JP5892371B2 - Water heating system - Google Patents

Water heating system Download PDF

Info

Publication number
JP5892371B2
JP5892371B2 JP2012079192A JP2012079192A JP5892371B2 JP 5892371 B2 JP5892371 B2 JP 5892371B2 JP 2012079192 A JP2012079192 A JP 2012079192A JP 2012079192 A JP2012079192 A JP 2012079192A JP 5892371 B2 JP5892371 B2 JP 5892371B2
Authority
JP
Japan
Prior art keywords
water
water supply
heat pump
water level
supply tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012079192A
Other languages
Japanese (ja)
Other versions
JP2013210119A (en
Inventor
大沢 智也
智也 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012079192A priority Critical patent/JP5892371B2/en
Publication of JP2013210119A publication Critical patent/JP2013210119A/en
Application granted granted Critical
Publication of JP5892371B2 publication Critical patent/JP5892371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプを用いた給水加温システムに関するものである。   The present invention relates to a feed water heating system using a heat pump.

従来、下記特許文献1に開示されるように、ボイラ(24)の給水タンク(23)への給水を、ヒートポンプ(12)を用いて加温できるシステムが知られている。このシステムでは、給水タンク(23)は、給水源(21)から給水路を介して給水可能であると共に、給水路から分岐してヒートポンプ給湯器(12)を介しても給水可能である。そして、給水タンク(23)は、第1水位(52L)を下回ると、ヒートポンプ給湯機(12)からの給水が開始され、第1水位より高水位の第2水位(52H)を上回ると、ヒートポンプ給湯機(12)からの給水が停止される。また、第1水位より低水位の第3水位(32L)を下回ると、給水源(21)からの給水が開始され、第3水位より高水位であるが第1水位より低水位の第4水位(32H)を上回ると、給水源(21)からの給水が停止される。   Conventionally, as disclosed in Patent Document 1 below, a system capable of heating water supplied to a water supply tank (23) of a boiler (24) using a heat pump (12) is known. In this system, the water supply tank (23) can supply water from a water supply source (21) via a water supply channel, and can also supply water via a heat pump water heater (12) branched from the water supply channel. When the water supply tank (23) falls below the first water level (52L), water supply from the heat pump water heater (12) is started, and when the water supply tank (23) exceeds the second water level (52H) higher than the first water level, the heat pump Water supply from the water heater (12) is stopped. When the water level is lower than the third water level (32L), which is lower than the first water level, water supply from the water supply source (21) is started, and the fourth water level is higher than the third water level but lower than the first water level. If it exceeds (32H), the water supply from a water supply source (21) will be stopped.

特開2010−25431号公報(請求項4、図2−3)JP 2010-25431 A (Claim 4, FIG. 2-3)

前記特許文献1に記載の発明では、給水タンク内の水位に応じて、ヒートポンプ経由で給水するか、それに加えて直接にも給水するか、あるいはすべての給水を停止するかが切り替えられる。   In the invention described in Patent Document 1, depending on the water level in the water supply tank, whether to supply water via a heat pump, to supply water directly, or to stop all water supply can be switched.

しかしながら、ヒートポンプ経由で給水する場合、ヒートポンプの出力は一定であり、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことができない。   However, when water is supplied via the heat pump, the output of the heat pump is constant, and water supply to the water supply tank cannot be performed quickly and efficiently according to the usage load of the stored water in the water supply tank.

そこで、本発明が解決しようとする課題は、ヒートポンプを用いた給水加温システムにおいて、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことにある。   Therefore, the problem to be solved by the present invention is to quickly and efficiently supply water to the water supply tank according to the use load of the stored water in the water supply tank in the water supply heating system using the heat pump.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器に通される熱源流体から熱をくみ上げ、前記凝縮器に通される水を加温するヒートポンプであって、前記圧縮機のモータの回転数をインバータで変更することで出力を変更可能なヒートポンプと、このヒートポンプの凝縮器を介して給水路により給水可能であると共に、前記凝縮器を介さずに補給水路により給水可能な給水タンクと、この給水タンクから給水されるボイラとを備え、前記給水タンクの水位に基づき、前記給水路を介した前記給水タンクへの給水と、前記圧縮機のモータの回転数を制御し、前記給水タンクから前記ボイラへの給水状態、または前記ボイラの運転状態に基づき、前記補給水路を介した前記給水タンクへの給水を制御することを特徴とする給水加温システムである。 The present invention has been made to solve the above problems, and the invention according to claim 1 is characterized in that a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate a refrigerant, and the evaporation. A heat pump that draws heat from a heat source fluid that is passed through a condenser and heats water that is passed through the condenser, wherein the output can be changed by changing the number of revolutions of the motor of the compressor with an inverter And a water supply tank capable of supplying water through a water supply channel via the condenser of the heat pump and capable of supplying water through a replenishment water channel without passing through the condenser, and a boiler supplied from the water supply tank. based on the water level in the tank, and water supply to the water supply tank through the water supply passage to control the rotational speed of the motor of the compressor, the water supply condition from the water supply tank to the boiler or the voice, Based on the operating conditions, a water heating system and controls the water supply to the water supply tank through the supply water path.

請求項1に記載の発明によれば、給水タンク内の水位に基づきヒートポンプの出力を変更しつつ、給水路を介して給水タンクに給水すると共に、ボイラへの給水状態またはボイラの運転状態に基づき、補給水路を介した給水タンクへの給水を制御することができる。これにより、ボイラの負荷に応じた給水タンクへの給水を迅速に行える。   According to invention of Claim 1, while changing the output of a heat pump based on the water level in a water supply tank, while supplying water to a water supply tank via a water supply channel, it is based on the water supply state to a boiler, or the driving | running state of a boiler. The water supply to the water supply tank via the replenishment water channel can be controlled. Thereby, the water supply to the water supply tank according to the load of a boiler can be performed rapidly.

請求項2に記載の発明は、前記給水路を介した前記給水タンクへの給水中、前記ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、前記凝縮器への通水量を調整することを特徴とする請求項1に記載の給水加温システムである。   According to a second aspect of the present invention, the amount of water flow to the condenser is adjusted so that the water temperature on the outlet side of the condenser of the heat pump is maintained at a set temperature during water supply to the water supply tank via the water supply passage. The feed water warming system according to claim 1, wherein:

請求項2に記載の発明によれば、給水路を介した給水タンクへの給水中、ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、凝縮器への通水量を調整することで、給水路経由の給水温度を所望に維持することができる。   According to the second aspect of the present invention, the amount of water flow to the condenser is adjusted so that the water temperature at the outlet side of the condenser of the heat pump is maintained at the set temperature during the water supply to the water supply tank via the water supply channel. Thus, the water supply temperature via the water supply channel can be maintained as desired.

請求項3に記載の発明は、前記ヒートポンプは、低負荷運転とこれより高出力の高負荷運転とを切り替え可能とされ、前記給水路を介した前記給水タンクへの給水は、前記給水タンクの水位が第一水位(H1)を下回ると前記ヒートポンプを低負荷運転しつつ行い、前記第一水位より低い切替水位(H1´)を下回ると前記ヒートポンプを高負荷運転しつつ行う一方、前記第一水位より高い第二水位(H2)を上回ると停止することを特徴とする請求項1または請求項2に記載の給水加温システムである。   According to a third aspect of the present invention, the heat pump can be switched between a low load operation and a high load operation with a higher output than this, and water supply to the water supply tank via the water supply path is performed by the water supply tank. When the water level is lower than the first water level (H1), the heat pump is operated with a low load, and when the water level is lower than the switching water level (H1 ′) lower than the first water level, the heat pump is operated with a high load. It stops when it exceeds the 2nd water level (H2) higher than a water level, The feed water heating system of Claim 1 or Claim 2 characterized by the above-mentioned.

