JP2013230971A - Group iii nitride semiconductor substrate for ld and group iii nitride semiconductor epitaxial substrate for ld using the same - Google Patents
Group iii nitride semiconductor substrate for ld and group iii nitride semiconductor epitaxial substrate for ld using the same Download PDFInfo
- Publication number
- JP2013230971A JP2013230971A JP2013107550A JP2013107550A JP2013230971A JP 2013230971 A JP2013230971 A JP 2013230971A JP 2013107550 A JP2013107550 A JP 2013107550A JP 2013107550 A JP2013107550 A JP 2013107550A JP 2013230971 A JP2013230971 A JP 2013230971A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- group iii
- nitride semiconductor
- iii nitride
- gan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
本発明は、LD用III族窒化物半導体基板及びそれを用いたLD用III族窒化物半導体エピタキシャル基板に関し、特に劈開性を改善したLD用III族窒化物半導体基板及びそれを用いたLD用III族窒化物半導体エピタキシャル基板に関する。 The present invention relates to a group III nitride semiconductor substrate for LD and a group III nitride semiconductor epitaxial substrate for LD using the same, and more particularly to a group III nitride semiconductor substrate for LD with improved cleavage and LD III using the same. The present invention relates to a group nitride semiconductor epitaxial substrate.
窒化ガリウム(GaN)、窒化インジウムガリウム(InGaN)、窒化ガリウムアルミニウム(AlGaN)等のIII族窒化物半導体は、青色の発光ダイオード(LED)やレーザーダイオ−ド(LD)用材料として、脚光を浴びている。さらに、III族窒化物半導体は、耐熱性や耐環境性が良いという特徴を活かして、電子デバイスへの応用開発も始まっている。 Group III nitride semiconductors such as gallium nitride (GaN), indium gallium nitride (InGaN), and gallium aluminum nitride (AlGaN) are attracting attention as blue light-emitting diode (LED) and laser diode (LD) materials. ing. Furthermore, Group III nitride semiconductors have begun to be applied to electronic devices by taking advantage of their good heat resistance and environmental resistance.
現在広く実用化されているGaN成長用の基板はサファイアであり、単結晶サファイア基板の上に有機金属気相成長法(MOVPE法)等でGaNをエピタキシャル成長させる方法が一般に用いられている。以下、GaNをIII族窒化物半導体の代表例として説明する。 A substrate for GaN growth that is currently in wide use is sapphire, and a method of epitaxially growing GaN on a single crystal sapphire substrate by metal organic vapor phase epitaxy (MOVPE method) is generally used. Hereinafter, GaN will be described as a representative example of a group III nitride semiconductor.
サファイア基板はGaNと格子定数が異なるため、サファイア基板上に直接GaNを成長させたのでは単結晶膜を成長させることができない。このため、サファイア基板上に一旦低温でAlNやGaNの窒化物バッファ層を成長させ、この低温成長窒化物バッファ層で格子の歪みを緩和させてから、その上にGaNを成長させる方法が考案されている。この低温成長窒化物層をバッファ層として用いることで、GaNの単結晶エピタキシャル成長は可能になった。しかし、この方法でも、やはりサファイア基板とGaN結晶の格子のずれは如何ともし難く、成長させたGaNは無数ともいえる結晶欠陥を有している。この結晶欠陥は、GaN系のLDや高輝度LEDを製作する上で障害となることがある。 Since the sapphire substrate has a lattice constant different from that of GaN, a single crystal film cannot be grown by directly growing GaN on the sapphire substrate. For this reason, a method has been devised in which an AlN or GaN nitride buffer layer is once grown on a sapphire substrate at a low temperature, lattice strain is relaxed by this low temperature growth nitride buffer layer, and then GaN is grown thereon. ing. Using this low-temperature grown nitride layer as a buffer layer, GaN single crystal epitaxial growth has become possible. However, even with this method, the lattice displacement between the sapphire substrate and the GaN crystal is still difficult, and the grown GaN has countless crystal defects. This crystal defect may be an obstacle in manufacturing a GaN-based LD or a high-intensity LED.
上記のような理由から、GaN自立基板の出現が切に望まれてきた。GaNは、SiやGaAsのように融液から大型のインゴットを引き上げることが困難なため、例えば超高温高圧法、Naフラックス法、ハイドライド気相成長法(HVPE法)などの種々の方法が試みられている。HVPE法によるGaN基板は、これらの方法の中でも最も開発が進んでいる。市場への流通も始まっており、LD用途だけでなく、高輝度LED向けとしても大きな期待が寄せられている。 For the reasons described above, the appearance of a GaN free-standing substrate has been strongly desired. Since GaN is difficult to pull up a large ingot from a melt like Si and GaAs, various methods such as an ultra-high temperature and high pressure method, a Na flux method, and a hydride vapor phase growth method (HVPE method) have been tried. ing. Development of the HVPE GaN substrate is the most advanced among these methods. Distribution to the market has begun, and there are great expectations not only for LD applications but also for high-brightness LEDs.
通常、LDの共振器の端面ミラーは劈開によって形成する。GaN単結晶基板の劈開性の良否を知るために、GaN単結晶基板の全面に単色光をあて光弾性効果によって歪値を測定し、測定した歪値の面内での最大値が所定値以下にあるか否かによって判定する方法が提案されている(特許文献1参照)。 Usually, the end face mirror of an LD resonator is formed by cleavage. In order to know whether the GaN single crystal substrate has good cleaving property, the strain value is measured by the photoelastic effect by applying monochromatic light to the entire surface of the GaN single crystal substrate, and the maximum value in the plane of the measured strain value is below a predetermined value. Has been proposed (see Patent Document 1).
上述したように、HVPE法によるGaN基板が実用化されたものの、GaN基板の特性は未だ改善の余地を大きく残している。ここで課題とするのは、GaN基板の劈開性である。通常、LDの共振器の端面ミラーは劈開によって形成する。劈開面は、原理的には原子レベルの平坦性を備え、ミラーとしては理想的なはずである。しかし実際の劈開面は、様々な要因によって乱れ(段差)を生じ、LDの歩留まりを低下させる原因になっていた。図5に、HVPE法によって作製した従来のGaN基板を劈開した劈開面を、微分干渉顕微鏡(オリンパス製のBX11)を用いて観察した微分干渉像を示す。図5の破線で囲んだ部分の劈開面に段差部が見られる。 As described above, although a GaN substrate by the HVPE method has been put into practical use, the characteristics of the GaN substrate still leave much room for improvement. The problem here is the cleaving property of the GaN substrate. Usually, the end face mirror of an LD resonator is formed by cleavage. In principle, the cleavage plane has atomic level flatness and should be ideal as a mirror. However, the actual cleavage plane is disturbed (level difference) due to various factors, which causes the yield of LD to decrease. FIG. 5 shows a differential interference image obtained by observing a cleavage plane obtained by cleaving a conventional GaN substrate manufactured by the HVPE method, using a differential interference microscope (BX11 manufactured by Olympus). A stepped portion is seen on the cleavage plane surrounded by the broken line in FIG.
本発明の目的は、段差などの乱れが少ない平坦な劈開面が得られるLD用III族窒化物半導体基板及びそれを用いたLD用III族窒化物半導体エピタキシャル基板を提供することにある。 An object of the present invention is to provide a group III nitride semiconductor substrate for LD and a group III nitride semiconductor epitaxial substrate for LD using the same, which can obtain a flat cleaved surface with less disturbance such as steps.
本発明の第1の態様は、劈開によってLDの共振器の端面ミラーが形成されるLD用III族窒化物半導体基板において、前記LD用III族窒化物半導体基板は、直径25mm以上、厚さ250μm以上であって、前記LD用III族窒化物半導体基板の外縁から5mm以内の外周部における少なくとも前記外縁側の部分は、前記LD用III族窒化物半導体基板の主面内の応力が引張応力であり、且つ前記LD用III族窒化物半導体基板の前記外縁側の部分よりも中心側の部分に比べて相対的に引張応力が大きくなっていることを特徴とするLD用III族窒化物半導体基板(ただし中央部の酸素濃度は1×1016cm-3以下であり、外周部の酸素濃度は1×1018cm-3であるGaN基板は除く。)である。 A first aspect of the present invention is a group III nitride semiconductor substrate for LD in which an end face mirror of an LD resonator is formed by cleavage, and the group III nitride semiconductor substrate for LD has a diameter of 25 mm or more and a thickness of 250 μm. In the above, at least the outer edge side portion of the outer peripheral portion within 5 mm from the outer edge of the group III nitride semiconductor substrate for LD is tensile stress in the main surface of the group III nitride semiconductor substrate for LD. And a group III nitride semiconductor substrate for LD, wherein the group III nitride semiconductor substrate for LD is relatively larger in tensile stress than the portion on the outer edge side of the group III nitride semiconductor substrate for LD. (However, the oxygen concentration in the central portion is 1 × 10 16 cm −3 or less and the oxygen concentration in the outer peripheral portion is 1 × 10 18 cm −3 is excluded).
本発明の第2の態様は、第1の態様のLD用III族窒化物半導体基板において、前記外縁側の部分の酸素濃度は、1×1018cm-3以上5×1020cm-3以下であり、前記中心側の部分の酸素濃度は、2×1016cm-3以下である。 According to a second aspect of the present invention, in the group III nitride semiconductor substrate for LD according to the first aspect, the oxygen concentration in the outer edge portion is 1 × 10 18 cm −3 or more and 5 × 10 20 cm −3 or less. And the oxygen concentration in the central portion is 2 × 10 16 cm −3 or less.
