JP2013227991A - Fluid filled vibration damping device - Google Patents

Fluid filled vibration damping device Download PDF

Info

Publication number
JP2013227991A
JP2013227991A JP2012098389A JP2012098389A JP2013227991A JP 2013227991 A JP2013227991 A JP 2013227991A JP 2012098389 A JP2012098389 A JP 2012098389A JP 2012098389 A JP2012098389 A JP 2012098389A JP 2013227991 A JP2013227991 A JP 2013227991A
Authority
JP
Japan
Prior art keywords
receiving chamber
pressure receiving
side support
pressure
movable rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012098389A
Other languages
Japanese (ja)
Other versions
JP5899039B2 (en
Inventor
Motohiro Kawai
基寛 川井
Noriaki Yoshii
教明 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2012098389A priority Critical patent/JP5899039B2/en
Publication of JP2013227991A publication Critical patent/JP2013227991A/en
Application granted granted Critical
Publication of JP5899039B2 publication Critical patent/JP5899039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fluid filled vibration damping device having a novel structure capable of achieving any of the emergence of a short circuit flow passage for preventing generation of cavitation during input of an impulsive vibration load and a pressure variation absorption function of a pressure receiving chamber by a movable rubber membrane at a high level without increasing the number of components and the size of the device.SOLUTION: An outer peripheral edge part of a movable rubber membrane 78 is in contact with and held between an equilibrium chamber side support part 70 and a contact holding part 90 formed at a pressure receiving chamber side support part 84 in a portion covered by the pressure receiving chamber side support part 84, and elastic deformation to a pressure receiving chamber 44 side is allowed by a non-cover lid region 86 not covered by the pressure receiving chamber side support part 84. A short circuit flow passage 96 reaching from an equilibrium chamber 46 to the pressure receiving chamber 44 emerges by the separation of the outer peripheral edge part of the movable rubber membrane 78 from the equilibrium chamber side support part 70 based on the elastic deformation of the non-cover lid region 86 to the pressure receiving chamber 44 side. The central part of the movable rubber membrane 78 is elastically deformed to the pressure receiving chamber 44 side and the equilibrium chamber 46 side by pressure variation.

Description

本発明は、受圧室と平衡室を連通するオリフィス通路を通じての流体の流動作用により防振効果を得るようにした流体封入式防振装置に係り、特に、オリフィス通路のチューニング周波数よりも高周波数域の振動入力時に受圧室の圧力変動を吸収する可動ゴム膜からなる圧力変動吸収機構を備えた流体封入式防振装置に関するものである。   The present invention relates to a fluid-filled vibration isolator that obtains a vibration isolation effect by a fluid flow action through an orifice passage communicating with a pressure receiving chamber and an equilibrium chamber, and more particularly, in a frequency range higher than the tuning frequency of the orifice passage. The present invention relates to a fluid-filled vibration isolator equipped with a pressure fluctuation absorbing mechanism made of a movable rubber film that absorbs pressure fluctuation in a pressure receiving chamber when a vibration is input.

従来から、振動伝達系を構成する部材間に介装されて、それら振動伝達系を構成する部材を相互に防振連結乃至は防振支持する防振装置の一種として、内部に封入された非圧縮性流体の共振作用等の流動作用に基づき防振効果を得るようにした流体封入式防振装置が知られており、自動車用のエンジンマウントやボデーマウント、デフマウント、サスペンションメンバマウント等として広く用いられている。この流体封入式防振装置は、第1の取付部材と第2の取付部材を本体ゴム弾性体で弾性連結すると共に、第2の取付部材によって支持された仕切部材を挟んだ両側に非圧縮性流体が封入された受圧室と平衡室の各一方を形成し、更にそれら受圧室と平衡室を相互に連通する第1のオリフィス通路を形成した構造を備えている。そして、振動入力時には、受圧室と平衡室の間に惹起される相対的な圧力変動に伴うオリフィス通路を通じての流体の流動作用に基づいて、防振効果が発揮されるようになっている。   Conventionally, as a type of vibration isolator that is interposed between members constituting a vibration transmission system and mutually anti-vibration-couples or supports the vibration transmission system, the non-encapsulated inside A fluid-filled vibration isolator that obtains a vibration isolation effect based on a fluid action such as a resonance action of a compressible fluid is known, and is widely used as an engine mount, body mount, differential mount, suspension member mount, etc. for automobiles. It is used. In this fluid filled type vibration isolator, the first mounting member and the second mounting member are elastically connected by the main rubber elastic body, and incompressible on both sides of the partition member supported by the second mounting member. Each of the pressure receiving chamber and the equilibrium chamber in which a fluid is sealed is formed, and a first orifice passage is formed to communicate the pressure receiving chamber and the equilibrium chamber with each other. At the time of vibration input, an anti-vibration effect is exhibited based on the fluid flow action through the orifice passage caused by the relative pressure fluctuation caused between the pressure receiving chamber and the equilibrium chamber.