請求項3に記載の発明によれば、給水タンク内の水位に基づき、ヒートポンプを高負荷運転、低負荷運転および停止の三位置で制御しつつ、簡易に効率よく給水タンクへ給水することができる。   According to invention of Claim 3, based on the water level in a water supply tank, it can supply water to a water supply tank simply and efficiently, controlling a heat pump in three positions, high load operation, low load operation, and a stop. .

さらに、請求項4に記載の発明は、前記ヒートポンプは、低負荷運転と、これより高出力の中負荷運転と、これより高出力の高負荷運転とを切り替え可能とされ、前記給水路を介した前記給水タンクへの給水は、前記給水タンクの水位が前記第一水位を下回ると前記ヒートポンプを低負荷運転しつつ行い、前記第一水位より低いが前記切替水位より高い所定水位を下回ると前記ヒートポンプを中負荷運転しつつ行い、前記切替水位を下回ると前記ヒートポンプを高負荷運転しつつ行うことを特徴とする請求項3に記載の給水加温システムである。   Furthermore, in the invention according to claim 4, the heat pump can be switched between a low load operation, a medium load operation with a higher output than this, and a high load operation with a higher output than this, and the heat pump is connected via the water supply channel. The water supply to the water supply tank is performed while operating the heat pump at a low load when the water level of the water supply tank is lower than the first water level, and when the water level is lower than the predetermined water level lower than the first water level but higher than the switching water level, The feed water warming system according to claim 3, wherein the heat pump is operated while operating at a medium load, and when the temperature falls below the switching water level, the heat pump is operated while operating at a high load.

請求項4に記載の発明によれば、ヒートポンプを高負荷運転、中負荷運転、低負荷運転および停止の四位置で制御しつつ、簡易に効率よく給水タンクへ給水することができる。   According to the fourth aspect of the present invention, water can be easily and efficiently supplied to the water supply tank while controlling the heat pump at the four positions of high load operation, medium load operation, low load operation and stop.

本発明によれば、ヒートポンプを用いた給水加温システムにおいて、給水タンク内の貯留水の使用負荷に応じて、給水タンクへの給水を迅速に効率よく行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, in the feed water heating system using a heat pump, the water supply to a water supply tank can be rapidly and efficiently performed according to the use load of the stored water in a water supply tank.

本発明の給水加温システムの一実施例を示す概略図である。It is the schematic which shows one Example of the feed water heating system of this invention. 図1の給水加温システムにおけるヒートポンプの制御方法の一例を示す図である。It is a figure which shows an example of the control method of the heat pump in the feed water heating system of FIG.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の給水加温システム1の一実施例を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of a feed water warming system 1 of the present invention.

本実施例の給水加温システム1は、ボイラ2の給水タンク3への給水をヒートポンプ4で加温できるシステムであり、ボイラ2への給水を貯留する給水タンク3と、この給水タンク3への給水を貯留する補給水タンク5と、この補給水タンク5から給水タンク3への給水を加温するヒートポンプ4と、このヒートポンプ4の熱源としての熱源水(たとえば廃温水)を貯留する熱源水タンク6とを備える。   The feed water warming system 1 of the present embodiment is a system that can heat the feed water to the feed water tank 3 of the boiler 2 with the heat pump 4. The feed water tank 3 that stores the feed water to the boiler 2, and the feed water tank 3 A replenishment water tank 5 for storing water supply, a heat pump 4 for heating water supplied from the replenishment water tank 5 to the water supply tank 3, and a heat source water tank for storing heat source water (for example, waste hot water) as a heat source of the heat pump 4. 6.

ボイラ2は、蒸気ボイラであり、給水タンク3からの給水を加熱して蒸気にする。ボイラ2からの蒸気は、各種の蒸気使用設備(図示省略)へ送られるが、蒸気使用設備からのドレン(蒸気の凝縮水)を給水タンク3へ戻してもよい。   The boiler 2 is a steam boiler, and heats the feed water from the feed water tank 3 into steam. The steam from the boiler 2 is sent to various steam use facilities (not shown), but drain (condensed water of steam) from the steam use facility may be returned to the water supply tank 3.

ボイラ2は、典型的には、蒸気の圧力を所望に維持するように、燃焼量が制御される。ここでは、高燃焼状態(100%燃焼)、低燃焼状態(50%燃焼)および停止の三位置で制御される。この制御は、ボイラ制御盤(図示省略)が、蒸気使用設備への蒸気の圧力に基づき蒸気の使用負荷を把握して、ボイラ2のバーナの燃焼量を調整することで行われる。   The boiler 2 is typically controlled in combustion quantity so as to maintain the steam pressure as desired. Here, control is performed at three positions: a high combustion state (100% combustion), a low combustion state (50% combustion), and a stop. This control is performed by a boiler control panel (not shown) grasping the use load of the steam based on the pressure of the steam to the steam using facility and adjusting the combustion amount of the burner of the boiler 2.

ボイラ2は、缶体内の水位を所望に維持するように、ボイラ2への給水が制御される。具体的には、給水タンク3からボイラ2への給水路に設けたポンプ7が、ボイラ制御盤により缶体内の水位に基づき制御される。   The boiler 2 is controlled to supply water to the boiler 2 so as to maintain a desired water level in the can. Specifically, the pump 7 provided in the water supply path from the water supply tank 3 to the boiler 2 is controlled based on the water level in the can body by the boiler control panel.

給水タンク3は、補給水タンク5から、ヒートポンプ4を介して給水路8により給水可能であると共に、ヒートポンプ4を介さずに補給水路9により給水可能である。給水路8に設けた給水ポンプ10と、補給水路9に設けた補給水ポンプ11との作動を制御することで、給水路8と補給水路9との内、いずれか一方または双方を介して、補給水タンク5から給水タンク3へ給水可能である。給水路8には、給水ポンプ10より下流に、廃熱回収熱交換器12とヒートポンプ4とが順に設けられている。   The water supply tank 3 can be supplied with water from the make-up water tank 5 via the heat pump 4 through the water supply path 8 and can be supplied through the make-up water path 9 without going through the heat pump 4. By controlling the operation of the water supply pump 10 provided in the water supply path 8 and the makeup water pump 11 provided in the makeup water path 9, via either one or both of the water supply path 8 and the makeup water path 9, Water can be supplied from the makeup water tank 5 to the water supply tank 3. In the water supply passage 8, a waste heat recovery heat exchanger 12 and a heat pump 4 are sequentially provided downstream from the water supply pump 10.

給水ポンプ10は、本実施例では、インバータにより回転数を制御可能とされる。給水ポンプ10の回転数を変更することで、給水路8を介した給水タンク3への給水量を調整することができる。一方、補給水ポンプ11は、本実施例では、オンオフ制御されるが、場合により給水ポンプ10と同様にインバータ制御されてもよい。   In the present embodiment, the feed water pump 10 can control the rotation speed by an inverter. By changing the rotation speed of the water supply pump 10, the amount of water supplied to the water supply tank 3 via the water supply path 8 can be adjusted. On the other hand, the makeup water pump 11 is on / off controlled in the present embodiment, but may be inverter-controlled in the same manner as the feed water pump 10 in some cases.