本発明の第3の態様は、第1または第2の態様のLD用III族窒化物半導体基板において、GaN、AlNまたはAlGaNのいずれかから形成される。 According to a third aspect of the present invention, the group III nitride semiconductor substrate for LD according to the first or second aspect is formed of GaN, AlN, or AlGaN.
本発明の第4の態様は、第1〜第3のいずれかの態様のLD用III族窒化物半導体基板上に、LD構造のエピタキシャル層が形成されたLD用III族窒化物半導体エピタキシャル基板である。 A fourth aspect of the present invention is a group III nitride semiconductor epitaxial substrate for LD in which an epitaxial layer having an LD structure is formed on the group III nitride semiconductor substrate for LD of any one of the first to third aspects. is there.
本発明によれば、段差などの乱れが少ない平坦な劈開面が得られるLD用III族窒化物半導体基板及びそれを用いたLD用III族窒化物半導体エピタキシャル基板を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the group III nitride semiconductor substrate for LD which can obtain the flat cleavage surface with few disturbances, such as a level | step difference, and the group III nitride semiconductor epitaxial substrate for LD using the same can be provided.
本発明に係るIII族窒化物半導体基板及びその製造方法の一実施形態の説明に先だって、GaN等のIII族窒化物半導体の基板を劈開する際に、劈開面に段差が生じると考えられる主な要因を以下に列挙して説明する。 Prior to the description of one embodiment of a group III nitride semiconductor substrate and a method for manufacturing the same according to the present invention, when a substrate of a group III nitride semiconductor such as GaN is cleaved, a main step is considered to cause a step on the cleavage plane. The factors are listed and explained below.
(a)結晶構造に起因する、劈開性の不完全性
GaNをはじめとするIII族窒化物半導体の安定な結晶構造は六方晶であり、六方晶の劈開性は立方晶の劈開性ほど明瞭ではない。ゆえに、元来、III族窒化物半導体は劈開面の段差を生じやすい。
(b)内部応力の局所的な変化
GaNをはじめとするIII族窒化物半導体の結晶は、サファイアやGaAs等の異種基板を土台としてヘテロエピタキシャル成長で作製される場合が殆どである。格子不整合度の大きいヘテロエピタキシャル成長であるため、エピタキシャル層と基板と界面では高密度の結晶欠陥(転位)が生じる。転位密度を低減するために、例えば、下地基板に開口部を有するマスクを形成し、開口部からGaN層をラテラル成長させることにより転位の少ないGaN層を得る技術、いわゆるELO(Epitaxial Lateral Overgrowth)技術がしばしば用いられる。しかし、転位密度の低減が図られるものの、転位密度が低い領域と高い領域ができて転位密度の粗密を生じることがある。転位密度の粗密は、転位の応力場を通じて内部応力の局所的な変化を生じ、その結果、劈開断面の段差を引き起こすと考えられる。内部応力の局所変化は、基板面内方向だけでなく、基板の厚さ方向にも生じうる。
(c)劈開時の力の加え方
GaN基板を劈開する一般的な方法は、まず基板の端部に、劈開方向に沿った小さな鋭い傷をつける。このとき、いわゆるダイヤモンドペンやスクライバーを用いる。その後、基板の端部の傷を広げるような力を加えると、端部の傷を発端にしてクラックが基板の反対側まで伸展し、基板の劈開が完了する。このとき、加える力の方向や強さが適切でないと、特に端部に付けた傷の付近で劈開面の段差が生じやすい。
(A) Incomplete cleavage due to crystal structure The stable crystal structure of III-nitride semiconductors including GaN is hexagonal, and the cleavage of hexagonal crystal is not as clear as the cleavage of cubic. Absent. Therefore, the group III nitride semiconductor originally tends to cause a step in the cleavage plane.
(B) Local change in internal stress In most cases, a group III nitride semiconductor crystal such as GaN is produced by heteroepitaxial growth using a heterogeneous substrate such as sapphire or GaAs as a base. Since the heteroepitaxial growth has a large degree of lattice mismatch, high-density crystal defects (dislocations) occur at the interface between the epitaxial layer and the substrate. In order to reduce the dislocation density, for example, a technique of obtaining a GaN layer with few dislocations by forming a mask having an opening on a base substrate and laterally growing a GaN layer from the opening, so-called ELO (Epitaxial Lateral Overgrowth) technique Is often used. However, although the dislocation density can be reduced, a region having a low dislocation density and a region having a high dislocation density may be formed, and the density of the dislocation density may be increased. The density of dislocation density is thought to cause local changes in internal stress through the stress field of dislocations, resulting in a step in the cleavage cross section. The local change in internal stress can occur not only in the in-plane direction of the substrate but also in the thickness direction of the substrate.
(C) How to apply force at the time of cleavage A general method for cleaving a GaN substrate is to first make a small sharp flaw along the cleavage direction at the edge of the substrate. At this time, a so-called diamond pen or scriber is used. Thereafter, when a force is applied to widen the scratches at the end portions of the substrate, the cracks extend to the opposite side of the substrate starting from the scratches at the end portions, and the cleavage of the substrate is completed. At this time, if the direction and strength of the force to be applied are not appropriate, a step on the cleavage plane is likely to occur particularly in the vicinity of a scratch attached to the end.
以上に挙げた各要因に対して、次に述べるような軽減対策が考えられる。
まず、劈開を行う前に、基板を裏面側から削り込んで基板を薄くすることである。概ね200μm以下の薄さにすることで、劈開面の段差はかなり軽減される。これは、基板を薄くすることで、基板の厚さ方向の応力変化が小さくなることが一因と考えられる。
また、転位密度の粗密のない、均一な基板を用いることも効果がある。転位密度の均一な基板の作製には、例えば、サファイア基板上のGaN薄膜表面にTiを蒸着し、これを熱処理することでGaN薄膜にボイド構造を形成し、その上にHVPE法によりGaNを厚く成長し、上記のボイド構造部分よりサファイア基板を剥離する、VAS法(Void-Assisted Separation Method)などが好適に用いられる。
しかし、これらの対策を行った後でも、上記要因(c)に起因する、基板の端部付近の劈開面の段差は依然として生じやすいままである。
For each of the factors listed above, the following mitigation measures can be considered.
First, before cleaving, the substrate is cut from the back side to make the substrate thinner. By making the thickness approximately 200 μm or less, the step on the cleavage plane is considerably reduced. This is considered to be due to the fact that the change in stress in the thickness direction of the substrate becomes smaller by making the substrate thinner.
It is also effective to use a uniform substrate without dislocation density. For producing a substrate having a uniform dislocation density, for example, Ti is vapor-deposited on the surface of the GaN thin film on the sapphire substrate, and this is heat-treated to form a void structure in the GaN thin film. A VAS method (Void-Assisted Separation Method) that grows and peels the sapphire substrate from the void structure portion is preferably used.
However, even after these measures are taken, the step on the cleavage plane near the edge of the substrate due to the factor (c) still remains likely to occur.
本発明者は、要因(c)によって劈開面が乱れてしまうのは、上記要因(a)で述べたIII族窒化物半導体結晶が本来備えている不明瞭な劈開性のゆえに、基板の端面からの劈開時に大きな力を加えざるを得ず、大きな力を加えて劈開する際には、力を加える方向や強さによって段差が生じやすいためであり、もし、より軽い力で劈開することができれば、この問題を解決できるかもしれないと考えた。
基板をより薄くすることで、劈開に要する外力の大きさを小さくできることは容易に想像できるが、ハンドリング時に基板が破損する危険があるため、現実的には現状の200μm前後が限界と考えられ、基板を薄くする方法ではさらに劈開性を向上させるのは無理である。
The present inventor found that the cleavage plane is disturbed by the factor (c) because of the unclear cleavage nature inherent in the group III nitride semiconductor crystal described in the factor (a). When cleaving with a large amount of force, and when cleaving with a large amount of force, steps are likely to occur depending on the direction and strength of the force applied, and if it can be cleaved with a lighter force Thought that this problem could be solved.
Although it can be easily imagined that the thickness of the substrate can be reduced by making the substrate thinner, it is possible that the substrate will be damaged at the time of handling. It is impossible to further improve the cleavage by the method of thinning the substrate.
そこで、本発明者は鋭意検討の結果、劈開の開始地点である基板の外周部(外縁部)に、引張応力を内在させればよいという着想に至った。基板の外周部(外縁部)に引張応力が内在していれば、軽い力をちょっと加えるだけで自発的に劈開が開始されるので、無理な外力を加える場合に比べると、劈開面の段差の発生が抑制されるというアイデアである。 Therefore, as a result of intensive studies, the present inventor has come up with the idea that a tensile stress should be included in the outer peripheral portion (outer edge portion) of the substrate that is the starting point of cleavage. If tensile stress is inherent in the outer peripheral part (outer edge part) of the substrate, cleavage will start spontaneously with a slight light force applied. The idea is that the occurrence is suppressed.
