JP2013230427A - Photocatalyst, and method for manufacturing the same - Google Patents

Photocatalyst, and method for manufacturing the same Download PDF

Info

Publication number
JP2013230427A
JP2013230427A JP2012103243A JP2012103243A JP2013230427A JP 2013230427 A JP2013230427 A JP 2013230427A JP 2012103243 A JP2012103243 A JP 2012103243A JP 2012103243 A JP2012103243 A JP 2012103243A JP 2013230427 A JP2013230427 A JP 2013230427A
Authority
JP
Japan
Prior art keywords
oxynitride
metal
photocatalyst
supported
promoter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012103243A
Other languages
Japanese (ja)
Other versions
JP5999548B2 (en
Inventor
Kazunari Domen
一成 堂免
Jun Kubota
純 久保田
Fuxiang Zhang
福祥 章
Kazuhiko Maeda
和彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2012103243A priority Critical patent/JP5999548B2/en
Publication of JP2013230427A publication Critical patent/JP2013230427A/en
Application granted granted Critical
Publication of JP5999548B2 publication Critical patent/JP5999548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst manufactured from a relatively inexpensive material rich in resources, having a cocatalyst for the photocatalyst and showing hydrolytic activity equal to or more than that in a noble metal cocatalyst supported case, and a method for manufacturing the same.SOLUTION: A photocatalyst in which a metal oxide represented by MOand a metal M are supported on acid nitride containing Ti and/or Nb on a cocatalyst is manufactured by a photocatalyst manufacturing method characterized by including a first process for supporting a metal element M-containing compound on the acid nitride containing Ti and/or Nb and a second process for subjecting the metal element M-containing compound to reduction treatment.

Description

本発明は、太陽光を利用した水分解反応を行うことにより水素および/または酸素を製造可能な光水分解反応に特に好適に用いられる光触媒およびその製造方法に関する。   The present invention relates to a photocatalyst that is particularly preferably used in a photowater splitting reaction that can produce hydrogen and / or oxygen by performing a water splitting reaction using sunlight.

太陽エネルギーなどの再生可能エネルギーを利用した高性能な光エネルギー変換システムを実用化することは、地球温暖化の抑制、および枯渇しつつある化石資源依存からの脱却を目指す観点から、近年になって急激にその重要性が増している。中でも、太陽エネルギーを用いて水を分解し水素を製造する技術は、現行の石油精製、アンモニア、メタノールの原料供給技術としてのみならず、燃料電池をベースとした来たる水素エネルギー社会において、必須とされる技術である。   In recent years, the practical application of high-performance light energy conversion systems that use renewable energy such as solar energy has been aimed at controlling global warming and moving away from the depletion of fossil resources. Its importance is increasing rapidly. Above all, the technology that decomposes water using solar energy to produce hydrogen is indispensable not only in the current petroleum refining, ammonia and methanol raw material supply technology, but also in the future hydrogen energy society based on fuel cells. Technology.

例えば、光触媒を用いることで、太陽エネルギーを利用して水を分解し、効率的に水素や酸素を製造することができる(非特許文献1等)。有望な光触媒の一つとしては、可視光応答型の水分解用光触媒であるTiやNbを含む酸窒化物が挙げられる。   For example, by using a photocatalyst, water can be decomposed using solar energy, and hydrogen and oxygen can be produced efficiently (Non-Patent Document 1, etc.). One promising photocatalyst is an oxynitride containing Ti or Nb, which is a visible light responsive photocatalyst for water splitting.

このような酸窒化物は、単独では水分解活性が小さいため、通常、助触媒を担持して使用される。助触媒としては、高活性であり且つ安定である理由から、通常、IrO、RuO、Ptなどの貴金属触媒が使用される。
しかしながら、地表埋蔵量が極めて少なく高価な貴金属を使用することは好ましくない。また、貴金属助触媒を用いたとしても、必ずしも水分解活性が十分であるとは言えない。
Since such oxynitride alone has a small water splitting activity, it is usually used by supporting a promoter. As the cocatalyst, a noble metal catalyst such as IrO 2 , RuO 2 , or Pt is usually used because it is highly active and stable.
However, it is not preferable to use an expensive noble metal with a very small surface reserve. Moreover, even if a noble metal promoter is used, it cannot be said that the water splitting activity is sufficient.

一方、非貴金属助触媒としては、例えば酸素発生用助触媒としてCo、MnO、NiO、NiCo等が比較的高活性であることが知られている(非特許文献2、3等)。
しかしながら、非貴金属助触媒は貴金属助触媒に比べると活性が劣る。そのため、貴金属助触媒と同等以上の水分解活性を示すような非貴金属助触媒が求められている。
On the other hand, as non-noble metal promoters, for example, Co 3 O 4 , MnO x , NiO x , NiCo 2 O 4 and the like as oxygen promoters are known to have relatively high activity (Non-patent Document 2). 3 etc.).
However, non-noble metal promoters are less active than noble metal promoters. Therefore, a non-noble metal promoter that exhibits a water splitting activity equal to or higher than that of the noble metal promoter is required.

Chen,X.et al.Chem.Rev.2010,110(11),6503−6570Chen, X .; et al. Chem. Rev. 2010, 110 (11), 6503-6570 J.Chem.Faraday Trans 1,1988,84(8),2795−2806J. et al. Chem. Faraday Trans 1, 1988, 84 (8), 2795-2806 Chem.Rev.,2010,110,6474−6502.Chem. Rev. 2010, 110, 6474-6502.

そこで本発明は、資源が豊富で比較的安価な材料より製造される光触媒用助触媒を有するとともに、貴金属助触媒を担持した場合と同等以上の水分解活性を示す光触媒およびその製造方法を提供することを課題とする。   Accordingly, the present invention provides a photocatalyst having a photocatalyst cocatalyst produced from a resource-rich and relatively inexpensive material, and exhibiting a water splitting activity equivalent to or higher than that when a noble metal cocatalyst is supported, and a method for producing the photocatalyst. This is the issue.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、以下の知見を得た。
(1)Tiおよび/またはNbを含む酸窒化物に非貴金属助触媒を担持した場合、貴金属助触媒を担持した場合と同等の水分解活性を有する。
(2)Tiおよび/またはNbを含む酸窒化物に担持する非貴金属助触媒において、金属酸化物MOと金属Mとを混在させた場合、水分解活性が一層向上する。
(3)特に、Tiおよび/またはNbを含む酸窒化物に、金属元素Mを含む化合物を担持させた後、当該金属元素Mを含む化合物を還元処理して金属Mおよび金属酸化物MOとすることで、極めて高活性な光触媒を得ることができる。
As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.
(1) When a non-noble metal promoter is supported on an oxynitride containing Ti and / or Nb, the water splitting activity is equivalent to that when a noble metal promoter is supported.
(2) In the non-noble metal promoter supported on the oxynitride containing Ti and / or Nb, when the metal oxide MO x and the metal M are mixed, the water splitting activity is further improved.
(3) In particular, after a compound containing a metal element M is supported on an oxynitride containing Ti and / or Nb, the compound containing the metal element M is subjected to a reduction treatment to obtain a metal M and a metal oxide MO x By doing so, an extremely highly active photocatalyst can be obtained.

本発明は上記の知見に基づいてなされたものである。すなわち、
第1の本発明は、Tiおよび/またはNbを含む酸窒化物に、MOで表される金属酸化物および金属Mを助触媒として担持したことを特徴とする、光触媒である。
The present invention has been made based on the above findings. That is,
A first aspect of the present invention is a photocatalyst characterized in that a metal oxide represented by MO x and a metal M are supported as promoters on an oxynitride containing Ti and / or Nb.

第1の本発明において、酸窒化物が、LaTiON、CaNbON、BaNbON、SrNbON、LaNbONから選ばれる少なくとも1種であることが好ましい。これら酸窒化物を用いた場合に、MOで表される金属酸化物および金属Mを助触媒とした場合の触媒活性向上効果が一層顕著となるためである。 In the first aspect of the present invention, the oxynitride is preferably at least one selected from LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, and LaNbO 2 N. This is because when these oxynitrides are used, the effect of improving the catalytic activity when the metal oxide represented by MO x and the metal M are used as promoters becomes more remarkable.

第1の本発明において、助触媒が、金属酸化物と金属とのコアシェル型構造を有することが好ましい。このような構造とすると、結果的に触媒活性向上効果が一層顕著となる。   In the first aspect of the present invention, the promoter preferably has a core-shell structure of a metal oxide and a metal. With such a structure, as a result, the effect of improving the catalytic activity becomes more remarkable.

第1の本発明において、助触媒を構成する金属元素Mが、コバルト、ニッケル、マンガンから選ばれる少なくとも1つであることが好ましい。このような金属を用いた場合に、特に触媒活性向上効果が得られるためである。   In the first aspect of the present invention, the metal element M constituting the promoter is preferably at least one selected from cobalt, nickel, and manganese. This is because when such a metal is used, an effect of improving the catalytic activity can be obtained.

第2の本発明は、Tiおよび/またはNbを含む酸窒化物に、MOで表される金属酸化物および金属Mを助触媒として担持してなる光触媒の製造方法であって、Tiおよび/またはNbを含む酸窒化物に、金属元素Mを含む化合物を担持させる第1の工程と、金属元素Mを含む化合物を還元処理する第2の工程と、を含むことを特徴とする、光触媒の製造方法である。 A second aspect of the present invention is a method for producing a photocatalyst comprising a metal oxide represented by MO x and a metal M supported as promoters on an oxynitride containing Ti and / or Nb, wherein Ti and / Or a first step of supporting a compound containing the metal element M on an oxynitride containing Nb, and a second step of reducing the compound containing the metal element M. It is a manufacturing method.

第2の本発明において、酸窒化物が、LaTiON、CaNbON、BaNbON、SrNbON、LaNbONから選ばれる少なくとも1種であることが好ましい。 In the second aspect of the present invention, the oxynitride is preferably at least one selected from LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, and LaNbO 2 N.