補給水タンク5は、給水タンク3への給水を貯留する。補給水タンク5への給水として、本実施例では軟水が用いられる。すなわち、軟水器(図示省略)にて水中の硬度分を除去された軟水は、補給水タンク5に供給され貯留される。補給水タンク5の水位に基づき軟水器からの給水を制御することで、補給水タンク5の水位は所望に維持される。   The makeup water tank 5 stores water supplied to the water supply tank 3. In this embodiment, soft water is used as the water supply to the makeup water tank 5. That is, the soft water from which the water hardness has been removed by the water softener (not shown) is supplied to the makeup water tank 5 and stored. By controlling the water supply from the water softener based on the water level of the makeup water tank 5, the water level of the makeup water tank 5 is maintained as desired.

ヒートポンプ4は、蒸気圧縮式のヒートポンプであり、圧縮機13、凝縮器14、膨張弁15および蒸発器16が順次環状に接続されて構成される。そして、圧縮機13は、ガス冷媒を圧縮して高温高圧にする。また、凝縮器14は、圧縮機13からのガス冷媒を凝縮液化する。さらに、膨張弁15は、凝縮器14からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。そして、蒸発器16は、膨張弁15からの冷媒の蒸発を図る。   The heat pump 4 is a vapor compression heat pump, and is configured by sequentially connecting a compressor 13, a condenser 14, an expansion valve 15, and an evaporator 16 in an annular shape. The compressor 13 compresses the gas refrigerant to a high temperature and a high pressure. The condenser 14 condenses and liquefies the gas refrigerant from the compressor 13. Further, the expansion valve 15 allows the liquid refrigerant from the condenser 14 to pass through, thereby reducing the pressure and temperature of the refrigerant. The evaporator 16 then evaporates the refrigerant from the expansion valve 15.

従って、ヒートポンプ4は、蒸発器16において、冷媒が外部から熱を奪って気化する一方、凝縮器14において、冷媒が外部へ放熱して凝縮することになる。これを利用して、本実施例では、ヒートポンプ4は、蒸発器16において、熱源としての熱源水から熱をくみ上げ、凝縮器14において、給水路8の水を加温する。   Therefore, in the heat pump 4, in the evaporator 16, the refrigerant takes heat from the outside and vaporizes, while in the condenser 14, the refrigerant dissipates heat to the outside and condenses. In this embodiment, the heat pump 4 draws heat from the heat source water as a heat source in the evaporator 16 and heats the water in the water supply channel 8 in the condenser 14.

ヒートポンプ4は、凝縮器14と膨張弁15との間に、所望により過冷却器17を設けてもよい。過冷却器17は、凝縮器14から膨張弁15への冷媒と、凝縮器14への給水との間接熱交換器である。過冷却器17により、凝縮器14への給水で、凝縮器14から膨張弁15への冷媒を過冷却することができると共に、凝縮器14から膨張弁15への冷媒で、凝縮器14への給水を加温することができる。ヒートポンプ4の冷媒は、凝縮器14において潜熱を放出し、過冷却器17において顕熱を放出する。   The heat pump 4 may be provided with a supercooler 17 between the condenser 14 and the expansion valve 15 as desired. The supercooler 17 is an indirect heat exchanger between the refrigerant from the condenser 14 to the expansion valve 15 and the feed water to the condenser 14. The subcooler 17 can supercool the refrigerant from the condenser 14 to the expansion valve 15 by supplying water to the condenser 14, and can supply the refrigerant to the condenser 14 by the refrigerant from the condenser 14 to the expansion valve 15. The water supply can be heated. The refrigerant of the heat pump 4 releases latent heat in the condenser 14 and releases sensible heat in the subcooler 17.

その他、ヒートポンプ4には、圧縮機13の入口側にアキュムレータを設置したり、圧縮機13の出口側に油分離器を設置したり、凝縮器14の出口側(凝縮器14と過冷却器17との間)に受液器を設置したりしてもよい。   In addition, in the heat pump 4, an accumulator is installed on the inlet side of the compressor 13, an oil separator is installed on the outlet side of the compressor 13, or the outlet side of the condenser 14 (the condenser 14 and the subcooler 17 A receiver may be installed between the two).

ところで、ヒートポンプ4は、その出力(圧縮機13の容量)を段階的に変更可能とされている。本実施例では、圧縮機13のモータの回転数をインバータで変更することで、ヒートポンプ4は、低負荷運転とこれより高出力の高負荷運転とを切り替え可能とされている。たとえば、高負荷運転では全負荷運転(100%出力)され、低負荷運転では高負荷運転よりも低負荷運転(たとえば50%出力)される。   By the way, the heat pump 4 can change the output (the capacity | capacitance of the compressor 13) in steps. In the present embodiment, the heat pump 4 can be switched between a low load operation and a high load operation with a higher output by changing the rotation speed of the motor of the compressor 13 with an inverter. For example, full load operation (100% output) is performed in a high load operation, and low load operation (for example, 50% output) is performed in a low load operation rather than a high load operation.

熱源水タンク6は、ヒートポンプ4の熱源としての熱源水を貯留する。熱源水とは、たとえば廃温水(工場などから排出される温水)である。なお、熱源水タンク6には、熱源水の供給路18が設けられると共に、所定以上の水をあふれさせるオーバーフロー路19が設けられている。   The heat source water tank 6 stores heat source water as a heat source of the heat pump 4. The heat source water is, for example, waste hot water (hot water discharged from a factory or the like). The heat source water tank 6 is provided with a heat source water supply path 18 and an overflow path 19 for overflowing a predetermined amount or more of water.

熱源水タンク6の水は、熱源供給路20を介して、ヒートポンプ4の蒸発器16を通された後、廃熱回収熱交換器12を通される。熱源供給路20には、蒸発器16より上流側に熱源供給ポンプ21が設けられており、この熱源供給ポンプ21を作動させることで、熱源水タンク6からの熱源水を、蒸発器16と廃熱回収熱交換器12とに順に通すことができる。   The water in the heat source water tank 6 passes through the evaporator 16 of the heat pump 4 through the heat source supply path 20 and then passes through the waste heat recovery heat exchanger 12. The heat source supply path 20 is provided with a heat source supply pump 21 on the upstream side of the evaporator 16. By operating the heat source supply pump 21, the heat source water from the heat source water tank 6 is discarded with the evaporator 16. The heat recovery heat exchanger 12 can be passed through in order.

なお、廃熱回収熱交換器12は、補給水タンク5から過冷却器17への給水と、蒸発器16からの熱源水との間接熱交換器である。本実施例の場合、補給水タンク5から給水路8を介した給水タンク3への給水は、補給水タンク5から、廃熱回収熱交換器12、過冷却器17および凝縮器14を順に通された後、給水タンク3へ供給される。   The waste heat recovery heat exchanger 12 is an indirect heat exchanger for supplying water from the makeup water tank 5 to the supercooler 17 and heat source water from the evaporator 16. In the case of the present embodiment, the water supply from the makeup water tank 5 to the water supply tank 3 through the water supply channel 8 is sequentially passed from the makeup water tank 5 through the waste heat recovery heat exchanger 12, the supercooler 17 and the condenser 14. Then, the water is supplied to the water supply tank 3.

