JP5229947B2 - Semiconductor photocatalytic substance, method for producing the same, and method for producing hydrogen - Google Patents

Semiconductor photocatalytic substance, method for producing the same, and method for producing hydrogen Download PDF

Info

Publication number
JP5229947B2
JP5229947B2 JP2008293705A JP2008293705A JP5229947B2 JP 5229947 B2 JP5229947 B2 JP 5229947B2 JP 2008293705 A JP2008293705 A JP 2008293705A JP 2008293705 A JP2008293705 A JP 2008293705A JP 5229947 B2 JP5229947 B2 JP 5229947B2
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide
semiconductor
producing
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008293705A
Other languages
Japanese (ja)
Other versions
JP2010119920A (en
Inventor
聡 金子
チャンド ヴァルマ スレシ
邦浩 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2008293705A priority Critical patent/JP5229947B2/en
Publication of JP2010119920A publication Critical patent/JP2010119920A/en
Application granted granted Critical
Publication of JP5229947B2 publication Critical patent/JP5229947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、光活性に優れた半導体光触媒物質とその製造方法、さらには当該半導体光触媒物質を用いた水素生成方法とに関する。   The present invention relates to a semiconductor photocatalyst material excellent in photoactivity, a method for producing the same, and a hydrogen generation method using the semiconductor photocatalyst material.

例えば特許文献1に示すように、酸化チタン等の半導体光触媒を用いて水を光分解し、燃料電池等のエネルギー源となる水素を生成する試みが知られている。特に半導体光触媒としては、特許文献2に示すように、酸化チタンに助触媒として酸化イリジウムを担持させたり、特許文献3に示すように、酸化チタンに助触媒として白金やパラジウム等の白金族元素を担持させたりして、水素の発生効率を向上させる改良がなされている。   For example, as shown in Patent Document 1, an attempt is made to photolyze water using a semiconductor photocatalyst such as titanium oxide to generate hydrogen that serves as an energy source for a fuel cell or the like. In particular, as a semiconductor photocatalyst, as shown in Patent Document 2, iridium oxide is supported on titanium oxide as a promoter, or as shown in Patent Document 3, platinum group elements such as platinum and palladium are supported on titanium oxide as a promoter. Improvements have been made to improve the generation efficiency of hydrogen, for example, by supporting it.

特許第3136339号公報Japanese Patent No. 3136339 特開2001−219073号公報JP 2001-219073 A 特開2005−230645号公報Japanese Patent Laid-Open No. 2005-230645

しかし、これらの助触媒の金属は高価である上、助触媒に限らず多様な機器や装置において使用されているため、将来的に枯渇する可能性もある。従って、これらの金属を用いた半導体光触媒物質の実用化及び産業化には、大きな懸念が持たれている。   However, these promoter metals are expensive and are used not only in promoters but also in a variety of equipment and devices, and may be depleted in the future. Therefore, there are great concerns about the practical application and industrialization of semiconductor photocatalytic substances using these metals.

そこで、本発明は、上記従来の助触媒を用いた半導体光触媒と遜色ない光触媒活性を有し、安価で枯渇の懸念なく利用できる半導体光触媒物質及びその製造方法と、さらには低コストで効率的な水素の生成が可能となる水素生成方法とを提供することを目的としたものである。   Therefore, the present invention has a photocatalytic activity comparable to that of the conventional photocatalyst using the above-mentioned cocatalyst, is inexpensive and can be used without fear of depletion, a method for producing the same, and a low-cost and efficient method. An object of the present invention is to provide a hydrogen generation method that enables generation of hydrogen.

