JP2016203031A - Photocatalyst and production method thereof - Google Patents

Photocatalyst and production method thereof Download PDF

Info

Publication number
JP2016203031A
JP2016203031A JP2015083341A JP2015083341A JP2016203031A JP 2016203031 A JP2016203031 A JP 2016203031A JP 2015083341 A JP2015083341 A JP 2015083341A JP 2015083341 A JP2015083341 A JP 2015083341A JP 2016203031 A JP2016203031 A JP 2016203031A
Authority
JP
Japan
Prior art keywords
optical semiconductor
niox
photocatalyst
coox
cocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015083341A
Other languages
Japanese (ja)
Inventor
耕 嶺岸
Ko Minegishi
耕 嶺岸
一成 堂免
Kazunari Domen
一成 堂免
秋山 誠治
Seiji Akiyama
誠治 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
University of Tokyo NUC
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Original Assignee
Mitsubishi Chemical Corp
University of Tokyo NUC
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, University of Tokyo NUC, Japan Technological Research Association of Artificial Photosynthetic Chemical Process filed Critical Mitsubishi Chemical Corp
Priority to JP2015083341A priority Critical patent/JP2016203031A/en
Publication of JP2016203031A publication Critical patent/JP2016203031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst having a cocatalyst for the photocatalyst produced from a comparatively inexpensive material having an abundant resource, and excellent in durability, while showing water decomposition activity equal to or higher than the case of carrying a noble metal cocatalyst; and to provide a production method thereof.SOLUTION: A photocatalyst in which NiOx and CoOx are carries as cocatalysts on an optical semiconductor containing Ti, Ta and/or Nb is produced by a production method of the photocatalyst including a first step for carrying NiOx on the optical semiconductor containing Ti, Ta and/or Nb, and a second step for carrying CoOx on the optical semiconductor and/or NiOx.SELECTED DRAWING: None

Description

本発明は、太陽光を利用した水分解反応を行うことにより水素および/または酸素を製造可能な光水分解反応に特に好適に用いられる光触媒およびその製造方法に関する。   The present invention relates to a photocatalyst that is particularly preferably used in a photowater splitting reaction that can produce hydrogen and / or oxygen by performing a water splitting reaction using sunlight.

太陽エネルギーなどの再生可能エネルギーを利用した高性能な光エネルギー変換システムを実用化することは、地球温暖化の抑制、および枯渇しつつある化石資源依存からの脱却を目指す観点から、近年になって急激にその重要性が増している。中でも、太陽エネルギーを用いて水を分解し水素を製造する技術は、現行の石油精製、アンモニア、メタノールの原料供給技術としてのみならず、燃料電池をベースとした来たる水素エネルギー社会において、必須とされる技術である。   In recent years, the practical application of high-performance light energy conversion systems that use renewable energy such as solar energy has been aimed at controlling global warming and moving away from the depletion of fossil resources. Its importance is increasing rapidly. Above all, the technology that decomposes water using solar energy to produce hydrogen is indispensable not only in the current petroleum refining, ammonia and methanol raw material supply technology, but also in the future hydrogen energy society based on fuel cells. Technology.

例えば、光触媒を用いることで、太陽エネルギーを利用して水を分解し、効率的に水素や酸素を製造することができる(非特許文献1等)。有望な光触媒の一つとしては、可視光応答型の水分解用光触媒であるTiやNbを含む光半導体が挙げられる。   For example, by using a photocatalyst, water can be decomposed using solar energy, and hydrogen and oxygen can be produced efficiently (Non-Patent Document 1, etc.). One promising photocatalyst is an optical semiconductor containing Ti or Nb, which is a visible light responsive water splitting photocatalyst.

このような光半導体は、単独では水分解活性が小さいため、通常、助触媒を担持して使用される。助触媒としては、高活性であり且つ安定である理由から、通常、IrO、RuO、Ptなどの貴金属触媒が使用される。
しかしながら、地表埋蔵量が極めて少なく高価な貴金属を使用することは好ましくない。 また、貴金属助触媒を用いたとしても、必ずしも水分解活性が十分であるとは言えない。
Since such an optical semiconductor alone has a small water splitting activity, it is usually used by supporting a promoter. As the cocatalyst, a noble metal catalyst such as IrO 2 , RuO 2 , or Pt is usually used because it is highly active and stable.
However, it is not preferable to use an expensive noble metal with a very small surface reserve. Moreover, even if a noble metal promoter is used, it cannot be said that the water splitting activity is sufficient.

一方、非貴金属助触媒としては、例えば酸素発生用助触媒としてCo、MnO、NiO、NiCo等が比較的高活性であることが知られている(非特許文献2、3等)。
しかしながら、非貴金属助触媒は貴金属助触媒に比べると活性が劣る。そのため、貴金属助触媒と同等以上の水分解活性を示すような非貴金属助触媒が求められている。
他方、本発明者らは、金属元素Mを含む化合物を光半導体に担持させた後、当該金属元素Mを含む化合物を還元処理して金属Mおよび金属酸化物MOとすることで、高活性な光触媒を得ることに成功した(特許文献1参照)。
しかし、この光触媒は、活性は得られるものの、耐久性には未だ課題が残されている。また、アンモニアを過剰に使用するため、光触媒の過剰還元の恐れがあり、またコアシェル成分比を制御するのが難しく、大量合成には適さないという課題があった。
On the other hand, as non-noble metal promoters, for example, Co 3 O 4 , MnO x , NiO x , NiCo 2 O 4 and the like as oxygen promoters are known to have relatively high activity (Non-patent Document 2). 3 etc.).
However, non-noble metal promoters are less active than noble metal promoters. Therefore, a non-noble metal promoter that exhibits a water splitting activity equal to or higher than that of the noble metal promoter is required.
On the other hand, the present inventors, after supporting a compound containing the metal element M on the optical semiconductor, reducing the compound containing the metal element M into the metal M and the metal oxide MO x , thereby increasing the activity. A successful photocatalyst (see Patent Document 1).
However, although this photocatalyst is active, there are still problems in durability. In addition, since ammonia is used in excess, there is a risk of excessive reduction of the photocatalyst, and it is difficult to control the core-shell component ratio, and there is a problem that it is not suitable for mass synthesis.

特開2013−230427公報JP 2013-230427 A

Chen,X.et al.Chem.Rev.2010,110(11),6503-6570Chen, X.et al.Chem.Rev. 2010,110 (11), 6503-6570 J.Chem.Faraday Trans 1,1988,84(8),2795-2806J. Chem. Faraday Trans 1,1988,84 (8), 2795-2806 Chem.Rev.,2010,110,6474-6502.Chem. Rev., 2010, 110, 6474-6502.

そこで本発明は、資源が豊富で比較的安価な材料より製造される光触媒用助触媒を有するとともに、貴金属助触媒を担持した場合と同等以上の水分解活性を示しつつも、耐久性に優れた光触媒およびその製造方法を提供することを課題とする。   Therefore, the present invention has a photocatalyst cocatalyst manufactured from a resource-rich and relatively inexpensive material, and has excellent durability while exhibiting water splitting activity equivalent to or higher than that of a noble metal cocatalyst supported. It is an object to provide a photocatalyst and a method for producing the same.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、以下の知見を得た。
(1)Ti、Ta、および/またはNbを含む光半導体に非貴金属助触媒であるNiOxとCoOxとを混在させて担持した場合、CoOxを単独で担持した場合と比較して、活性が向上する場合がある。その活性は、貴金属助触媒を担持した場合と同等以上である。
(2)特に、Ti、Taおよび/またはNbを含む光半導体に、NiOxを担持させた後、CoOxを担持させた場合、極めて高活性で耐久性の高い光触媒を得ることができる。
As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.
(1) The activity is improved when NiOx and CoOx, which are non-noble metal promoters, are mixed and supported on an optical semiconductor containing Ti, Ta, and / or Nb, compared to the case where CoOx is supported alone. There is a case. Its activity is equal to or greater than that when a noble metal promoter is supported.
(2) In particular, when NiOx is supported on an optical semiconductor containing Ti, Ta and / or Nb and then CoOx is supported, a photocatalyst having extremely high activity and high durability can be obtained.

本発明は上記の知見に基づいてなされたものである。すなわち、
第1の本発明は、Ti、Ta、および/またはNbを含む光半導体に、NiOxおよびCoOxを助触媒として担持したことを特徴とする光触媒である。
The present invention has been made based on the above findings. That is,
A first aspect of the present invention is a photocatalyst characterized in that NiOx and CoOx are supported as a cocatalyst on a photosemiconductor containing Ti, Ta, and / or Nb.

本発明において、「Ti、Ta、および/またはNbを含む光半導体」とは、当該元素を含む酸化物、酸窒化物、窒化物、(オキシ)カルコゲナイド等、光触媒として用いられる光半導体を意味する。中でも酸窒化物または窒化物が好ましく、酸窒化物がより好ましい。「光半導体」の形態としては、助触媒を担持し得るような形態であればよく、粒子状、塊状等種々の形態が採用できる。「NiOxおよびCoOxを助触媒として担持した」とは、ニッケル酸化物とコバルト酸化物とが別々に担持した形態の他、ニッケルとコバルトとの複合酸化物を担持した形態をも含む概念である。   In the present invention, “an optical semiconductor containing Ti, Ta, and / or Nb” means an optical semiconductor used as a photocatalyst, such as an oxide, oxynitride, nitride, (oxy) chalcogenide, or the like containing the element. . Of these, oxynitrides or nitrides are preferable, and oxynitrides are more preferable. The form of the “photosemiconductor” may be any form that can support a cocatalyst, and various forms such as a particulate form and a massive form can be adopted. “Supporting NiOx and CoOx as a co-catalyst” is a concept including a form in which a nickel oxide and a cobalt oxide are separately supported, as well as a form in which a composite oxide of nickel and cobalt is supported.