給水路8には、凝縮器14の出口側に、水温センサ22が設けられる。この水温センサ22は、凝縮器14を通過後の水温を検出する。水温センサ22の検出温度に基づき、給水ポンプ10が制御される。ここでは、給水ポンプ10は、水温センサ22の検出温度を設定温度T1(たとえば75℃)に維持するようにインバータ制御される。つまり、給水路8を介した給水タンク3への給水は、水温センサ22の検出温度を設定温度T1に維持するように、流量が調整される。但し、場合により、このような水温センサ22による流量調整制御を省略することもできる。   In the water supply path 8, a water temperature sensor 22 is provided on the outlet side of the condenser 14. The water temperature sensor 22 detects the water temperature after passing through the condenser 14. Based on the temperature detected by the water temperature sensor 22, the water supply pump 10 is controlled. Here, the feed water pump 10 is inverter-controlled so as to maintain the temperature detected by the water temperature sensor 22 at a set temperature T1 (for example, 75 ° C.). That is, the flow rate of water supplied to the water supply tank 3 through the water supply path 8 is adjusted so that the temperature detected by the water temperature sensor 22 is maintained at the set temperature T1. However, in some cases, such flow rate adjustment control by the water temperature sensor 22 can be omitted.

給水タンク3には、水位検出器23が設けられている。水位検出器23の構成は特に問わないが、本実施例では電極式水位検出器とされる。つまり、給水タンク3には、長さの異なる複数の電極棒24〜26が、その下端部の高さ位置を互いに異ならせて差し込まれて保持されている。具体的には、給水停止電極棒24、給水開始電極棒25、負荷切替電極棒26が、順に下端部の高さ位置を低くして、給水タンク3に挿入されている。各電極棒24〜26は、その下端部が水に浸かるか否かにより、下端部における水位の有無を検出する。   A water level detector 23 is provided in the water supply tank 3. The configuration of the water level detector 23 is not particularly limited. In the present embodiment, an electrode type water level detector is used. That is, a plurality of electrode rods 24 to 26 having different lengths are inserted and held in the water supply tank 3 with their lower end portions having different height positions. Specifically, the water supply stop electrode rod 24, the water supply start electrode rod 25, and the load switching electrode rod 26 are inserted into the water supply tank 3 with the height position of the lower end portion lowered in order. Each electrode rod 24-26 detects the presence or absence of the water level in a lower end part by whether the lower end part is immersed in water.

熱源水タンク6には、ヒートポンプ4の熱源としての熱源水の有無を確認するために、水位検出器27が設けられている。水位検出器27の構成は特に問わないが、本実施例では電極式水位検出器とされる。つまり、熱源水タンク6には、低水位検出電極棒28が差し込まれており、熱源水の水位が設定を下回っていないかを監視する。また、熱源水タンク6には、熱源水の温度を検出する熱源温度センサ29を設けておいてもよい。   The heat source water tank 6 is provided with a water level detector 27 in order to confirm the presence or absence of heat source water as a heat source of the heat pump 4. The configuration of the water level detector 27 is not particularly limited. In the present embodiment, an electrode type water level detector is used. That is, the low water level detection electrode rod 28 is inserted into the heat source water tank 6, and it is monitored whether the water level of the heat source water is below the setting. The heat source water tank 6 may be provided with a heat source temperature sensor 29 that detects the temperature of the heat source water.

次に、本実施例の給水加温システム1の制御(運転方法)について説明する。以下に説明する一連の制御は、図示しない制御器を用いて自動でなされる。   Next, control (operation method) of the feed water heating system 1 of the present embodiment will be described. A series of control described below is automatically performed using a controller (not shown).

図2は、本実施例の給水加温システム1におけるヒートポンプ4の制御方法の一例を示す図である。この図に示すように、給水タンク3の水位に基づき、ヒートポンプ4(特にその圧縮機13)および給水ポンプ10が制御される。   Drawing 2 is a figure showing an example of a control method of heat pump 4 in feed water warming system 1 of this example. As shown in this figure, the heat pump 4 (particularly, the compressor 13) and the water supply pump 10 are controlled based on the water level of the water supply tank 3.

ここで、ヒートポンプ4は、その圧縮機13の作動の有無により、運転と停止が切り替えられる。また、前述したように、本実施例では、ヒートポンプ4は、高負荷運転(典型的には全負荷運転=100%出力)、低負荷運転(たとえば50%出力)および停止(0%出力)の三位置で制御される。   Here, the heat pump 4 is switched between operation and stop depending on whether or not the compressor 13 is activated. In addition, as described above, in this embodiment, the heat pump 4 performs high load operation (typically full load operation = 100% output), low load operation (for example, 50% output), and stop (0% output). Controlled in three positions.

一方、給水ポンプ10は、ヒートポンプ4の作動に連動し、ヒートポンプ4の作動中は給水ポンプ10も作動し、ヒートポンプ4の停止中は給水ポンプ10も停止する。但し、前述したように、給水ポンプ10は、作動中、水温センサ22の検出温度を所望に維持するように、回転数をインバータ制御される。その結果、ヒートポンプ4の高負荷運転時は低負荷運転時よりも多い流量で、給水路8を介して給水タンク3へ給水可能となる。   On the other hand, the water supply pump 10 is interlocked with the operation of the heat pump 4, the water supply pump 10 is also operated while the heat pump 4 is being operated, and the water supply pump 10 is also stopped while the heat pump 4 is being stopped. However, as described above, the rotation speed of the water supply pump 10 is inverter-controlled so as to maintain a desired temperature detected by the water temperature sensor 22 during operation. As a result, it is possible to supply water to the water supply tank 3 through the water supply path 8 at a higher flow rate during high load operation of the heat pump 4 than during low load operation.

いま、給水停止電極棒24が水位を検知し、給水タンク3内の水位が十分にある場合(給水タンク3内の水位が第二水位H2を上回っている場合)、給水タンク3への給水は不要であるから、ヒートポンプ4を停止(つまり給水ポンプ10も停止)している。   Now, when the water supply stop electrode rod 24 detects the water level and the water level in the water supply tank 3 is sufficient (when the water level in the water supply tank 3 is higher than the second water level H2), the water supply to the water supply tank 3 is Since it is unnecessary, the heat pump 4 is stopped (that is, the water supply pump 10 is also stopped).

給水タンク3からボイラ2への給水により、給水タンク3内の水位が下がり、給水タンク3内の水位が第一水位H1を下回り、給水開始電極棒25が水位を検知しなくなると、ヒートポンプ4を低負荷運転する。これにより、給水路8を介して給水タンク3に給水されるが、給水タンク3内の水位が第二水位H2を上回り、給水停止電極棒24が水位を検知すると、ヒートポンプ4を停止する。   When the water level from the water supply tank 3 to the boiler 2 is lowered, the water level in the water supply tank 3 falls below the first water level H1, and the water supply start electrode rod 25 no longer detects the water level, the heat pump 4 is turned on. Operate with low load. As a result, water is supplied to the water supply tank 3 through the water supply path 8, but when the water level in the water supply tank 3 exceeds the second water level H2 and the water supply stop electrode rod 24 detects the water level, the heat pump 4 is stopped.