上記目的を達成するために、請求項1に記載の発明は、半導体光触媒物質であって、酸化チタンに、助触媒として酸化アルミニウムと酸化銅とを担持させたことを特徴とする。
請求項2に記載の発明は、請求項1の構成において、酸化チタンが、少なくとも一部にアナターゼ型の酸化チタンを含有することを特徴とする。
上記目的を達成するために、請求項3に記載の発明は、半導体光触媒物質の製造方法であって、酸化チタンに、酸化アルミニウムと酸化銅とを所定量ずつ添加して混合し、200〜1800℃の範囲で選択された焼成温度で焼成することを特徴とする。
請求項4に記載の発明は、請求項3の構成において、前記酸化アルミニウムが0.1〜3.0重量%添加されることを特徴とする。
請求項5に記載の発明は、請求項3又は4の構成において、前記酸化銅が0.2〜3.0重量%添加されることを特徴とする。
上記目的を達成するために、請求項6に記載の発明は、請求項1又は2に記載の半導体光触媒物質を、水素発生源となる物質を含む反応溶液に添加し、これに人工光源若しくは太陽光源からの紫外線及び可視光線を照射することを特徴とする。
In order to achieve the above object, the invention described in claim 1 is a semiconductor photocatalyst material, characterized in that aluminum oxide and copper oxide are supported on titanium oxide as promoters.
The invention described in claim 2 is characterized in that, in the structure of claim 1, the titanium oxide contains anatase-type titanium oxide at least partially.
In order to achieve the above object, a third aspect of the present invention is a method for producing a semiconductor photocatalytic substance, wherein a predetermined amount of aluminum oxide and copper oxide are added to and mixed with titanium oxide, and 200 to 1800 is mixed. Baking is performed at a baking temperature selected in the range of ° C.
According to a fourth aspect of the present invention, in the configuration of the third aspect, 0.1 to 3.0% by weight of the aluminum oxide is added.
According to a fifth aspect of the present invention, in the configuration of the third or fourth aspect, 0.2 to 3.0% by weight of the copper oxide is added.
In order to achieve the above object, according to a sixth aspect of the present invention, the semiconductor photocatalytic substance according to the first or second aspect is added to a reaction solution containing a substance that becomes a hydrogen generation source , to which an artificial light source or solar light is added. It is characterized by irradiating ultraviolet rays and visible rays from a light source.

本発明によれば、比較的安価で枯渇の懸念が少ない酸化アルミニウムと酸化銅とを助触媒として使用しているため、白金等の貴金属を担持させた場合よりも原料コストが抑えられ、安価な半導体光触媒物質が得られる。而も光触媒作用による水素生成能力は、従来の助触媒を使用した場合と略同等となっている。従って、低コストで効率的な水素の生成が可能となる。
According to the present invention, since aluminum oxide and copper oxide, which are relatively inexpensive and less likely to be depleted, are used as promoters, raw material costs can be reduced compared to the case where noble metals such as platinum are supported, and inexpensive. A semiconductor photocatalytic material is obtained. The hydrogen generation capacity by photocatalysis is almost the same as that when a conventional promoter is used. Therefore, it is possible to efficiently generate hydrogen at a low cost.

以下、本発明の実施の形態を説明する。
[半導体光触媒物質の製造方法]
まず、本発明の半導体光触媒物質には、酸化チタンが用いられる。この酸化チタンは、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン等の各種酸化チタンを意味する。但し、アナターゼ型のものが光触媒活性が高いことから、アナターゼ型酸化チタン単独で、又はアナターゼ型酸化チタンを主成分とする、例えばアナターゼ型/ルチル型酸化チタン混合物とするのが望ましい。
Embodiments of the present invention will be described below.
[Method for producing semiconductor photocatalytic substance]
First, titanium oxide is used for the semiconductor photocatalytic substance of the present invention. This titanium oxide means various titanium oxides such as anatase type titanium oxide, rutile type titanium oxide, and amorphous titanium oxide. However, since the anatase type has high photocatalytic activity, it is desirable to use anatase type titanium oxide alone or an anatase type titanium oxide as a main component, for example, an anatase type / rutile type titanium oxide mixture.

また、酸化チタンは粉末状のものが望ましい。光を有効に利用するためには、比表面積が大きい粒子、すなわち径の小さい粒子が有利だからで、具体的には1nm〜200nmの範囲の粒子径の粉末が好適に用いられる。この場合、粒子のまま半導体光触媒物質を製造した後、適宜成型加工して板状等の形態としたり、適当な基板上に固定化したりすることができる。
但し、粒子のまま使用するものに限らず、例えば、粒子を板状又は薄膜状に成型したり、粉末を適当な基板上に固定化したりした後、半導体光触媒物質を製造することもできる。
The titanium oxide is preferably in powder form. In order to effectively use light, particles having a large specific surface area, that is, particles having a small diameter are advantageous. Specifically, powders having a particle diameter in the range of 1 nm to 200 nm are preferably used. In this case, after producing the semiconductor photocatalyst substance in the form of particles, it can be appropriately molded and formed into a plate-like form or immobilized on an appropriate substrate.
However, the semiconductor photocatalyst substance can also be produced after the particles are molded into a plate shape or a thin film shape, or the powder is fixed on a suitable substrate.