第1の本発明において、光半導体が、LaTiON、CaNbON、BaNbON、SrNbON、LaNbON、Ta、およびBaTaONから選ばれる少なくとも1種であることが好ましい。これら光半導体を用いた場合に、NiOxおよびCoOxを助触媒とした場合の触媒活性向上効果が一層顕著となるためである。 In the first invention, the optical semiconductor is at least one selected from LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, LaNbO 2 N, Ta 3 N 5 , and BaTaO 2 N. preferable. This is because when these optical semiconductors are used, the catalytic activity improvement effect when NiOx and CoOx are used as promoters becomes more remarkable.

第1の本発明において、助触媒が、NiOxとCoOxとのコアシェル型構造を有することが好ましい。このような構造とすると、結果的に触媒活性向上効果が一層顕著となる。   In the first aspect of the present invention, the promoter preferably has a core-shell structure of NiOx and CoOx. With such a structure, as a result, the effect of improving the catalytic activity becomes more remarkable.

第1の本発明において、助触媒を構成する酸素原子、窒素原子、およびコバルト原子の窒素原子またはコバルト原子に対する酸素原子の存在比(O/NiまたはO/Co)が、1より大きいことが好ましい。このように酸素原子が比率を大きくすることにより、各界面での電荷の移動がスムーズになり活性が向上する。   In the first aspect of the present invention, it is preferable that the oxygen atom, nitrogen atom, and cobalt atom constituting the cocatalyst have an abundance ratio of oxygen atom to nitrogen atom or cobalt atom (O / Ni or O / Co) is greater than 1. . By increasing the ratio of oxygen atoms in this manner, the movement of charges at each interface becomes smooth and the activity is improved.

第2の本発明は、Ti、Ta、および/またはNbを含む光半導体に、NiOxおよびCoOxを助触媒として担持してなる光触媒の製造方法であって、Ti、Taおよび/またはNbを含む光半導体に、NiOxを担持させる第1の工程と、前記光半導体および/または前記NiOx上にCoOxを担持させる第2の工程と、を含むことを特徴とする光触媒の製造方法である。   A second aspect of the present invention is a method for producing a photocatalyst obtained by supporting NiOx and CoOx as a cocatalyst on an optical semiconductor containing Ti, Ta, and / or Nb, wherein the light contains Ti, Ta, and / or Nb. A method for producing a photocatalyst comprising a first step of supporting NiOx on a semiconductor and a second step of supporting CoOx on the optical semiconductor and / or NiOx.

第2の本発明において、光半導体が、LaTiON、CaNbON、BaNbON、SrNbON、LaNbON、Ta、およびBaTaONから選ばれる少なくとも1種であることが好ましい。 In the second present invention, the optical semiconductor is at least one selected from LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, LaNbO 2 N, Ta 3 N 5 , and BaTaO 2 N. preferable.

第2の本発明において、第1の工程の後に第2の工程を行うことが好ましい。   In the second aspect of the present invention, it is preferable to perform the second step after the first step.

第1の本発明においては、Ti、Ta、および/またはNbを含む光半導体に、NiOxおよびCoOxを助触媒として担持したことにより、貴金属を助触媒として担持した場合と同等以上の水分解活性を示すとともに、耐久性に優れた光触媒とすることができる。このような光触媒は、例えば第2の本発明に係る光触媒の製造方法により、複雑な工程を要さずに適切に製造することができる。すなわち、本発明によれば、資源が豊富で比較的安価な材料より製造される光触媒用助触媒を有するとともに、貴金属助触媒を担持した場合と同等以上の水分解活性を示すとともに、さらに耐久性を有する光触媒およびその製造方法を提供することができる。   In the first aspect of the present invention, NiOx and CoOx are supported on the optical semiconductor containing Ti, Ta, and / or Nb as a cocatalyst, so that the water splitting activity is equal to or higher than the case where noble metal is supported as a cocatalyst. It can be set as the photocatalyst excellent in durability while showing. Such a photocatalyst can be appropriately manufactured without requiring a complicated process by, for example, the photocatalyst manufacturing method according to the second aspect of the present invention. That is, according to the present invention, it has a cocatalyst for a photocatalyst produced from a resource-rich and relatively inexpensive material, exhibits a water splitting activity equivalent to or higher than that of a noble metal cocatalyst supported, and is further durable. It is possible to provide a photocatalyst having the following and a method for producing the same.

本発明に係る光触媒の形態例を概略的に示す図である。It is a figure which shows schematically the example of a form of the photocatalyst concerning this invention. 光触媒電極の評価の際に用いた装置を概略的に示す図である。It is a figure which shows roughly the apparatus used in the case of evaluation of a photocatalyst electrode.

1.光触媒
本発明に係る光触媒は、Ti、Ta、および/またはNbを含む光半導体に、NiOxおよびCoOxを助触媒として担持したことに特徴を有する。
1. Photocatalyst The photocatalyst according to the present invention is characterized in that NiOx and CoOx are supported as a cocatalyst on an optical semiconductor containing Ti, Ta, and / or Nb.

1.1.光半導体
Ti、Ta、および/またはNbを含む光半導体としては、光触媒として機能し得る光半導体であれば特に限定されるものではなく、例えば、希土類金属および/またはアルカリ土類金属とTi、Ta、および/またはNbとの複合光半導体等が挙げられる。より具体的にはLaTiON、SrTaON,LaTaON,CaNbON、BaNbON、SrNbON、LaNbON、BaTaON等の酸窒化物やTa等の窒化物が挙げられる。この中でも、酸窒化物が好ましく、LaTiON、SrNbON、CaNbONのいずれか1つ以上がより好ましく、LaTiONが特に好ましい。本発明による水分解活性向上効果が特に顕著となるためである。
1.1. Optical semiconductor The optical semiconductor containing Ti, Ta, and / or Nb is not particularly limited as long as it is an optical semiconductor that can function as a photocatalyst. For example, rare earth metal and / or alkaline earth metal and Ti, Ta , And / or a composite optical semiconductor with Nb. More specifically, oxynitrides such as LaTiO 2 N, SrTaO 2 N, LaTaON 2 , CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, LaNbO 2 N, BaTaO 2 N, and nitrides such as Ta 3 N 5 are used. Can be mentioned. Among these, oxynitrides are preferable, and at least one of LaTiO 2 N, SrNbO 2 N, and CaNbO 2 N is more preferable, and LaTiO 2 N is particularly preferable. This is because the effect of improving water splitting activity according to the present invention is particularly remarkable.

本発明において、Ti、Ta、および/またはNbを含む光半導体は、公知の方法により容易に得ることができる。例えば、固相法やゾル・ゲル法、錯体重合法、フラックス法等の複合酸化物を得るための公知の方法によりTi、Ta、および/またはNbを含む複合酸化物を得て、当該複合酸化物に対して、アンモニア雰囲気で高温処理すること等の窒化処理を施すことにより、Ti、Ta、および/またはNbを含む光半導体を得ることができる。   In the present invention, an optical semiconductor containing Ti, Ta, and / or Nb can be easily obtained by a known method. For example, a composite oxide containing Ti, Ta, and / or Nb is obtained by a known method for obtaining a composite oxide such as a solid phase method, a sol-gel method, a complex polymerization method, a flux method, and the composite oxidation. An optical semiconductor containing Ti, Ta, and / or Nb can be obtained by subjecting a material to nitriding treatment such as high-temperature treatment in an ammonia atmosphere.

光半導体の形態(形状)については、以下に説明する助触媒を担持して光触媒として機能し得るような形態であれば特に限定されるものではなく、光触媒の設置形態等に合わせて、粒子状、塊状、板状等を適宜選択すればよい。特に、水分解反応用光触媒とする場合は、粒子状の光半導体の表面に助触媒を担持することが好ましい。この場合、粒子径の下限が好ましくは50nm以上であり、上限が好ましくは500μm以下である。尚、本願において「粒子径」とは、定方向接線径(フェレ径)の平均値(平均粒子径)を意味し、XRD、TEM、SEM法等の公知の手段によって測定することができる。   The form (shape) of the photo semiconductor is not particularly limited as long as it is a form capable of supporting a cocatalyst described below and functioning as a photocatalyst. A lump shape, a plate shape, or the like may be appropriately selected. In particular, when a photocatalyst for water splitting reaction is used, it is preferable to support a promoter on the surface of a particulate optical semiconductor. In this case, the lower limit of the particle diameter is preferably 50 nm or more, and the upper limit is preferably 500 μm or less. In the present application, the “particle diameter” means an average value (average particle diameter) of tangential diameters (ferret diameters) in a fixed direction and can be measured by a known means such as XRD, TEM, SEM method.