第2の本発明において、助触媒を構成する金属元素Mがコバルト、ニッケル、マンガンから選ばれる少なくとも1つであることが好ましい。   In the second aspect of the present invention, the metal element M constituting the promoter is preferably at least one selected from cobalt, nickel, and manganese.

第2の本発明において、還元処理が、還元性気体による処理であることが好ましい。   In the second aspect of the present invention, the reduction treatment is preferably treatment with a reducing gas.

ここで「還元性気体」とは金属元素Mを含む化合物を還元して金属Mとすることが可能な気体を意味する。還元性気体の具体例としては、例えば、アンモニア、水素、ヒドラジンが挙げられる。「還元性気体による処理」とは、還元性気体により金属元素Mを含む化合物を還元して金属とすることが可能な処理であればよく、例えば金属元素Mを含む化合物を加熱しつつ還元性気体により還元処理する形態が挙げられる。   Here, the “reducing gas” means a gas capable of reducing a compound containing the metal element M to the metal M. Specific examples of the reducing gas include ammonia, hydrogen, and hydrazine. The “treatment with a reducing gas” may be any treatment that can reduce a compound containing the metal element M to a metal with the reducing gas, for example, reducing the compound containing the metal element M while heating it. The form which carries out a reduction process with gas is mentioned.

第1の本発明においては、Tiおよび/またはNbを含む酸窒化物に、MOで表される金属酸化物および金属Mを助触媒として担持したことにより、貴金属を助触媒として担持した場合と同等以上の水分解活性を示す光触媒とすることができる。このような光触媒は、例えば第2の本発明に係る光触媒の製造方法により、複雑な工程を要さずに適切に製造することができる。すなわち、本発明によれば、資源が豊富で比較的安価な材料より製造される光触媒用助触媒を有するとともに、貴金属助触媒を担持した場合と同等以上の水分解活性を示す光触媒およびその製造方法を提供することができる。 In the first aspect of the present invention, a metal oxide represented by MO x and a metal M are supported as promoters on an oxynitride containing Ti and / or Nb, thereby supporting a noble metal as a promoter. It can be set as the photocatalyst which shows the water splitting activity more than equivalent. Such a photocatalyst can be appropriately manufactured without requiring a complicated process by, for example, the photocatalyst manufacturing method according to the second aspect of the present invention. That is, according to the present invention, a photocatalyst having a photocatalyst cocatalyst produced from a resource-rich and relatively inexpensive material and exhibiting a water splitting activity equivalent to or higher than that when a noble metal cocatalyst is supported, and a production method thereof Can be provided.

本発明に係る光触媒の形態例を概略的に示す図である。It is a figure which shows schematically the example of a form of the photocatalyst concerning this invention. 光触媒の評価の際に用いた装置を概略的に示す図である。It is a figure which shows roughly the apparatus used in the case of evaluation of a photocatalyst. 光触媒電極の評価の際に用いた装置を概略的に示す図である。It is a figure which shows roughly the apparatus used in the case of evaluation of a photocatalyst electrode. 本発明に係る光触媒のXPSによる構造解析結果を示す図である。It is a figure which shows the structural analysis result by XPS of the photocatalyst concerning this invention.

1.光触媒
本発明に係る光触媒は、Tiおよび/またはNbを含む酸窒化物に、MOで表される金属酸化物および金属Mを助触媒として担持したことに特徴を有する。
1. Photocatalyst The photocatalyst according to the present invention is characterized in that a metal oxide represented by MO x and a metal M are supported as promoters on an oxynitride containing Ti and / or Nb.

1.1.酸窒化物
Tiおよび/またはNbを含む酸窒化物としては、光触媒として機能し得る酸窒化物であれば特に限定されるものではなく、例えば、希土類金属および/またはアルカリ土類金属とTiおよび/またはNbとの複合酸窒化物等が挙げられ、より具体的にはLaTiON、CaNbON、BaNbON、SrNbON、LaNbON等が挙げられる。この中でもLaTiON、SrNbON、CaNbONのいずれか1つ以上が好ましく、LaTiONが特に好ましい。本発明による水分解活性向上効果が特に顕著となるためである。
1.1. The oxynitride containing Ti and / or Nb is not particularly limited as long as it is an oxynitride that can function as a photocatalyst. For example, rare earth metal and / or alkaline earth metal and Ti and / or Alternatively, complex oxynitrides with Nb and the like can be mentioned, and more specifically, LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, LaNbO 2 N and the like can be mentioned. Among these, any one or more of LaTiO 2 N, SrNbO 2 N, and CaNbO 2 N are preferable, and LaTiO 2 N is particularly preferable. This is because the effect of improving water splitting activity according to the present invention is particularly remarkable.

本発明において、Tiおよび/またはNbを含む酸窒化物は、公知の方法により容易に得ることができる。例えば、固相法やゾル・ゲル法、錯体重合法、フラックス法等の複合酸化物を得るための公知の方法によりTiおよび/またはNbを含む複合酸化物を得て、当該複合酸化物に対して、アンモニア雰囲気で高温処理すること等の窒化処理を施すことにより、Tiおよび/またはNbを含む酸窒化物を得ることができる。   In the present invention, the oxynitride containing Ti and / or Nb can be easily obtained by a known method. For example, a composite oxide containing Ti and / or Nb is obtained by a known method for obtaining a composite oxide such as a solid phase method, a sol-gel method, a complex polymerization method, a flux method, etc. Thus, oxynitride containing Ti and / or Nb can be obtained by performing nitriding such as high temperature treatment in an ammonia atmosphere.

1.2.助触媒
本発明においては上記したような酸窒化物に、MOで表される金属酸化物および金属Mの双方が助触媒として担持されている。助触媒を構成する金属Mとしては、助触媒として機能し得る金属であればよいが、本発明においては貴金属以外の金属とする。酸化反応用の助触媒金属Mとしては、好ましくは、Mg、Ti、Mn、Fe、Co、Ni、Cu、Ga、Cd、Ce、Ta、WまたはPb等の金属、該金属の金属間化合物、固溶体、共晶体、該金属の多元金属粒子であり、より好ましくはCo、Mn、Niのうちのいずれか1種以上であり、特にCoが好ましい。金属酸化物MOとしては、これら金属Mの酸化物であればその形態は特に限定されない。例えば、CoO(CoO、Co、Co等)、MnO(MnO、MnO、Mn、Mn等)、NiO(NiO、NiO等)等の同一金属による構成される酸化物或いはその混合物のほか、NiCo等の複合酸化物或いはその混合物であってもよい。
還元反応用の助触媒金属Mとしては、好ましくは、Fe、Ni、Cu、Cr、Co等が挙げられる。特にCu、Cr、Niが好ましい。
1.2. Cocatalyst In the present invention, both the metal oxide represented by MO x and the metal M are supported on the oxynitride as described above as a cocatalyst. The metal M constituting the promoter may be any metal that can function as a promoter, but in the present invention, it is a metal other than a noble metal. The promoter metal M for the oxidation reaction is preferably a metal such as Mg, Ti, Mn, Fe, Co, Ni, Cu, Ga, Cd, Ce, Ta, W or Pb, an intermetallic compound of the metal, Solid solution, eutectic, and multi-metal particles of the metal, more preferably one or more of Co, Mn, and Ni, with Co being particularly preferred. The form of the metal oxide MO x is not particularly limited as long as it is an oxide of these metals M. For example, CoO x (CoO, Co 2 O 3 , Co 3 O 4 etc.), MnO x (MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 etc.), NiO x (NiO, NiO 2 etc.), etc. In addition to an oxide composed of the same metal or a mixture thereof, a composite oxide such as NiCo 2 O 4 or a mixture thereof may be used.
Preferred examples of the promoter metal M for the reduction reaction include Fe, Ni, Cu, Cr, Co and the like. Cu, Cr, and Ni are particularly preferable.

なお、本発明においては、助触媒として上記の金属酸化物MO、金属Mのほか、その他の助触媒が担持されていてもよい。例えば、NiS、MoS、NiMoS等の硫化物が挙げられる。 In the present invention, in addition to the above metal oxide MO x and metal M, other promoters may be supported as promoters. For example, sulfides such as NiS, MoS 2 and NiMoS can be used.

本発明においては、従来においては助触媒としての活性が十分ではないと考えられていた金属であっても、所定の酸窒化物に、金属酸化物と金属との双方が助触媒として担持された光触媒とすることで、助触媒として貴金属が担持された光触媒と同等以上の水分解活性を得ることができる。   In the present invention, both a metal oxide and a metal are supported as promoters on a predetermined oxynitride, even if the metal is conventionally considered to have insufficient activity as a promoter. By using a photocatalyst, water splitting activity equivalent to or higher than that of a photocatalyst carrying a noble metal as a promoter can be obtained.

本発明において、助触媒は金属Mと金属酸化物MOとのコアシェル型構造となっていることが好ましい。この場合、通常、金属Mがコア、金属酸化物MOがシェルを構成する。例えば、図1に示すように、酸窒化物であるLaTiONの表面に、CoOおよびCoのコアシェル型構造を有する助触媒が担持された形態が挙げられる。このような酸窒化物にコアシェル型構造を有する助触媒が担持された光触媒の製造方法については後述する。 In the present invention, it is preferred that the co-catalyst has a core-shell structure of a metal M and the metal oxide MO x. In this case, usually, the metal M constitutes the core and the metal oxide MO x constitutes the shell. For example, as shown in FIG. 1, a form in which a promoter having a core-shell structure of CoO x and Co is supported on the surface of LaTiO 2 N that is an oxynitride. A method for producing a photocatalyst in which a promoter having a core-shell structure is supported on such an oxynitride will be described later.

