水路8での測定流量が所定値以下になった場合には、給水路8に詰まりがあるなどが想定されるので、ヒートポンプ4の運転を停止すると共に、熱源供給ポンプ21を停止して蒸発器16への熱源流体の供給を停止するのがよい。   If any trouble occurs during the operation of the feed water warming system 1, it is preferable to stop the operation of the heat pump 4 and stop the heat source supply pump 21 to stop the supply of the heat source fluid to the evaporator 16. . For example, in the unlikely event that the water level in the makeup water tank 5 falls below the lower limit water level, the operation of the heat pump 4 is stopped and the heat source supply pump 21 is stopped to stop the supply of the heat source fluid to the evaporator 16. Is good. In addition, if the measured flow rate in the water supply channel 8 becomes a predetermined value or less during water supply through the water supply channel 8, it is assumed that the water supply channel 8 is clogged, so the operation of the heat pump 4 is stopped. At the same time, it is preferable to stop the supply of the heat source fluid to the evaporator 16 by stopping the heat source supply pump 21.

本発明の給水加温システム1は、前記実施例の構成に限らず、適宜変更可能である。特に、給水タンク3内の水位の変動速度Vに基づき、ヒートポンプ4の出力を制御しつつ給水タンク3へ給水する構成であれば、図2の構成に限らない。つまり、図2では、水位変動速度Vにより制御パターンを四つに分けたが、さらに細かく制御パターンを規定してもよい。   The feed water warming system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. In particular, the configuration is not limited to the configuration of FIG. 2 as long as the configuration supplies water to the water supply tank 3 while controlling the output of the heat pump 4 based on the fluctuation speed V of the water level in the water supply tank 3. That is, in FIG. 2, although the control pattern was divided into four according to the water level fluctuation | variation speed V, you may prescribe | regulate a control pattern further finely.

そして、水位上昇時と水位下降時とにヒートポンプ4を低負荷運転させる制御パターンが出現する場合、ヒートポンプ4の低負荷運転時の出力は、給水タンク3の水位下降時の方が水位上昇時よりも高出力に設定されるようにしてもよい。   And when the control pattern which makes the heat pump 4 carry out low load operation at the time of a water level rise and the time of a water level fall appears, the output at the time of low load operation of the heat pump 4 is the direction when the water level of the water supply tank 3 is lowered than when the water level rises May be set to a high output.

また、前記実施例では、ヒートポンプ4を高負荷運転、低負荷運転および停止の三位置で制御した例を示したが、ヒートポンプ4を高負荷運転(典型的には全負荷運転=100%出力)、中負荷運転(たとえば80%出力)、低負荷運転(たとえば50%出力)および停止など、四位置以上で制御してもよい。   Moreover, although the example which controlled the heat pump 4 in the three positions of high load operation, low load operation, and a stop was shown in the said Example, the heat pump 4 is high load operation (typically full load operation = 100% output). Control may be performed at four or more positions, such as medium load operation (for example, 80% output), low load operation (for example, 50% output), and stop.

また、前記実施例において、制御パターンを区分けするための設定値V1は、水位上昇時と水位下降時とで、互いに対応した値としたが、互いに異なる値としてもよい。   Moreover, in the said Example, although the setting value V1 for dividing | segmenting a control pattern was made into the value mutually corresponding at the time of a water level rise and a water level fall, it is good also as a mutually different value.

また、前記実施例では、ヒートポンプ4を高負荷運転、低負荷運転および停止の三位置で制御した例を示したが、給水タンク3内の水位の変動速度Vに応じて、ヒートポンプ4の出力を連続的に制御(圧縮機13をインバータ制御)してもよい。   Moreover, in the said Example, although the example which controlled the heat pump 4 in three positions, a high load driving | operation, a low load driving | operation, and a stop was shown, according to the fluctuation speed V of the water level in the water supply tank 3, the output of the heat pump 4 is shown. You may control continuously (inverter control of the compressor 13).