ところで、オリフィス通路を通じての流体の共振作用により発揮される防振効果は、予めオリフィス通路がチューニングされた比較的に狭い周波数域に限られる。そこで、近年では、オリフィス通路のチューニング周波数よりも高周波数域で問題となる振動が入力された際に、オリフィス通路の著しい流通抵抗の増大に伴う受圧室の圧力変動を吸収低減することにより防振特性の向上を図ることを目的として、圧力変動吸収機構を設けた構造の流体封入式防振装置が提案されている。この圧力変動吸収機構は、特開平07−035189号公報(特許文献1)等に示されているように、受圧室と平衡室を仕切る仕切部材に可動ゴム膜が配設されており、かかる可動ゴム膜の一方の面に受圧室の圧力が及ぼされると共に他方の面に平衡室の圧力が及ぼされるようになっている。そして、受圧室と平衡室の相対的な圧力差に基づいて可動ゴム膜が弾性変形することで、オリフィス通路の実質的な閉塞化に伴って惹起される受圧室の圧力変動を吸収して、著しい高動ばね化を回避するようになっている。   By the way, the anti-vibration effect exhibited by the resonance action of the fluid through the orifice passage is limited to a relatively narrow frequency range in which the orifice passage is tuned in advance. Therefore, in recent years, when vibration that is a problem in the frequency range higher than the tuning frequency of the orifice passage is input, vibration suppression is achieved by absorbing and reducing pressure fluctuations in the pressure receiving chamber due to a significant increase in the flow resistance of the orifice passage. In order to improve the characteristics, a fluid-filled vibration isolator having a structure provided with a pressure fluctuation absorbing mechanism has been proposed. In this pressure fluctuation absorption mechanism, a movable rubber film is disposed on a partition member that partitions a pressure receiving chamber and an equilibrium chamber as disclosed in Japanese Patent Application Laid-Open No. 07-035189 (Patent Document 1). The pressure of the pressure receiving chamber is applied to one surface of the rubber film, and the pressure of the equilibrium chamber is applied to the other surface. And, by the elastic deformation of the movable rubber film based on the relative pressure difference between the pressure receiving chamber and the equilibrium chamber, the pressure variation of the pressure receiving chamber caused by the substantial blockage of the orifice passage is absorbed, A significant increase in dynamic spring is avoided.

ところが、このような圧力変動吸収機構を備えた流体封入式防振装置においても、更なる特性の改善が要求される場合がある。即ち、エンジンマウント等においては、衝撃的な振動荷重が第1の取付部材と第2の取付部材の間に入力される場合があり、その際に、受圧室に過大な負圧が発生する。その結果、受圧室の封入流体が液相分離を起こして気泡が発生し、この気泡が潰れることによって、異音や振動が生じる、所謂キャビテーションの問題が指摘されているのである。   However, even in the fluid-filled vibration isolator having such a pressure fluctuation absorption mechanism, further improvement in characteristics may be required. That is, in an engine mount or the like, a shocking vibration load may be input between the first mounting member and the second mounting member, and at that time, an excessive negative pressure is generated in the pressure receiving chamber. As a result, the so-called cavitation problem has been pointed out, in which the sealed fluid in the pressure receiving chamber undergoes liquid phase separation and bubbles are generated, and the bubbles are crushed, causing abnormal noise and vibration.