1.2.助触媒
本発明においては上記したような光半導体に、NiOx及びCoOxで表される金属酸化物が助触媒として担持されている。NiOxは、NiO、NiO等の少なくとも一種を含み、CoOxはCoO、Co、Co等の少なくとも一種を含み、これらの混合物のほか、NiCo、CoNiOx、NiCeOx、NiCuOx、NiLaOx等の複合酸化物、またはその混合物であってもよい。
1.2. Cocatalyst In the present invention, a metal oxide represented by NiOx and CoOx is supported on the optical semiconductor as described above as a cocatalyst. NiOx includes at least one of NiO, NiO 2 and the like, and CoOx includes at least one of CoO, Co 2 O 3 , Co 3 O 4 and the like, in addition to a mixture thereof, NiCo 2 O 4 , CoNiOx, NiCeOx, NiCuOx. Or a complex oxide such as NiLaOx, or a mixture thereof.

なお、本発明においては、助触媒として上記のNiOxとCoOxのほか、In、Fe、Mnを含む金属酸化物などの助触媒が担持されていてもよい。例えば、NiS、MoS、NiMoS等の硫化物が挙げられる。 In the present invention, in addition to the above-mentioned NiOx and CoOx, a promoter such as a metal oxide containing In, Fe, or Mn may be supported as a promoter. For example, sulfides such as NiS, MoS 2 and NiMoS can be used.

本発明においては、従来において助触媒としての活性が十分ではないと考えられていた金属であっても、所定の光半導体に、金属酸化物と金属との双方が助触媒として担持された光触媒とすることで、助触媒として貴金属が担持された光触媒と同等以上の水分解活性を得ることができる。   In the present invention, a photocatalyst in which both a metal oxide and a metal are supported as a cocatalyst on a predetermined photo-semiconductor, even if it is a metal that has been conventionally considered to have insufficient activity as a cocatalyst, By doing so, it is possible to obtain a water splitting activity equal to or higher than that of a photocatalyst carrying a noble metal as a promoter.

本発明において、助触媒はNiOxとCoOxとのコアシェル型構造となっていることが好ましい。この場合、通常、NiOxがコア部、CoOxがシェル部を構成する。例えば、図1に示すように、光半導体であるLaTiONの表面に、NiOおよびCoOxのコアシェル型構造を有する助触媒が担持された形態が挙げられる。このような光半導体にコアシェル型構造を有する助触媒が担持された光触媒の製造方法については後述する。 In the present invention, the cocatalyst preferably has a core-shell structure of NiOx and CoOx. In this case, NiOx usually constitutes the core part and CoOx constitutes the shell part. For example, as shown in FIG. 1, there is a form in which a promoter having a core-shell structure of NiO x and CoOx is supported on the surface of LaTiO 2 N that is an optical semiconductor. A method for producing a photocatalyst in which a cocatalyst having a core-shell structure is supported on such an optical semiconductor will be described later.

光半導体への助触媒の担持方法については、特に限定されるものではなく、公知の担持方法をいずれも適用することができる。例えば、助触媒となる金属源(Niを含む化合物)を含有する溶液やコロイド溶液に光半導体の粉体や成形体を浸漬し、蒸発乾固する方法、または金属Niのカルボニル化合物を昇華によって光半導体表面へ吸着させ、これを熱分解させる方法などによって、光半導体の表面に助触媒を担持することができる。また、文献(PNAS vol.106,20633−20636(2009))に記載されている、助触媒となるNiイオンを含有する溶液に、光半導体の粉体や成型体を浸漬し、光照射する方法により担持してもよい。   The method for supporting the cocatalyst on the optical semiconductor is not particularly limited, and any known supporting method can be applied. For example, a method of immersing a photo-semiconductor powder or compact in a solution or colloidal solution containing a metal source (compound containing Ni) that serves as a cocatalyst and evaporating to dryness, or sublimating a metal Ni carbonyl compound by sublimation The cocatalyst can be supported on the surface of the optical semiconductor by a method of adsorbing it on the semiconductor surface and thermally decomposing it. Further, a method of immersing a light semiconductor powder or molded body in a solution containing Ni ions as a promoter described in the literature (PNAS vol. 106, 20633-20636 (2009)) and irradiating with light. You may carry by.

助触媒の担持量については、少なすぎても効果がなく、多すぎると助触媒自身が光を吸収・散乱するなどして光半導体の光吸収を妨げたり、再結合中心として働いたりして、かえって触媒活性が低下してしまう。このような観点から、光触媒における助触媒の担持量は、特に限定はされないが、光触媒全体を基準(100質量%)として、好ましくは0.01質量%以上20質量%以下であり、より好ましくは15質量%以下、特に好ましくは10質量%以下である。   As for the amount of cocatalyst supported, there is no effect if it is too small, and if it is too large, the cocatalyst itself absorbs and scatters light and prevents light absorption of the optical semiconductor, or acts as a recombination center. On the contrary, the catalytic activity is lowered. From such a viewpoint, the amount of the cocatalyst supported in the photocatalyst is not particularly limited, but is preferably 0.01% by mass or more and 20% by mass or less, more preferably, based on the entire photocatalyst (100% by mass). It is 15 mass% or less, Most preferably, it is 10 mass% or less.

助触媒は、上記した光半導体の表面に担持可能な程度の大きさであればよい。光半導体の表面に助触媒を担持させるためには、粒子状、塊状、板状等の光半導体よりも酸化物粒子が小さい必要がある。特に粒子径が50nm以上500μm以下の光半導体粒子の表面に、粒子径が1.0nm以上25nm以下の助触媒を担持させる形態が好ましい。助触媒の粒子径は下限がより好ましくは1.2nm以上、さらに好ましくは1.5nm以上であり、上限がより好ましくは20nm以下、さらに好ましくは10nm以下である。助触媒の粒子径をこのような範囲に調整することで、光触媒活性を一層向上可能な助触媒とすることができる。   The promoter may be any size that can be supported on the surface of the optical semiconductor. In order to support the cocatalyst on the surface of the optical semiconductor, it is necessary that the oxide particles are smaller than the optical semiconductor such as particles, lumps, and plates. Particularly preferred is a mode in which a cocatalyst having a particle size of 1.0 nm to 25 nm is supported on the surface of an optical semiconductor particle having a particle size of 50 nm to 500 μm. The lower limit of the particle diameter of the cocatalyst is more preferably 1.2 nm or more, still more preferably 1.5 nm or more, and the upper limit is more preferably 20 nm or less, still more preferably 10 nm or less. By adjusting the particle diameter of the promoter to such a range, a promoter capable of further improving the photocatalytic activity can be obtained.

また担持されるNiOxとCoOxの酸素原子、ニッケル原子、およびコバルト原子の存在比率は特に限定されないが、電荷移動の観点から酸素原子が大きい方が好ましい。好ましくはニッケル原子またはコバルト原子に対する酸素原子の存在が、1より大きく、より好ましくはニッケル原子に対する酸素原子の存在比が1.1以上、さらに好ましくは1.2以上、最も好ましくは1.3以上であり、コバルト原子に対する酸素原子の存在比が1.0以上、さらに好ましくは1.1以上、最も好ましくは1.2以上である。   Further, the abundance ratio of oxygen atoms, nickel atoms, and cobalt atoms of NiOx and CoOx to be supported is not particularly limited, but a larger oxygen atom is preferable from the viewpoint of charge transfer. Preferably the presence of oxygen atoms relative to nickel or cobalt atoms is greater than 1, more preferably the abundance ratio of oxygen atoms relative to nickel atoms is 1.1 or higher, more preferably 1.2 or higher, most preferably 1.3 or higher. The abundance ratio of oxygen atoms to cobalt atoms is 1.0 or more, more preferably 1.1 or more, and most preferably 1.2 or more.

本発明に係る光触媒を実際に水の分解に使用する場合において、光触媒の形態については特に限定されるものではなく、水中に光触媒粒子を分散・懸濁させる形態であってもよいし、光触媒粒子を固めて成形体として、当該成形体を水中に設置する形態或いは基材上に光触媒層を設けて積層体とし、当該積層体を水中に設置する形態等であってもよい。   In the case where the photocatalyst according to the present invention is actually used for water decomposition, the form of the photocatalyst is not particularly limited, and may be a form in which the photocatalyst particles are dispersed and suspended in water. The molded body may be in a form in which the molded body is placed in water or in a form in which a photocatalyst layer is provided on a substrate to form a laminated body, and the laminated body is placed in water.

2.光触媒の製造方法
本発明に係る光触媒の製造方法は、Ti、Ta、および/またはNbを含む光半導体に、NiOxおよびCoOxを助触媒として担持させてなる光触媒の製造方法であって、Ti、Taおよび/またはNbを含む光半導体に、NiOxを担持させる第1の工程と、前記光半導体および/または前記NiOx上にCoOxを担持させる第2の工程と、を含むことを特徴とする。
2. Photocatalyst Manufacturing Method A photocatalyst manufacturing method according to the present invention is a photocatalyst manufacturing method in which NiOx and CoOx are supported as a cocatalyst on an optical semiconductor containing Ti, Ta, and / or Nb. And / or an optical semiconductor containing Nb includes a first step of supporting NiOx, and a second step of supporting CoOx on the optical semiconductor and / or NiOx.

第1の工程は、Ti、Taおよび/またはNbを含む光半導体に、NiOxを担持させる工程である。   The first step is a step of supporting NiOx on an optical semiconductor containing Ti, Ta and / or Nb.