また、ヒートポンプ4は、単段に限らず複数段とすることもできる。ヒートポンプ4を複数段にする場合、隣接する段のヒートポンプ同士は、間接熱交換器を用いて接続されてもよいし、直接熱交換器(中間冷却器)を用いて接続されてもよい。後者の場合、下段ヒートポンプの圧縮機からの冷媒と上段ヒートポンプの膨張弁からの冷媒とを受けて、両冷媒を直接に接触させて熱交換する中間冷却器を備え、この中間冷却器が下段ヒートポンプの凝縮器であると共に上段ヒートポンプの蒸発器とされる。このように、複数段(多段)のヒートポンプ4には、一元多段のヒートポンプの他、複数元(多元)のヒートポンプ、あるいはそれらの組合せのヒートポンプが含まれる。   Further, the heat pump 4 is not limited to a single stage, and may be a plurality of stages. When the heat pump 4 has a plurality of stages, adjacent stage heat pumps may be connected using an indirect heat exchanger, or may be connected using a direct heat exchanger (intercooler). In the latter case, an intermediate cooler that receives the refrigerant from the compressor of the lower heat pump and the refrigerant from the expansion valve of the upper heat pump and directly exchanges heat between the two refrigerants is provided. And the evaporator of the upper heat pump. As described above, the multi-stage (multi-stage) heat pump 4 includes a single-stage multi-stage heat pump, a multi-element (multi-element) heat pump, or a combination of them.

また、給水タンク3に、凝縮器14を介して給水路8により給水可能であると共に、凝縮器14を介さずに補給水路9により給水可能であれば、給水路8や補給水路9の具体的構成は、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では、給水路8と補給水路9とは、それぞれ補給水タンク5と給水タンク3とを接続するように並列に設けたが、給水路8と補給水路9との一端部(補給水タンク5側の端部)と他端部(給水タンク3側の端部)の一方または双方は、共通の管路としてもよい。言い換えれば、補給水路9の一端部は、補給水タンク5に接続するのではなく、給水路8から分岐するように設けてもよいし、補給水路9の他端部は、給水タンク3に接続するのではなく、給水タンク3の手前において給水路8に合流するように設けてもよい。補給水路9の一端部を、補給水タンク5に接続するのではなく、給水路8から分岐するように設ける場合、その分岐部より下流において、給水路8に給水ポンプ10を設ける一方、補給水路9に補給水ポンプ11を設ければよいが、分岐部よりも上流側の共通管路にのみポンプを設けて、分岐部より下流の給水路8および/または補給水路9に設けたバルブの開度を調整することで、給水路8や補給水路9を通る流量を調整してもよい。   Further, if water can be supplied to the water supply tank 3 through the water supply channel 8 via the condenser 14 and water can be supplied through the replenishment water channel 9 without going through the condenser 14, the specifics of the water supply channel 8 and the water supply channel 9 are specified. The configuration is not limited to the configuration of the above embodiment and can be changed as appropriate. For example, in the above-described embodiment, the water supply channel 8 and the supply water channel 9 are provided in parallel so as to connect the supply water tank 5 and the water supply tank 3, respectively, but one end portion of the water supply channel 8 and the supply water channel 9 ( One or both of the end portion on the make-up water tank 5 side and the other end portion (the end portion on the water supply tank 3 side) may be a common conduit. In other words, one end of the makeup water channel 9 may be provided so as to branch from the water supply channel 8 instead of being connected to the makeup water tank 5, and the other end of the makeup water channel 9 is connected to the water supply tank 3. Instead, it may be provided so as to join the water supply path 8 before the water supply tank 3. When one end portion of the replenishment water channel 9 is provided so as to branch from the water supply channel 8 instead of being connected to the replenishment water tank 5, the water supply pump 10 is provided in the water supply channel 8 downstream from the branching unit, while the replenishment water channel 9 may be provided with a supplementary water pump 11, but a pump is provided only in the common pipe upstream of the branching portion, and the valves provided in the water supply passage 8 and / or the supplementary waterway 9 downstream of the branching portion are opened. By adjusting the degree, the flow rate through the water supply channel 8 and the replenishment channel 9 may be adjusted.

また、前記実施例では、給水タンク3への給水を貯留するために補給水タンク5を設置したが、場合により補給水タンク5の設置を省略して、給水源から直接に給水路8および補給水路9に水を通してもよい。   Moreover, in the said Example, although the supplementary water tank 5 was installed in order to store the water supply to the water supply tank 3, installation of the supplementary water tank 5 may be abbreviate | omitted by the case, and the water supply path 8 and the supplement may be directly from a water supply source. Water may be passed through the water channel 9.