基板の外周部(外縁部)に引張応力を内在させるための具体的な方法として、本発明者は、基板外周部にドーピング濃度が高い領域を設けながら結晶成長を行う方法を見出した。すなわち、ドーピング濃度の高い領域を成長領域の外周部分に設け、ドーピングによる物性的な不整合により引張応力を生じさせる。ただし、引張応力を有する領域の幅は、例えば、直径25mm以上の基板の外縁から5mm以内であることが望ましい。引張応力の領域の幅が5mmより広くなると、基板全体が反ってしまうおそれがあるからである。また、引張応力の領域の幅が狭くても十分な引張応力を生じさせるためには、引張応力を有する領域の境界は急峻でなければならない。しかし、通常、結晶の成長過程において、ドーパント原料を狭い領域のみに限定して拡散させずに供給することは困難である。 As a specific method for making tensile stress inherent in the outer peripheral portion (outer edge portion) of the substrate, the present inventor has found a method of performing crystal growth while providing a region having a high doping concentration on the outer peripheral portion of the substrate. That is, a region having a high doping concentration is provided in the outer peripheral portion of the growth region, and tensile stress is generated due to physical mismatch due to doping. However, the width of the region having a tensile stress is preferably within 5 mm from the outer edge of the substrate having a diameter of 25 mm or more, for example. This is because if the tensile stress region is wider than 5 mm, the entire substrate may be warped. In order to generate sufficient tensile stress even if the width of the tensile stress region is narrow, the boundary of the region having the tensile stress must be steep. However, it is usually difficult to supply the dopant raw material without being limited to a narrow region during the crystal growth process.
そこで、本発明者は、結晶の面指数によるドーパントの取り込み効率の差を利用する方法を創案した。例えば、同じ条件で成長しても、(10−11)面や(11−22)面で成長したGaNは、(0001)面(C面)で成長したGaNよりも1000倍近くも多く酸素を取り込むことがある。すなわち、例えばC面を主面として成長させようとする結晶の外周部に、傾斜したファセット面(例えば、(10−11)面、(11−22)面等からなる面)を形成し、雰囲気中に酸素あるいは酸素化合物を供給しながら結晶成長を行う。これにより、傾斜したファセット面で成長する外周部の酸素ドーピング濃度が高く、C面で成長する中心側の部分の酸素ドーピング濃度が低いという、ドーピング濃度が大きく異なる2つの領域を急峻な界面で隔てて形成することが可能となる。 In view of this, the present inventor has devised a method that utilizes the difference in dopant incorporation efficiency depending on the crystal plane index. For example, even if grown under the same conditions, GaN grown on the (10-11) plane or the (11-22) plane has nearly 1000 times more oxygen than GaN grown on the (0001) plane (C plane). May be captured. That is, for example, an inclined facet plane (for example, a plane composed of (10-11) plane, (11-22) plane, etc.) is formed on the outer periphery of the crystal to be grown with the C plane as the main plane, Crystal growth is performed while supplying oxygen or an oxygen compound. As a result, two regions with greatly different doping concentrations are separated by a steep interface such that the oxygen doping concentration in the outer peripheral portion growing on the inclined facet surface is high and the oxygen doping concentration in the central side portion growing on the C plane is low. Can be formed.
しかし、過度な引張応力は、ハンドリングやエピタキシャル成長などの際に、些細なきっかけで基板に意図しないクラックを生じる原因になる。また、引張応力が小さすぎても劈開性の向上効果が現れない。引張応力を適切な範囲に調整する必要がある。引張応力の調整は、基板にドーピング濃度差を設けることに加えて、基板外周部の研削加工によって、引張応力発生部の幅を小さくすることでも可能である。 However, excessive tensile stress causes unintended cracks in the substrate due to minor triggers during handling and epitaxial growth. Moreover, even if the tensile stress is too small, the effect of improving the cleavage property does not appear. It is necessary to adjust the tensile stress to an appropriate range. In addition to providing the substrate with a doping concentration difference, the tensile stress can be adjusted by reducing the width of the tensile stress generating portion by grinding the outer peripheral portion of the substrate.
以下に、本発明のIII族窒化物半導体基板及びその製造方法の一実施形態を説明する。 Hereinafter, an embodiment of the group III nitride semiconductor substrate and the method for manufacturing the same of the present invention will be described.
本実施形態に係るIII族窒化物半導体基板は、直径25mm以上、厚さ250μm以上のIII族窒化物半導体基板であって、前記III族窒化物半導体基板の外縁から5mm以内の外周部における少なくとも前記外縁側の部分は、前記III族窒化物半導体基板の主面内の応力が引張応力であり、且つ前記III族窒化物半導体基板の前記外縁側の部分よりも中心側の部分に比べて相対的に引張応力が大きくなっている。 The group III nitride semiconductor substrate according to the present embodiment is a group III nitride semiconductor substrate having a diameter of 25 mm or more and a thickness of 250 μm or more, and at least the outer periphery within 5 mm from the outer edge of the group III nitride semiconductor substrate. In the outer edge portion, the stress in the main surface of the group III nitride semiconductor substrate is a tensile stress, and relative to the portion on the center side relative to the outer edge side portion of the group III nitride semiconductor substrate. The tensile stress is large.
III族窒化物半導体基板の外縁から5mm以内の外周部(特に、外縁側の部分(外縁部))に、引張応力を有する部分を設けることにより、劈開時のクラックの自発的な伝播を促すことができ、劈開面の段差の発生を抑制できる。 Promoting the spontaneous propagation of cracks during cleavage by providing a portion with tensile stress in the outer periphery (particularly the outer edge (outer edge)) within 5 mm from the outer edge of the group III nitride semiconductor substrate. And the occurrence of a step on the cleavage plane can be suppressed.
基板の外縁部が有する引張応力の大きさは、30MPa以上150MPa以下が好ましい。これは、引張応力を30MPa以上にすると、劈開面の段差の発生を効果的に抑制でき、また、引張応力が150MPaを超えると、ハンドリング時などに基板が不定形に割れてしまう頻度が高くなってしまうからである。より好ましい引張応力の大きさは、50MPa以上120MPa以下である。
III族窒化物半導体基板の主面内の応力(応力分布)は、例えば、光弾性測定によって求めることができる。ここで、光弾性測定とは、試料を透過した光の位相の、複屈折によるずれ量を測定する方法であり、位相のずれ量と試料の応力とが相関をもつため、試料の応力を測定することができる。
The magnitude of the tensile stress that the outer edge of the substrate has is preferably 30 MPa or more and 150 MPa or less. This is because when the tensile stress is set to 30 MPa or more, the generation of a step on the cleavage plane can be effectively suppressed, and when the tensile stress exceeds 150 MPa, the frequency of the substrate being cracked irregularly during handling or the like increases. Because it will end up. A more preferable magnitude of tensile stress is 50 MPa or more and 120 MPa or less.
The stress (stress distribution) in the main surface of the group III nitride semiconductor substrate can be determined by, for example, photoelasticity measurement. Here, photoelasticity measurement is a method of measuring the amount of deviation of the phase of the light transmitted through the sample due to birefringence. The amount of phase deviation and the stress of the sample are correlated, so the stress of the sample is measured. can do.
基板の外縁部がそれよりも中心側の部分に比べて相対的に引張応力が大きくなっているというのは、基板の中心側の部分が外縁部の引張応力よりも小さな引張応力を有する場合、基板の中心側の部分がゼロ応力の場合、或いは基板の中心側の部分が圧縮応力の場合が含まれる。 The tensile stress is relatively larger at the outer edge portion of the substrate than at the central side portion when the central portion of the substrate has a tensile stress smaller than the tensile stress at the outer edge portion. This includes the case where the central portion of the substrate is zero stress, or the case where the central portion of the substrate is compressive stress.
また、III族窒化物半導体基板の主面は、C面またはC面から傾いた傾斜面であるのが好ましい。III族窒化物半導体基板の主面がC面またはC面に近い傾斜面であると、III族窒化物半導体基板(自立基板)上に発光デバイスなどの素子構造を成長するのに適しているからである。なお、III族窒化物半導体基板の主面は、C面またはC面から傾いた傾斜面の他に、A面、M面など、或いはA面、M面などから傾いた傾斜面であってもよい。ここで、C面などから傾いた傾斜面とは、C面などに対して角度10°以内の範囲で傾いた面である。 The main surface of the group III nitride semiconductor substrate is preferably a C plane or an inclined plane inclined from the C plane. If the main surface of the group III nitride semiconductor substrate is a C plane or an inclined plane close to the C plane, it is suitable for growing an element structure such as a light emitting device on the group III nitride semiconductor substrate (self-standing substrate). It is. The main surface of the group III nitride semiconductor substrate may be an A surface, an M surface, or an inclined surface inclined from the A surface, the M surface, etc. in addition to the C surface or the inclined surface inclined from the C surface. Good. Here, the inclined surface inclined from the C surface or the like is a surface inclined with respect to the C surface or the like within an angle range of 10 ° or less.
上記III族窒化物半導体基板は、自立基板とすることが好ましい。「自立基板」とは、自らの形状を保持できるだけでなく、ハンドリングに不都合が生じない程度の強度を有する基板をいう。このような強度を有するためには、自立基板の厚さを250μm以上とするのが好ましい。また素子形成後の劈開の容易性等を考慮して、自立基板の厚さをlmm以下とするのが好ましい。 The group III nitride semiconductor substrate is preferably a self-supporting substrate. The “self-supporting substrate” refers to a substrate that can not only maintain its shape but also has a strength that does not cause inconvenience in handling. In order to have such strength, it is preferable that the thickness of the free-standing substrate is 250 μm or more. In consideration of easiness of cleavage after element formation, etc., the thickness of the self-supporting substrate is preferably 1 mm or less.