この酸化チタンに、酸化アルミニウムと酸化銅とを所定量ずつ添加して混合し、焼成することで、酸化チタンに酸化アルミニウムと酸化銅とが担持された半導体光触媒物質が得られる。
ここで、酸化アルミニウムは、重量%で0.1〜3.0%となるように配合するのが望ましい。当該配合以外では、光触媒活性が低くなり、水素生成能力が低下するからである。
また、酸化銅も、重量%で0.2〜3.0%となるように配合するのが望ましい。当該配合以外では、光触媒活性が低くなり、水素生成能力が低下するからである。
A predetermined amount of aluminum oxide and copper oxide are added to titanium oxide, mixed, and baked to obtain a semiconductor photocatalytic substance in which aluminum oxide and copper oxide are supported on titanium oxide.
Here, it is desirable to mix aluminum oxide so that it may be 0.1 to 3.0% by weight. It is because photocatalytic activity will become low and hydrogen generation capability will fall except the said mixing | blending.
Moreover, it is desirable to mix copper oxide so that it may be 0.2 to 3.0% by weight. It is because photocatalytic activity will become low and hydrogen generation capability will fall except the said mixing | blending.

一方、焼成温度は、200℃〜1800℃の範囲で選択される。200℃を下回ると、十分な焼成を行うことができず、酸化アルミニウムと酸化銅との酸化チタン表面上への担持が困難となり、1800℃を超えると、酸化チタンの光触媒作用が低下するからである。このうち特に500℃〜600℃の範囲内で選択するのが望ましい。   On the other hand, the firing temperature is selected in the range of 200 ° C to 1800 ° C. If the temperature is lower than 200 ° C, sufficient firing cannot be performed, and it becomes difficult to support aluminum oxide and copper oxide on the surface of titanium oxide. If the temperature exceeds 1800 ° C, the photocatalytic action of titanium oxide decreases. is there. Among these, it is desirable to select in the range of 500 degreeC-600 degreeC especially.

[水素生成方法]
こうして得た半導体光触媒物質による水素生成は、水或いはアルコール、若しくはこれらを溶媒とする電解質溶液の何れかを反応溶液とし、人工光源若しくは太陽光源からの紫外線及び可視光線を照射することにより行われる。反応溶液としては、アルコール類又はその水溶液を用いるのが好適で、アルコール類としては、例えばメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール等が挙げられる。アルコール類の水溶液中では、アルコール分子と水分子とが水素結合で繋がった会合体を形成し、さらに上下のアルコール会合体を水分子が水素結合のネットワークで繋ぎ、水和クラスターを形成していると考えられる。このアルコール水溶液を用いることで、光触媒が活性化されて水素発生反応が進行する。なお、反応溶液に用いられる水としては純水に限定されず、炭酸塩や炭酸水素塩、ヨウ素塩、臭素塩等の塩類を混合、溶解した水を用いてもよい。
[Hydrogen generation method]
Hydrogen production by the semiconductor photocatalyst material thus obtained is carried out by irradiating ultraviolet rays and visible rays from an artificial light source or a solar light source using either water, alcohol, or an electrolyte solution containing these as a solvent. As the reaction solution, it is preferable to use an alcohol or an aqueous solution thereof. Examples of the alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1,2-butanediol, Examples include 1,3-butanediol and 1,4-butanediol. In an aqueous solution of alcohols, alcohol molecules and water molecules form an association formed by hydrogen bonds, and the upper and lower alcohol associations are joined by a network of hydrogen bonds to form a hydrated cluster. it is conceivable that. By using this aqueous alcohol solution, the photocatalyst is activated and the hydrogen generation reaction proceeds. The water used in the reaction solution is not limited to pure water, and water in which salts such as carbonate, hydrogen carbonate, iodine salt, bromine salt are mixed and dissolved may be used.