酸窒化物への助触媒の担持方法については、特に限定されるものではなく、公知の担持方法をいずれも適用することができる。例えば、助触媒となる金属源(金属元素Mを含む化合物)を含有する溶液やコロイド溶液に酸窒化物の粉体や成形体を浸漬し、蒸発乾固する、または金属Mのカルボニル化合物を昇華によって酸窒化物表面へ吸着させ、これを熱分解させることなどによって、酸窒化物の表面に助触媒を担持することができる。また、文献(PNAS vol.106,20633−20636(2009))に記載されている、助触媒となる金属源のイオンを含有する溶液に、酸窒化物の粉体や成型体を浸漬し、光照射する方法により担持してもよい。   The method for supporting the cocatalyst on the oxynitride is not particularly limited, and any known supporting method can be applied. For example, oxynitride powder or compact is immersed in a solution or colloidal solution containing a metal source (compound containing metal element M) as a promoter, and evaporated to dryness, or a carbonyl compound of metal M is sublimated. The cocatalyst can be supported on the surface of the oxynitride by, for example, adsorbing it onto the oxynitride surface and thermally decomposing it. In addition, an oxynitride powder or a molded body is immersed in a solution containing ions of a metal source serving as a promoter described in a literature (PNAS vol. 106, 20633-20636 (2009)). You may carry | support by the method of irradiating.

助触媒の担持量については、少なすぎても効果がなく、多すぎると助触媒自身が光を吸収・散乱するなどして酸窒化物の光吸収を妨げたり、再結合中心として働いたりして、かえって触媒活性が低下してしまう。このような観点から、光触媒における助触媒の担持量は、特に限定はされないが、光触媒全体を基準(100質量%)として、好ましくは0.01質量%以上20質量%以下であり、より好ましくは15質量%以下、特に好ましくは10質量%以下である。   If the amount of the cocatalyst supported is too small, there is no effect. If the amount is too large, the cocatalyst itself absorbs and scatters light, preventing the light absorption of the oxynitride or acting as a recombination center. On the contrary, the catalytic activity is lowered. From such a viewpoint, the amount of the cocatalyst supported in the photocatalyst is not particularly limited, but is preferably 0.01% by mass or more and 20% by mass or less, more preferably, based on the entire photocatalyst (100% by mass). It is 15 mass% or less, Most preferably, it is 10 mass% or less.

本発明に係る光触媒を実際に水の分解に使用する場合において、光触媒の形態については特に限定されるものではなく、水中に光触媒粒子を分散・懸濁させる形態であってもよいし、光触媒粒子を固めて成形体として、当該成形体を水中に設置する形態或いは基材上に光触媒層を設けて積層体とし、当該積層体を水中に設置する形態等であってもよい。   In the case where the photocatalyst according to the present invention is actually used for water decomposition, the form of the photocatalyst is not particularly limited, and may be a form in which the photocatalyst particles are dispersed and suspended in water. The molded body may be in a form in which the molded body is placed in water or in a form in which a photocatalyst layer is provided on a substrate to form a laminated body, and the laminated body is placed in water.

2.光触媒の製造方法
本発明に係る光触媒の製造方法は、Tiおよび/またはNbを含む酸窒化物に、MOで表される金属酸化物および金属Mを助触媒として担持してなる光触媒の製造方法であって、Tiおよび/またはNbを含む酸窒化物に、金属元素Mを含む化合物を担持させる第1の工程と、金属元素Mを含む化合物を還元処理する第2の工程とを含むことを特徴とする。
2. Method for Producing Photocatalyst The method for producing a photocatalyst according to the present invention is a method for producing a photocatalyst comprising a metal oxide represented by MO x and a metal M supported as promoters on an oxynitride containing Ti and / or Nb. A first step of supporting a compound containing a metal element M on an oxynitride containing Ti and / or Nb and a second step of reducing the compound containing the metal element M. Features.

第1の工程は、Tiおよび/またはNbを含む酸窒化物に、金属元素Mを含む化合物を担持させる工程である。   The first step is a step of supporting a compound containing the metal element M on an oxynitride containing Ti and / or Nb.

本発明における金属元素Mを含む化合物とは、後述する還元処理によって金属Mとなる化合物をいい、具体的には例えば、MOで表される金属酸化物;硝酸塩、硫酸塩、炭酸塩、リン酸塩、ヘキサフルオロリン酸塩、ホウ酸塩、テトラフルオロホウ酸塩、ハロゲンオキソ酸塩、カルボン酸塩、スルホン酸塩等の金属元素Mを含む塩;アセチルアセトナート、カルボニル化合物等の金属元素Mを含む錯体化合物;金属Mのハロゲン化物;金属Mの表面が酸化されMOの表面皮膜がついたもの等が挙げられる。このうちMOで表される金属酸化物、または金属元素Mを含む塩が好ましい。金属元素Mを含む塩としては、溶解性、製造性の面で硝酸塩が好ましい。 The compound containing a metal element M in the present invention means a compound which is a metal M by reduction process described later, specifically, for example, metal oxide represented by MO x; nitrates, sulfates, carbonates, phosphates Salts containing metal elements M such as acid salts, hexafluorophosphates, borates, tetrafluoroborates, halogen oxoacid salts, carboxylates and sulfonates; metal elements such as acetylacetonates and carbonyl compounds M-containing complex compounds; metal M halides; metal M surface oxidized and MO x surface coating. Among these, a metal oxide represented by MO x or a salt containing the metal element M is preferable. As the salt containing the metal element M, nitrate is preferable in terms of solubility and manufacturability.

酸窒化物や金属元素Mを含む化合物の形態については、上記したものと同様である。酸窒化物の金属元素Mを含む化合物の担持方法も上述した通りであり特に限定されるものではない。例えば、助触媒となる金属源を含む水溶液に、酸窒化物粉体を浸漬・懸濁させ、溶媒を蒸発乾固する、金属Mのカルボニル化合物を昇華によって酸窒化物表面へ吸着させ、これを熱分解させることなどによって、酸窒化物の表面に金属元素Mを含む化合物を担持することができる。また助触媒となる金属源のイオンを含有する溶液に酸窒化物の粉体や成型体を浸漬し、光照射することにより担持してもよい。   The form of the compound containing oxynitride or metal element M is the same as described above. The method for supporting the compound containing the metal element M of oxynitride is also not particularly limited as described above. For example, the oxynitride powder is immersed and suspended in an aqueous solution containing a metal source that serves as a cocatalyst, and the solvent is evaporated to dryness. The metal M carbonyl compound is adsorbed on the oxynitride surface by sublimation. A compound containing the metal element M can be supported on the surface of the oxynitride by thermal decomposition or the like. Alternatively, the powder may be supported by immersing an oxynitride powder or molded body in a solution containing ions of a metal source serving as a promoter and irradiating with light.

なお、これら金属元素Mを含む化合物を担持した後、焼成処理をする工程を含んでいてもよい。具体的には金属元素Mを含む化合物として、溶解性が高い塩等の、均一性の高い溶液が得られるものを用いて酸窒化物に担持したのち、焼成処理を行う。助触媒を均一に担持できる点、金属元素Mを含む化合物中に含まれる塩化物イオン等の、後述する還元処理に際して残留が好ましくない成分の除去に有効である点で好ましい製造方法として挙げられる。   In addition, after carrying | supporting the compound containing these metal elements M, the process of baking processing may be included. Specifically, the compound containing the metal element M is supported on an oxynitride using a highly soluble solution such as a highly soluble salt, and then subjected to a firing treatment. It is mentioned as a preferable production method in that the cocatalyst can be supported uniformly and is effective in removing components such as chloride ions contained in the compound containing the metal element M that are not preferably retained in the reduction treatment described later.

第2の工程は、前記金属元素Mを含む化合物を還元処理する工程である。本発明者らが鋭意研究したところ、所定の酸窒化物表面に、助触媒としてまず金属元素Mを含む化合物を担持させ、その後、担持した金属元素Mを含む化合物を還元して金属Mとすることにより、光触媒活性が著しく向上することを知見した。この現象は後述する還元処理をすることにより、MOで表される金属酸化物、または金属元素Mを含む塩等が還元され、金属Mに変換される。そして引き続き、金属Mの表面が酸化され、MOで表される金属酸化物が表面に形成されることによって発現するものと推定される。これは種々の要因によるものと考えられるが、例えばその一つとして、酸窒化物に担持後の金属元素Mを含む化合物を還元して金属Mとすることで、酸窒化物表面と助触媒との界面に良好な接触が得られ、活性が向上したものと推測できる。または、助触媒と酸窒化物との接触界面が増大し、触媒活性が向上したものと推測することができる。 The second step is a step of reducing the compound containing the metal element M. As a result of extensive research by the present inventors, a compound containing a metal element M is first supported as a promoter on a predetermined oxynitride surface, and then the compound containing the supported metal element M is reduced to form a metal M. It has been found that the photocatalytic activity is remarkably improved. In this phenomenon, a metal oxide represented by MO x or a salt containing the metal element M is reduced and converted to the metal M by performing a reduction treatment described later. Subsequently, it is presumed that the surface of the metal M is oxidized, and a metal oxide represented by MO x is formed on the surface. This is considered to be due to various factors. For example, by reducing the compound containing the metal element M after being supported on the oxynitride to the metal M, the oxynitride surface, the promoter, It can be inferred that good contact was obtained at the interface and the activity was improved. Alternatively, it can be presumed that the contact interface between the cocatalyst and the oxynitride is increased and the catalytic activity is improved.