ここで、本発明においては、光半導体にNi源を接触・担持させた後で、適当な処理を施すことによってNiOxとすることができる。本発明におけるNi源は、NiOxのような酸化物のほか、硝酸塩、硫酸塩、炭酸塩、リン酸塩、ヘキサフルオロリン酸塩、ホウ酸塩、テトラフルオロホウ酸塩、ハロゲンオキソ酸塩、カルボン酸塩、スルホン酸塩等のNi元素を含む塩;アセチルアセトナート、カルボニル化合物等のNi元素を含む錯体化合物;Niのハロゲン化物もしくはアンモニアが配位されたNi錯体;金属Niの表面が酸化されNiOxの表面皮膜がついたもの等が挙げられる。このうちNiOxで表される金属酸化物、またはNi元素を含む塩が好ましい。Ni元素を含む塩としては、溶解性、製造性の面で硝酸塩が好ましい。   Here, in the present invention, NiOx can be obtained by applying an appropriate treatment after contacting and supporting the Ni source on the optical semiconductor. In addition to oxides such as NiOx, the Ni source in the present invention is nitrate, sulfate, carbonate, phosphate, hexafluorophosphate, borate, tetrafluoroborate, halogen oxoacid salt, carboxyl Salts containing Ni elements such as acid salts and sulfonates; complex compounds containing Ni elements such as acetylacetonate and carbonyl compounds; Ni complexes coordinated with halides or ammonia of Ni; the surface of metal Ni is oxidized Examples include those with a NiOx surface coating. Among these, a metal oxide represented by NiOx or a salt containing Ni element is preferable. As the salt containing Ni element, nitrate is preferable in terms of solubility and manufacturability.

光半導体とNiOxとの形態については、上記したものと同様である。光半導体へのNiOxの担持方法も上述した通りであり特に限定されるものではない。例えば、助触媒の元となるNi源を含む水溶液に、光半導体粉体を浸漬・懸濁させ、溶媒を蒸発乾固する方法、Niのカルボニル化合物を昇華によって光半導体表面へ吸着させ、これを熱分解させる方法などによって、光半導体の表面にNiを含む化合物を担持することができる。また助触媒となるNi源のイオンを含有する溶液に光半導体の粉体や成型体を浸漬し、光照射することにより担持してもよい。   The forms of the optical semiconductor and NiOx are the same as those described above. The method of supporting NiOx on the optical semiconductor is also as described above and is not particularly limited. For example, a method of immersing and suspending a photo semiconductor powder in an aqueous solution containing a Ni source as a promoter, evaporating and drying the solvent, adsorbing a carbonyl compound of Ni on the surface of the photo semiconductor by sublimation, A compound containing Ni can be supported on the surface of the optical semiconductor by a thermal decomposition method or the like. Alternatively, it may be supported by immersing a photo-semiconductor powder or molded body in a solution containing ions of the Ni source serving as a promoter and irradiating with light.

これらNi源やNiを含む化合物を担持した後、焼成処理をする工程を含んでいてもよい。具体的にはNi源やNiを含む化合物として、溶解性が高い塩等の、均一性の高い溶液が得られるものを用いて光半導体に担持したのち、焼成処理を行う。助触媒を均一に担持できる点、塩化物イオン等の、後述する還元処理に際して残留が好ましくない成分の除去に有効である点で好ましい製造方法として挙げられる。   A step of carrying out a firing treatment after supporting these Ni source and Ni-containing compound may be included. Specifically, as a Ni source or a Ni-containing compound, a compound having a highly uniform solution such as a highly soluble salt is supported on the optical semiconductor, and then subjected to a firing treatment. It is mentioned as a preferable production method in that the cocatalyst can be uniformly supported, and it is effective in removing components such as chloride ions which are not preferably retained in the reduction treatment described later.

光半導体上に担持されたNi源やNiを含む化合物は、適当な雰囲気下において加熱処理等を行うことによって容易にNiOxとすることができる。特に、光半導体の変質(酸化や過剰な還元)を抑えるため、アンモニア、水素、アルゴン、窒素のいずれかを含む気流下で加熱処理を行うことが好ましい。加熱処理の温度については、好ましくは 100℃以上、より好ましくは150℃以上とし、好ましくは700℃以下、より好ましくは600℃以下とする。加熱処理の時間については特に限定されるものではないが、好ましくは10分以上、より好ましくは30分以上とし、好ましくは5時間以下、より好ましくは 4時間以下とする。ここで、Ni源やNiを含む化合物を加熱処理によりNiOxとする場合、当該加熱処理は、後述する第2の工程の前の他、第2の工程と同時に行ってもよい。特に、第2の工程の前に行うことが好ましい。   The Ni source or Ni-containing compound carried on the optical semiconductor can be easily converted to NiOx by performing a heat treatment or the like in an appropriate atmosphere. In particular, in order to suppress alteration (oxidation or excessive reduction) of the optical semiconductor, it is preferable to perform heat treatment under an air stream containing any of ammonia, hydrogen, argon, and nitrogen. The temperature of the heat treatment is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, preferably 700 ° C. or lower, more preferably 600 ° C. or lower. The time for the heat treatment is not particularly limited, but is preferably 10 minutes or more, more preferably 30 minutes or more, preferably 5 hours or less, more preferably 4 hours or less. Here, when the Ni source or the Ni-containing compound is converted to NiOx by heat treatment, the heat treatment may be performed simultaneously with the second step in addition to the second step described later. In particular, it is preferable to carry out before the second step.

第2の工程は、光半導体および/またはNiOx上にCoOxを担持させる工程である。特に、NiOxを担持させた後に、CoOxを担持させる工程とすることが好ましい。本発明者らが鋭意研究したところ、所定の光半導体表面に、助触媒としてまずNiOxを担持させ、その後、CoOxを担持させることにより、光触媒活性が著しく向上することを知見した。この現象は電荷移動の促進によって発現するものと推定される。これは種々の要因によるものと考えられるが、例えばその一つとして、光半導体に担持後のNiOが光半導体表面と助触媒との界面に良好な接触が得られ、活性が向上したものと推測できる。または、NiOxと光半導体との接触界面が増大し、触媒活性が向上したものと推測することができる。また耐久性の向上に関しては、NiOxがホールトラップとして機能することにより、光触媒の劣化を抑制できるためであると推測することができる。   The second step is a step of supporting CoOx on the optical semiconductor and / or NiOx. In particular, it is preferable that the step of supporting CoOx after supporting NiOx. As a result of intensive studies by the present inventors, it was found that the photocatalytic activity is remarkably improved by supporting NiOx as a co-catalyst on a predetermined optical semiconductor surface and then supporting CoOx. This phenomenon is presumed to occur due to the promotion of charge transfer. This is considered to be due to various factors. For example, it is assumed that NiO after being supported on the optical semiconductor has good contact with the interface between the surface of the optical semiconductor and the cocatalyst, and the activity has been improved. it can. Alternatively, it can be assumed that the contact interface between NiOx and the optical semiconductor is increased, and the catalytic activity is improved. Further, regarding the improvement in durability, it can be assumed that NiOx functions as a hole trap to suppress deterioration of the photocatalyst.

第2の工程を経ることで、光半導体の表面に助触媒であるNiOxとCoOxが担持された光触媒が得られる。本発明に係る光触媒の製造方法により得られた光触媒は、光半導体の表面において、NiOxとCoOxとがそれぞれ担持される形態の他、NiOx上にCoOxが形成されるコアシェル型構造(コア:NiOx、シェル:CoOx)を有する助触媒が担持される場合がある(例えば図1参照)。このような形態の光触媒は、貴金属を助触媒として担持した場合と比較して同等以上の光触媒活性を有するため好ましい。   By passing through the second step, a photocatalyst having NiOx and CoOx as promoters supported on the surface of the optical semiconductor is obtained. The photocatalyst obtained by the method for producing a photocatalyst according to the present invention has a core-shell structure (core: NiOx, in which CoOx is formed on NiOx, in addition to a form in which NiOx and CoOx are respectively supported on the surface of the optical semiconductor. In some cases, a co-catalyst having a shell (CoOx) is supported (see, for example, FIG. 1). Such a photocatalyst is preferable because it has a photocatalytic activity equivalent to or higher than that in the case where a noble metal is supported as a promoter.

本発明においては光半導体および/またはNiOx上にCo源を接触・担持させた後で、適当な処理を施すことによってCoOxとすることができる。光触媒および/またはNiOx上に担持されるCo源としては、CoOxのような酸化物のほか、硝酸塩、硫酸塩、炭酸塩、リン酸塩、ヘキサフルオロリン酸塩、ホウ酸塩、テトラフルオロホウ酸塩、ハロゲンオキソ酸塩、カルボン酸塩、スルホン酸塩等のCo元素を含む塩;アセチルアセトナート、カルボニル化合物等のCo元素を含む錯体化合物;Coのハロゲン化物、もしくはさらにアンモニアが配位した錯体;金属Coの表面が酸化されCoOxの表面皮膜がついたもの等が挙げられる。このうちCoOxで表される金属酸化物、またはCo元素を含む塩が好ましい。Co元素を含む塩としては、溶解性、製造性の面で硝酸塩が好ましい。   In the present invention, after a Co source is brought into contact with and supported on the optical semiconductor and / or NiOx, CoOx can be obtained by performing an appropriate treatment. Co sources supported on the photocatalyst and / or NiOx include oxides such as CoOx, nitrates, sulfates, carbonates, phosphates, hexafluorophosphates, borates, and tetrafluoroboric acid. Salts containing Co elements such as salts, halogen oxoacid salts, carboxylates and sulfonates; complex compounds containing Co elements such as acetylacetonate and carbonyl compounds; Co halides or complexes coordinated with ammonia A metal Co surface oxidized and a CoOx surface film. Among these, a metal oxide represented by CoOx or a salt containing a Co element is preferable. As the salt containing Co element, nitrate is preferable in terms of solubility and manufacturability.