上記反応溶液に半導体光触媒物質を添加する場合の添加量は、基本的に入射した光が効率良く吸収できる量を選択する。照射する光は、半導体光触媒である酸化チタンのバンドギャップを超えるようなエネルギーを持つ必要があり、紫外線が好適に使用されるが、本発明の半導体光触媒物質は非常に高効率であり、太陽光に含まれる紫外線でも有効に利用できるため、太陽光を照射してもよい。   The amount of addition of the semiconductor photocatalytic substance to the reaction solution is basically selected so that incident light can be efficiently absorbed. The light to be irradiated needs to have energy exceeding the band gap of titanium oxide, which is a semiconductor photocatalyst, and ultraviolet rays are preferably used. However, the semiconductor photocatalyst material of the present invention has very high efficiency, and sunlight Sunlight may be irradiated because it can be used effectively even in the ultraviolet rays contained in.

なお、上記形態では本発明の半導体光触媒物質を水素の生成に使用しているが、当該半導体光触媒物質は水素の生成に限らず、例えば水中や大気中の農薬や悪臭物質等の有機物の分解除去、或いは光触媒を塗布した固体表面のセルフクリーニング等に利用することもできる。反応形態は、有機物を含む水溶液に半導体光触媒物質を添加して、光照射することにより行うことができるが、悪臭物質の分解は気相反応により行うこともできる。有機物の分解の場合、分解される有機物は一般に電子供与体として働き、正孔によって酸化分解されると共に、電子によって水素が発生するか、酸素が還元される。   In the above embodiment, the semiconductor photocatalyst material of the present invention is used for the production of hydrogen. However, the semiconductor photocatalyst material is not limited to the production of hydrogen, for example, decomposition and removal of organic substances such as agricultural chemicals and malodorous substances in water or in the atmosphere. Alternatively, it can be used for self-cleaning of a solid surface coated with a photocatalyst. The reaction can be carried out by adding a semiconductor photocatalytic substance to an aqueous solution containing an organic substance and irradiating it with light, but the malodorous substance can also be decomposed by a gas phase reaction. In the case of decomposition of an organic substance, the organic substance to be decomposed generally acts as an electron donor and is oxidatively decomposed by holes, and hydrogen is generated by electrons or oxygen is reduced.

光触媒として粉末状の酸化チタン(TiO、日本アエロジル製P25)を使用する。この酸化チタンは、アナターゼ構造約80%、ルチル構造約20%の酸化チタン混合物で、細孔の少ない多面構造となっている。粒径は約20nmである。
一方、酸化チタンに添加する酸化アルミニウムは、アルドリッチ社のナノ粒子を用いる。粒径は40〜47nmである。
また、酸化チタンに添加する酸化銅は、アルドリッチ社のナノ粒子を用いる。平均粒径は33nmである。
Powdered titanium oxide (TiO 2 , P25 manufactured by Nippon Aerosil) is used as the photocatalyst. This titanium oxide is a titanium oxide mixture having an anatase structure of about 80% and a rutile structure of about 20%, and has a multifaceted structure with few pores. The particle size is about 20 nm.
On the other hand, Aldrich nanoparticles are used as aluminum oxide to be added to titanium oxide. The particle size is 40-47 nm.
In addition, Aldrich nanoparticles are used as the copper oxide to be added to titanium oxide. The average particle size is 33 nm.

上記酸化チタン、酸化アルミニウム、酸化銅を、下記の表1に示す各割合で配合し、メノウ乳鉢で約15分間混合した。その後、空気中において、4℃/分の昇温速度で500℃まで加熱してその温度下で3時間焼成し、焼成後、メノウ乳鉢で約15分間すりつぶして粉末状とし、酸化チタンに酸化アルミニウムと酸化銅とが担持されたナノコンポジット半導体光触媒物質を作成した。   The titanium oxide, aluminum oxide, and copper oxide were blended in the proportions shown in Table 1 below, and mixed in an agate mortar for about 15 minutes. Thereafter, in air, the mixture is heated to 500 ° C. at a rate of 4 ° C./min and baked at that temperature for 3 hours. After baking, the powder is ground in an agate mortar for about 15 minutes, and the titanium oxide is coated with aluminum oxide. A nanocomposite semiconductor photocatalytic material carrying copper and copper oxide was prepared.