また、前記実施例では、給水路8を介した給水タンク3への給水流量を調整するために、給水ポンプ10をインバータ制御したが、給水ポンプ10をオンオフ制御しつつ、給水路8に設けたバルブの開度を調整してもよい。つまり、水温センサ22の検出温度に基づき給水路8を介した給水の流量を調整可能であれば、その流量調整方法は適宜に変更可能である。   Moreover, in the said Example, in order to adjust the water supply flow volume to the water supply tank 3 via the water supply path 8, the water supply pump 10 was inverter-controlled, However, The water supply pump 10 was provided in the water supply path 8 while performing on-off control. The opening degree of the valve may be adjusted. That is, if the flow rate of the water supply through the water supply path 8 can be adjusted based on the temperature detected by the water temperature sensor 22, the flow rate adjustment method can be changed as appropriate.

また、前記実施例では、給水路8および/または補給水路9を介して、補給水タンク5から給水タンク3へ給水可能としたが、これら給水は、軟水器から直接に行ってもよい。たとえば、図1において、給水路8および補給水路9の基端部をまとめて軟水器に接続し、給水ポンプ10の設置を省略する代わりに給水路8に設けた電動弁(モータバルブ)の開度を調整し、補給水ポンプ11の設置を省略する代わりに補給水路9に設けた電磁弁の開閉を制御すればよい。   Moreover, in the said Example, although it was made possible to supply water from the makeup water tank 5 to the water supply tank 3 via the water supply channel 8 and / or the makeup water channel 9, these water supply may be performed directly from a water softener. For example, in FIG. 1, instead of omitting the installation of the water supply pump 10 by connecting the base ends of the water supply channel 8 and the makeup water channel 9 together to the water softener, the opening of an electric valve (motor valve) provided in the water supply channel 8 Instead of adjusting the degree and omitting the installation of the makeup water pump 11, the opening and closing of the electromagnetic valve provided in the makeup water channel 9 may be controlled.

また、前記実施例では、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムについて説明したが、給水タンク3の貯留水の利用先は、ボイラ2に限らず適宜に変更可能である。   Moreover, although the said Example demonstrated the system which can heat the water supply to the feed water tank 3 of the boiler 2 with the heat pump 4, the utilization place of the stored water of the feed water tank 3 is not restricted to the boiler 2, and can be changed suitably. is there.

さらに、前記実施例では、ヒートポンプ4の熱源として熱源水を用いた例について説明したが、ヒートポンプ4の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。   Furthermore, although the said Example demonstrated the example which used heat-source water as a heat source of the heat pump 4, as a heat-source fluid of the heat pump 4, not only heat-source water but various fluids, such as air and waste gas, can be used.

1 給水加温システム
2 ボイラ
3 給水タンク
4 ヒートポンプ
5 補給水タンク
6 熱源水タンク
7 ポンプ
8 給水路
9 補給水路
10 給水ポンプ
11 補給水ポンプ
12 廃熱回収熱交換器
13 圧縮機
14 凝縮器
15 膨張弁
16 蒸発器
17 過冷却器
18 供給路
19 オーバーフロー路
20 熱源供給路
21 熱源供給ポンプ
22 水温センサ
23 (給水タンクの)水位検出器
24 (熱源水タンクの)水位検出器
25 低水位検出電極棒
26 熱源温度センサ
DESCRIPTION OF SYMBOLS 1 Supply water heating system 2 Boiler 3 Supply water tank 4 Heat pump 5 Supply water tank 6 Heat source water tank 7 Pump 8 Supply water path 9 Supply water channel 10 Supply water pump 11 Supply water pump 12 Waste heat recovery heat exchanger 13 Compressor 14 Condenser 15 Expansion Valve 16 Evaporator 17 Subcooler 18 Supply path 19 Overflow path 20 Heat source supply path 21 Heat source supply pump 22 Water temperature sensor 23 Water level detector 24 (for water supply tank) Water level detector 24 (for heat source water tank) 25 Low water level detection electrode rod 26 Heat source temperature sensor

Claims (7)