これらCo源やCoを含む化合物を担持した後、焼成処理をする工程を含んでいてもよい。具体的にはCo源やCoを含む化合物として、溶解性が高い塩等の、均一性の高い溶液が得られるものを用いて光半導体に担持したのち、焼成処理を行う。助触媒を均一に担持できる点、塩化物イオン等の、後述する還元処理に際して残留が好ましくない成分の除去に有効である点で好ましい製造方法として挙げられる。   A step of performing a baking treatment after supporting the Co source or the compound containing Co may be included. Specifically, as a Co source or a Co-containing compound, a compound that provides a highly uniform solution such as a highly soluble salt is supported on an optical semiconductor, and then subjected to a firing treatment. It is mentioned as a preferable production method in that the cocatalyst can be uniformly supported, and it is effective in removing components such as chloride ions which are not preferably retained in the reduction treatment described later.

光半導体および/またはNiOx上に担持されたCo源やCoを含む化合物は、適当な雰囲気下において加熱処理等を行うことによって容易にCoOxとすることができる。特に、光半導体の変質(酸化や過剰な還元)を抑えるため、アンモニア、水素、アルゴンのいずれかを含む気流下で加熱処理を行うことが好ましい。加熱処理の温度については、好ましくは100℃以上、より好ましくは150℃以上とし、好ましくは700℃以下、より好ましくは600℃以下とする。加熱処理の時間については特に限定されるものではないが、好ましくは10分以上、より好ましくは30分以上とし、好ましくは5時間以下、より好ましくは4時間以下とする。ここで、Co源やCoを含む化合物を加熱処理によりCoOxとする場合に、同時に、上述のNi源やNiを含む化合物をNiOxとしてもよい。   The Co source and / or the Co-containing compound supported on the optical semiconductor and / or NiOx can be easily converted to CoOx by performing a heat treatment or the like in an appropriate atmosphere. In particular, in order to suppress alteration (oxidation or excessive reduction) of the optical semiconductor, it is preferable to perform the heat treatment under an air stream containing any of ammonia, hydrogen, and argon. The temperature of the heat treatment is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, preferably 700 ° C. or lower, more preferably 600 ° C. or lower. The time for the heat treatment is not particularly limited, but is preferably 10 minutes or more, more preferably 30 minutes or more, preferably 5 hours or less, more preferably 4 hours or less. Here, when the Co source or the compound containing Co is converted to CoOx by heat treatment, the Ni source or the compound containing Ni may be simultaneously used as NiOx.

以上の通り、本発明によれば、資源が豊富で比較的安価な材料より製造される光触媒用助触媒を有するとともに、貴金属助触媒を担持した場合と同等以上の水分解活性を示しつつも、耐久性に優れた光触媒およびその製造方法を提供することができる。   As described above, according to the present invention, while having a photocatalyst promoter produced from a resource-rich and relatively inexpensive material, while exhibiting a water splitting activity equivalent to or higher than that when a noble metal promoter is supported, A photocatalyst excellent in durability and a method for producing the photocatalyst can be provided.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例により制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not restrict | limited by a following example, unless the summary is exceeded.

<光触媒の調製>
(光半導体1の調製)
文献(T. Minegishi, N. Nishimura, J. Kubota and K. Domen, Chem. Sci., 2013, 4, 1120-1124.)に記載された方法に従って光半導体1(LaTiON)を調製した。具体的には以下の通りである。
まず、前駆体であるLaTiは、NaCiをフラックスとして用いた固相合成により行った。La(関東化学社製、99.99%)、TiO(Sigma−Aldrich社製、99.99%)、NaCl(和光純薬工業社製、99.5%)をモル比でLa:Ti:Na=1:1:10 となるように混合し、この混合物を空気中1423Kで5時間焼成した後、1023Kまで1 K/minで冷却し、さらに室温まで自然放冷した。冷却後、得られた沈殿物を蒸留水で洗浄し、フラックスを除去することにより、LaTiの酸化物を得た。さらに、アンモニア気流下(250mL/min)、1223Kで15時間窒化することにより、光半導体1(LaTiON)を得た。得られた窒化物はx-ray diffraction pattern(XRD)とDRSで測定して同定した。
<Preparation of photocatalyst>
(Preparation of optical semiconductor 1)
An optical semiconductor 1 (LaTiO 2 N) was prepared according to the method described in the literature (T. Minegishi, N. Nishimura, J. Kubota and K. Domen, Chem. Sci., 2013, 4, 1120-1124.). Specifically, it is as follows.
First, La 2 Ti 2 O 7 as a precursor was obtained by solid phase synthesis using NaCi as a flux. La 2 O 3 (manufactured by Kanto Chemical Co., Ltd., 99.99%), TiO 2 (manufactured by Sigma-Aldrich, 99.99%), NaCl (manufactured by Wako Pure Chemical Industries, Ltd., 99.5%) at a molar ratio of La. : Ti: Na = 1: 1: 10 The mixture was calcined in air at 1423K for 5 hours, cooled to 1023K at 1 K / min, and then allowed to cool naturally to room temperature. After cooling, the resulting precipitate was washed with distilled water, and the flux was removed to obtain an oxide of La 2 Ti 2 O 7 . Furthermore, the optical semiconductor 1 (LaTiO 2 N) was obtained by nitriding at 1223 K for 15 hours under an ammonia stream (250 mL / min). The obtained nitride was identified by measuring with x-ray diffraction pattern (XRD) and DRS.

(実施例1:CoOx/NiOx/光半導体1)
得られた光半導体1(LaTiON)(0.1g)に、水(0.5mL)と硝酸ニッケル(LaTiONに対して2質量%のNiOxを構成する濃度)を混ぜて1分間超音波で処理した後、減圧下、溶媒を留去し乾固させた。乾固した窒化物を取り出し、乳鉢ですり潰した後、アンモニア気流下(50mL/min)、550℃で1時間加熱処理を行なうことによりNiOx/LaTiONを得た。さらに得られたNiOx/LaTiON(0.1g)に、水(0.5mL)と硝酸コバルト水溶液(LaTiONに対して2質量%のCoOxを構成する濃度)を混ぜて1分間超音波で処理した後、減圧下、溶媒を留去し乾固させた。乾固した窒化物を取り出し乳鉢ですり潰した後、アンモニア気流下(50mL/min)、650℃で1時間加熱処理を行なうことによりCoOx(2質量%)/NiOx(2質量%)/光半導体1(LaTiON)を得た。なお、NiOxとは、NiO、NiO等のニッケル酸化物、CoOxとは、CoO、Co、Co等のコバルト酸化物の混合物をそれぞれ意味する。以下同様。
光半導体1におけるNi原子に対するCo原子の比率は1:1であった。
Example 1: CoOx / NiOx / Optical Semiconductor 1
The obtained optical semiconductor 1 (LaTiO 2 N) (0.1 g) was mixed with water (0.5 mL) and nickel nitrate (concentration constituting 2% by mass of NiOx with respect to LaTiO 2 N) for over 1 minute. After treatment with sonic waves, the solvent was distilled off under reduced pressure to dryness. The dried nitride was taken out, ground in a mortar, and then heat treated at 550 ° C. for 1 hour under an ammonia stream (50 mL / min) to obtain NiOx / LaTiO 2 N. Further, the obtained NiOx / LaTiO 2 N (0.1 g) was mixed with water (0.5 mL) and an aqueous cobalt nitrate solution (concentration constituting 2% by mass of CoOx with respect to LaTiO 2 N) for 1 minute. Then, the solvent was distilled off under reduced pressure to dryness. The dried nitride is taken out and crushed in a mortar, and then heat-treated at 650 ° C. for 1 hour in an ammonia stream (50 mL / min) to obtain CoOx (2 mass%) / NiOx (2 mass%) / photosemiconductor 1 (LaTiO 2 N) was obtained. Note that the NiOx, NiO, nickel oxide such as NiO 2, and is CoOx, means CoO, Co 2 O 3, Co 3 O 4 and the like a mixture of cobalt oxide, respectively. The same applies below.
The ratio of Co atoms to Ni atoms in the optical semiconductor 1 was 1: 1.

(実施例2:CoOx/NiOx/光半導体1)
硝酸コバルト水溶液のCo濃度を「LaTiONに対して3質量%のCoOxを構成する濃度」に変更した以外は、実施例1に記載の調製方法と同様の手順で、光半導体1にNiOxおよびCoOxを担持した光触媒「CoOx/NiOx/光半導体1(LaTiON)」を得た。
光半導体1におけるNi原子に対するCo原子の比率は1:1.5であった。
(Example 2: CoOx / NiOx / optical semiconductor 1)
Except for changing the Co concentration of the cobalt nitrate aqueous solution to “concentration constituting 3% by mass of CoOx with respect to LaTiO 2 N”, NiOx and NiOx were added to the optical semiconductor 1 in the same procedure as the preparation method described in Example 1. A photocatalyst “CoOx / NiOx / photosemiconductor 1 (LaTiO 2 N)” supporting CoOx was obtained.
The ratio of Co atoms to Ni atoms in the optical semiconductor 1 was 1: 1.5.