パイレックス(登録商標)ガラス製の反応容器(容積55.3mL)に、体積%で10%のメタノール水溶液30mLを入れ、ここに上記半導体光触媒物質20mgを添加して、マグネティックスターラー撹拌子を入れて反応容器を密閉した。次に、マグネティックスターラーを用いてメタノール水溶液を撹拌し、半導体光触媒物質を液中に懸濁させた。液温は恒温槽を用いて50℃で一定としている。
次に、反応容器の側面から、ブラックライト(東芝ライテック(株)製ネオボール5ブラックライト、ピーク波長352nm、光強度1.0mW/cm)を用いて紫外線を照射した。3時間照射を行った後、照射を中止して、反応容器内の気体をガスシリンジにより250μL採取し、水素生成量をガスクロマトグラフィー(GLサイエンス(株)製GC−320)で測定した。この水素生成量を表1に示す。なお、ここに記載の水素生成量は、10回繰り返し実験を行った結果の平均値である。
Pyrex (registered trademark) glass reaction vessel (volume: 55.3 mL) is charged with 30 mL of 10% methanol aqueous solution by volume, 20 mg of the above-mentioned semiconductor photocatalyst material is added, and a magnetic stirrer stirrer is added for reaction. The container was sealed. Next, the aqueous methanol solution was stirred using a magnetic stirrer to suspend the semiconductor photocatalytic substance in the liquid. The liquid temperature is constant at 50 ° C. using a thermostatic bath.
Next, ultraviolet rays were irradiated from the side of the reaction vessel using a black light (Neoball 5 black light manufactured by Toshiba Lighting & Technology Co., Ltd., peak wavelength 352 nm, light intensity 1.0 mW / cm 2 ). After irradiation for 3 hours, the irradiation was stopped, 250 μL of gas in the reaction vessel was collected with a gas syringe, and the amount of hydrogen produced was measured by gas chromatography (GC-320 manufactured by GL Science Co., Ltd.). This hydrogen production amount is shown in Table 1. In addition, the hydrogen production amount described here is an average value of results obtained by repeating the experiment ten times.

Figure 0005229947
Figure 0005229947

[比較例]
従来の白金助触媒を担持した酸化チタンを作製した。目的の白金担持量になるように、テトラクロロ白金酸六水和物(HPtCl・HO)を秤量した後、純水に溶解し、酸化チタンと次亜リン酸を添加して90℃で一時間撹拌した。その後、0.45ミクロンのメンブレンフィルターで濾過し、フィルター上の酸化チタンを110℃で12時間乾燥し、600℃で5時間焼成した。焼成後、メノウ乳鉢で約15分間すりつぶし、白金担持酸化チタンを得た。
こうして得た白金担持酸化チタンを、先の実施例と同じ操作法及び条件で水素生成に利用した。この水素生成量を表2に示す。
[Comparative example]
Titanium oxide carrying a conventional platinum promoter was prepared. Tetrachloroplatinic acid hexahydrate (H 2 PtCl 6 · H 2 O) is weighed to achieve the target platinum loading, dissolved in pure water, and added with titanium oxide and hypophosphorous acid. Stir at 90 ° C. for 1 hour. Then, it filtered with the 0.45 micron membrane filter, the titanium oxide on a filter was dried at 110 degreeC for 12 hours, and baked at 600 degreeC for 5 hours. After firing, it was ground in an agate mortar for about 15 minutes to obtain platinum-supported titanium oxide.
The platinum-supported titanium oxide thus obtained was used for hydrogen generation under the same operating method and conditions as in the previous examples. This hydrogen production amount is shown in Table 2.