第2の工程における還元処理については、金属元素Mを含む化合物を金属Mへと還元することが可能な処理であれば特に限定されるものではないが、還元性気体による処理であることが好ましい。還元性気体としては、例えば、アンモニア、水素、ヒドラジンが挙げられる。特にアンモニアが好ましい。還元処理の温度については、好ましくは500℃以上、より好ましくは600℃以上とし、好ましくは900℃以下、より好ましくは800℃以下とする。還元処理の時間については特に限定されるものではないが、好ましくは0.5時間以上、より好ましくは1時間以上とし、好ましくは20時間以下、より好ましくは10時間以下とする。このような温度・時間とすることで、酸窒化物表面において金属元素Mを含む化合物を適切に金属Mに還元でき、光触媒活性を一層増大させることができる。   The reduction treatment in the second step is not particularly limited as long as it is a treatment capable of reducing the compound containing the metal element M to the metal M, but is preferably a treatment with a reducing gas. . Examples of the reducing gas include ammonia, hydrogen, and hydrazine. Ammonia is particularly preferable. The temperature of the reduction treatment is preferably 500 ° C. or higher, more preferably 600 ° C. or higher, preferably 900 ° C. or lower, more preferably 800 ° C. or lower. The time for the reduction treatment is not particularly limited, but is preferably 0.5 hours or longer, more preferably 1 hour or longer, preferably 20 hours or shorter, more preferably 10 hours or shorter. By setting such temperature and time, the compound containing the metal element M on the oxynitride surface can be appropriately reduced to the metal M, and the photocatalytic activity can be further increased.

第2の工程を経ることで、酸窒化物の表面に還元された金属が助触媒として担持された光触媒が得られる。その後、金属表面は自ずと酸化され金属酸化物層となる。すなわち、本発明に係る光触媒の製造方法により得られた光触媒は、酸窒化物の表面に、金属酸化物と金属とのコアシェル型構造(コア:金属、シェル:金属酸化物)を有する助触媒が担持されていると言える(例えば図1参照)。このような光触媒は、貴金属を助触媒として担持した場合と比較して同等以上の光触媒活性を有する。   By passing through the second step, a photocatalyst in which the reduced metal is supported on the surface of the oxynitride as a promoter is obtained. Thereafter, the metal surface is naturally oxidized to form a metal oxide layer. That is, the photocatalyst obtained by the method for producing a photocatalyst according to the present invention includes a promoter having a core-shell structure (core: metal, shell: metal oxide) of a metal oxide and a metal on the surface of the oxynitride. It can be said that it is supported (see, for example, FIG. 1). Such a photocatalyst has a photocatalytic activity equal to or higher than that when a noble metal is supported as a promoter.

以上の通り、本発明によれば、資源が豊富で比較的安価な材料より製造される光触媒用助触媒を有するとともに、貴金属助触媒を担持した場合と同等以上の水分解活性を示す光触媒およびその製造方法を提供することができる。   As described above, according to the present invention, a photocatalyst having a photocatalyst cocatalyst produced from a resource-rich and relatively inexpensive material and having a water splitting activity equal to or higher than that of a noble metal cocatalyst supported thereon and the photocatalyst A manufacturing method can be provided.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例により制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not restrict | limited by a following example, unless the summary is exceeded.

<光触媒の調製>
(酸窒化物1の調製)
文献(Journal of Flux Grouwth,2010,5,81/J.Am.Ceram.Soc 991,74,2876)に記載の方法に従ってLaTiONを調製した。具体的には以下の通りである。
La(関東化学社製、99.99%)とTiO(Sigma−Aldrich社製、99.99%)とをモル比1:2でエタノールを用いて湿式混合し、これにフラックスであるNaCl(和光純薬工業社製、99.5%)とKCl(和光純薬工業社製、99.5%)との混合物(モル比1:1)を(La+Ti):(Na+K)=1:2のモル比で加えた。これをアルミナ坩堝に入れ、1423Kまで10K/minで加熱し、同温度で5時間保持した。その後1023Kまで1K/minで冷却し、さらに室温まで自然冷却した。取り出した試料を蒸留水で洗浄、濾過することによってフラックスを除去後、乾燥することで前駆体となるLaTiを得た。次にこの前駆体を200mL/minのNH気流下、1223Kで15時間窒化し、LaTiONを得た。XRDにより単相のLaTiONの生成が確認された。
<Preparation of photocatalyst>
(Preparation of oxynitride 1)
LaTiO 2 N was prepared according to the method described in the literature (Journal of Flux Group, 2010, 5, 81 / J. Am. Ceram. Soc 991, 74, 2876). Specifically, it is as follows.
La 2 O 3 (manufactured by Kanto Chemical Co., 99.99%) and TiO 2 (manufactured by Sigma-Aldrich, 99.99%) are wet-mixed with ethanol at a molar ratio of 1: 2, and this is mixed with flux. A mixture of a certain NaCl (manufactured by Wako Pure Chemical Industries, 99.5%) and KCl (manufactured by Wako Pure Chemical Industries, 99.5%) (molar ratio 1: 1) is (La + Ti) :( Na + K) = 1. : The molar ratio was 2. This was put into an alumina crucible, heated to 1423K at 10 K / min, and kept at the same temperature for 5 hours. Thereafter, it was cooled to 1023 K at 1 K / min, and further naturally cooled to room temperature. The sample taken out was washed with distilled water and filtered to remove the flux, followed by drying to obtain La 2 Ti 2 O 7 as a precursor. Next, this precursor was nitrided at 1223 K for 15 hours under a NH 3 stream of 200 mL / min to obtain LaTiO 2 N. XRD confirmed the formation of single-phase LaTiO 2 N.

(酸窒化物2の調製)
LaとTiOとをモル比1:2でエタノールを用いて湿式混合し、これにフラックスであるNaClを(La+Ti):(Na)=1:10のモル比で加えた。それ以降の処理については、酸窒化物1の調製と同様の手順とし、LaTiONを得た。XRDにより単相のLaTiONの生成が確認された。
(Preparation of oxynitride 2)
La 2 O 3 and TiO 2 and a molar ratio of 1: 2 with ethanol were wet-mixed, to which the NaCl is flux (La + Ti) :( Na) = 1: was added at 10 molar ratio. For subsequent processing, the same procedure as preparation of oxynitride 1, to obtain a LaTiO 2 N. XRD confirmed the formation of single-phase LaTiO 2 N.

(酸窒化物3の調製)
文献(J.Phys.Chem.A 2002,106,6750)に記載の方法に従ってLaTiONを調製した。具体的には以下の通りである。
チタンテトライソプロポキシド(0.02mol、関東化学社製、97.0%)を室温でエチレングリコール(0.2mol、関東化学社製、99.5%)に溶解した後、無水クエン酸(0.3mol、和光純薬工業社製、98.0%)を添加し、333Kで加熱して完全に溶解させた。続いてこれにLa(NO・6HO(0.002mol、関東化学社製、99%)と20mLのメタノールとを添加し、423Kで透明なゲルが生成するまで加熱撹拌した。得られたポリマーゲルを523〜623Kで1時間熱分解して炭化させた後、空気中、773Kで12時間焼成し、前駆体LaTiを得た。この前駆体0.7gを200mL/minのNH気流下、1223Kで15時間窒化し、LaTiONを得た。XRDにより単相のLaTiONの生成が確認された。
(Preparation of oxynitride 3)
LaTiO 2 N was prepared according to the method described in the literature (J. Phys. Chem. A 2002, 106, 6750). Specifically, it is as follows.
Titanium tetraisopropoxide (0.02 mol, manufactured by Kanto Chemical Co., Ltd., 97.0%) was dissolved in ethylene glycol (0.2 mol, manufactured by Kanto Chemical Co., Ltd., 99.5%) at room temperature, and then citric anhydride (0 3 mol, manufactured by Wako Pure Chemical Industries, Ltd., 98.0%) was added and heated at 333 K to be completely dissolved. Then this La (NO 3) 3 · 6H 2 O (0.002mol, Kanto Chemical Co., 99%) was added and methanol and 20 mL, was stirred and heated until a clear gel is produced at 423 K. The obtained polymer gel was pyrolyzed at 523-623K for 1 hour to be carbonized and then calcined in air at 773K for 12 hours to obtain a precursor La 2 Ti 2 O 7 . 0.7 g of this precursor was nitrided at 1223 K for 15 hours under a NH 3 stream of 200 mL / min to obtain LaTiO 2 N. XRD confirmed the formation of single-phase LaTiO 2 N.

(酸窒化物4の調製)
文献(Catalysis Today,2003,78,555−560)に記載の方法に従いTa(高純度化学製、99.9%)を20mL/minのNH気流下、1123Kで15時間窒化することによりTaONを得た。
(Preparation of oxynitride 4)
Nitriding Ta 2 O 5 (manufactured by High-Purity Chemical, 99.9%) under a flow of NH 3 at 20 mL / min for 15 hours at 1123 K in accordance with the method described in the literature (Catalysis Today, 2003, 78, 555-560) To obtain TaON.

(酸窒化物5の調製)
SrNbONを文献(ChemSusChem.2011,4,74−78)に記載の方法に従って調製した。具体的には以下の通りである。
NbCl(21mmol、高純度化学製、99.9%)、無水クエン酸(210mmol、和光純薬工業社製、98.0%)、エチレングリコール(840mmol、関東化学社製、99.5%)、SrCO(21mmol、関東化学社製、99.5%)をメタノール100mLに溶解し、473Kで1晩加熱してゲル化させた。得られたポリマーゲルを623Kで熱分解させた後、空気中、973Kで2時間焼成し、粉砕した後さらに973〜1123Kで2時間焼成してSr-Nb複合酸化物を得た。得られた複合酸化物を250mL/minのNH気流下、1023〜1223Kで15時間窒化し、SrNbONを得た。
(Preparation of oxynitride 5)
SrNbO 2 N was prepared according to the method described in the literature (ChemSusChem. 2011, 4, 74-78). Specifically, it is as follows.
NbCl 5 (21 mmol, high-purity chemical, 99.9%), citric anhydride (210 mmol, Wako Pure Chemical Industries, 98.0%), ethylene glycol (840 mmol, manufactured by Kanto Chemical Co., 99.5%) , SrCO 3 (21 mmol, manufactured by Kanto Chemical Co., Inc., 99.5%) was dissolved in 100 mL of methanol and heated at 473 K overnight to cause gelation. The obtained polymer gel was thermally decomposed at 623K, calcined in air at 973K for 2 hours, pulverized, and further calcined at 973-1123K for 2 hours to obtain a Sr—Nb composite oxide. The obtained composite oxide was nitrided at 1023 to 1223K for 15 hours under a flow of NH 3 at 250 mL / min to obtain SrNbO 2 N.