(実施例3:CoOx/NiOx/光半導体1)
硝酸コバルト水溶液のCo濃度を「LaTiONに対して4質量%のCoOxを構成する濃度」に変更した以外は、実施例1に記載の調製方法と同様の手順で、光半導体1にNiOxおよびCoOxを担持した光触媒「CoOx/NiOx/光半導体1(LaTiON)」を得た。
光半導体1におけるNi原子に対するCo原子の比率は1:2であった。
(Example 3: CoOx / NiOx / Optical semiconductor 1)
Except for changing the Co concentration of the cobalt nitrate aqueous solution to “concentration constituting 4 mass% CoOx with respect to LaTiO 2 N”, NiOx and NiOx were added to the optical semiconductor 1 in the same procedure as the preparation method described in Example 1. A photocatalyst “CoOx / NiOx / photosemiconductor 1 (LaTiO 2 N)” supporting CoOx was obtained.
The ratio of Co atoms to Ni atoms in the optical semiconductor 1 was 1: 2.

(比較例1:(CoO/Co)/光半導体2)
(光半導体2の調製)
文献(Journal of Flux Grouwth,2010,5,81/J.Am.Ceram.Soc 991,74,2876)に記載の方法に従って光半導体2(LaTiON)を調製した。具体的には以下の通りである。
La(関東化学社製、99.99%)とTiO(Sigma−Aldrich社製、99.99%)とをモル比1:2でエタノールを用いて湿式混合し、これにフラックスであるNaCl(和光純薬工業社製、99.5%)とKCl(和光純薬工業社製、99.5%)との混合物(モル比1:1)を(La+Ti):(Na+K)=1:2のモル比で加えた。これをアルミナ坩堝に入れ、1423Kまで10K/minで加熱し、同温度で5時間保持した。その後1023Kまで1K/minで冷却し、さらに室温まで自然冷却した。取り出した試料を蒸留水で洗浄、濾過することによってフラックスを除去後、乾燥することで前駆体となるLaTiを得た。次にこの前駆体を200mL/minのNH気流下、1223Kで15時間窒化し、光半導体2(LaTiON)を得た。XRDにより単相のLaTiONの生成が確認された。
得られた光半導体2(0.3g)を、Co(NO・6HO(LaTiONに対して2質量%のCoOxを構成し得る濃度(ただし、後述の通り、還元処理により一部Coとなる))を含む水溶液(3mL)に懸濁し、蒸発皿内、ウォーターバス上でガラス棒により攪拌しながら溶媒を蒸発乾燥させた。
得られたCo(NO/光半導体2を、200mL/minのNH気流下で、773〜1073Kで1時間還元処理した後、室温まで冷却して、光半導体2にCoOxおよびCoを担持した光触媒「(CoO/Co)/光半導体2(LaTiON)」を得た。
(Comparative Example 1: (CoO x / Co) / Optical Semiconductor 2)
(Preparation of optical semiconductor 2)
An optical semiconductor 2 (LaTiO 2 N) was prepared according to the method described in the literature (Journal of Flux Grouwth, 2010, 5, 81 / J. Am. Ceram. Soc 991, 74, 2876). Specifically, it is as follows.
La 2 O 3 (manufactured by Kanto Chemical Co., 99.99%) and TiO 2 (manufactured by Sigma-Aldrich, 99.99%) are wet-mixed with ethanol at a molar ratio of 1: 2, and this is mixed with flux. A mixture of a certain NaCl (manufactured by Wako Pure Chemical Industries, 99.5%) and KCl (manufactured by Wako Pure Chemical Industries, 99.5%) (molar ratio 1: 1) is (La + Ti) :( Na + K) = 1. : The molar ratio was 2. This was put into an alumina crucible, heated to 1423K at 10 K / min, and kept at the same temperature for 5 hours. Thereafter, it was cooled to 1023 K at 1 K / min, and further naturally cooled to room temperature. The sample taken out was washed with distilled water and filtered to remove the flux, followed by drying to obtain La 2 Ti 2 O 7 as a precursor. Next, this precursor was nitrided at 1223 K for 15 hours under an NH 3 stream of 200 mL / min to obtain an optical semiconductor 2 (LaTiO 2 N). XRD confirmed the formation of single-phase LaTiO 2 N.
The concentration of the obtained optical semiconductor 2 (0.3 g) that can constitute 2% by mass of CoOx with respect to Co (NO 3 ) 2 .6H 2 O (LaTiO 2 N (however, as described later, by reduction treatment) It was suspended in an aqueous solution (3 mL) containing a part of Co), and the solvent was evaporated to dryness while stirring with a glass rod in an evaporating dish on a water bath.
The obtained Co (NO 3 ) 2 / photosemiconductor 2 was subjected to reduction treatment at 773-1073 K for 1 hour under an NH 3 stream of 200 mL / min, and then cooled to room temperature. A supported photocatalyst “(CoO x / Co) / photo semiconductor 2 (LaTiO 2 N)” was obtained.

(比較例2:(NiO/Ni)/光半導体3)
(光半導体3の調製)
LaとTiOとをモル比1:2でエタノールを用いて湿式混合し、これにフラックスであるNaClを(La+Ti):(Na)=1:10のモル比で加えた。それ以降の処理については、光半導体2の調製と同様の手順とし、光半導体3(LaTiON)を得た。XRDにより単相のLaTiONの生成が確認された。
光半導体3(0.3g)をNi(NO・6HO(LaTiONに対して2質量%のNiOxを構成する濃度)を含む水溶液(3mL)に添加し、蒸発皿内、ウォーターバス上でガラス棒により攪拌しながら溶媒を蒸発乾燥させた。その後、空気中、473Kで焼成することによって、NiOを光半導体3に担持してなる「NiO/光半導体3」を得た。
得られたNiO/光半導体3を、200mL/minのNH気流下で、923Kで1時間還元処理した後、室温まで冷却して、光半導体2にNiOおよびNiを担持した光触媒「(NiO/Ni)/光半導体3」を得た。
(Comparative Example 2: (NiO x / Ni) / Optical Semiconductor 3)
(Preparation of optical semiconductor 3)
La 2 O 3 and TiO 2 and a molar ratio of 1: 2 with ethanol were wet-mixed, to which the NaCl is flux (La + Ti) :( Na) = 1: was added at 10 molar ratio. For subsequent processing, the same procedure as preparation of optical semiconductor 2, to obtain the optical semiconductor 3 (LaTiO 2 N). XRD confirmed the formation of single-phase LaTiO 2 N.
The optical semiconductor 3 (0.3 g) was added to an aqueous solution (3 mL) containing Ni (NO 3 ) 2 .6H 2 O (concentration constituting 2% by mass of NiOx with respect to LaTiO 2 N). The solvent was evaporated to dryness while stirring with a glass rod on a water bath. Thereafter, in the air, by baking at 473 K, to obtain a formed by carrying NiO x to the optical semiconductor 3 "NiO x / optical semiconductor 3 '.
The obtained NiO x / photosemiconductor 3 was subjected to reduction treatment at 923 K for 1 hour under an NH 3 stream of 200 mL / min, then cooled to room temperature, and the photocatalyst “(N) supported on the optical semiconductor 2 with NiO x and Ni” NiO x / Ni) / optical semiconductor 3 ”was obtained.

(比較例3:NiOx/光半導体1)
得られた光半導体1(0.1g)に、水(0.5mL)と硝酸ニッケル(LaTiONに対して2質量%のNiOxを構成する濃度)水溶液を混ぜて1分間超音波処理した後、減圧下、溶媒を留去し乾固させた。乾固した窒化物を取り出し乳鉢ですり潰した後、アンモニア気流下(50mL/min)、550℃で1時間加熱処理を行なうことによりNiOx/LaTiONを得た。
(Comparative Example 3: NiOx / Optical Semiconductor 1)
After mixing the obtained optical semiconductor 1 (0.1 g) with water (0.5 mL) and an aqueous solution of nickel nitrate (concentration constituting 2% by mass of NiOx with respect to LaTiO 2 N) and sonicating for 1 minute. The solvent was distilled off under reduced pressure to dryness. The dried nitride was taken out and ground in a mortar, and then heated at 550 ° C. for 1 hour in an ammonia stream (50 mL / min) to obtain NiOx / LaTiO 2 N.

(比較例4:CoOx/光半導体1)
得られた光半導体1(0.1g)に、水(0.5mL)と硝酸コバルト(LaTiONに対して3質量%のCoOxを構成する濃度)水溶液を混ぜて1分間超音波処理した後、減圧下、溶媒を留去し乾固させた。乾固した窒化物を取り出し乳鉢ですり潰した後、アンモニア気流下(50mL/min)、650℃で1時間加熱処理を行なうことによりCoOx/LaTiONを得た。
(Comparative Example 4: CoOx / Optical Semiconductor 1)
After mixing the obtained optical semiconductor 1 (0.1 g) with water (0.5 mL) and an aqueous solution of cobalt nitrate (concentration constituting 3% by mass of CoOx with respect to LaTiO 2 N) and sonicating for 1 minute. The solvent was distilled off under reduced pressure to dryness. After the dried nitride was taken out and ground in a mortar, heat treatment was performed at 650 ° C. for 1 hour in an ammonia stream (50 mL / min) to obtain CoOx / LaTiO 2 N.