Figure 0005229947
Figure 0005229947

表1の結果と比較すると、本実施例では、酸化アルミニウムを0.1〜3.0重量%、酸化銅を0.2〜3.0重量%の範囲で添加した場合に、白金を添加した比較例と遜色ない水素生成能力が得られていることがわかる。特に、酸化アルミニウムを0.1〜1.0重量%、酸化銅を0.2〜1.0重量%の範囲で添加した試料No.12以降のものでは、水素生成量が何れも10.0を超えており、白金を0.7重量%以上添加した比較例と略同等の水素生成能力となっている。白金は、酸化チタンに対する助触媒の中で、最も優れた助触媒であることが知られているが、今回の結果により、酸化チタンと酸化アルミニウムと酸化銅とのナノコンポジット半導体光触媒物質が同等程度の機能を有していることが初めて示されたものである。白金は貴金属で高価である一方、酸化アルミニウムと酸化銅とは低廉であり、工業的に大量生産する場合に断然有利であると言える。   Compared with the results in Table 1, in this example, platinum was added when aluminum oxide was added in the range of 0.1 to 3.0% by weight and copper oxide in the range of 0.2 to 3.0% by weight. It can be seen that the hydrogen generation ability comparable to the comparative example is obtained. In particular, in samples No. 12 and later to which aluminum oxide is added in the range of 0.1 to 1.0% by weight and copper oxide is added in the range of 0.2 to 1.0% by weight, the amount of hydrogen produced is 10.0. The hydrogen generation capacity is substantially equivalent to that of the comparative example in which 0.7 wt% or more of platinum is added. Platinum is known to be the best co-catalyst for titanium oxide, but this result shows that nanocomposite semiconductor photocatalytic materials of titanium oxide, aluminum oxide, and copper oxide are comparable. It has been shown for the first time that it has the following functions. While platinum is a noble metal and expensive, aluminum oxide and copper oxide are inexpensive, and can be said to be extremely advantageous when industrially mass-produced.

Claims (6)

酸化チタンに、助触媒として酸化アルミニウムと酸化銅とを担持させてなる半導体光触媒物質。   A semiconductor photocatalyst material obtained by supporting aluminum oxide and copper oxide as promoters on titanium oxide. 前記酸化チタンが、少なくとも一部にアナターゼ型の酸化チタンを含有することを特徴とする請求項1に記載の半導体光触媒物質。   The semiconductor photocatalytic substance according to claim 1, wherein the titanium oxide contains anatase-type titanium oxide at least in part. 酸化チタンに、酸化アルミニウムと酸化銅とを所定量ずつ添加して混合し、200〜1800℃の範囲で選択された焼成温度で焼成することを特徴とする半導体光触媒物質の製造方法。   A method for producing a semiconductor photocatalytic substance, comprising adding a predetermined amount of aluminum oxide and copper oxide to titanium oxide, mixing them, and firing at a firing temperature selected in the range of 200 to 1800 ° C. 前記酸化アルミニウムが0.1〜3.0重量%添加されることを特徴とする請求項3に記載の半導体光触媒物質の製造方法。   The method for producing a semiconductor photocatalytic substance according to claim 3, wherein the aluminum oxide is added in an amount of 0.1 to 3.0% by weight. 前記酸化銅が0.2〜3.0重量%添加されることを特徴とする請求項3又は4に記載の半導体光触媒物質の製造方法。   5. The method for producing a semiconductor photocatalytic substance according to claim 3, wherein the copper oxide is added in an amount of 0.2 to 3.0% by weight. 請求項1又は2に記載の半導体光触媒物質を、水素発生源となる物質を含む反応溶液に添加し、これに人工光源若しくは太陽光源からの紫外線及び可視光線を照射することを特徴とする水素生成方法。 A semiconductor photocatalyst substance according to claim 1 or 2 is added to a reaction solution containing a substance to be a hydrogen generation source, and irradiated with ultraviolet rays and visible rays from an artificial light source or a solar light source. Method.
JP2008293705A 2008-11-17 2008-11-17 Semiconductor photocatalytic substance, method for producing the same, and method for producing hydrogen Active JP5229947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293705A JP5229947B2 (en) 2008-11-17 2008-11-17 Semiconductor photocatalytic substance, method for producing the same, and method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293705A JP5229947B2 (en) 2008-11-17 2008-11-17 Semiconductor photocatalytic substance, method for producing the same, and method for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2010119920A JP2010119920A (en) 2010-06-03
JP5229947B2 true JP5229947B2 (en) 2013-07-03