給水タンク3内の水位が第一水位H1を下回りヒートポンプ4を低負荷運転しても、水位を回復できず、給水タンク3内の水位が切替水位H1´を下回り、負荷切替電極棒26が水位を検知しなくなると、ヒートポンプ4を高負荷運転に切り替える。これにより、低負荷運転時よりも多い流量で給水路8を介して給水タンク3に給水されるが、給水タンク3内の水位が第一水位H1を上回り、給水開始電極棒25が水位を検知すると、ヒートポンプ4を低負荷運転に切り替え、さらに給水タンク3内の水位が第二水位H2を上回り、給水停止電極棒24が水位を検知すると、ヒートポンプ4を停止する。   Even if the water level in the water supply tank 3 falls below the first water level H1 and the heat pump 4 is operated at a low load, the water level cannot be recovered, the water level in the water supply tank 3 falls below the switching water level H1 ′, and the load switching electrode rod 26 is at the water level. When it is no longer detected, the heat pump 4 is switched to high load operation. As a result, water is supplied to the water supply tank 3 through the water supply channel 8 at a flow rate higher than that during low-load operation, but the water level in the water supply tank 3 exceeds the first water level H1, and the water supply start electrode rod 25 detects the water level. Then, the heat pump 4 is switched to low load operation, and when the water level in the water supply tank 3 exceeds the second water level H2 and the water supply stop electrode rod 24 detects the water level, the heat pump 4 is stopped.

ヒートポンプ4を運転して、補給水タンク5から給水路8を介して給水タンク3へ給水する際、補給水タンク5からの給水は、廃熱回収熱交換器12、過冷却器17および凝縮器14により徐々に加温されて、所定温度で給水タンク3へ供給される。給水タンク3とヒートポンプ4との間で水を循環させる場合と比較して、補給水タンク5から給水タンク3への一回の通過(ワンススルー)で給水を加温するので、ヒートポンプ4を通過する前後の給水の温度差を確保して、ヒートポンプ4の成績係数(COP)の向上を図ることができる。   When the heat pump 4 is operated to supply water from the make-up water tank 5 to the water supply tank 3 through the water supply path 8, the water supplied from the make-up water tank 5 is used as the waste heat recovery heat exchanger 12, the supercooler 17, and the condenser. 14 is gradually heated and supplied to the water supply tank 3 at a predetermined temperature. Compared with the case where water is circulated between the water supply tank 3 and the heat pump 4, the water supply is heated by a single pass (once through) from the makeup water tank 5 to the water supply tank 3, so that it passes through the heat pump 4. It is possible to secure a temperature difference between before and after the water supply and improve the coefficient of performance (COP) of the heat pump 4.

ところで、ヒートポンプ4の運転中、つまり給水路8を介した給水タンク3への給水中、熱源水タンク6内の水温を熱源温度センサ29で監視して、その温度に基づきヒートポンプ4の低負荷運転時の出力を調整してもよい。つまり、前記実施例では、低負荷運転は全負荷運転の50%出力としたが、この出力%を熱源温度センサ29の検出温度に応じて変更してもよい。ヒートポンプ4の熱源としての熱源水の温度が高温なほど、低負荷運転時の出力%を下げることができる。熱源水の温度を考慮してヒートポンプ4の低負荷運転時の出力を調整することで、熱源水の温度変化に拘わらず、給水路8を介した給水タンク3への給水流量を安定させることができる。   By the way, during operation of the heat pump 4, that is, during water supply to the water supply tank 3 through the water supply path 8, the water temperature in the heat source water tank 6 is monitored by the heat source temperature sensor 29, and the low load operation of the heat pump 4 is performed based on the temperature. The hour output may be adjusted. That is, in the above embodiment, the low load operation is set to 50% output of the full load operation, but this output% may be changed according to the temperature detected by the heat source temperature sensor 29. The higher the temperature of the heat source water as the heat source of the heat pump 4, the lower the output% during low load operation. By adjusting the output at the time of low load operation of the heat pump 4 in consideration of the temperature of the heat source water, it is possible to stabilize the water supply flow rate to the water supply tank 3 via the water supply path 8 regardless of the temperature change of the heat source water. it can.

また、ヒートポンプ4の低負荷運転時の出力は、給水タンク3内の水位下降時の方が水位上昇時よりも高出力に設定してもよい。つまり、給水タンク3内の水位が第一水位H1を下回ることで、ヒートポンプ4が停止状態から低負荷運転に切り替わった場合における低負荷運転時の圧縮機13の出力(たとえば回転速度)は、給水タンク3内の水位が第一水位H1を上回ることで、ヒートポンプ4が高負荷運転から低負荷運転に切り替わった場合における低負荷運転時の圧縮機13の出力よりも高出力に設定してもよい。水位下降時にはヒートポンプ4の出力を上げることで、水位の回復を迅速に図ることができる。   Further, the output during low load operation of the heat pump 4 may be set to a higher output when the water level in the water supply tank 3 is lower than when the water level is increased. That is, when the water level in the water supply tank 3 falls below the first water level H1, the output (for example, the rotational speed) of the compressor 13 during the low load operation when the heat pump 4 is switched from the stopped state to the low load operation is the water supply When the water level in the tank 3 exceeds the first water level H1, the heat pump 4 may be set to a higher output than the output of the compressor 13 during the low load operation when the heat pump 4 is switched from the high load operation to the low load operation. . By raising the output of the heat pump 4 when the water level is lowered, the water level can be quickly recovered.

さらに、熱源水タンク6内の水位が下がり、低水位検出電極棒28が水位を検知しなくなると、ヒートポンプ4の運転を停止すると共に、熱源供給ポンプ21を停止して蒸発器16への熱源水の供給を停止するのがよい。これにより、ヒートポンプ4を無駄に運転するのが防止される。   Further, when the water level in the heat source water tank 6 falls and the low water level detection electrode rod 28 no longer detects the water level, the operation of the heat pump 4 is stopped and the heat source supply pump 21 is stopped to supply the heat source water to the evaporator 16. It is better to stop the supply. This prevents the heat pump 4 from being wasted.

補給水タンク5から給水路8を介した給水タンク3への給水は、以上のように行われるが、補給水タンク5から補給水路9を介した給水タンク3への給水は、給水タンク3からボイラ2への給水状態、またはボイラ2の運転状態に基づき制御される。   The water supply from the makeup water tank 5 to the water supply tank 3 via the water supply channel 8 is performed as described above, but the water supply from the makeup water tank 5 to the water supply tank 3 via the makeup water channel 9 is performed from the water supply tank 3. Control is performed based on the state of water supply to the boiler 2 or the operating state of the boiler 2.

たとえば、給水タンク3からボイラ2への給水流量に基づき、補給水ポンプ11をオンオフ制御する。具体的には、給水タンク3からボイラ2への給水路に、フロースイッチや流量センサ30などを設け、ボイラ2への給水が上限流量を上回ると、補給水ポンプ11を作動させ、下限流量を下回ると、補給水ポンプ11を停止させればよい。給水タンク3からボイラ2への給水流量を把握して、ヒートポンプ4を介した給水路8による給水タンク3への給水だけでは足りないと判断すれば、補給水路9を介しても給水タンク3へ給水するのである。なお、場合により、フロースイッチや流量センサ30に代えて、給水タンク3からボイラ2への給水路に設けた給水ポンプ7の運転信号に基づき、補給水ポンプ11を制御してもよい。   For example, on-off control of the makeup water pump 11 is performed based on the feed water flow rate from the feed water tank 3 to the boiler 2. Specifically, a flow switch, a flow sensor 30 and the like are provided in the water supply path from the water supply tank 3 to the boiler 2, and when the water supply to the boiler 2 exceeds the upper limit flow rate, the make-up water pump 11 is operated and the lower limit flow rate is reduced. If it falls below, the makeup water pump 11 may be stopped. If the water supply flow rate from the water supply tank 3 to the boiler 2 is grasped and it is determined that the water supply to the water supply tank 3 by the water supply path 8 via the heat pump 4 is not enough, the water supply tank 3 is also supplied via the supply water path 9. Water is supplied. In some cases, the makeup water pump 11 may be controlled based on the operation signal of the feed pump 7 provided in the feed channel from the feed tank 3 to the boiler 2 instead of the flow switch or the flow sensor 30.