上記III族窒化物半導体基板は、直径25mm以上の自立基板とするのが好ましい。III族窒化物半導体基板の直径は、製造時に用いる下地基板(種結晶基板)の直径に依存し、大口径の下地基板を用いることで、それに伴い大口径の自立基板を得ることができる。例えば、直径6インチ(152.4mm)のサファイア基板が市販されているので、このサファイア基板を用いて直径6インチのGaN種結晶基板を製造し、さらにこのGaN種結晶基板を用いて約直径6インチ以下の本発明に係るGaN自立基板を製造することができる。 The group III nitride semiconductor substrate is preferably a free-standing substrate having a diameter of 25 mm or more. The diameter of the group III nitride semiconductor substrate depends on the diameter of the base substrate (seed crystal substrate) used at the time of manufacture. By using the base substrate having a large diameter, a large-diameter self-standing substrate can be obtained. For example, since a sapphire substrate having a diameter of 6 inches (152.4 mm) is commercially available, a GaN seed crystal substrate having a diameter of 6 inches is manufactured using the sapphire substrate, and further using this GaN seed crystal substrate, the diameter is about 6 mm. A GaN free-standing substrate according to the present invention having an inch or less can be manufactured.
次に、本発明の一実施形態に係るIII族窒化物半導体基板の製造方法を説明する。 Next, a method for manufacturing a group III nitride semiconductor substrate according to an embodiment of the present invention will be described.
本実施形態のIII族窒化物半導体基板の製造方法は、種結晶基板上にIII族窒化物半導体層を結晶成長する工程を含むIII族窒化物半導体基板の製造方法において、前記III族窒化物半導体層を結晶成長する工程において、前記III族窒化物半導体層の外周部分に、前記種結晶基板の主面に対して0°より大きく90°より小さい角度で傾斜した成長面を形成しながら結晶成長し、且つ前記傾斜した成長面を有する前記外周部分の前記III族窒化物半導体層のドーピング濃度を、前記外周部分より中心側の前記III族窒化物半導体層のドーピング濃度よりも高くして結晶成長を行う。 The Group III nitride semiconductor substrate manufacturing method of the present embodiment is a Group III nitride semiconductor substrate manufacturing method including a step of crystal growth of a Group III nitride semiconductor layer on a seed crystal substrate. In the step of crystal growth of the layer, crystal growth is performed while forming a growth surface inclined at an angle larger than 0 ° and smaller than 90 ° with respect to the main surface of the seed crystal substrate in the outer peripheral portion of the group III nitride semiconductor layer And the growth concentration of the group III nitride semiconductor layer in the outer peripheral portion having the inclined growth surface is set higher than the doping concentration of the group III nitride semiconductor layer in the center side of the outer peripheral portion. I do.
III族窒化物半導体層の外周部分に、傾斜した成長面を形成しながら結晶成長を行うには、例えば、種結晶基板表面の外周部を環状のマスクで覆い、マスク内側の種結晶基板上にIII族窒化物半導体層の結晶成長を行う際に、前記III族窒化物半導体層の外縁部に傾斜したファセットを形成して成長する成長条件を用いる方法などがある。
傾斜した成長面には、酸素などのドーパントが取り込まれやすい面を選定する。例えばC面を主面としてGaNを成長させようとする結晶の外周部に、(10−11)面を含む(10−11)面と等価な面である{10−11}面や、(11−22)面を含む(11−22)面と等価な面である{11−22}面からなる傾斜したファセット面を形成して結晶成長する。
In order to perform crystal growth while forming an inclined growth surface on the outer peripheral portion of the group III nitride semiconductor layer, for example, the outer peripheral portion of the seed crystal substrate surface is covered with an annular mask, and the seed crystal substrate on the inner side of the mask is covered. There is a method of using a growth condition in which an inclined facet is formed on the outer edge of the group III nitride semiconductor layer when growing the group III nitride semiconductor layer.
For the inclined growth surface, a surface in which a dopant such as oxygen is easily taken in is selected. For example, the {10-11} plane which is equivalent to the (10-11) plane including the (10-11) plane, or (11 The crystal grows by forming an inclined facet plane composed of a {11-22} plane that is equivalent to the (11-22) plane including the (-22) plane.
種結晶基板には、GaN基板等のIII族窒化物半導体基板、サファイア基板、あるいはGaAs基板などが用いられる。また、III族窒化物半導体層から作製されるIII族窒化物半導体基板には、GaN基板、AlN基板、AlGaN基板などが挙げられる。 As the seed crystal substrate, a group III nitride semiconductor substrate such as a GaN substrate, a sapphire substrate, or a GaAs substrate is used. Examples of the group III nitride semiconductor substrate manufactured from the group III nitride semiconductor layer include a GaN substrate, an AlN substrate, and an AlGaN substrate.
III族窒化物半導体層の結晶成長にはHVPE法を用いるのが好ましい。例えば、HVPE法によるGaNの成長は次のようになされる。溶融Gaを収容した容器にHClガスを供給してGaClガスを発生させ、このGaClガスと別途導入されるNH3ガスとを、HVPE装置の成長炉内に加熱状態にある種結晶基板に供給することにより、種結晶基板の表面でGaClとNH3とが反応してGaN結晶が成長する。
酸素ガスあるいは酸素化合物ガスが存在する雰囲気にある成長炉内で、GaN等のIII族窒化物半導体の結晶成長を行うことにより、III族窒化物半導体結晶中に酸素がドープされる。酸素ガスあるいは酸素化合物ガスは、結晶成長が行われる成長炉の外部から供給するか、あるいは成長炉を構成する反応管等の石英部材と成長炉内の雰囲気ガスとの反応によって発生した酸素ガス等を供給する。
The HVPE method is preferably used for crystal growth of the group III nitride semiconductor layer. For example, the growth of GaN by the HVPE method is performed as follows. HCl gas is supplied to a container containing molten Ga to generate GaCl gas, and this GaCl gas and NH 3 gas introduced separately are supplied to the seed crystal substrate heated in the growth furnace of the HVPE apparatus. As a result, GaCl and NH 3 react with each other on the surface of the seed crystal substrate to grow a GaN crystal.
By performing crystal growth of a group III nitride semiconductor such as GaN in a growth furnace in an atmosphere where oxygen gas or oxygen compound gas is present, the group III nitride semiconductor crystal is doped with oxygen. Oxygen gas or oxygen compound gas is supplied from the outside of the growth furnace in which crystal growth is performed, or oxygen gas generated by the reaction between a quartz member such as a reaction tube constituting the growth furnace and the atmospheric gas in the growth furnace, etc. Supply.
成長炉を構成する反応管等の石英部材と成長炉内の雰囲気ガスとの反応によって、酸素ガスが発生する詳細なメカニズムはよくわかっていないが、HVPE法はホットウォール方式であり、石英反応管などが外部ヒータで加熱されて高温となること、及びHVPE法では塩化物原料(HClガスなど)を用いることから、塩化物原料と石英部材とが高温で触れ合うことで石英が分解し、Si(シリコン)やO(酸素)を含むガスが発生すると考えられる。このため、コールドウォール方式であり塩化物原料を用いないMOVPE法と比較して、HVPE法で成長したGaNには、SiとOがドープされやすいと考えられる。
反応管等の石英部材と成長炉内の雰囲気ガスとの反応によって発生する酸素ガスの量を調整するには、例えば、次のようにすればよい。原料ガスと触れ合う石英部材(成長炉の高温領域に設置)の表面積を増やすと酸素量が増え、成長炉の高温領域を、石英以外の例えばグラファイトなどで構成すると酸素量が減る。また、成長条件でも調整でき、成長速度や成長温度を大きくすると、III族窒化物半導体結晶への酸素の取り込みが大きくなる傾向がある。
Although the detailed mechanism by which oxygen gas is generated by the reaction between the quartz member such as the reaction tube constituting the growth furnace and the atmospheric gas in the growth furnace is not well understood, the HVPE method is a hot wall system, and the quartz reaction tube Are heated by an external heater and become a high temperature, and in the HVPE method, a chloride raw material (HCl gas or the like) is used. Therefore, when the chloride raw material and the quartz member come into contact with each other at a high temperature, quartz is decomposed and Si ( It is considered that a gas containing silicon) and O (oxygen) is generated. For this reason, it is considered that GaN grown by the HVPE method is more likely to be doped with Si and O as compared to the MOVPE method which is a cold wall method and does not use a chloride raw material.
In order to adjust the amount of oxygen gas generated by the reaction between the quartz member such as a reaction tube and the atmospheric gas in the growth furnace, for example, the following may be performed. Increasing the surface area of the quartz member (installed in the high temperature region of the growth furnace) that comes into contact with the source gas increases the amount of oxygen. If the high temperature region of the growth furnace is made of, for example, graphite, the oxygen amount decreases. Also, the growth conditions can be adjusted, and when the growth rate or growth temperature is increased, oxygen incorporation into the group III nitride semiconductor crystal tends to increase.