この問題に対処するために、本出願人は先に特許第4861843号公報(特許文献2)において、可動ゴム膜の外周縁部を全周に亘って平衡室側から仕切部材の平衡室側支持部により当接保持すると共に、可動ゴム膜の中央部分と外周縁部の一部を受圧室側から仕切部材の受圧室側支持部により当接保持する構造を提案した。これによれば、衝撃的な荷重入力によって受圧室に過大な負圧が発生した際には、可動ゴム膜の外周縁部の周上の一部が当該負圧により受圧室側に弾性変形されて平衡室側支持部から離隔することにより、平衡室から受圧室に至る短絡流路が発現される。それ故、短絡流路を通じた平衡室から受圧室への流体流動により受圧室の負圧が速やかに解消されて、キャビテーションの発生を抑えることが出来る。また、可動ゴム膜の中央部分は、仕切部材に当接保持されることなく平衡室側への弾性変形が許容されていることから、可動ゴム膜の中央部分の弾性変形に基づいて、圧力変動吸収機能も発揮されるようになっている。   In order to cope with this problem, the applicant previously disclosed in Japanese Patent No. 4861843 (Patent Document 2) that the outer peripheral edge of the movable rubber film is supported from the equilibrium chamber side to the equilibrium chamber side of the partition member over the entire circumference. A structure has been proposed in which the central portion and a part of the outer peripheral edge of the movable rubber film are held in contact with each other by the pressure receiving chamber side support portion of the partition member from the pressure receiving chamber side. According to this, when an excessive negative pressure is generated in the pressure receiving chamber due to an impact load input, a part of the circumference of the outer peripheral edge of the movable rubber film is elastically deformed toward the pressure receiving chamber by the negative pressure. By separating from the equilibrium chamber side support portion, a short circuit channel from the equilibrium chamber to the pressure receiving chamber is developed. Therefore, the negative pressure in the pressure receiving chamber is quickly eliminated by the fluid flow from the equilibrium chamber to the pressure receiving chamber through the short-circuit channel, and the occurrence of cavitation can be suppressed. Further, since the central portion of the movable rubber film is allowed to be elastically deformed toward the equilibrium chamber without being held in contact with the partition member, the pressure fluctuation is based on the elastic deformation of the central portion of the movable rubber film. Absorption function is also demonstrated.

このように、特許文献2に記載の流体封入式防振装置は、可動ゴム膜を支持する仕切部材を特殊形状にすることにより、可動ゴム膜の外周縁部の一部に短絡流路発現用の弁機構としての機能を併せ備えることができたものであり、別途短絡流路や弁部材を形成する必要がなく、部品点数の増加や装置の大型化を伴うことなく、キャビテーションの発生を抑えることができる画期的な構造であった。   As described above, the fluid-filled vibration isolator disclosed in Patent Document 2 has a special shape for the partition member that supports the movable rubber film, so that a short-circuit flow path is formed on a part of the outer peripheral edge of the movable rubber film. The valve mechanism can also be provided, and it is not necessary to separately form a short-circuit channel or a valve member, and the occurrence of cavitation can be suppressed without increasing the number of parts and increasing the size of the device. It was an epoch-making structure.

しかしながら、このような仕切部材の特殊形状に起因して、圧力変動吸収機能を十分に発現させるには限界があった。すなわち、可動ゴム膜の中央部分は、平衡室側への弾性変形は許容されるものの、受圧室側への弾性変形は仕切部材の受圧室側支持部との当接により阻止されており、可動ゴム膜による圧力変動吸収機能の十分な向上を図るためには、更なる改良の余地があったのである。   However, due to the special shape of the partition member, there is a limit to fully exhibit the pressure fluctuation absorbing function. That is, the central portion of the movable rubber film is allowed to be elastically deformed toward the equilibrium chamber side, but is elastically deformed toward the pressure-receiving chamber side by the contact of the partition member with the pressure-receiving chamber side support portion. In order to sufficiently improve the pressure fluctuation absorbing function by the rubber film, there was room for further improvement.