また、補給水路9を介した給水タンク3への給水は、ボイラ2の運転状態(ボイラ制御盤の高燃焼、低燃焼または停止の信号)に基づき補給水ポンプ11を制御することで行ってもよい。たとえば、ボイラ2が高燃焼状態の場合にのみ、補給水ポンプ11を作動させてもよい。あるいは、次に述べるように、ボイラ2の運転状態に基づき、補給水ポンプ11をインバータ制御してもよい。   Further, water supply to the water supply tank 3 through the supply water channel 9 may be performed by controlling the supply water pump 11 based on the operation state of the boiler 2 (high combustion, low combustion or stop signal of the boiler control panel). Good. For example, the makeup water pump 11 may be operated only when the boiler 2 is in a high combustion state. Alternatively, as described below, the makeup water pump 11 may be inverter-controlled based on the operation state of the boiler 2.

すなわち、補給水ポンプ11は、その回転数をインバータにより変更可能とされ、低燃焼用回転数と、これより高回転の高燃焼用回転数と、停止の三位置で制御可能とされている。そして、ボイラ2が停止している場合には、それに応じて補給水ポンプ11も停止して、補給水路9を介しての給水タンク3への給水を停止すればよい。また、ボイラ2が低燃焼状態の場合には、それに応じて補給水ポンプ11を低燃焼用回転数で作動させつつ、補給水路9を介して給水タンク3へ給水すればよい。さらに、ボイラ2が高燃焼状態の場合には、それに応じて補給水ポンプ11を高燃焼用回転数で作動させつつ、補給水路9を介して給水タンク3へ給水すればよい。   In other words, the replenishing water pump 11 can be controlled at three positions: a rotational speed for low combustion, a rotational speed for high combustion higher than this, and a stop speed. And when the boiler 2 has stopped, the makeup water pump 11 may also be stopped according to it and the water supply to the water supply tank 3 via the makeup water channel 9 may be stopped. Further, when the boiler 2 is in a low combustion state, the supply water pump 11 may be supplied to the water supply tank 3 through the supply water passage 9 while operating the supply water pump 11 at a low combustion rotational speed. Furthermore, when the boiler 2 is in a high combustion state, water may be supplied to the water supply tank 3 via the supply water passage 9 while operating the supply water pump 11 at a high combustion rotational speed accordingly.

本発明の給水加温システム1は、前記実施例の構成に限らず、適宜変更可能である。たとえば、前記実施例では、切替水位H1´を一つとすると共に、ヒートポンプ4を高負荷運転、低負荷運転および停止の三位置で制御した例を示したが、切替水位を複数として、ヒートポンプ4を四位置以上で制御してもよい。   The feed water warming system 1 of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. For example, in the above-described embodiment, an example in which the switching water level H1 ′ is set to one and the heat pump 4 is controlled at three positions of high load operation, low load operation, and stop has been described. You may control in four positions or more.

具体的には、負荷切替電極棒26を第一負荷切替電極棒と第二負荷切替電極棒との二つとすると共に、ヒートポンプ4を高負荷運転(典型的には全負荷運転=100%出力)と、これより低出力の中負荷運転(たとえば80%出力)と、これより低出力の低負荷運転(たとえば50%出力)および停止の四位置で制御する。   Specifically, the load switching electrode rod 26 is a first load switching electrode rod and a second load switching electrode rod, and the heat pump 4 is operated at a high load (typically full load operation = 100% output). Then, the control is performed in four positions: a medium load operation (for example, 80% output) with a lower output, a low load operation (for example, 50% output) with a lower output, and a stop.

そして、給水路8を介した給水タンク3への給水は、給水タンク3の水位が第一水位H1を下回るとヒートポンプ4を低負荷運転しつつ行い、第一水位H1より低いが切替水位H1´より高い所定水位を下回るとヒートポンプ4を中負荷運転しつつ行い、切替水位H1´を下回るとヒートポンプ4を高負荷運転しつつ行う。   Then, water supply to the water supply tank 3 through the water supply path 8 is performed while the heat pump 4 is operated at a low load when the water level of the water supply tank 3 falls below the first water level H1, and is lower than the first water level H1, but is the switching water level H1 ′. If it falls below the higher predetermined water level, it will carry out while carrying out medium load operation, and if it falls below switching water level H1 ', it will carry out while carrying out high load operation of heat pump 4.

具体的には、給水停止電極棒24、給水開始電極棒25、第一負荷切替電極棒、第二負荷切替電極棒を、順に下端部の高さ位置を低くして給水タンク3に設置すればよい。そして、水位低下時には、ヒートポンプ4は、給水開始電極棒25が水位を検知しなくなると低負荷運転し、第一負荷切替電極棒が水位を検知しなくなると中負荷運転に切り替え、第二負荷切替電極棒が水位を検知しなくなると高負荷運転に切り替える。逆に、水位上昇時には、ヒートポンプ4は、第一負荷切替電極が水位を検知すると中負荷運転に切り替え、給水開始電極棒25が水位を検知すると低負荷運転に切り替え、給水停止電極棒24が水位を検知すると停止する。その他の構成は、前記実施例および変形例と同様であるため、説明は省略する。   Specifically, if the water supply stop electrode rod 24, the water supply start electrode rod 25, the first load switching electrode rod, and the second load switching electrode rod are installed in the water supply tank 3 with the lower end portion lowered in order. Good. When the water level is lowered, the heat pump 4 operates at a low load when the water supply start electrode rod 25 no longer detects the water level, and switches to the medium load operation when the first load switching electrode rod no longer detects the water level, and switches to the second load. When the electrode bar no longer detects the water level, it switches to high load operation. Conversely, when the water level rises, the heat pump 4 switches to the medium load operation when the first load switching electrode detects the water level, switches to the low load operation when the water supply start electrode rod 25 detects the water level, and the water supply stop electrode rod 24 moves to the water level. Stops when it is detected. Other configurations are the same as those of the above-described embodiment and modification examples, and thus the description thereof is omitted.

また、ヒートポンプ4は、単段に限らず複数段とすることもできる。ヒートポンプ4を複数段にする場合、隣接する段のヒートポンプ同士は、間接熱交換器を用いて接続されてもよいし、直接熱交換器(中間冷却器)を用いて接続されてもよい。後者の場合、下段ヒートポンプの圧縮機からの冷媒と上段ヒートポンプの膨張弁からの冷媒とを受けて、両冷媒を直接に接触させて熱交換する中間冷却器を備え、この中間冷却器が下段ヒートポンプの凝縮器であると共に上段ヒートポンプの蒸発器とされる。このように、複数段(多段)のヒートポンプ4には、一元多段のヒートポンプの他、複数元(多元)のヒートポンプ、あるいはそれらの組合せのヒートポンプが含まれる。   Further, the heat pump 4 is not limited to a single stage, and may be a plurality of stages. When the heat pump 4 has a plurality of stages, adjacent stage heat pumps may be connected using an indirect heat exchanger, or may be connected using a direct heat exchanger (intercooler). In the latter case, an intermediate cooler that receives the refrigerant from the compressor of the lower heat pump and the refrigerant from the expansion valve of the upper heat pump and directly exchanges heat between the two refrigerants is provided. And the evaporator of the upper heat pump. As described above, the multi-stage (multi-stage) heat pump 4 includes a single-stage multi-stage heat pump, a multi-element (multi-element) heat pump, or a combination of them.