III族窒化物半導体層に酸素をドープする場合、傾斜した成長面を有する外周部分のIII族窒化物半導体層中の酸素濃度は、1×1018cm-3以上5×1020cm-3以下とするのが好ましい。酸素濃度をこの範囲にするで、III族窒化物半導体基板の外縁部に、劈開時に段差の発生を抑制できる適切な引張応力を付与することができる。外周部分よりも中心側の部分のIII族窒化物半導体層中の酸素濃度は、一般的なSIMS分析装置の検出下限値(2×1016cm-3)以下とするのが好ましい。 When the group III nitride semiconductor layer is doped with oxygen, the oxygen concentration in the group III nitride semiconductor layer in the outer peripheral portion having an inclined growth surface is 1 × 10 18 cm −3 or more and 5 × 10 20 cm −3 or less. Is preferable. By setting the oxygen concentration within this range, it is possible to apply an appropriate tensile stress that can suppress the occurrence of a step during cleavage at the outer edge of the group III nitride semiconductor substrate. It is preferable that the oxygen concentration in the group III nitride semiconductor layer at the center side with respect to the outer peripheral portion is not more than the lower limit of detection (2 × 10 16 cm −3 ) of a general SIMS analyzer.
III族窒化物半導体層を結晶成長する工程の後に、III族窒化物半導体層の外周部分を研削加工する工程を実施するようにしてもよい。引張応力の付与・調整は、III族窒化物半導体基板にドーピング濃度差を設けることでなされるが、このドーピング濃度差を設けることに加えて、III族窒化物半導体基板の外周部に研削加工を施すことによって、引張応力部の幅を小さく調整することも可能である。
なお、後述の実施例で示すように、傾斜した成長面を有する外周部分に酸素を高濃度に添加して引張応力を付与すると、この外周部分より中心側の低酸素濃度のIII族窒化物半導体層の領域にも引張応力が残留するので、傾斜した成長面を有する外周部分を全て研削加工によって除去した場合にも、劈開性に優れたIII族窒化物半導体基板が得られる。
You may make it implement the process of grinding the outer peripheral part of a group III nitride semiconductor layer after the process of crystal-growing a group III nitride semiconductor layer. The tensile stress is applied and adjusted by providing a doping concentration difference in the group III nitride semiconductor substrate. In addition to providing this doping concentration difference, the outer periphery of the group III nitride semiconductor substrate is ground. By applying, it is possible to adjust the width of the tensile stress portion to be small.
As shown in the examples described later, when a tensile stress is applied by adding oxygen to the outer peripheral portion having an inclined growth surface at a high concentration, a group III nitride semiconductor having a low oxygen concentration at the center side from the outer peripheral portion. Since tensile stress remains also in the layer region, a group III nitride semiconductor substrate excellent in cleavage is obtained even when all of the outer peripheral portion having an inclined growth surface is removed by grinding.
次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.
(実施例1)
実施例1では、基板外周部に引張応力部分を有するGaN基板を作製した。実施例1のGaN基板の製造工程および得られたGaN基板の劈開について、図1を用いて説明する。
Example 1
In Example 1, a GaN substrate having a tensile stress portion on the outer periphery of the substrate was produced. The manufacturing process of the GaN substrate of Example 1 and the cleavage of the obtained GaN substrate will be described with reference to FIG.
はじめに、C面(Ga面)を主面とする直径60mm、厚さ400μmの円盤状のGaN自立基板(種結晶基板)1を用意した(図1(a))。光弾性測定により、この種結晶基板1の応力分布は略均一であることを確認した。なお、図1の(a)〜(e)の各図において、上部は平面図、下部は断面図であり、図1(f)はGaN基板をバー状に劈開した斜視図である。 First, a disc-shaped GaN free-standing substrate (seed crystal substrate) 1 having a diameter of 60 mm and a thickness of 400 μm with a C surface (Ga surface) as a main surface was prepared (FIG. 1A). It was confirmed by photoelasticity measurement that the stress distribution of the seed crystal substrate 1 was substantially uniform. 1A to 1E, the upper part is a plan view, the lower part is a cross-sectional view, and FIG. 1F is a perspective view of the GaN substrate cleaved in a bar shape.
次に、この種結晶基板1の上に、直径55mmの円形開口を有する環状の高純度カーボン製のマスク2を重ね(図1(b))、重ねた状態のままHVPE装置の成長炉内にセットし、C面を成長面としてGaNのホモエピタキシャル成長を行った。GaN成長のための原料としては、GaClガスとNH3ガスとを用いた。GaClガスは、成長炉の上流領域に設置されたGa融液とHClガスとの反応により生成させた。GaClガスとNH3ガスの分圧はそれぞれ0.8kPおよび5kPaとした。キャリアガスにはH2とN2との混合ガスを用いた。また、5Paの酸素ガスを添加して成長炉内に供給した。成長炉内の圧力は大気圧で、成長温度は1060℃とした。このとき成長速度は約120μm/hであった。5時間の成長により、600μmのGaN層3を得た(図1(c))。
GaN層3の外周部(外縁から半径方向内方に約350μmの部分)には、{10−11}面および{11−22}面からなる傾斜面4が形成されていた。SIMS分析の結果、GaN層3の傾斜面4より内側で成長したC面成長部の酸素濃度は検出下限(2×1016cm-3)以下であり、傾斜面4で成長した傾斜成長部の酸素濃度は1×1019cm-3であり、酸素濃度が大きく異なることが確認された。
Next, an annular high-purity carbon mask 2 having a circular opening having a diameter of 55 mm is overlaid on the seed crystal substrate 1 (FIG. 1B), and the laminated state is placed in the growth furnace of the HVPE apparatus. GaN homoepitaxial growth was performed using the C plane as the growth plane. GaCl gas and NH 3 gas were used as raw materials for GaN growth. GaCl gas was generated by a reaction between Ga melt and HCl gas installed in the upstream region of the growth furnace. The partial pressures of GaCl gas and NH 3 gas were 0.8 kPa and 5 kPa, respectively. A mixed gas of H 2 and N 2 was used as the carrier gas. Further, oxygen gas of 5 Pa was added and supplied into the growth furnace. The pressure in the growth furnace was atmospheric pressure, and the growth temperature was 1060 ° C. At this time, the growth rate was about 120 μm / h. By growing for 5 hours, a GaN layer 3 of 600 μm was obtained (FIG. 1C).
An inclined surface 4 composed of a {10-11} plane and a {11-22} plane was formed on the outer peripheral portion of the GaN layer 3 (portion of about 350 μm radially inward from the outer edge). As a result of the SIMS analysis, the oxygen concentration in the C-plane growth portion grown on the inner side of the inclined surface 4 of the GaN layer 3 is not more than the detection lower limit (2 × 10 16 cm −3 ). The oxygen concentration was 1 × 10 19 cm −3 , and it was confirmed that the oxygen concentration was greatly different.
アズグロウン状態のGaN層3の詳細を図6を用いて更に説明する。図6(a)はアズグロウン状態のGaN層3の平面図(上面図)、図6(b)はGaN層3の側面図、図6(c)はGaN層3の傾斜面4の一部(円錐面部4b)を拡大した断面図である。
GaN層3の形状は、図6(a)、(b)に示すように、全体として円錐台状である。GaN層3の上面3aはC面であり、GaN層3の側面である傾斜面4は、フラット部4aと円錐面部4bとからなる。フラット部4aは、{10−11}面であり、円錐台状のGaN層3の外周に沿って60度おきに6箇所に現れる。フラット部4a、4a間の円錐面部4bは、肉眼では円錐面に見えるが、顕微鏡等で拡大して観察すると、図6(c)に示すように、{10−11}面と{11−22}面とが細かく交互に並んだギザギザ状の表面になっている。なお、図6(c)における鎖線は、肉眼観察で滑らかな面と見なされ
る円錐面の断面の輪郭線Rを示す。
Details of the as-grown GaN layer 3 will be further described with reference to FIG. 6A is a plan view (top view) of the GaN layer 3 in the as-grown state, FIG. 6B is a side view of the GaN layer 3, and FIG. 6C is a part of the inclined surface 4 of the GaN layer 3 ( It is sectional drawing to which the conical surface part 4b) was expanded.
As shown in FIGS. 6A and 6B, the GaN layer 3 has a truncated cone shape as a whole. The upper surface 3a of the GaN layer 3 is a C plane, and the inclined surface 4 which is the side surface of the GaN layer 3 is composed of a flat portion 4a and a conical surface portion 4b. The flat portions 4a are {10-11} planes and appear at six locations every 60 degrees along the outer periphery of the truncated GaN layer 3. The conical surface portion 4b between the flat portions 4a and 4a appears to be a conical surface with the naked eye, but when enlarged and observed with a microscope or the like, as shown in FIG. 6C, the {10-11} surface and the {11-22 surface } The surface is a jagged surface with fine and alternating surfaces. In addition, the chain line in FIG.6 (c) shows the outline R of the cross section of the conical surface considered as a smooth surface by visual observation.