(参考例1:CoOx:NiOx/LaTiON)
得られた光半導体1(0.1g)に水(0.5mL)と硝酸ニッケル(LaTiONに対して2質量%のNiOxを構成する濃度)水溶液と硝酸コバルト(LaTiONに対して3質量%のCoOxを構成する濃度)水溶液とを混ぜて1分間超音波処理した後、減圧下、溶媒を留去し乾固させた。乾固した窒化物を取り出し乳鉢ですり潰した後、アンモニア気流下(50mL/min)、650℃で1時間加熱処理を行なうことによりCoOx:NiOx/LaTiONを得た。
光半導体1におけるNi原子に対するCo原子の比率は1:1.2であった。
(Reference Example 1: CoOx: NiOx / LaTiO 2 N)
The obtained optical semiconductor 1 (0.1 g) was mixed with water (0.5 mL), nickel nitrate (concentration constituting 2% by mass of NiOx with respect to LaTiO 2 N) and cobalt nitrate (3 with respect to LaTiO 2 N). After mixing with an aqueous solution (concentration constituting mass% CoOx) and sonicating for 1 minute, the solvent was distilled off under reduced pressure to dryness. After the dried nitride was taken out and ground in a mortar, heat treatment was performed at 650 ° C. for 1 hour in an ammonia stream (50 mL / min) to obtain CoOx: NiOx / LaTiO 2 N.
The ratio of Co atoms to Ni atoms in the optical semiconductor 1 was 1: 1.2.

(参考例2:NiOx/CoOx/LaTiON)
得られた光半導体1(0.1g)に、水(0.5mL)と硝酸コバルト(LaTiONに対して3質量%のCoOxを構成する濃度)を混ぜて1分間超音波で処理した後、減圧下、溶媒を留去し乾固させた。乾固した窒化物を取り出し、乳鉢ですり潰した後、アンモニア気流下(50mL/min)、650℃で1時間加熱処理を行なうことによりCoOx/LaTiONを得た。さらに得られたCoOx/LaTiON(0.1g)に、水(0.5mL)と硝酸ニッケル水溶液(LaTiONに対して2質量%のNiOxを構成する濃度)を混ぜて1分間超音波で処理した後、減圧下、溶媒を留去し乾固させた。乾固した窒化物を取り出し乳鉢ですり潰した後、アンモニア気流下(50mL/min)、550℃で1時間加熱処理を行なうことによりNiOx(2質量%)/CoOx(2質量%)/光半導体1(LaTiON)を得た。
(Reference Example 2: NiOx / CoOx / LaTiO 2 N)
After mixing the obtained optical semiconductor 1 (0.1 g) with water (0.5 mL) and cobalt nitrate (concentration constituting 3% by mass of CoOx with respect to LaTiO 2 N) and treating with ultrasonic waves for 1 minute. The solvent was distilled off under reduced pressure to dryness. After the dried nitride was taken out and ground in a mortar, heat treatment was performed at 650 ° C. for 1 hour in an ammonia stream (50 mL / min) to obtain CoOx / LaTiO 2 N. Further, the obtained CoOx / LaTiO 2 N (0.1 g) was mixed with water (0.5 mL) and a nickel nitrate aqueous solution (concentration constituting 2% by mass of NiOx with respect to LaTiO 2 N) for 1 minute. Then, the solvent was distilled off under reduced pressure to dryness. Nitrox (2% by mass) / CoOx (2% by mass) / photosemiconductor 1 is obtained by removing the dried nitride and grinding it in a mortar and then heat-treating it in an ammonia stream (50 mL / min) at 550 ° C. for 1 hour. (LaTiO 2 N) was obtained.

<光水分解反応用電極の作製>
得られた光触媒(30mg)を1mLの2−プロパノールに懸濁させ、この懸濁液200μLを第1のガラス基材(ソーダライムガラス30×30mm)上に滴下、乾燥を3回繰り返して光触媒層を形成した。次に、接触層となるTaをスパッタ法により積層した。装置はULVAC VPC−260Fを使用し、数百nm程度積層した。次に、集電導体層となるTiをスパッタ法により数μm程度積層した。その後、導電性両面カーボンテープの片面を第2のガラス基材(ソーダライムガラス;図示せず)に接着し、さらに片面を集電層に接着した。最後に第1のガラス基材を除去し、純水中で10分間超音波洗浄することで、複合光触媒層/接触層/集電層を備えた光水分解反応用電極を得た。
<Production of electrode for photohydrolysis reaction>
The obtained photocatalyst (30 mg) was suspended in 1 mL of 2-propanol, 200 μL of this suspension was dropped onto the first glass substrate (soda lime glass 30 × 30 mm), and drying was repeated three times to form a photocatalyst layer. Formed. Next, Ta serving as a contact layer was laminated by sputtering. The apparatus used was ULVAC VPC-260F and was laminated about several hundred nm. Next, Ti which becomes a current collecting conductor layer was laminated by about several μm by sputtering. Thereafter, one side of the conductive double-sided carbon tape was bonded to a second glass substrate (soda lime glass; not shown), and one side was further bonded to the current collecting layer. Finally, the first glass substrate was removed, and ultrasonic cleaning was performed in pure water for 10 minutes to obtain a photowater decomposition reaction electrode including a composite photocatalyst layer / contact layer / current collecting layer.

<電極の性能評価>
調製した光触媒電極の性能は、ポテンショスタットを用いた3電極系での電流−電位測定によって行った(図2)。平面窓付きのパイレックス(登録商標)ガラス製電気化学セルを用い、参照極にAg/AgCl電極、対極にPtワイヤを用いた。電解液にはKHPO0.2M水溶液(pH=13)を用いた。電気化学セル内部はアルゴンで満たし、かつ、測定前に十分にバブリングを行うことによって溶存する酸素、二酸化炭素を除去した。光電気化学測定には、ソーラーシュミレーター(AM1.5)を光源として用い、電気化学セルの平面窓から波長420nm以上の白色光を照射した。それぞれの電極について、測定電位1.23V(vs. RHE)における光電流密度(mA/cm)を測定した。結果を下記表1に示す。
<Electrode performance evaluation>
The performance of the prepared photocatalytic electrode was measured by current-potential measurement in a three-electrode system using a potentiostat (FIG. 2). A Pyrex (registered trademark) glass electrochemical cell with a flat window was used, an Ag / AgCl electrode was used as the reference electrode, and a Pt wire was used as the counter electrode. A K 2 HPO 4 0.2M aqueous solution (pH = 13) was used as the electrolytic solution. The inside of the electrochemical cell was filled with argon, and dissolved oxygen and carbon dioxide were removed by sufficiently bubbling before measurement. In the photoelectrochemical measurement, a solar simulator (AM1.5) was used as a light source, and white light having a wavelength of 420 nm or more was irradiated from a planar window of the electrochemical cell. For each electrode, the photocurrent density (mA / cm 2 ) at a measurement potential of 1.23 V (vs. RHE) was measured. The results are shown in Table 1 below.

<電極の耐久性の評価>
上記と同様の測定条件によって、電解液の分解を30分間連続して行い、当該30分経過後における光電流密度を耐久性評価の指標とした。結果を以下の表1に示す。
<Evaluation of electrode durability>
Under the same measurement conditions as described above, the electrolytic solution was continuously decomposed for 30 minutes, and the photocurrent density after the lapse of 30 minutes was used as an index for durability evaluation. The results are shown in Table 1 below.

また、元素分析により、実施例2において担持された助触媒に含まれるO、Co、Niの元素比率の平均値と、比較例5において担持された助触媒に含まれるO、Co、Niの元素比率の平均値とをそれぞれ特定した。元素比率はSEM-EDXを用いたライン分析測定を行い、その平均値は3点測定したのち平均を取り算出した。結果を下記表2に示す。   Further, by elemental analysis, the average value of the element ratios of O, Co, and Ni contained in the promoter supported in Example 2, and the elements of O, Co, and Ni contained in the promoter supported in Comparative Example 5 The average ratio was specified. The element ratio was calculated by taking the line analysis using SEM-EDX and measuring the average value after measuring three points. The results are shown in Table 2 below.

表1に示す結果から明らかなように、光半導体1を用いた場合においては、助触媒としてCoOxのみ(比較例3)、NiOxのみ(比較例4)を担持した場合や、CoOxとCo(比較例1)、NiOxとNi(比較例2)を担持した場合と比較して、助触媒としてNiOxとCoOを担持した光触媒(実施例1〜3)方が、高い非光電密度と耐久性を有することが分かる。またNiOxとCoOxと同時に担持させた場合(参考例1)と比較すると、本願発明の方法で担持させた光触媒の方が高い光電密度と耐久性を示すことも分かる。 As is apparent from the results shown in Table 1, when the optical semiconductor 1 is used, only CoOx (Comparative Example 3), only NiOx (Comparative Example 4) is supported as a co-catalyst, or CoOx and Co (comparison). example 1), compared with the case of carrying NiOx and Ni (Comparative example 2), it photocatalyst carrying NiOx and CoO x as a cocatalyst (example 1-3) has a high non-photoelectric density and durability It turns out that it has. It can also be seen that the photocatalyst supported by the method of the present invention exhibits higher photoelectric density and durability than the case where NiOx and CoOx are simultaneously supported (Reference Example 1).