Family

ID=42321741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293705A Active JP5229947B2 (en) 2008-11-17 2008-11-17 Semiconductor photocatalytic substance, method for producing the same, and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP5229947B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5657913B2 (en) * 2010-05-10 2015-01-21 中部電力株式会社 Hydrogen production method using nanocomposite semiconductor photocatalyst material and aqueous methanol solution
JP5804489B2 (en) * 2011-02-08 2015-11-04 国立大学法人 岡山大学 Catalyst and production method thereof
CN104014341B (en) * 2014-06-12 2015-12-30 淮北师范大学 A kind of Interface Reduction legal system is for Cu 2o/Ca (OH) 2the method of nano composite photo-catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136339B2 (en) * 1998-09-21 2001-02-19 工業技術院長 Titanium oxide photocatalyst and method for producing the same
JP2000176295A (en) * 1999-01-01 2000-06-27 Otsuka Chem Co Ltd Photolysis catalyst and hydrogen production method using the same
JP2001219073A (en) * 2000-02-10 2001-08-14 Sharp Corp Photooxidation catalyst
JP4110279B2 (en) * 2004-02-02 2008-07-02 昭和電工株式会社 Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP2005230645A (en) * 2004-02-18 2005-09-02 Japan Science & Technology Agency Photocatalyst and production method of hydrogen gas using the same

Also Published As

Publication number Publication date
JP2010119920A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US11345616B2 (en) Heterojunction composite material consisting of one-dimensional IN2O3 hollow nanotube and two-dimensional ZnFe2O4 nanosheet, and application thereof in water pollutant removal
Liu et al. Energy-level matching of Fe (III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts
Pany et al. Plasmon induced nano Au particle decorated over S, N-modified TiO2 for exceptional photocatalytic hydrogen evolution under visible light
Yi et al. Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures
Vaiano et al. Photocatalytic H2 production from glycerol aqueous solutions over fluorinated Pt-TiO2 with high {001} facet exposure
Fang et al. Mesoporous plasmonic Au–TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction
Chen et al. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles
JP5129897B1 (en) Copper compound-supported titanium oxide photocatalyst and method for producing the same
Yang et al. Utter degradation of toluene with inhibiting the generation of benzene by self-supporting Bi2MoO6 nanoflakes featuring OV-enriched interface
Kadi et al. Uniform dispersion of CuO nanoparticles on mesoporous TiO2 networks promotes visible light photocatalysis
Di Paola et al. Coupled semiconductor systems for photocatalysis. Preparation and characterization of polycrystalline mixed WO3/WS2 powders
Tian et al. Mediation of valence band maximum of BiOI by Cl incorporation for improved oxidation power in photocatalysis
CN103223338B (en) Titanium dioxide microsphere array supported platinum visible-light photocatalyst and preparation method
JP5999548B2 (en) Photocatalyst and method for producing the same
Palas et al. Bioinspired metal oxide particles as efficient wet air oxidation and photocatalytic oxidation catalysts for the degradation of acetaminophen in aqueous phase
Rozman et al. TiO2 photocatalyst with single and dual noble metal co-catalysts for efficient water splitting and organic compound removal
Liu et al. Enhanced photocatalytic performance of carbon-coated TiO2–x with surface-active carbon species
JP2015199065A (en) Photocatalyst and production method therefor
Parida et al. Facile fabrication of hierarchical N-doped GaZn mixed oxides for water splitting reactions
Nalajala et al. Aqueous methanol to formaldehyde and hydrogen on Pd/TiO2 by photocatalysis in direct sunlight: structure dependent activity of nano-Pd and atomic Pt-coated counterparts
Thornton et al. Efficient photocatalytic hydrogen production by platinum-loaded carbon-doped cadmium indate nanoparticles
JP4868417B2 (en) Semiconductor photocatalyst
Wadhwa et al. Mechanistic insights for photoelectrochemical ethanol oxidation on black gold decorated monoclinic zirconia
JP2004059507A (en) Method for reducing carbon dioxide by using photocatalyst
JP3890414B2 (en) Perovskite complex oxide visible light responsive photocatalyst, hydrogen production method using the same, and hazardous chemical decomposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250