GaN成長終了後、この基板の裏面側(種結晶基板1側)を500μm研削し、種結晶基板1を完全に除去した後、鏡面研磨を行った。さらに基板の表面側(GaN層3側)も研削および研磨加工を行い、厚さ400μm、直径55mmの傾斜成長部を有するGaN基板5を得た(図1(d))。このGaN基板5に対して再び光弾性測定を行ったところ、GaN基板5のエッジ(外縁)から約3mm以内の外周部分に、同心円状の引張応力(以下、「外周応力」と呼ぶ)が生じていることが確認された。 After the GaN growth was completed, the back surface side (seed crystal substrate 1 side) of this substrate was ground by 500 μm, and after removing the seed crystal substrate 1 completely, mirror polishing was performed. Furthermore, the surface side (GaN layer 3 side) of the substrate was also ground and polished to obtain a GaN substrate 5 having an inclined growth portion having a thickness of 400 μm and a diameter of 55 mm (FIG. 1D). When the photoelasticity measurement is performed again on the GaN substrate 5, concentric tensile stress (hereinafter referred to as “outer peripheral stress”) is generated in the outer peripheral portion within about 3 mm from the edge (outer edge) of the GaN substrate 5. It was confirmed that
さらに、このGaN基板5の傾斜成長部を含む外周部を研削し、直径を2インチ(50.8mm)に調整し、直径2インチの円盤状のGaN基板6を得た(図1(e))。傾斜成長部を含む外周部を研削したGaN基板6でも、光弾性測定を行うと、約50MPaの外周応力が残留していることがわかった。引張応力発生の原因となっていた高酸素濃度領域(傾斜成長部)は完全に除去されているにもかかわらず引張応力が残留しているのは、外周部の引張応力の影響下で結晶成長が進行した結果、中心側のC面成長部の欠陥の分布に変化が生じ、その結果として応力分布に変化が生じたものと推察される。 Furthermore, the outer peripheral part including the inclined growth part of this GaN substrate 5 was ground, and the diameter was adjusted to 2 inches (50.8 mm) to obtain a disk-shaped GaN substrate 6 having a diameter of 2 inches (FIG. 1 (e)). ). Even in the GaN substrate 6 in which the outer peripheral portion including the inclined growth portion was ground, it was found that when the photoelasticity measurement was performed, an outer peripheral stress of about 50 MPa remained. Although the high oxygen concentration region (gradient growth part) that caused the generation of tensile stress has been completely removed, the tensile stress remains because of the crystal growth under the influence of the tensile stress at the outer periphery. As a result, the distribution of defects in the C-plane growth portion on the center side changes, and it is assumed that the stress distribution changes as a result.
上記プロセスで得られたGaN基板6をMOVPE装置にセットし、GaN基板6上にLD(レーザダイオード)構造のエピタキシャル層を成長させた。原料としてTMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)、TMI(トリメチルインジウム)、およびNH3を用いた。GaN基板6上に、LD構造のエピタキシャル層として、n型AlGaNクラッド層、GaN障壁層/InGaN井戸層の多重量子井戸構造(MQW)の活性層、p型AlGaNクラッド層、p型GaNコンタクト層を順次積層した。その後、全体の厚さが200μmになるまでエピタキシャル基板のGaN基板6側の裏面を研削・加工した。 The GaN substrate 6 obtained by the above process was set in an MOVPE apparatus, and an epitaxial layer having an LD (laser diode) structure was grown on the GaN substrate 6. TMG (trimethylgallium), TMA (trimethylaluminum), TMI (trimethylindium), and NH 3 were used as raw materials. An n-type AlGaN cladding layer, a GaN barrier layer / InGaN well layer multiple quantum well structure (MQW) active layer, a p-type AlGaN cladding layer, and a p-type GaN contact layer are formed on the GaN substrate 6 as an LD structure epitaxial layer. Laminated sequentially. Thereafter, the back surface of the epitaxial substrate on the GaN substrate 6 side was ground and processed until the total thickness became 200 μm.
得られたエピタキシャル基板の裏面側(GaN基板6側)のエッジ部に、ダイヤモンドスクライブ装置を用いて、M面に沿った長さ1mmの罫書き線(スクライブ線)をつけた。次いで、罫書き線の両側を平型のピンセットではさみ、罫書きによる傷口(刻み)を開くようにごく軽い力を加えたところ、簡単に劈開が完了した。 A ruled line (scribe line) having a length of 1 mm along the M plane was applied to the edge portion on the back surface side (GaN substrate 6 side) of the obtained epitaxial substrate using a diamond scribe device. Next, when both sides of the crease line were sandwiched with flat tweezers and a very slight force was applied to open the scratches (notch) by the crease, the cleavage was easily completed.
同じ要領で、直径2インチのGaN基板6を幅5mmずつのバー7に劈開し(図1(f))、罫書きしたエッジ部から20mm以内の劈開面8の領域(図中、網目を施した)に生じた段差の密度を、微分干渉顕微鏡を用いて調べた。すなわち、当該劈開面8に生じた段差を微分干渉顕微鏡下でカウントし、そのカウント数を観察した幅20mmで除すことによって段差密度を求めた。
同じ段差密度の調査を、前述したのと同じ工程で、GaN層3の成長時における雰囲気中の酸素ガス分圧を変えることによって、GaN層3の傾斜成長部の酸素濃度を変化させて作製した種々のGaN基板6についても行った。GaN基板6の外周応力の測定には光弾性法を用い、GaN基板6のエッジから1mmの位置における値を測定した。外周応力(外周引張応力)と傾斜成長部の酸素濃度との相関を図2に示す。図2に示すように、外周応力は、傾斜成長部の酸素濃度が増加するのに従って増加する傾向が見られた。
In the same manner, a GaN substrate 6 having a diameter of 2 inches is cleaved into bars 7 each having a width of 5 mm (FIG. 1 (f)), and a region of the cleaved surface 8 within 20 mm from the marked edge (the mesh is applied in the figure). The density of the step formed in the above was investigated using a differential interference microscope. That is, the step density was determined by counting the steps generated on the cleavage plane 8 under a differential interference microscope and dividing the counted number by the observed width of 20 mm.
The same step density was investigated by changing the oxygen concentration in the inclined growth portion of the GaN layer 3 by changing the oxygen gas partial pressure in the atmosphere during the growth of the GaN layer 3 in the same process as described above. Various GaN substrates 6 were also tested. A photoelastic method was used to measure the peripheral stress of the GaN substrate 6, and a value at a position 1 mm from the edge of the GaN substrate 6 was measured. FIG. 2 shows the correlation between the peripheral stress (peripheral tensile stress) and the oxygen concentration in the inclined growth portion. As shown in FIG. 2, the peripheral stress tended to increase as the oxygen concentration in the inclined growth portion increased.
また、劈開面の段差密度と外周応力(外周引張応力)との関係の調査結果を図3に示す。外周応力が30MPa以上のときに大きな段差抑制効果が得られ、50MPa以上ではさらに顕著なことがわかった。また、図3に示すように、外周応力が120MPaを超えると、MOVPE成長中から成長後、あるいはその後の研削加工の最中に不定形に割れてしまう頻度(「クラック発生率」と呼ぶ)が高まり、150MPaを超えるとクラック発生率が急激に高まることがわかった。以上の結果から、外周応力を30MPa以上150MPa以下とすることにより、良好な結果が得られ、50MPa以上120MPa以下とすることでさらに好ましい効果が得られることがわかった。 In addition, FIG. 3 shows the results of investigation on the relationship between the step density of the cleavage plane and the peripheral stress (peripheral tensile stress). It was found that a large step-suppressing effect was obtained when the peripheral stress was 30 MPa or more, and that it was even more remarkable at 50 MPa or more. Further, as shown in FIG. 3, when the peripheral stress exceeds 120 MPa, the frequency (called “crack occurrence rate”) of cracking indefinitely during the MOVPE growth or after the growth or during the subsequent grinding process. It was found that the crack generation rate rapidly increased when the pressure exceeded 150 MPa. From the above results, it was found that good results were obtained by setting the peripheral stress to 30 MPa or more and 150 MPa or less, and more preferable effects were obtained by setting it to 50 MPa or more and 120 MPa or less.
また、クラック発生率の小さかった、外周応力が120MPa未満のGaN基板6に関しては、段差密度を測定した部分から実際にLDを作製し、その歩留まりを評価した。ただし、LDの閾電流の値が正常値よりも20%以上高いものを不良品として歩留まりの評価を行った。その結果を図4に示す。外周引張応力の大きさがおよそ30MPa以上のときに、非常に良好な値が得られることがわかった。 In addition, regarding the GaN substrate 6 having a small crack generation rate and an outer peripheral stress of less than 120 MPa, an LD was actually fabricated from the portion where the step density was measured, and the yield was evaluated. However, the yield was evaluated as a defective product having an LD threshold current value 20% or more higher than the normal value. The result is shown in FIG. It was found that a very good value can be obtained when the magnitude of the peripheral tensile stress is about 30 MPa or more.
(実施例2)
まず、実施例1と同様にしてGaN基板6を作製した。ただし、HVPE成長の際の酸素供給量を調整し、GaN層3の傾斜成長部の酸素濃度が5×1020cm-3になるようにした。また、傾斜成長部を有するGaN基板5の外周の研削量を増やし、GaN基板6の直径が45mmになるようにした。外周研削後の実施例2のGaN基板6には、光弾性測定により、80MPaの外周引張応力が残留していることが確認された。
このGaN基板6上に、実施例1と同様のLD構造のエピタキシャル層をMOVPE法によって成長し、裏面研削を行って200μmの厚さに加工した後、劈開して劈開面の段差密度を調べたところ、0.08本/mmと非常に良好な値が得られた。このとき、実施例1と同様にして評価したLDの歩留まりも、約97%と非常に良好であった。
(Example 2)
First, a GaN substrate 6 was produced in the same manner as in Example 1. However, the oxygen supply amount during HVPE growth was adjusted so that the oxygen concentration in the inclined growth portion of the GaN layer 3 was 5 × 10 20 cm −3 . Moreover, the grinding amount of the outer periphery of the GaN substrate 5 having the inclined growth portion was increased so that the diameter of the GaN substrate 6 became 45 mm. It was confirmed by photoelasticity measurement that the outer peripheral tensile stress of 80 MPa remained on the GaN substrate 6 of Example 2 after outer periphery grinding.