(実施例1:(CoO/Co)/酸窒化物1)
得られた酸窒化物1(0.3g)を、Co(NO・6HO(LaTiONを基準として2.0質量%のCo)を含む水溶液(3mL)に懸濁し、蒸発皿内、ウォーターバス上でガラス棒により攪拌しながら溶媒を蒸発乾燥させた。
(Example 1: (CoO x / Co) / oxynitride 1)
The obtained oxynitride 1 (0.3 g) was suspended in an aqueous solution (3 mL) containing Co (NO 3 ) 2 .6H 2 O (2.0 mass% Co based on LaTiO 2 N) and evaporated. The solvent was evaporated to dryness while stirring with a glass rod in a dish on a water bath.

得られたCo(NO/酸窒化物1を、200mL/minのNH気流下で、773〜1073Kで1時間還元処理した後、室温まで冷却して、酸窒化物1にCoOおよびCoを担持した光触媒「(CoO/Co)/酸窒化物1」を得た。なお、CoOとは、CoO、Co、Co等のコバルト酸化物の混合物を意味する。 The resulting Co (NO 3) 2 / oxynitride 1, with NH 3 stream of 200 mL / min, after 1 hour reduced at 773~1073K, and cooled to room temperature, the oxynitride 1 CoO x And the photocatalyst “(CoO x / Co) / oxynitride 1” supporting Co was obtained. CoO x means a mixture of cobalt oxides such as CoO, Co 2 O 3 , and Co 3 O 4 .

(実施例2:(CoO/Co)/酸窒化物3)
酸窒化物として酸窒化物3を使用したほかは、実施例1に記載の調製方法と同様の手順で、酸窒化物3にCoOおよびCoを担持した光触媒「(CoO/Co)/酸窒化物3」を得た。
(Example 2: (CoO x / Co) / oxynitride 3)
The photocatalyst “(CoO x / Co) / acid in which CoO x and Co are supported on oxynitride 3 in the same procedure as the preparation method described in Example 1 except that oxynitride 3 was used as the oxynitride. Nitride 3 ”was obtained.

(実施例3:(CoO/Co)/酸窒化物2)
酸窒化物として酸窒化物2を使用したほかは、実施例1に記載の調製方法と同様の手順で、酸窒化物2にCoOおよびCoを担持した光触媒「(CoO/Co)/酸窒化物2」を得た。
(Example 3: (CoO x / Co) / oxynitride 2)
The photocatalyst “(CoO x / Co) / acid in which CoO x and Co are supported on oxynitride 2 in the same procedure as the preparation method described in Example 1, except that oxynitride 2 was used as the oxynitride. Nitride 2 ”was obtained.

(実施例4:(MnO/Mn)/酸窒化物2)
酸窒化物2(0.3g)をMnCl(LaTiONに対して1.9質量%のMn)を含む水溶液(3mL)に添加し、蒸発皿内、ウォーターバス上でガラス棒により攪拌しながら溶媒を蒸発乾燥させた。その後、空気中、473Kで焼成することによって、MnOを酸窒化物2に担持してなる「MnO/酸窒化物2」を得た。なお、MnOとは、MnO、MnO、Mn、Mn等のマンガン酸化物の混合物を意味する。
(Example 4: (MnO x / Mn) / oxynitride 2)
Oxynitride 2 (0.3 g) was added to an aqueous solution (3 mL) containing MnCl 2 (1.9% by mass of Mn with respect to LaTiO 2 N) and stirred with a glass rod in an evaporating dish on a water bath. The solvent was evaporated to dryness. Then, “MnO x / oxynitride 2” obtained by supporting MnO x on oxynitride 2 was obtained by firing at 473 K in air. Note that the MnO x, refers to a mixture of MnO, MnO 2, Mn 2 O 3, Mn 3 O manganese oxides such as 4.

得られたMnO/酸窒化物2を、200mL/minのNH気流下で、923Kで1時間還元処理した後、室温まで冷却して、酸窒化物2にMnOおよびMnを担持した光触媒「(MnO/Mn)/酸窒化物2」を得た。 The obtained MnO x / oxynitride 2 was subjected to reduction treatment at 923 K for 1 hour under an NH 3 stream of 200 mL / min, then cooled to room temperature, and the photocatalyst having MnO x and Mn supported on oxynitride 2 “(MnO x / Mn) / oxynitride 2” was obtained.

(実施例5:(NiO/Ni)/酸窒化物2)
酸窒化物2(0.3g)をNi(NO・6HO(LaTiONに対して2質量%のNi)を含む水溶液(3mL)に添加し、蒸発皿内、ウォーターバス上でガラス棒により攪拌しながら溶媒を蒸発乾燥させた。その後、空気中、473Kで焼成することによって、NiOを酸窒化物2に担持してなる「NiO/酸窒化物2」を得た。なお、NiOとは、NiO、Ni等のニッケル酸化物の混合物を意味する。
(Example 5: (NiO x / Ni) / oxynitride 2)
Oxynitride 2 (0.3 g) is added to an aqueous solution (3 mL) containing Ni (NO 3 ) 2 .6H 2 O (2% by mass of Ni with respect to LaTiO 2 N), and in an evaporating dish on a water bath The solvent was evaporated to dryness while stirring with a glass rod. Thereafter, in the air, by baking at 473 K, to obtain a formed by carrying NiO x to oxynitrides 2 "NiO x / oxynitride 2". NiO x means a mixture of nickel oxides such as NiO and Ni 2 O 3 .

得られたNiO/酸窒化物2を、200mL/minのNH気流下で、923Kで1時間還元処理した後、室温まで冷却して、酸窒化物2にNiOおよびNiを担持した光触媒「(NiO/Ni)/酸窒化物2」を得た。 The obtained NiO x / oxynitride 2 was reduced at 923 K for 1 hour under an NH 3 stream of 200 mL / min, cooled to room temperature, and the photocatalyst having NiO x and Ni supported on oxynitride 2 “(NiO x / Ni) / oxynitride 2” was obtained.

(比較例1:CoO/酸窒化物1)
酸窒化物1を空気中、473Kで2時間焼成した。焼成後の酸窒化物1(0.3g)を、Co(NO・6HO(LaTiONを基準として2.0質量%のCo)を含む水溶液(3mL)に懸濁し、蒸発皿内、ウォーターバス上でガラス棒により攪拌しながら溶媒を蒸発乾燥させた。その後、空気中、473Kで焼成することによって、CoOを酸窒化物1に担持してなる「CoO/酸窒化物1」を得た。
(Comparative Example 1: CoO x / oxynitride 1)
Oxynitride 1 was calcined in air at 473K for 2 hours. The oxynitride 1 (0.3 g) after firing is suspended in an aqueous solution (3 mL) containing Co (NO 3 ) 2 .6H 2 O (2.0 mass% Co based on LaTiO 2 N) and evaporated. The solvent was evaporated to dryness while stirring with a glass rod in a dish on a water bath. Thereafter, in the air, by baking at 473 K, to obtain a formed by carrying CoO x the oxynitride 1 "CoO x / oxynitride 1".

(比較例2:IrO/酸窒化物1)
文献(J.Phys.Chem.A2002,106,6570)に記載の方法に従ってIrOコロイド溶液を調整した。具体的には以下の通りである。
Na[IrCl]・6HO(0.159g)を、100mLの蒸留水中に溶解させ、pHを5M NaOHで12.0に調整した。この溶液を353Kのウォーターバス中で加熱し、無色透明の溶液を得た。この溶液を室温まで冷却し、HNO水溶液でpH8.5〜9.5に調整した後、再び353Kで加熱して濃青色のIrOコロイド溶液を得た。
(Comparative Example 2: IrO 2 / oxynitride 1)
An IrO 2 colloid solution was prepared according to the method described in the literature (J. Phys. Chem. A 2002, 106, 6570). Specifically, it is as follows.
Na 2 [IrCl 6 ] · 6H 2 O (0.159 g) was dissolved in 100 mL of distilled water and the pH was adjusted to 12.0 with 5M NaOH. This solution was heated in a 353 K water bath to obtain a colorless and transparent solution. This solution was cooled to room temperature, adjusted to pH 8.5 to 9.5 with HNO 3 aqueous solution, and then heated again at 353 K to obtain a dark blue IrO 2 colloid solution.

酸窒化物1(0.3g)をIrOコロイド溶液(LaTiONに対して2.0質量%のIrO、NaOH水溶液を用いてpHを5.0に調整)200mL中で1時間攪拌してIrOを酸窒化物1に吸着させ、濾別または蒸発乾固した後、空気中、473Kで1時間焼成することによって、IrOを酸窒化物1に担持してなる光触媒「IrO/酸窒化物1」を得た。 Oxynitride 1 (0.3 g) was stirred in 200 mL of IrO 2 colloid solution (2.0 mass% IrO 2 with respect to LaTiO 2 N, pH adjusted to 5.0 using NaOH aqueous solution) for 1 hour. IrO 2 is adsorbed on oxynitride 1 and filtered or evaporated to dryness, and then calcined in air at 473 K for 1 hour, whereby IrO 2 is supported on oxynitride 1 to form a photocatalyst “IrO 2 / Oxynitride 1 "was obtained.

(比較例3:IrO/酸窒化物3)
酸窒化物として酸窒化物3を使用したほかは、比較例2に記載の調製方法と同様の手順で、IrOを酸窒化物3に担持してなる光触媒「IrO/酸窒化物3」を得た。
(Comparative Example 3: IrO 2 / oxynitride 3)
A photocatalyst “IrO 2 / oxynitride 3” obtained by supporting IrO 2 on oxynitride 3 in the same procedure as the preparation method described in Comparative Example 2, except that oxynitride 3 was used as the oxynitride. Got.