出力を変更可能なヒートポンプと、
このヒートポンプの凝縮器を介して給水路により給水可能であると共に、前記凝縮器を介さずに補給水路により給水可能な給水タンクとを備え、
前記給水タンク内の水位の変動速度に基づき、前記ヒートポンプの出力を制御する
ことを特徴とする給水加温システム。
A heat pump whose output can be changed,
A water supply tank capable of supplying water by a water supply path via a condenser of the heat pump, and having a water supply tank capable of supplying water by a replenishment water path without passing through the condenser,
The feed water heating system characterized by controlling the output of the heat pump based on the fluctuation speed of the water level in the feed water tank.
前記給水路を介した前記給水タンクへの給水中、前記ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、前記凝縮器への通水量を調整する
ことを特徴とする請求項1に記載の給水加温システム。
The amount of water flow to the condenser is adjusted so that the outlet water temperature of the condenser of the heat pump is maintained at a set temperature during water supply to the water supply tank via the water supply path. Water supply heating system described in 1.
前記給水タンク内の水位上昇時には、水位下降時よりも前記ヒートポンプの出力を減少させるか、水位上昇速度が速いほど前記ヒートポンプの出力を減少させるか、水位上昇速度が設定値以上になると前記ヒートポンプを停止させるかの内、いずれか一以上の制御を行い、
前記給水タンク内の水位下降時には、水位上昇時よりも前記ヒートポンプの出力を増加させるか、水位下降速度が速いほど前記ヒートポンプの出力を増加させるか、水位下降速度が設定値以上になると前記補給水路を介しても前記給水タンクへ給水するかの内、いずれか一以上の制御を行う
ことを特徴とする請求項1または請求項2に記載の給水加温システム。
When the water level in the water tank rises, the output of the heat pump is reduced compared to when the water level is lowered, or the output of the heat pump is reduced as the water level rise speed is faster, or when the water level rise speed exceeds a set value, the heat pump is turned off. Do one or more of the controls to stop,
When the water level in the water supply tank is lowered, the output of the heat pump is increased as compared to the time when the water level is raised, or the output of the heat pump is increased as the water level lowering speed is faster, or when the water level lowering speed exceeds a set value, The feed water warming system according to claim 1 or 2, wherein at least one of the water supply to the water supply tank is controlled through the control.
前記ヒートポンプは、低負荷運転とこれより高出力の高負荷運転とを切り替え可能とされ、
前記給水タンク内の水位が上昇中で、且つ水位上昇速度(V)が設定値(V1)以上(V1≦V)である場合、前記ヒートポンプを停止すると共に、前記給水路および前記補給水路を介した前記給水タンクへの給水を停止し、
前記給水タンク内の水位が上昇中で、且つ水位上昇速度(V)が設定値(V1)未満(0<V<V1)である場合、前記ヒートポンプを低負荷運転しつつ前記給水路を介して前記給水タンクへ給水し、
前記給水タンク内の水位が下降中で、且つ水位下降速度(|V|)が設定値(V1)未満(0<|V|<V1)である場合、前記ヒートポンプを高負荷運転しつつ前記給水路を介して前記給水タンクへ給水し、
前記給水タンク内の水位が下降中で、且つ水位下降速度(|V|)が設定値(V1)以上(V1≦|V|)である場合、前記ヒートポンプを高負荷運転しつつ前記給水路を介して前記給水タンクへ給水すると共に、前記補給水路を介しても前記給水タンクへ給水する
ことを特徴とする請求項1〜3のいずれか1項に記載の給水加温システム。
The heat pump can be switched between a low load operation and a high load operation with a higher output than this,
When the water level in the water supply tank is rising and the water level rising speed (V) is equal to or higher than a set value (V1) (V1 ≦ V), the heat pump is stopped and the water supply channel and the makeup water channel are passed through. Stop water supply to the water tank,
When the water level in the water supply tank is rising and the water level rising speed (V) is less than a set value (V1) (0 <V <V1), the heat pump is operated with a low load through the water supply channel. Supplying water to the water supply tank;
When the water level in the water supply tank is descending and the water level descending speed (| V |) is less than a set value (V1) (0 <| V | <V1), the water supply is performed while operating the heat pump at a high load. Water is supplied to the water supply tank via the road,
When the water level in the water supply tank is descending and the water level descending speed (| V |) is equal to or higher than a set value (V1) (V1 ≦ | V |), the heat pump is operated at a high load, The water supply heating system according to any one of claims 1 to 3, wherein water is supplied to the water supply tank via the water supply tank, and water is supplied to the water supply tank via the supply water channel.
前記給水タンク内の水位が下限水位を下回ると、前記給水タンク内の水位の変動速度に拘わらず、前記ヒートポンプを作動させつつ前記給水路を介して前記給水タンクへ給水すると共に、前記補給水路を介しても前記給水タンクへ給水し、
前記給水タンク内の水位が上限水位を上回ると、前記給水タンク内の水位の変動速度に拘わらず、前記ヒートポンプを停止させると共に、前記給水路および前記補給水路を介した前記給水タンクへの給水を停止する
ことを特徴とする請求項1〜4のいずれか1項に記載の給水加温システム。
When the water level in the water supply tank falls below the lower limit water level, water is supplied to the water supply tank through the water supply path while operating the heat pump regardless of the fluctuation speed of the water level in the water supply tank, Even through the water tank,
When the water level in the water supply tank exceeds the upper limit water level, the heat pump is stopped regardless of the fluctuation speed of the water level in the water supply tank, and water is supplied to the water supply tank via the water supply channel and the makeup water channel. It stops. The feed water heating system of any one of Claims 1-4 characterized by the above-mentioned.
前記ヒートポンプの蒸発器に通される熱源流体の温度に基づき、前記ヒートポンプの低負荷運転時の出力を調整する
ことを特徴とする請求項4に記載の給水加温システム。
The feed water heating system according to claim 4, wherein an output at the time of low load operation of the heat pump is adjusted based on a temperature of a heat source fluid passed through an evaporator of the heat pump.
前記ヒートポンプの蒸発器に通される熱源流体の量が設定を下回ると、前記ヒートポンプの運転を停止すると共に、前記蒸発器への熱源流体の供給を停止する
ことを特徴とする請求項1〜6のいずれか1項に記載の給水加温システム。
When the amount of the heat source fluid passed through the evaporator of the heat pump falls below a setting, the operation of the heat pump is stopped and the supply of the heat source fluid to the evaporator is stopped. The feed water heating system according to any one of the above.
JP2012107191A 2012-05-09 2012-05-09 Water supply heating system Pending JP2013234790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107191A JP2013234790A (en) 2012-05-09 2012-05-09 Water supply heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107191A JP2013234790A (en) 2012-05-09 2012-05-09 Water supply heating system