また、給水タンク3に、凝縮器14を介して給水路8により給水可能であると共に、凝縮器14を介さずに補給水路9により給水可能であれば、給水路8や補給水路9の具体的構成は、前記実施例の構成に限らず適宜変更可能である。たとえば、前記実施例では、給水路8と補給水路9とは、それぞれ補給水タンク5と給水タンク3とを接続するように並列に設けたが、給水路8と補給水路9との一端部(補給水タンク5側の端部)と他端部(給水タンク3側の端部)の一方または双方は、共通の管路としてもよい。言い換えれば、補給水路9の一端部は、補給水タンク5に接続するのではなく、給水路8から分岐するように設けてもよいし、補給水路9の他端部は、給水タンク3に接続するのではなく、給水タンク3の手前において給水路8に合流するように設けてもよい。補給水路9の一端部を、補給水タンク5に接続するのではなく、給水路8から分岐するように設ける場合、その分岐部より下流において、給水路8に給水ポンプ10を設ける一方、補給水路9に補給水ポンプ11を設ければよいが、分岐部よりも上流側の共通管路にのみポンプを設けて、分岐部より下流の給水路8および/または補給水路9に設けたバルブの開度を調整することで、給水路8や補給水路9を通る流量を調整してもよい。   Further, if water can be supplied to the water supply tank 3 through the water supply channel 8 via the condenser 14 and water can be supplied through the replenishment water channel 9 without going through the condenser 14, the specifics of the water supply channel 8 and the water supply channel 9 are specified. The configuration is not limited to the configuration of the above embodiment and can be changed as appropriate. For example, in the above-described embodiment, the water supply channel 8 and the supply water channel 9 are provided in parallel so as to connect the supply water tank 5 and the water supply tank 3, respectively, but one end portion of the water supply channel 8 and the supply water channel 9 ( One or both of the end portion on the make-up water tank 5 side and the other end portion (the end portion on the water supply tank 3 side) may be a common conduit. In other words, one end of the makeup water channel 9 may be provided so as to branch from the water supply channel 8 instead of being connected to the makeup water tank 5, and the other end of the makeup water channel 9 is connected to the water supply tank 3. Instead, it may be provided so as to join the water supply path 8 before the water supply tank 3. When one end portion of the replenishment water channel 9 is provided so as to branch from the water supply channel 8 instead of being connected to the replenishment water tank 5, the water supply pump 10 is provided in the water supply channel 8 downstream from the branching unit, while the replenishment water channel 9 may be provided with a supplementary water pump 11, but a pump is provided only in the common pipe upstream of the branching portion, and the valves provided in the water supply passage 8 and / or the supplementary waterway 9 downstream of the branching portion are opened. By adjusting the degree, the flow rate through the water supply channel 8 and the replenishment channel 9 may be adjusted.

また、前記実施例では、給水タンク3への給水を貯留するために補給水タンク5を設置したが、場合により補給水タンク5の設置を省略して、給水源から直接に給水路8および補給水路9に水を通してもよい。   Moreover, in the said Example, although the supplementary water tank 5 was installed in order to store the water supply to the water supply tank 3, installation of the supplementary water tank 5 may be abbreviate | omitted by the case, and the water supply path 8 and the supplement may be directly from a water supply source. Water may be passed through the water channel 9.

また、前記実施例では、給水路8を介した給水タンク3への給水流量を調整するために、給水ポンプ10をインバータ制御したが、給水ポンプ10をオンオフ制御しつつ、給水路8に設けたバルブの開度を調整してもよい。つまり、水温センサ22の検出温度に基づき給水路8を介した給水の流量を調整可能であれば、その流量調整方法は適宜に変更可能である。   Moreover, in the said Example, in order to adjust the water supply flow volume to the water supply tank 3 via the water supply path 8, the water supply pump 10 was inverter-controlled, However, The water supply pump 10 was provided in the water supply path 8 while performing on-off control. The opening degree of the valve may be adjusted. That is, if the flow rate of the water supply through the water supply path 8 can be adjusted based on the temperature detected by the water temperature sensor 22, the flow rate adjustment method can be changed as appropriate.

同様に、補給水路9を介した給水タンク3への給水流量を調整するために、補給水ポンプ11をインバータ制御することに代えて、補給水ポンプ11をオンオフ制御しつつ、補給水路9に設けたバルブの開度を調整してもよい。   Similarly, in order to adjust the feed water flow rate to the feed water tank 3 via the make-up water channel 9, instead of performing the inverter control of the make-up water pump 11, an on-off control of the make-up water pump 11 is provided in the make-up water channel 9. The valve opening may be adjusted.

また、前記実施例では、給水路8および/または補給水路9を介して、補給水タンク5から給水タンク3へ給水可能としたが、これら給水は、軟水器から直接に行ってもよい。たとえば、図1において、給水路8および補給水路9の基端部をまとめて軟水器に接続し、給水ポンプ10の設置を省略する代わりに給水路8に設けた電動弁(モータバルブ)の開度を調整し、補給水ポンプ11の設置を省略する代わりに補給水路9に設けたバルブの開閉や開度を制御すればよい。   Moreover, in the said Example, although it was made possible to supply water from the makeup water tank 5 to the water supply tank 3 via the water supply channel 8 and / or the makeup water channel 9, these water supply may be performed directly from a water softener. For example, in FIG. 1, instead of omitting the installation of the water supply pump 10 by connecting the base ends of the water supply channel 8 and the makeup water channel 9 together to the water softener, the opening of an electric valve (motor valve) provided in the water supply channel 8 Instead of adjusting the degree and omitting the installation of the makeup water pump 11, the opening and closing and the opening degree of the valve provided in the makeup water channel 9 may be controlled.

さらに、前記実施例では、ヒートポンプ4の熱源として熱源水を用いた例について説明したが、ヒートポンプ4の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。   Furthermore, although the said Example demonstrated the example which used heat-source water as a heat source of the heat pump 4, as a heat-source fluid of the heat pump 4, not only heat-source water but various fluids, such as air and waste gas, can be used.