An epitaxial layer having the same LD structure as that of Example 1 was grown on the GaN substrate 6 by the MOVPE method, and after grinding to a thickness of 200 μm by crushing, the step density of the cleaved surface was examined. However, a very good value of 0.08 lines / mm was obtained. At this time, the yield of LD evaluated in the same manner as in Example 1 was very good at about 97%.
(比較例)
比較例では、主面(C面)内の応力分布が均一なGaN自立基板を用いて劈開性を調べた。はじめに、実施例1と同様のC面(Ga面)を主面とする直径2インチ、厚さ400μmのGaN自立基板(種結晶基板)を用意した。光弾性法により、この種結晶基板の応力分布が略均一であることを確認した。
次に、このGaNの種結晶基板をMOVPE装置にセットし、実施例1と同様にしてLD構造のエピタキシャル層を成長させた。その後、全体の厚さが200μmになるまで裏面を研削・加工した。
得られたエピタキシャル基板のエッジ部に、ダイヤモンドスクライブ装置を用いて、M面に沿った長さ1mmの罫書き線をつけた。罫書き線の両側を平型のピンセットではさみ、罫書きによる傷口を開くように力を加えたところ、LDエピタキシャル基板が劈開した。実施例1,2の場合よりも劈開時には強い力を要した。実施例1と同様にして、劈開面の段差密度を調べたところ、約1.5本/mmと高密度であった。また、実施例1と同様にして評価したLDの歩留まりは、約55%と非常に低かった。
(Comparative example)
In the comparative example, the cleaving property was examined using a GaN free-standing substrate having a uniform stress distribution in the main surface (C surface). First, a GaN free-standing substrate (seed crystal substrate) having a diameter of 2 inches and a thickness of 400 μm having the same C surface (Ga surface) as that of Example 1 was prepared. It was confirmed by photoelasticity that the stress distribution of the seed crystal substrate was substantially uniform.
Next, this GaN seed crystal substrate was set in an MOVPE apparatus, and an epitaxial layer having an LD structure was grown in the same manner as in Example 1. Thereafter, the back surface was ground and processed until the total thickness reached 200 μm.
A ruled line having a length of 1 mm along the M-plane was attached to the edge portion of the obtained epitaxial substrate using a diamond scribe device. The LD epitaxial substrate was cleaved when the both sides of the crease line were sandwiched with flat tweezers and a force was applied to open the wound by the crease. A stronger force was required at the time of cleavage than in Examples 1 and 2. When the step density on the cleavage plane was examined in the same manner as in Example 1, it was as high as about 1.5 lines / mm. Further, the yield of LD evaluated in the same manner as in Example 1 was very low at about 55%.
(実施例3)
直径6インチ(152.4mm)のGaN自立基板(種結晶基板)1を用い、直径147.4mmの円形開口を有する環状の高純度カーボン製のマスク2を用い、1200μmのGaN層3を成長させる以外、実施例1と同様の製造工程により、厚さ1000μm、底部の直径147.4mmであって傾斜成長部を有するGaN基板5を得た。なお、上記の直径6インチの種結晶基板1は、直径6インチのサファイア基板上にGaN薄膜を形成すると共にTi層を蒸着し、これを熱処理することでGaN薄膜にボイド構造を形成し、その上にHVPE法によりGaNを厚く成長し、上記のボイド構造部分よりサファイア基板を剥離することによって得られた基板である。
上記実施例3のGaN基板5においても、実施例1と同様に、GaN基板5のエッジから約3mm以内の外周部分に同心円状の外周応力が生じていることが確認された。
このGaN基板5の傾斜成長部を含む外周部を研削し、直径143mmのGaN基板6を得た。このGaN基板6について光弾性測定を行ったところ、約50MPaの外周応力が残留していた。
この実施例3のGaN基板6上に、実施例1と同様のLD構造のエピタキシャル層をMOVPE法によって成長し、裏面研削を行って200μmの厚さに加工した後、劈開して劈開面の段差密度を調べたところ、0.1本/mmと良好な値であった。また、実施例1と同様にして評価したLDの歩留まりも約96%と良好な値であった。
(Example 3)
Using a GaN free-standing substrate (seed crystal substrate) 1 having a diameter of 6 inches (152.4 mm) and a circular high-purity carbon mask 2 having a circular opening having a diameter of 147.4 mm, a 1200 μm GaN layer 3 is grown. Except for the above, a GaN substrate 5 having a thickness of 1000 μm, a bottom diameter of 147.4 mm, and an inclined growth portion was obtained by the same manufacturing process as in Example 1. The 6-inch diameter seed crystal substrate 1 forms a GaN thin film on a 6-inch diameter sapphire substrate, deposits a Ti layer, and heat-treats it to form a void structure in the GaN thin film. This is a substrate obtained by growing GaN thickly by the HVPE method and peeling the sapphire substrate from the void structure portion.
Also in the GaN substrate 5 of Example 3 above, as in Example 1, it was confirmed that concentric outer peripheral stress was generated in the outer peripheral portion within about 3 mm from the edge of the GaN substrate 5.
The outer peripheral portion including the inclined growth portion of the GaN substrate 5 was ground to obtain a GaN substrate 6 having a diameter of 143 mm. When the photoelasticity measurement was performed on the GaN substrate 6, an outer peripheral stress of about 50 MPa remained.
An epitaxial layer having the same LD structure as in Example 1 is grown on the GaN substrate 6 in Example 3 by the MOVPE method, and back-surface grinding is performed to a thickness of 200 μm. When the density was examined, it was a good value of 0.1 / mm. Further, the yield of LD evaluated in the same manner as in Example 1 was a favorable value of about 96%.
(実施例4)
C面から10度傾いた傾斜面を主面とするGaN自立基板(種結晶基板)1を用いる以外、実施例1と同様の製造工程により、傾斜成長部を含む外周部を研削した直径2インチ、厚さ400μmのGaN基板6を得た。この実施例4のGaN基板6の成長面は、C面から10度傾いた傾斜面となっていた。このGaN基板6について光弾性測定を行ったところ、約50MPaの外周応力が残留していた。
この実施例4のGaN基板6上に、実施例1と同様のLD構造のエピタキシャル層をMOVPE法によって成長し、裏面研削を行って200μmの厚さに加工した後、劈開して劈開面の段差密度を調べたところ、0.09本/mmと良好な値であった。また、実施例1と同様にして評価したLDの歩留まりも約98%と良好な値であった。
Example 4
A diameter of 2 inches obtained by grinding an outer peripheral portion including an inclined growth portion by the same manufacturing process as in Example 1 except that a GaN free-standing substrate (seed crystal substrate) 1 having an inclined surface inclined by 10 degrees from the C plane is used. A GaN substrate 6 having a thickness of 400 μm was obtained. The growth surface of the GaN substrate 6 of Example 4 was an inclined surface inclined by 10 degrees from the C plane. When the photoelasticity measurement was performed on the GaN substrate 6, an outer peripheral stress of about 50 MPa remained.
An epitaxial layer having the same LD structure as that of Example 1 is grown on the GaN substrate 6 of Example 4 by the MOVPE method, and back-surface grinding is performed to a thickness of 200 μm. When the density was examined, it was a favorable value of 0.09 pieces / mm. Further, the yield of LD evaluated in the same manner as in Example 1 was a favorable value of about 98%.
上記実施例においてはGaNの場合について記載したが、本発明は、GaN以外にもAlNやAlGaN等の他のIII族窒化物半導体にも好適に用いることが出来る。また、HVPE法以外にも、高温高圧法や、Naフラックス法、アモノサーマル法のような溶液成長の場合にも同様に適用することが可能である。 Although the case of GaN has been described in the above embodiments, the present invention can be suitably used for other group III nitride semiconductors such as AlN and AlGaN in addition to GaN. In addition to the HVPE method, the present invention can be similarly applied to a solution growth such as a high-temperature and high-pressure method, a Na flux method, or an ammonothermal method.
1 種結晶基板
2 マスク
3 GaN層
4 傾斜面
5 傾斜成長部を有するGaN基板
6 GaN基板
7 バー状に劈開されたGaN基板
8 段差密度を調査した劈開面
DESCRIPTION OF SYMBOLS 1 Seed crystal substrate 2 Mask 3 GaN layer 4 Inclined surface 5 GaN substrate 6 having an inclined growth part 6 GaN substrate 7 Cleaved GaN substrate 8 Cleaved surface inspected for step density
Claims (4)
前記LD用III族窒化物半導体基板は、直径25mm以上、厚さ250μm以上であって、
前記LD用III族窒化物半導体基板の外縁から5mm以内の外周部における少なくとも前記外縁側の部分は、前記LD用III族窒化物半導体基板の主面内の応力が引張応力であり、且つ前記LD用III族窒化物半導体基板の前記外縁側の部分よりも中心側の部分に比べて相対的に引張応力が大きくなっていることを特徴とするLD用III族窒化物半導体基板(ただし中央部の酸素濃度は1×1016cm-3以下であり、外周部の酸素濃度は1×1018cm-3であるGaN基板は除く。)。 In a group III nitride semiconductor substrate for LD in which an end face mirror of an LD resonator is formed by cleavage,
The group III nitride semiconductor substrate for LD has a diameter of 25 mm or more and a thickness of 250 μm or more,
At least the outer edge side portion of the outer peripheral portion within 5 mm from the outer edge of the group III nitride semiconductor substrate for LD is tensile stress in the main surface of the group III nitride semiconductor substrate for LD, and the LD The group III nitride semiconductor substrate for LDs, wherein the group III nitride semiconductor substrate for LD is characterized in that the tensile stress is relatively larger than the portion on the central side rather than the portion on the outer edge side of the group III nitride semiconductor substrate (for the central portion) (Except for GaN substrates having an oxygen concentration of 1 × 10 16 cm −3 or less and an oxygen concentration of 1 × 10 18 cm −3 at the outer periphery).