(比較例4:MnO/酸窒化物1)
酸窒化物1(0.3g)をMnCl(LaTiONに対して2質量%のMn)を含む水溶液(3mL)に添加し、蒸発皿内、ウォーターバス上でガラス棒により攪拌しながら溶媒を蒸発乾燥させた。その後、空気中、473Kで焼成することによって、MnOを酸窒化物1に担持してなる「MnO/酸窒化物1」を得た。
(Comparative Example 4: MnO x / oxynitride 1)
Oxynitride 1 (0.3 g) was added to an aqueous solution (3 mL) containing MnCl 2 ( 2 % by mass of Mn with respect to LaTiO 2 N), and a solvent was stirred in a water bath on a water bath while stirring with a glass rod. Was evaporated to dryness. Then, “MnO x / oxynitride 1” obtained by supporting MnO x on oxynitride 1 was obtained by firing at 473 K in air.

(比較例5:NiO/酸窒化物1)
酸窒化物1(0.3g)をNi(NO・6HO(LaTiONに対して2質量%のNi)を含む水溶液(3mL)に添加し、蒸発皿内、ウォーターバス上でガラス棒により攪拌しながら溶媒を蒸発乾燥させた。その後、空気中、473Kで焼成することによって、NiOを酸窒化物1に担持してなる「NiO/酸窒化物1」を得た。
(Comparative Example 5: NiO x / oxynitride 1)
Oxynitride 1 (0.3 g) is added to an aqueous solution (3 mL) containing Ni (NO 3 ) 2 .6H 2 O (2% by mass of Ni with respect to LaTiO 2 N), and then in an evaporating dish on a water bath The solvent was evaporated to dryness while stirring with a glass rod. Thereafter, in the air, by baking at 473 K, to obtain a formed by carrying NiO x to oxynitride 1 "NiO x / oxynitride 1".

(比較例6:(CoO/Co)/酸窒化物4)
酸窒化物として酸窒化物4を使用したほかは、実施例1に記載の調製方法と同様の手順で、酸窒化物4にCoOおよびCoを担持した光触媒「(CoO/Co)/酸窒化物4」を得た。
(Comparative Example 6: (CoO x / Co) / oxynitride 4)
The photocatalyst “(CoO x / Co) / acid in which CoO x and Co are supported on oxynitride 4 in the same procedure as the preparation method described in Example 1, except that oxynitride 4 was used as the oxynitride. Nitride 4 ”was obtained.

(比較例7:助触媒無担持酸窒化物4)
酸窒化物4に助触媒を担持せずそのままの状態で光触媒活性を評価した。
(Comparative Example 7: Cocatalyst unsupported oxynitride 4)
The photocatalytic activity was evaluated in the state where the oxynitride 4 did not carry a promoter.

<光触媒電極の調製>
調製した酸窒化物5の光触媒電極を以下のように調製した。
アセトン45mlにヨウ素9mgを溶解し、調製した酸窒化物5(36mg)を懸濁させて15分間超音波処理を行った。得られた懸濁液に、2枚のTi板を浸し、100Vの電圧を20秒間印加して酸窒化物が吸着した「酸窒化物5/Ti」を調製した。これに10mM NbClメタノール溶液25μLを滴下し、空気中で乾燥させる操作を6回繰り返したのち、100mL/minのNH気流下、753Kで30分間加熱してポストネッキング処理された「酸窒化物5/Ti」を得た。光触媒電極面積は2〜3cmであった。
<Preparation of photocatalytic electrode>
The prepared oxynitride 5 photocatalytic electrode was prepared as follows.
9 mg of iodine was dissolved in 45 ml of acetone, and the prepared oxynitride 5 (36 mg) was suspended and subjected to ultrasonic treatment for 15 minutes. Two Ti plates were immersed in the obtained suspension, and a voltage of 100 V was applied for 20 seconds to prepare “oxynitride 5 / Ti” in which oxynitride was adsorbed. To this, 25 μL of 10 mM NbCl 5 methanol solution was added dropwise and dried in air six times, and then heated at 753 K for 30 minutes in a NH 3 stream of 100 mL / min, and “oxynitride treated by post-necking” 5 / Ti "was obtained. The photocatalytic electrode area was 2-3 cm 2 .

(実施例6:(CoO/Co)/酸窒化物5/Ti電極)
酸窒化物5/TiにCo(NO・6HO(SrNbONを基準として2.0質量%のCo)を含む水溶液を滴下し、空気中で乾燥させた。そののち100mL/minのNH気流下、848Kで30分間加熱して(CoO/Co)/酸窒化物5/Ti電極を得た。
(Example 6: (CoO x / Co) / oxynitride 5 / Ti electrode)
An aqueous solution containing Co (NO 3 ) 2 .6H 2 O (2.0 mass% Co based on SrNbO 2 N) was added dropwise to oxynitride 5 / Ti and dried in air. After that, heating was performed at 848 K for 30 minutes under an NH 3 stream of 100 mL / min to obtain a (CoO x / Co) / oxynitride 5 / Ti electrode.

(比較例8:CoO/酸窒化物5/Ti電極)
酸窒化物5/TiにCo(NO・6HO(SrNbONを基準として2.0質量%のCo)を含む水溶液を滴下し、空気中で乾燥させた。その後、空気中、423Kで1時間焼成することによって、CoO/酸窒化物5/Ti電極を得た。
(Comparative Example 8: CoO x / oxynitride 5 / Ti electrode)
An aqueous solution containing Co (NO 3 ) 2 .6H 2 O (2.0 mass% Co based on SrNbO 2 N) was added dropwise to oxynitride 5 / Ti and dried in air. Thereafter, in the air, followed by firing for 1 hour at 423 K, to obtain a CoO x / oxynitride 5 / Ti electrode.

(比較例9:IrO/酸窒化物5/Ti電極)
酸窒化物5/Tiを前記IrOコロイド溶液(15体積%)に一晩浸漬し、IrO/酸窒化物5/Ti電極を得た。
(Comparative Example 9: IrO 2 / oxynitride 5 / Ti electrode)
It said oxynitride 5 / Ti IrO 2 colloid solution (15 vol%) was immersed overnight to give the IrO 2 / oxynitride 5 / Ti electrode.

<光水分解反応評価(1):粉末光触媒による活性評価>
調製した光触媒の活性は、犠牲試薬(Ag)存在下の光水分解反応における酸素生成速度の比較により評価した。具体的には以下の通りである。
光水分解反応は、図2に示すような真空排気用ポンプ、循環ポンプ、光触媒および水を入れるセル、気体採取バルブ、ならびにガスクロマトグラフ分析装置(GC)を備えた閉鎖系の反応装置で評価した。光源は300Wのキセノンランプおよびカットオフフィルター(λ>420nm)を使用し、温度上昇を避けるためランプとセルとの間にはウォータージャケットを設け冷却した。評価の際は、光触媒0.1gまたは0.2gを、0.02M AgNO(200mL、0.2gのLaでpHを8.3に調整)溶液中に懸濁させ、あらかじめ反応装置内を数回脱気することで空気が残存しないことを確認した後に光照射を開始し、ガスクロマトグラフィーにより気体(酸素)の生成量を測定した。結果を下記表1に示す。なお、酸素生成速度は、観測された酸素生成速度(μmol/h)と触媒重量あたりの酸素生成速度(μmol/hgcat)との両方を示した。
<Photo water splitting reaction evaluation (1): Activity evaluation by powder photocatalyst>
The activity of the prepared photocatalyst was evaluated by comparing the oxygen production rate in the photohydrolysis reaction in the presence of the sacrificial reagent (Ag + ). Specifically, it is as follows.
The photo-water splitting reaction was evaluated with a closed reactor equipped with a vacuum exhaust pump, a circulation pump, a photocatalyst and water cell, a gas sampling valve, and a gas chromatograph analyzer (GC) as shown in FIG. . A 300 W xenon lamp and a cut-off filter (λ> 420 nm) were used as the light source, and a water jacket was provided between the lamp and the cell in order to avoid a temperature rise and cooling was performed. In the evaluation, 0.1 g or 0.2 g of the photocatalyst was suspended in a 0.02M AgNO 3 (200 mL, 0.2 g La 2 O 3 to adjust the pH to 8.3) solution, and the reaction apparatus was used in advance. After confirming that no air remained by degassing the interior several times, light irradiation was started, and the amount of gas (oxygen) produced was measured by gas chromatography. The results are shown in Table 1 below. The oxygen production rate showed both the observed oxygen production rate (μmol / h) and the oxygen production rate per catalyst weight (μmol / hg cat ).

Figure 2013230427
Figure 2013230427

<光水分解反応評価(2):光触媒電極による活性評価>
調製した光触媒電極の性能は、ポテンショスタットを用いた3電極系での電流−電位測定によって行った(図3)。平面窓付きのパイレックスガラス製電気化学セルを用い、参照極にAg/AgCl電極、対極にPtワイヤーを用いた。電解液にはNaSO0.1M水溶液(pH=5.9)を用いた。電気化学セル内部はアルゴンで満たし、かつ、測定前に十分にバブリングを行うことによって溶存する酸素、二酸化炭素を除去した。光電気化学測定には、コールドミラーとカットオフフィルター(HOYA社製、L−42)を装着した300Wキセノンランプを光源として用い、電気化学セルの平面窓から波長420nm以上の白色光を照射した。それぞれの電極について、測定電位0V、0.5V、1.0V(vs. RHE)における光電流密度(mA/cm)を測定した。結果を下記表2に示す。
<Photo water splitting reaction evaluation (2): Activity evaluation by photocatalytic electrode>
The performance of the prepared photocatalytic electrode was measured by current-potential measurement in a three-electrode system using a potentiostat (FIG. 3). A Pyrex glass electrochemical cell with a flat window was used, an Ag / AgCl electrode was used for the reference electrode, and a Pt wire was used for the counter electrode. A Na 2 SO 4 0.1M aqueous solution (pH = 5.9) was used as the electrolytic solution. The inside of the electrochemical cell was filled with argon, and dissolved oxygen and carbon dioxide were removed by sufficiently bubbling before measurement. For the photoelectrochemical measurement, a 300 W xenon lamp equipped with a cold mirror and a cut-off filter (manufactured by HOYA, L-42) was used as a light source, and white light having a wavelength of 420 nm or more was irradiated from a planar window of the electrochemical cell. About each electrode, the photocurrent density (mA / cm < 2 >) in the measurement electric potential 0V, 0.5V, 1.0V (vs. RHE) was measured. The results are shown in Table 2 below.