特開平07−035189号公報Japanese Patent Application Laid-Open No. 07-035189 特許第4861843号公報Japanese Patent No. 4618443

本発明は、上述の事情を背景に為されたものであって、その解決課題は、部品点数の増加や装置の大型化を伴うことなく、衝撃的な振動荷重入力時のキャビテーション発生防止用の短絡流路の発現と、可動ゴム膜による受圧室の圧力変動吸収機能を何れも高度に達成することができる、新規な構造の流体封入式防振装置を提供することにある。   The present invention has been made in the background of the above-mentioned circumstances, and its solution is to prevent the occurrence of cavitation when an impact vibration load is input without increasing the number of parts or increasing the size of the apparatus. An object of the present invention is to provide a fluid-filled vibration isolator having a novel structure capable of achieving both the expression of a short-circuit channel and the function of absorbing pressure fluctuations of a pressure receiving chamber by a movable rubber film.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意な組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明に従う構造とされた流体封入式防振装置の第一の態様は、本体ゴム弾性体で弾性連結された第1の取付部材および第2の取付部材と、前記第2の取付部材によって支持された仕切部材と、前記仕切部材を挟んだ一方の側に位置して壁部の一部が該本体ゴム弾性体によって構成されて非圧縮性流体が封入された受圧室と、前記仕切部材を挟んだ他方の側に位置して壁部の一部が可撓性膜で構成されて前記非圧縮性流体が封入された平衡室と、前記受圧室と前記平衡室を相互に連通するオリフィス通路と、前記仕切部材の中央部分に配設されて前記受圧室と前記平衡室の圧力が両側面に及ぼされる可動ゴム膜と、を備えている流体封入式防振装置において、前記仕切部材に、前記可動ゴム膜の外周縁部を前記平衡室側から当接状態で保持する平衡室側支持部と、該可動ゴム膜の該外周縁部を受圧室側から覆う受圧室側支持部が設けられていると共に、前記可動ゴム膜の前記外周縁部は、前記受圧室側支持部に覆われている部分において該受圧室側支持部に形成された当接保持部と前記平衡室側支持部との間で当接保持されている一方、該受圧室側支持部に覆われていない非覆蓋領域において前記受圧室側への弾性変形が許容されており、該非覆蓋領域の該受圧室側への弾性変形に基づいて該可動ゴム膜の該外周縁部が前記平衡室側支持部から離隔することにより前記平衡室から前記受圧室に至る短絡流路が発現されるようになっており、前記可動ゴム膜の中央部分が、前記受圧室と前記平衡室の圧力変動により前記受圧室側と前記平衡室側への弾性変形することに基づき、前記オリフィス通路のチューニング周波数よりも高周波数域の受圧室の圧力変動を吸収する圧力変動吸収機構が構成されているものである。   That is, the first aspect of the fluid-filled vibration isolator having a structure according to the present invention includes a first mounting member and a second mounting member elastically connected by a main rubber elastic body, and the second mounting member. A partition member supported by the pressure sensor, a pressure receiving chamber which is located on one side of the partition member and in which a part of the wall portion is configured by the main rubber elastic body and in which an incompressible fluid is sealed, and the partition An equilibrium chamber in which a part of the wall portion is formed of a flexible film and is filled with the incompressible fluid, and the pressure receiving chamber and the equilibrium chamber communicate with each other, located on the other side of the member. In the fluid filled type vibration damping device, comprising: an orifice passage; and a movable rubber film disposed in a central portion of the partition member and exerting pressure on the pressure receiving chamber and the equilibrium chamber on both side surfaces. The outer peripheral edge of the movable rubber film is in contact with the equilibrium chamber side And a pressure receiving chamber side support portion that covers the outer peripheral edge portion of the movable rubber film from the pressure receiving chamber side, and the outer peripheral edge portion of the movable rubber film includes the pressure receiving portion. The pressure receiving chamber side support portion is held in contact with and held between the contact holding portion formed on the pressure receiving chamber side support portion and the equilibrium chamber side support portion in the portion covered by the chamber side support portion. Elastic deformation toward the pressure receiving chamber is allowed in the non-covering region not covered by the cover, and the outer peripheral edge of the movable rubber film is in the equilibrium state based on elastic deformation of the non-covering region toward the pressure receiving chamber. A short-circuit flow path from the equilibrium chamber to the pressure receiving chamber is developed by separating from the chamber side support portion, and a central portion of the movable rubber film is a pressure fluctuation between the pressure receiving chamber and the equilibrium chamber. Based on the elastic deformation to the pressure receiving chamber side and the equilibrium chamber side. , The pressure fluctuation absorbing mechanism for absorbing the pressure fluctuations of the pressure receiving chamber of the high frequency range than the tuning frequency of the orifice passage in which are configured.