前記外縁側の部分の酸素濃度は、1×1018cm-3以上5×1020cm-3以下であり、
前記中心側の部分の酸素濃度は、2×1016cm-3以下であることを特徴とするLD用III族窒化物半導体基板。 The group III nitride semiconductor substrate for LD according to claim 1,
The oxygen concentration in the outer edge portion is 1 × 10 18 cm −3 or more and 5 × 10 20 cm −3 or less,
The group III nitride semiconductor substrate for LD, wherein the oxygen concentration in the central portion is 2 × 10 16 cm −3 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013107550A JP2013230971A (en) | 2013-05-22 | 2013-05-22 | Group iii nitride semiconductor substrate for ld and group iii nitride semiconductor epitaxial substrate for ld using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013107550A JP2013230971A (en) | 2013-05-22 | 2013-05-22 | Group iii nitride semiconductor substrate for ld and group iii nitride semiconductor epitaxial substrate for ld using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009287528A Division JP5282978B2 (en) | 2009-12-18 | 2009-12-18 | Group III nitride semiconductor substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013230971A true JP2013230971A (en) | 2013-11-14 |
Family
ID=49677786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013107550A Pending JP2013230971A (en) | 2013-05-22 | 2013-05-22 | Group iii nitride semiconductor substrate for ld and group iii nitride semiconductor epitaxial substrate for ld using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013230971A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017014106A (en) * | 2016-09-16 | 2017-01-19 | 住友化学株式会社 | Manufacturing method of group iii nitride substrate |
JPWO2015114732A1 (en) * | 2014-01-28 | 2017-03-23 | 住友化学株式会社 | Manufacturing method of semiconductor substrate |
JP2018027893A (en) * | 2017-11-08 | 2018-02-22 | 住友化学株式会社 | Production method of group iii nitride semiconductor single crystal |
US10053796B2 (en) | 2014-05-26 | 2018-08-21 | Sumitomo Chemical Company, Limited | Method for manufacturing group III nitride substrate formed of a group III nitride crystal |
US10364510B2 (en) | 2015-11-25 | 2019-07-30 | Sciocs Company Limited | Substrate for crystal growth having a plurality of group III nitride seed crystals arranged in a disc shape |
JP2019197857A (en) * | 2018-05-11 | 2019-11-14 | パナソニックIpマネジメント株式会社 | Light-emitting diode element and manufacturing method for light-emitting diode element |
JP2023075880A (en) * | 2021-11-19 | 2023-05-31 | ルミジエヌテック カンパニー リミテッド | Method for growing nitride film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002373864A (en) * | 2001-04-12 | 2002-12-26 | Sumitomo Electric Ind Ltd | Method of doping oxygen to gallium nitride crystal and n-type oxygen-doped gallium nitride single crystal substrate |
WO2009096125A1 (en) * | 2008-01-28 | 2009-08-06 | Sumitomo Electric Industries, Ltd. | Iii-group nitride single-crystal ingot, iii-group nitride single-crystal substrate, method for manufacturing iii-group nitride single-crystal ingot, and method for manufacturing iii-group nitride single-crystal substrate |
JP2010212493A (en) * | 2009-03-11 | 2010-09-24 | Sumitomo Electric Ind Ltd | Group iii nitride semiconductor element, epitaxial substrate, and method for producing group iii nitride semiconductor element |
JP5282978B2 (en) * | 2009-12-18 | 2013-09-04 | 日立電線株式会社 | Group III nitride semiconductor substrate |
-
2013
- 2013-05-22 JP JP2013107550A patent/JP2013230971A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002373864A (en) * | 2001-04-12 | 2002-12-26 | Sumitomo Electric Ind Ltd | Method of doping oxygen to gallium nitride crystal and n-type oxygen-doped gallium nitride single crystal substrate |
WO2009096125A1 (en) * | 2008-01-28 | 2009-08-06 | Sumitomo Electric Industries, Ltd. | Iii-group nitride single-crystal ingot, iii-group nitride single-crystal substrate, method for manufacturing iii-group nitride single-crystal ingot, and method for manufacturing iii-group nitride single-crystal substrate |
JP2010212493A (en) * | 2009-03-11 | 2010-09-24 | Sumitomo Electric Ind Ltd | Group iii nitride semiconductor element, epitaxial substrate, and method for producing group iii nitride semiconductor element |
JP5282978B2 (en) * | 2009-12-18 | 2013-09-04 | 日立電線株式会社 | Group III nitride semiconductor substrate |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015114732A1 (en) * | 2014-01-28 | 2017-03-23 | 住友化学株式会社 | Manufacturing method of semiconductor substrate |
US10253432B2 (en) | 2014-01-28 | 2019-04-09 | Sumitomo Chemical Company, Limited | Semiconductor substrate manufacturing method |
US10053796B2 (en) | 2014-05-26 | 2018-08-21 | Sumitomo Chemical Company, Limited | Method for manufacturing group III nitride substrate formed of a group III nitride crystal |
US10364510B2 (en) | 2015-11-25 | 2019-07-30 | Sciocs Company Limited | Substrate for crystal growth having a plurality of group III nitride seed crystals arranged in a disc shape |
JP2017014106A (en) * | 2016-09-16 | 2017-01-19 | 住友化学株式会社 | Manufacturing method of group iii nitride substrate |
JP2018027893A (en) * | 2017-11-08 | 2018-02-22 | 住友化学株式会社 | Production method of group iii nitride semiconductor single crystal |
JP2019197857A (en) * | 2018-05-11 | 2019-11-14 | パナソニックIpマネジメント株式会社 | Light-emitting diode element and manufacturing method for light-emitting diode element |
CN110473943A (en) * | 2018-05-11 | 2019-11-19 | 松下知识产权经营株式会社 | The manufacturing method of light-emitting diode and light-emitting diode |
US10763395B2 (en) | 2018-05-11 | 2020-09-01 | Panasonic Intellectual Property Management Co., Ltd. | Light emitting diode element and method for manufacturing same |
JP2023075880A (en) * | 2021-11-19 | 2023-05-31 | ルミジエヌテック カンパニー リミテッド | Method for growing nitride film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5282978B2 (en) | Group III nitride semiconductor substrate | |
US7790489B2 (en) | III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer | |
JP5099763B2 (en) | Substrate manufacturing method and group III nitride semiconductor crystal | |
JP4462251B2 (en) | III-V nitride semiconductor substrate and III-V nitride light emitting device | |
US7276779B2 (en) | III-V group nitride system semiconductor substrate | |
JP2013230971A (en) | Group iii nitride semiconductor substrate for ld and group iii nitride semiconductor epitaxial substrate for ld using the same | |
US9343525B2 (en) | Aluminum nitride substrate and group-III nitride laminate | |
JP2016160151A (en) | Manufacturing method of group iii nitride semiconductor crystal substrate | |
KR20080075914A (en) | Process for growth of low dislocation density gan | |
JP6704387B2 (en) | Substrate for growing nitride semiconductor, method of manufacturing the same, semiconductor device, and method of manufacturing the same | |
US20070215901A1 (en) | Group III-V nitride-based semiconductor substrate and method of fabricating the same | |
JP5509680B2 (en) | Group III nitride crystal and method for producing the same | |
US10837124B2 (en) | Gallium nitride substrate | |
JP5051455B2 (en) | Method of manufacturing nitride semiconductor substrate for epitaxial growth | |
US7348278B2 (en) | Method of making nitride-based compound semiconductor crystal and substrate | |
JP4952616B2 (en) | Manufacturing method of nitride semiconductor substrate | |
US12091774B2 (en) | Nitride semiconductor substrate, laminated structure, and method for manufacturing nitride semiconductor substrate | |
US12071707B2 (en) | Method for manufacturing nitride semiconductor substrate, nitride semiconductor substrate, and laminate structure | |
US20090160026A1 (en) | Nitride semiconductor free-standing substrate and method for making same | |
US11970784B2 (en) | Nitride semiconductor substrate, method for manufacturing nitride semiconductor substrate, and laminated structure | |
JP5488562B2 (en) | Manufacturing method of nitride semiconductor substrate | |
KR101786047B1 (en) | Method for growing nitride semiconductor and nitride semiconductor substrate formed therefrom | |
CN106486339B (en) | Preparation method of GaN film | |
JP5182396B2 (en) | Nitride semiconductor free-standing substrate and light emitting device | |
KR20130075921A (en) | Method for fabricating gallium nitride substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150317 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20150520 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20151130 |