Figure 2013230427
Figure 2013230427

表1に示す結果から明らかなように、酸窒化物1を用いた場合においては、助触媒としてIrOを担持した光触媒(比較例2)と比較して、助触媒としてCoOを担持した光触媒(比較例1)であっても酸素生成活性が同等以上であったが、Co(NOを担持したのち還元処理を実施する本発明に係る光触媒(実施例1)にあっては、それよりもさらに光触媒活性を向上させることができた。また酸化物1と同じくフラックス法にて調製した酸化物2を用いた場合でも、Co(NOを担持したのち還元処理を実施した場合には、IrOよりも高い酸素生成活性を示した(実施例3)。 As is apparent from the results shown in Table 1, in the case of using oxynitride 1, the photocatalyst carrying CoO x as the cocatalyst was compared with the photocatalyst carrying IrO 2 as the cocatalyst (Comparative Example 2). Even in (Comparative Example 1), the oxygen generation activity was equal to or higher than that, but in the photocatalyst (Example 1) according to the present invention in which the reduction treatment is performed after supporting Co (NO 3 ) 2 , The photocatalytic activity could be further improved. Even when the oxide 2 prepared by the flux method is used in the same manner as the oxide 1, when the reduction treatment is carried out after supporting Co (NO 3 ) 2 , the oxygen generation activity is higher than that of IrO 2. (Example 3).

これは錯体重合法により得られた酸窒化物3を用いた場合も同様であり、Co(NOを担持したのち還元処理してなる助触媒を有する光触媒(実施例2)は、IrOを担持した光触媒(比較例3)と比較して、酸素生成活性が著しく向上していた。 The same applies to the case of using the oxynitride 3 obtained by the complex polymerization method, and the photocatalyst (Example 2) having a cocatalyst formed by carrying Co (NO 3 ) 2 and then carrying out reduction treatment is IrO 2. Compared with the photocatalyst carrying 2 (Comparative Example 3), the oxygen generation activity was remarkably improved.

また、比較例4、5のようにMnO、NiOを担持した場合には還元処理を実施しないと酸素生成速度はIrO(比較例2)に比較して1/10程度の低い値であったが、実施例4〜5から明らかなように、各種金属酸化物を還元処理してなる助触媒が担持された光触媒とすることで、比較的高い酸素生成活性を示した。これらの結果から、単に酸化物を担持するのではなく、これらを高温で還元処理することによって酸素生成反応が促進されることが明らかである。 In addition, when MnO x and NiO x are supported as in Comparative Examples 4 and 5, if the reduction treatment is not performed, the oxygen generation rate is a low value of about 1/10 compared to IrO 2 (Comparative Example 2). However, as apparent from Examples 4 to 5, a relatively high oxygen generation activity was exhibited by using a photocatalyst on which a cocatalyst formed by reducing various metal oxides was supported. From these results, it is clear that the oxygen generation reaction is promoted by reducing them at a high temperature rather than simply supporting oxides.

また表2に示す結果から明らかなように、この傾向は光触媒電極で評価した場合も同様であった。すなわち、Co(NOを担持したのち還元処理を実施する光触媒電極(実施例6)は、CoOを担持した光触媒電極(比較例8)およびIrOを担持した光触媒電極(比較例9)と比較して、光電流密度が著しく向上していた。 As is clear from the results shown in Table 2, this tendency was the same when evaluated with the photocatalytic electrode. That is, the photocatalyst electrode (Example 6) that carries Co (NO 3 ) 2 and then performs the reduction treatment is the photocatalyst electrode that carries CoO x (Comparative Example 8) and the photocatalyst electrode that carries IrO 2 (Comparative Example 9). ) Significantly improved the photocurrent density.

一方、TaONに助触媒IrOを担持すると酸素生成速度が向上することは公知(Chemistry Letters,2008,37,138−139やEnergy Environ.Sci.,2011,4,4138−4147)であるにもかかわらず、表1に示す結果から明らかなように、比較例6、7のように酸窒化物がTaONである場合には、Co(NOを担持したのち還元処理を実施すると、助触媒を担持しない場合に比較して大幅に酸素生成速度が低下した。このことから、本技術に適用する酸窒化物はチタン系酸窒化物およびニオブ系酸窒化物が好適であることがわかった。 On the other hand, it is publicly known (Chemistry Letters, 2008, 37, 138-139 and Energy Environ. Sci., 2011, 4, 4138-4147) that TaON supports co-catalyst IrO 2 . Regardless, as is apparent from the results shown in Table 1, when the oxynitride is TaON as in Comparative Examples 6 and 7, when the reduction treatment is performed after Co (NO 3 ) 2 is supported, Compared with the case where no catalyst was supported, the oxygen generation rate was significantly reduced. From this, it was found that titanium oxynitride and niobium oxynitride are suitable as the oxynitride applied to the present technology.

<XPSによる構造解析>
助触媒担持量を15質量%とした以外は実施例1と同様にして光触媒を調製し、得られた光触媒の構造をXPSにより解析した。結果を図4に示す。
<Structural analysis by XPS>
A photocatalyst was prepared in the same manner as in Example 1 except that the amount of promoter supported was 15% by mass, and the structure of the obtained photocatalyst was analyzed by XPS. The results are shown in FIG.

図4に示すように、還元処理してなる助触媒の表面を解析したところCo2+に由来するピークが観測された(original)。これは、助触媒表面にコバルト酸化物(CoO)が存在していることを示唆している。また、エッチング時間10秒で、金属Co由来のピークが観測され(10s)、エッチング時間が長くなるにつれてCo2+に由来するピークが徐々に消失した(20s〜60s)。この結果から、助触媒は表面が酸化物層で覆われているが、酸化物層の下層に金属Coが存在していることが示唆された。すなわち、本発明に係る光触媒においては、助触媒が金属酸化物と金属とのコアシェル型構造(コア:金属、シェル:金属酸化物)をとっていることが示唆された。 As shown in FIG. 4, when the surface of the cocatalyst subjected to the reduction treatment was analyzed, a peak derived from Co 2+ was observed (original). This suggests that cobalt oxide (CoO) is present on the promoter surface. In addition, a peak derived from metal Co was observed at an etching time of 10 seconds (10 s), and the peak derived from Co 2+ gradually disappeared (20 s to 60 s) as the etching time increased. This result suggests that the surface of the promoter is covered with an oxide layer, but metal Co is present in the lower layer of the oxide layer. That is, in the photocatalyst according to the present invention, it was suggested that the promoter has a core-shell structure (core: metal, shell: metal oxide) of a metal oxide and a metal.

以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う光触媒およびその製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   While the present invention has been described in connection with embodiments that are presently the most practical and preferred, the present invention is not limited to the embodiments disclosed herein. However, the present invention can be changed as appropriate without departing from the spirit or concept of the invention that can be read from the claims and the entire specification, and a photocatalyst and a method for producing the same are also included in the technical scope of the present invention. Must be understood.

本発明に係る光触媒は高い水分解活性を有し、太陽光を利用した水分解反応を行うことにより水素および/または酸素を製造する光水分解反応に特に好適に用いられる。   The photocatalyst according to the present invention has a high water splitting activity, and is particularly preferably used for a photowater splitting reaction that produces hydrogen and / or oxygen by performing a water splitting reaction using sunlight.

Claims (8)

Tiおよび/またはNbを含む酸窒化物に、MOで表される金属酸化物および金属Mを助触媒として担持したことを特徴とする、光触媒。 A photocatalyst, characterized in that a metal oxide represented by MO x and a metal M are supported as promoters on an oxynitride containing Ti and / or Nb. 前記酸窒化物が、LaTiON、CaNbON、BaNbON、SrNbON、LaNbONから選ばれる少なくとも1種であることを特徴とする、請求項1に記載の光触媒。 2. The photocatalyst according to claim 1, wherein the oxynitride is at least one selected from LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, and LaNbO 2 N. 3. 前記助触媒が、前記金属酸化物と前記金属とのコアシェル型構造を有することを特徴とする、請求項1または2に記載の光触媒。 The photocatalyst according to claim 1 or 2, wherein the promoter has a core-shell structure of the metal oxide and the metal. 前記助触媒を構成する金属元素Mが、コバルト、ニッケル、マンガンから選ばれる少なくとも1つであることを特徴とする、請求項1〜3のいずれか1項に記載の光触媒。 The photocatalyst according to any one of claims 1 to 3, wherein the metal element M constituting the promoter is at least one selected from cobalt, nickel, and manganese. Tiおよび/またはNbを含む酸窒化物に、MOで表される金属酸化物および金属Mを助触媒として担持してなる光触媒の製造方法であって、
Tiおよび/またはNbを含む酸窒化物に、金属元素Mを含む化合物を担持させる第1の工程と、
前記金属元素Mを含む化合物を還元処理する第2の工程と、
を含むことを特徴とする、光触媒の製造方法。
A method for producing a photocatalyst obtained by supporting a metal oxide represented by MO x and a metal M as a cocatalyst on an oxynitride containing Ti and / or Nb,
A first step of supporting a compound containing a metal element M on an oxynitride containing Ti and / or Nb;
A second step of reducing the compound containing the metal element M;
The manufacturing method of the photocatalyst characterized by including these.
前記酸窒化物が、LaTiON、CaNbON、BaNbON、SrNbON、LaNbONから選ばれる少なくとも1種であることを特徴とする、請求項5に記載の光触媒の製造方法。 The method for producing a photocatalyst according to claim 5, wherein the oxynitride is at least one selected from LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, and LaNbO 2 N. 前記助触媒を構成する金属元素Mが、コバルト、ニッケル、マンガンから選ばれる少なくとも1つであることを特徴とする、請求項5または6に記載の光触媒の製造方法。 The method for producing a photocatalyst according to claim 5 or 6, wherein the metal element M constituting the promoter is at least one selected from cobalt, nickel, and manganese. 前記還元処理が、還元性気体による処理であることを特徴とする、請求項5〜7のいずれか1項に記載の光触媒の製造方法。 The method for producing a photocatalyst according to any one of claims 5 to 7, wherein the reduction treatment is treatment with a reducing gas.
JP2012103243A 2012-04-27 2012-04-27 Photocatalyst and method for producing the same Active JP5999548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012103243A JP5999548B2 (en) 2012-04-27 2012-04-27 Photocatalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012103243A JP5999548B2 (en) 2012-04-27 2012-04-27 Photocatalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013230427A true JP2013230427A (en) 2013-11-14
JP5999548B2 JP5999548B2 (en) 2016-09-28