Publications (1)

Publication Number Publication Date
JP2013234790A true JP2013234790A (en) 2013-11-21

Family

ID=49761050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107191A Pending JP2013234790A (en) 2012-05-09 2012-05-09 Water supply heating system

Country Status (1)

Country Link
JP (1) JP2013234790A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146032A (en) * 2016-02-18 2017-08-24 三浦工業株式会社 Feedwater heating system
CN107178909A (en) * 2017-05-16 2017-09-19 珠海格力电器股份有限公司 Water tank liquid level control system, method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146032A (en) * 2016-02-18 2017-08-24 三浦工業株式会社 Feedwater heating system
CN107178909A (en) * 2017-05-16 2017-09-19 珠海格力电器股份有限公司 Water tank liquid level control system, method and device

Similar Documents

Publication Publication Date Title
JP5263421B1 (en) Water heating system
JP6694582B2 (en) Water supply heating system
JP2014194315A (en) Water supply and heating system
JP6132188B2 (en) Water heating system
JP5962972B2 (en) Water heating system
JP6090568B2 (en) Water heating system
JP6066072B2 (en) Water heating system
JP2014169819A (en) Feedwater heating system
JP6164565B2 (en) Water heating system
JP6237109B2 (en) Water heating system
JP5962971B2 (en) Water heating system
JP2015081708A (en) Water supply heating system
JP2013234790A (en) Water supply heating system
JP2017146032A (en) Feedwater heating system
JP6066071B2 (en) Water heating system
JP2013238336A (en) Water supply heating system
JP7056246B2 (en) Heat pump steam generation system
JP6065212B2 (en) Water heating system
JP2016048126A (en) Supply water heating system
JP6083509B2 (en) Water heating system
JP2016048125A (en) Supply water heating system
JP6249282B2 (en) Water heating system
KR20230047325A (en) hot water system
JP2017146034A (en) Feedwater heating system
JP5892371B2 (en) Water heating system