さらに、参考例1と実施例2との比較から、助触媒を構成する酸素原子、ニッケル原子、およびコバルト原子のニッケル原子またはコバルト原子に対する酸素原子の存在比(O/NiまたはO/Co)が、1より大きいほうが、高い光電密度と耐久性を示すことも分かる。   Further, from the comparison between Reference Example 1 and Example 2, the oxygen atom, nickel atom, and cobalt atom constituting the promoter have an abundance ratio of oxygen atom to nickel atom or cobalt atom (O / Ni or O / Co). It can also be seen that a value larger than 1 indicates higher photoelectric density and durability.

以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う光触媒およびその製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   While the present invention has been described in connection with embodiments that are presently the most practical and preferred, the present invention is not limited to the embodiments disclosed herein. However, the present invention can be changed as appropriate without departing from the spirit or concept of the invention that can be read from the claims and the entire specification, and a photocatalyst and a method for producing the same are also included in the technical scope of the present invention. Must be understood.

本発明に係る光触媒は高い水分解活性を有し、太陽光を利用した水分解反応を行うことにより水素および/または酸素を製造する光水分解反応に特に好適に用いられる。   The photocatalyst according to the present invention has a high water splitting activity, and is particularly preferably used for a photowater splitting reaction that produces hydrogen and / or oxygen by performing a water splitting reaction using sunlight.

Claims (7)

Ti、Ta、および/またはNbを含む光半導体に、NiOxおよびCoOxを助触媒として担持したことを特徴とする光触媒。   A photocatalyst comprising NiOx and CoOx supported as a cocatalyst on an optical semiconductor containing Ti, Ta and / or Nb. 前記光半導体が、LaTiON、CaNbON、BaNbON、SrNbON、LaNbON、Ta、およびBaTaONから選ばれる少なくとも1種である請求項1に記載の光触媒。 2. The photocatalyst according to claim 1 , wherein the optical semiconductor is at least one selected from LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, LaNbO 2 N, Ta 3 N 5 , and BaTaO 2 N. 前記助触媒が、NiOxとCoOxとのコアシェル型構造を有する、請求項1または2に記載の光触媒。   The photocatalyst according to claim 1 or 2, wherein the promoter has a core-shell structure of NiOx and CoOx. 前記助触媒を構成する酸素原子、ニッケル原子、およびコバルト原子のニッケル原子またはコバルト原子に対する酸素原子の存在比(O/NiまたはO/Co)が、1より大きい、請求項1〜3のいずれかに記載の光触媒。   4. The oxygen atom, nickel atom, and cobalt atom constituting the cocatalyst have an oxygen atom to nickel atom or cobalt atom ratio (O / Ni or O / Co) of greater than 1. 5. The photocatalyst described in 1. Ti、Ta、および/またはNbを含む光半導体に、NiOxおよびCoOxを助触媒として担持させてなる光触媒の製造方法であって、
Ti、Taおよび/またはNbを含む光半導体に、NiOxを担持させる第1の工程と、
前記光半導体および/または前記NiOx上にCoOxを担持させる第2の工程と、を有することを特徴とする光触媒の製造方法。
A method for producing a photocatalyst obtained by supporting NiOx and CoOx as a cocatalyst on an optical semiconductor containing Ti, Ta, and / or Nb,
A first step of supporting NiOx on an optical semiconductor containing Ti, Ta and / or Nb;
And a second step of supporting CoOx on the optical semiconductor and / or the NiOx.
前記光半導体が、LaTiON、CaNbON、BaNbON、SrNbON、LaNbON、Ta、およびBaTaONから選ばれる少なくとも1種である、請求項5に記載の光触媒の製造方法。 The photocatalyst according to claim 5, wherein the optical semiconductor is at least one selected from LaTiO 2 N, CaNbO 2 N, BaNbO 2 N, SrNbO 2 N, LaNbO 2 N, Ta 3 N 5 , and BaTaO 2 N. Manufacturing method. 前記第1の工程の後に前記第2の工程を行う、請求項5または6に記載の光触媒の製造方法。   The method for producing a photocatalyst according to claim 5 or 6, wherein the second step is performed after the first step.
JP2015083341A 2015-04-15 2015-04-15 Photocatalyst and production method thereof Pending JP2016203031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015083341A JP2016203031A (en) 2015-04-15 2015-04-15 Photocatalyst and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015083341A JP2016203031A (en) 2015-04-15 2015-04-15 Photocatalyst and production method thereof

Publications (1)

Publication Number Publication Date
JP2016203031A true JP2016203031A (en) 2016-12-08

Family

ID=57486453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015083341A Pending JP2016203031A (en) 2015-04-15 2015-04-15 Photocatalyst and production method thereof

Country Status (1)

Country Link
JP (1) JP2016203031A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111250094A (en) * 2020-03-24 2020-06-09 辽宁大学 Double Z type Co3O4/NiCo2O4/NiO photocatalyst and preparation method and application thereof
CN111804323A (en) * 2020-06-24 2020-10-23 广东邦普循环科技有限公司 Photocatalyst and application thereof in photocatalytic environment-friendly treatment of power battery
CN117244579A (en) * 2023-10-31 2023-12-19 海南师范大学 Photo-thermal synthesis method and application of cocatalyst-modified thin-layer carbon nitride material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111250094A (en) * 2020-03-24 2020-06-09 辽宁大学 Double Z type Co3O4/NiCo2O4/NiO photocatalyst and preparation method and application thereof
CN111250094B (en) * 2020-03-24 2022-06-14 辽宁大学 Double Z type Co3O4/NiCo2O4/NiO photocatalyst and preparation method and application thereof
CN111804323A (en) * 2020-06-24 2020-10-23 广东邦普循环科技有限公司 Photocatalyst and application thereof in photocatalytic environment-friendly treatment of power battery
WO2021258856A1 (en) * 2020-06-24 2021-12-30 广东邦普循环科技有限公司 Photocatalyst and application thereof in photocatalytic environmentally-friendly treatment of power batteries
US11826729B2 (en) 2020-06-24 2023-11-28 Guangdong Brunp Recycling Technology Co., Ltd. Photocatalyst and application thereof in environmentally friendly photocatalytic treatment of power battery
CN117244579A (en) * 2023-10-31 2023-12-19 海南师范大学 Photo-thermal synthesis method and application of cocatalyst-modified thin-layer carbon nitride material
CN117244579B (en) * 2023-10-31 2024-05-10 海南师范大学 Photo-thermal synthesis method and application of cocatalyst-modified thin-layer carbon nitride material

Similar Documents

Publication Publication Date Title
Dubale et al. A highly stable CuS and CuS–Pt modified Cu 2 O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction
Jia et al. BiVO 4–Ru/SrTiO 3: Rh composite Z-scheme photocatalyst for solar water splitting
Seabold et al. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst
Zhang et al. Doped Solid Solution:(Zn0. 95Cu0. 05) 1− x Cd x S Nanocrystals with High Activity for H2 Evolution from Aqueous Solutions under Visible Light
Hou et al. Cobalt-bilayer catalyst decorated Ta 3 N 5 nanorod arrays as integrated electrodes for photoelectrochemical water oxidation
Zhang et al. Gas-phase cation exchange toward porous single-crystal CoO nanorods for catalytic hydrogen production
JP5999548B2 (en) Photocatalyst and method for producing the same
Chen et al. Efficient indium sulfide photoelectrode with crystal phase and morphology control for high-performance photoelectrochemical water splitting
Zhang et al. In situ growth of g-C3N4 on hexangular flowerlike FeWO4 microcrystals: highly efficient catalyst and the crucial roles of Fe3+/Fe2+ couple in the photoassisted oxidation and reduction reactions
Sudhagar et al. Enhanced photoelectrocatalytic water splitting at hierarchical Gd3+: TiO2 nanostructures through amplifying light reception and surface states passivation
da Silva et al. Deposition and characterization of BiVO 4 thin films and evaluation as photoanodes for methylene blue degradation
Cui et al. Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance
Sohail et al. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting
Chen et al. New versatile synthetic route for the preparation of metal phosphate decorated hydrogen evolution photocatalysts
Xiong et al. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation
Murcia-López et al. Insights into the Performance of Co x Ni1–x TiO3 Solid Solutions as Photocatalysts for Sun-Driven Water Oxidation
Arunachalam et al. Colloidal metal Ag nanowire as an efficient co-catalyst for enhancing the solar water oxidation of fluorinated BiVO4 photoelectrode
Das et al. Synergistic effect of metal complex and dual doped graphitic carbon nitride for superior photocatalytic hydrogen evolution
CN110760874B (en) Method for preparing iron oxide photo-anode film by using waste lithium iron phosphate battery
Luo et al. β-Ni (OH) 2/NiS/TiO2 3D flower-like pnp heterostructural photocatalysts for high-efficiency removal of soluble anionic dyes and hydrogen releasing
Kavinkumar et al. Dual-functional CuO-decorated Bi3. 84W0. 16O6. 24/Bi2WO6 nanohybrids for enhanced electrochemical hydrogen evolution reaction and photocatalytic Cr (VI) reduction performance
JP2016203031A (en) Photocatalyst and production method thereof
JP2016144804A (en) Electrode for photolytic water decomposition reaction using photocatalyst
Rahman et al. Direct growth of duel-faceted BiVO4 microcrystals on FTO-coated glass for photoelectrochemical water oxidation
Ullah et al. Investigating the role of oxygen vacancies in metal oxide for enhanced electrochemical reduction of NO 3− to NH 3: mechanistic insights

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170524