Family

ID=49677408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012103243A Active JP5999548B2 (en) 2012-04-27 2012-04-27 Photocatalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP5999548B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041238A1 (en) * 2013-09-18 2015-03-26 富士フイルム株式会社 Hydrolyzing photocatalyst for hydrolysis, production method for same, and hydrolyzing photoelectrode
JP2015112509A (en) * 2013-12-09 2015-06-22 国立大学法人 東京大学 Photocatalyst, electrode for water-splitting reaction, and production method of hydrogen and/or oxygen
JP2016145408A (en) * 2015-02-03 2016-08-12 パナソニックIpマネジメント株式会社 Water splitting method, water splitting device and anodal electrode for oxygen generation
JP2016183073A (en) * 2015-03-26 2016-10-20 富士フイルム株式会社 Perovskite oxynitride particle production method, and perovskite oxynitride particles
JP2017124344A (en) * 2016-01-12 2017-07-20 松下 文夫 Photocatalyst, production method of photocatalyst and oxidation reduction apparatus
JP2018058065A (en) * 2016-10-05 2018-04-12 国立大学法人京都大学 Promoter for oxygen generating photocatalyst, and oxygen generating photocatalyst that supports the promoter, and complex and method for producing the complex
CN109174152A (en) * 2018-09-04 2019-01-11 同济大学 A kind of magnesium doping calcium niobium oxygen nitrogen photocatalyst catalyst and preparation method thereof
US10914013B2 (en) 2015-09-08 2021-02-09 Fujifilm Corporation Photocatalyst electrode for oxygen generation and module
CN113800483A (en) * 2021-09-14 2021-12-17 中国科学院深圳先进技术研究院 Nitrogen oxide nanosheet and preparation method thereof, photocatalyst and photocatalytic antibacterial agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147611A (en) * 1997-08-06 1999-02-23 Daiken Kagaku Kogyo Kk Highly functional base material holding photocatalyst supporting hyper-fine metal particles and its preparation
JP2005261988A (en) * 2002-09-20 2005-09-29 Andes Denki Kk Photocatalyst material and its manufacturing method
JP2007027572A (en) * 2005-07-20 2007-02-01 Sony Corp Semiconductor light emitting device and its manufacturing method
JP2007181820A (en) * 2005-12-07 2007-07-19 Tohoku Univ Manufacturing method of particulate supporting material
JP2011119417A (en) * 2009-12-03 2011-06-16 Fujitsu Semiconductor Ltd Method of manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147611A (en) * 1997-08-06 1999-02-23 Daiken Kagaku Kogyo Kk Highly functional base material holding photocatalyst supporting hyper-fine metal particles and its preparation
JP2005261988A (en) * 2002-09-20 2005-09-29 Andes Denki Kk Photocatalyst material and its manufacturing method
JP2007027572A (en) * 2005-07-20 2007-02-01 Sony Corp Semiconductor light emitting device and its manufacturing method
JP2007181820A (en) * 2005-12-07 2007-07-19 Tohoku Univ Manufacturing method of particulate supporting material
JP2011119417A (en) * 2009-12-03 2011-06-16 Fujitsu Semiconductor Ltd Method of manufacturing semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016009309; 坂本 尚之 他: '種々の光触媒に対するナノ粒子担持の効果' 触媒討論会講演予稿集 第101巻, 2008, 第3頁 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022713B2 (en) 2013-09-18 2018-07-17 Fujifilm Corporation Photocatalyst for water splitting, production method for same, and photoelectrode for water splitting
JP2015171704A (en) * 2013-09-18 2015-10-01 富士フイルム株式会社 Hydrolyzing photocatalyst, production method for the same, and hydrolyzing photoelectrode
WO2015041238A1 (en) * 2013-09-18 2015-03-26 富士フイルム株式会社 Hydrolyzing photocatalyst for hydrolysis, production method for same, and hydrolyzing photoelectrode
JP2015112509A (en) * 2013-12-09 2015-06-22 国立大学法人 東京大学 Photocatalyst, electrode for water-splitting reaction, and production method of hydrogen and/or oxygen
JP2016145408A (en) * 2015-02-03 2016-08-12 パナソニックIpマネジメント株式会社 Water splitting method, water splitting device and anodal electrode for oxygen generation
JP2016183073A (en) * 2015-03-26 2016-10-20 富士フイルム株式会社 Perovskite oxynitride particle production method, and perovskite oxynitride particles
US10914013B2 (en) 2015-09-08 2021-02-09 Fujifilm Corporation Photocatalyst electrode for oxygen generation and module
JP2017124344A (en) * 2016-01-12 2017-07-20 松下 文夫 Photocatalyst, production method of photocatalyst and oxidation reduction apparatus
JP2018058065A (en) * 2016-10-05 2018-04-12 国立大学法人京都大学 Promoter for oxygen generating photocatalyst, and oxygen generating photocatalyst that supports the promoter, and complex and method for producing the complex
JP7028393B2 (en) 2016-10-05 2022-03-02 国立大学法人京都大学 An co-catalyst for an oxygen-generating photocatalyst, an oxygen-generating photocatalyst carrying the co-catalyst, and a complex and a method for producing the complex.
CN109174152A (en) * 2018-09-04 2019-01-11 同济大学 A kind of magnesium doping calcium niobium oxygen nitrogen photocatalyst catalyst and preparation method thereof
CN113800483A (en) * 2021-09-14 2021-12-17 中国科学院深圳先进技术研究院 Nitrogen oxide nanosheet and preparation method thereof, photocatalyst and photocatalytic antibacterial agent
CN113800483B (en) * 2021-09-14 2023-01-06 中国科学院深圳先进技术研究院 Nitrogen oxide nanosheet and preparation method thereof, photocatalyst and photocatalytic antibacterial agent

Also Published As

Publication number Publication date
JP5999548B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5999548B2 (en) Photocatalyst and method for producing the same
Zeng et al. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials
Wang et al. Surface strategies for catalytic CO 2 reduction: from two-dimensional materials to nanoclusters to single atoms
Yang et al. Utter degradation of toluene with inhibiting the generation of benzene by self-supporting Bi2MoO6 nanoflakes featuring OV-enriched interface
Jia et al. BiVO 4–Ru/SrTiO 3: Rh composite Z-scheme photocatalyst for solar water splitting
Seabold et al. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst
Ueda et al. Control of valence band potential and photocatalytic properties of Na x La 1− x TaO 1+ 2x N 2− 2x oxynitride solid solutions
JP4997454B2 (en) Semiconductor electrode and energy conversion system using the same
JP6875009B2 (en) Catalyst and its use
Payra et al. Photo-and Electrocatalytic Reduction of CO2 over Metal–Organic Frameworks and Their Derived Oxides: A Correlation of the Reaction Mechanism with the Electronic Structure
JP2007273463A (en) Semiconductor element of visible light response, photoelectrode, and light energy conversion system using it
US10022713B2 (en) Photocatalyst for water splitting, production method for same, and photoelectrode for water splitting
JP2008155111A (en) Acid resistant electrode catalyst
JP2023539607A (en) Photocatalytic device for continuous process of co-conversion of CO2+H2O to C1 oxygenates in sunlight
JP7045662B2 (en) Photocatalyst manufacturing method and hydrogen generation method
JP5675224B2 (en) Visible light water splitting catalyst and photoelectrode manufacturing method
Takagi et al. Synergistic effect of Ag decorated in-liquid plasma treated titanium dioxide catalyst for efficient electrocatalytic CO2 reduction application
JP6823312B2 (en) Method for producing copper vanadium sulfide, photocatalyst, and cocatalyst-supported Cu3VS4
Wu et al. Enhanced visible-light-driven heterogeneous photocatalytic CO2 methanation using a Cu2O@ Cu-MOF-74 thin film
JP3793800B2 (en) Method for producing hydrogen and oxygen using iodine compound and semiconductor photocatalyst
CN104399465A (en) Core-shell catalyst and preparation method and application thereof
JP2005068007A (en) Method for manufacturing hydrogen and oxygen by iodine compound and semiconductor photocatalyst
Centurion et al. Constructing particulate p–n heterojunction Mo: SrTiO3/NiO@ Ni (OH) 2 for enhanced H2 evolution under simulated solar light
JP2016203031A (en) Photocatalyst and production method thereof
JP5229947B2 (en) Semiconductor photocatalytic substance, method for producing the same, and method for producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160819

R150 Certificate of patent or registration of utility model

Ref document number: 5999548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250