1 給水加温システム
2 ボイラ
3 給水タンク
4 ヒートポンプ
5 補給水タンク
6 熱源水タンク
7 ポンプ
8 給水路
9 補給水路
10 給水ポンプ
11 補給水ポンプ
12 廃熱回収熱交換器
13 圧縮機
14 凝縮器
15 膨張弁
16 蒸発器
17 過冷却器
18 供給路
19 オーバーフロー路
20 熱源供給路
21 熱源供給ポンプ
22 水温センサ
23 水位検出器
24 給水停止電極棒
25 給水開始電極棒
26 負荷切替電極棒
27 水位検出器
28 低水位検出電極棒
29 熱源温度センサ
30 流量センサ
H1 第一水位
H1´ 切替水位
H2 第二水位
DESCRIPTION OF SYMBOLS 1 Supply water heating system 2 Boiler 3 Supply water tank 4 Heat pump 5 Supply water tank 6 Heat source water tank 7 Pump 8 Supply water path 9 Supply water channel 10 Supply water pump 11 Supply water pump 12 Waste heat recovery heat exchanger 13 Compressor 14 Condenser 15 Expansion Valve 16 Evaporator 17 Supercooler 18 Supply path 19 Overflow path 20 Heat source supply path 21 Heat source supply pump 22 Water temperature sensor 23 Water level detector 24 Water supply stop electrode rod 25 Water supply start electrode rod 26 Load switching electrode rod 27 Water level detector 28 Low Water level detection electrode rod 29 Heat source temperature sensor 30 Flow rate sensor H1 First water level H1 ′ Switching water level H2 Second water level

Claims (4)

圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させ、前記蒸発器に通される熱源流体から熱をくみ上げ、前記凝縮器に通される水を加温するヒートポンプであって、前記圧縮機のモータの回転数をインバータで変更することで出力を変更可能なヒートポンプと、
このヒートポンプの凝縮器を介して給水路により給水可能であると共に、前記凝縮器を介さずに補給水路により給水可能な給水タンクと、
この給水タンクから給水されるボイラとを備え、
前記給水タンクの水位に基づき、前記給水路を介した前記給水タンクへの給水と、前記圧縮機のモータの回転数を制御し、
前記給水タンクから前記ボイラへの給水状態、または前記ボイラの運転状態に基づき、前記補給水路を介した前記給水タンクへの給水を制御する
ことを特徴とする給水加温システム。
A compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate the refrigerant, draw up heat from a heat source fluid that passes through the evaporator, and heat water that passes through the condenser A heat pump capable of changing the output by changing the rotation speed of the motor of the compressor with an inverter ,
A water supply tank capable of supplying water by a water supply channel via a condenser of the heat pump, and capable of supplying water by a replenishment water channel without using the condenser,
A boiler that is supplied with water from this water supply tank,
Based on the water level of the water supply tank, controlling the water supply to the water supply tank via the water supply path and the rotation speed of the motor of the compressor ,
A water supply and heating system characterized by controlling water supply to the water supply tank via the makeup water channel based on a water supply state from the water supply tank to the boiler or an operating state of the boiler.
前記給水路を介した前記給水タンクへの給水中、前記ヒートポンプの凝縮器の出口側水温を設定温度に維持するように、前記凝縮器への通水量を調整する
ことを特徴とする請求項1に記載の給水加温システム。
The amount of water flow to the condenser is adjusted so that the outlet water temperature of the condenser of the heat pump is maintained at a set temperature during water supply to the water supply tank via the water supply path. Water supply heating system described in 1.
前記ヒートポンプは、低負荷運転とこれより高出力の高負荷運転とを切り替え可能とされ、
前記給水路を介した前記給水タンクへの給水は、前記給水タンクの水位が第一水位(H1)を下回ると前記ヒートポンプを低負荷運転しつつ行い、前記第一水位より低い切替水位(H1´)を下回ると前記ヒートポンプを高負荷運転しつつ行う一方、前記第一水位より高い第二水位(H2)を上回ると停止する
ことを特徴とする請求項1または請求項2に記載の給水加温システム。
The heat pump can be switched between a low load operation and a high load operation with a higher output than this,
The water supply to the water supply tank via the water supply channel is performed while the heat pump is operated at a low load when the water level of the water supply tank is lower than the first water level (H1), and the switching water level (H1 ′ lower than the first water level). When the temperature is lower than), the heat pump is operated while performing a high load operation, and when the temperature is higher than the second water level (H2) higher than the first water level, the heat pump is stopped. system.
前記ヒートポンプは、低負荷運転と、これより高出力の中負荷運転と、これより高出力の高負荷運転とを切り替え可能とされ、
前記給水路を介した前記給水タンクへの給水は、前記給水タンクの水位が前記第一水位を下回ると前記ヒートポンプを低負荷運転しつつ行い、前記第一水位より低いが前記切替水位より高い所定水位を下回ると前記ヒートポンプを中負荷運転しつつ行い、前記切替水位を下回ると前記ヒートポンプを高負荷運転しつつ行う
ことを特徴とする請求項3に記載の給水加温システム。
The heat pump can be switched between a low load operation, a medium load operation with a higher output than this, and a high load operation with a higher output than this,
The water supply to the water supply tank via the water supply path is performed while operating the heat pump at a low load when the water level of the water supply tank is lower than the first water level, and is lower than the first water level but higher than the switching water level. 4. The feed water heating system according to claim 3, wherein the heat pump is operated while operating at a medium load when the water level is below, and the heat pump is operated at a high load when the water level is below the switching water level.
JP2012079192A 2012-03-30 2012-03-30 Water heating system Active JP5892371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012079192A JP5892371B2 (en) 2012-03-30 2012-03-30 Water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079192A JP5892371B2 (en) 2012-03-30 2012-03-30 Water heating system

Publications (2)

Publication Number Publication Date
JP2013210119A JP2013210119A (en) 2013-10-10
JP5892371B2 true JP5892371B2 (en) 2016-03-23

Family

ID=49528105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079192A Active JP5892371B2 (en) 2012-03-30 2012-03-30 Water heating system

Country Status (1)

Country Link
JP (1) JP5892371B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090568B2 (en) * 2013-03-05 2017-03-08 三浦工業株式会社 Water heating system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210554A (en) * 1987-02-25 1988-09-01 Daikin Ind Ltd Heat pump type hot water supplier
JP3767951B2 (en) * 1996-09-27 2006-04-19 ホシザキ電機株式会社 Hot water generator using heat pump
JP2005188801A (en) * 2003-12-25 2005-07-14 Miura Co Ltd Combustion control method of boiler
JP5454778B2 (en) * 2009-11-13 2014-03-26 三浦工業株式会社 Boiler water supply system
JP5482519B2 (en) * 2010-05-14 2014-05-07 三浦工業株式会社 Steam system
US9404690B2 (en) * 2011-08-03 2016-08-02 Haier US Applicance Solutions, Inc. Condenser coil holder for water heater

Also Published As

Publication number Publication date
JP2013210119A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5263421B1 (en) Water heating system
JP6694582B2 (en) Water supply heating system
JP2014194315A (en) Water supply and heating system
JP6132188B2 (en) Water heating system
JP5962972B2 (en) Water heating system
JP6164565B2 (en) Water heating system
JP6065213B2 (en) Water heating system
JP6237109B2 (en) Water heating system
JP6090568B2 (en) Water heating system
JP6066072B2 (en) Water heating system
JP2015081708A (en) Water supply heating system
JP5962971B2 (en) Water heating system
JP6066071B2 (en) Water heating system
JP2013238336A (en) Water supply heating system
JP6249282B2 (en) Water heating system
JP2017146032A (en) Feedwater heating system
JP5892371B2 (en) Water heating system
JP6065212B2 (en) Water heating system
JP6083509B2 (en) Water heating system
JP6210204B2 (en) Water heating system
JP5880266B2 (en) Water heating system
JP2016048126A (en) Supply water heating system
JP2017146034A (en) Feedwater heating system
JP2013238335A (en) Water supply heating system
JP2014169822A (en) Feedwater heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R150 Certificate of patent or registration of utility model

Ref document number: 5892371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250