本態様によれば、可動ゴム膜の外周縁部のうち、受圧室側支持部に覆われている部分は、平衡室側支持部と受圧室側支持部の当接保持部との間で当接保持されていることから、可動ゴム膜を仕切部材に対して確実に位置決め保持することができ、所期の圧力変動吸収機能を安定して発揮することができる。   According to this aspect, the portion of the outer peripheral edge of the movable rubber film that is covered by the pressure receiving chamber side support portion is contacted between the equilibrium chamber side support portion and the contact holding portion of the pressure receiving chamber side support portion. Since it is held in contact, the movable rubber film can be reliably positioned and held with respect to the partition member, and the desired pressure fluctuation absorbing function can be stably exhibited.

また、可動ゴム膜の外周縁部のうち、受圧室側支持部に覆われていない非覆蓋領域が、受圧室側へ弾性変形して前記平衡室側から離隔することにより平衡室から受圧室に至る短絡流路が安定して発現されるようになっていることから、衝撃的な荷重入力によって受圧室に過大な負圧が発生した際に、短絡流路を通じた流体流動により、受圧室の負圧を速やかに解消してキャビテーションの発生を抑えることが出来る。   In addition, a non-covered cover region that is not covered by the pressure receiving chamber side support portion of the outer peripheral edge of the movable rubber film is elastically deformed toward the pressure receiving chamber side and separated from the equilibrium chamber side, so that the equilibrium chamber is changed to the pressure receiving chamber. Because the short-circuit channel to reach is stably expressed, when excessive negative pressure is generated in the pressure-receiving chamber due to shock load input, the fluid flow through the short-circuit channel causes the pressure-receiving chamber to The negative pressure can be eliminated quickly to prevent cavitation.

しかも、可動ゴム膜の中央部分が、受圧室と平衡室の何れの側からも仕切部材に当接保持されておらず、受圧室と平衡室の圧力変動により受圧室側と平衡室側の両側に確実に弾性変形可能とされている。それ故、オリフィス通路のチューニング周波数よりも高周波数域で問題となる振動が入力された際に、オリフィス通路の著しい流通抵抗の増大に伴う受圧室の圧力変動を、可動ゴム膜の中央部分の受圧室側と平衡室側の両側へ十分な弾性変形に基づき吸収低減することができる。要するに、可動ゴム膜の中央部分により構成される圧力変動機構により、十分な圧力変動吸収機能が発揮されて、防振特性の向上を図ることができるのである。   Moreover, the central part of the movable rubber film is not held in contact with the partition member from either side of the pressure receiving chamber and the equilibrium chamber, and both sides of the pressure receiving chamber side and the equilibrium chamber side are caused by pressure fluctuations in the pressure receiving chamber and the equilibrium chamber. It is possible to reliably deform elastically. Therefore, when a problem vibration is input in a frequency range higher than the tuning frequency of the orifice passage, the pressure variation in the pressure receiving chamber accompanying the significant increase in the flow resistance of the orifice passage is changed to the pressure receiving pressure in the central portion of the movable rubber membrane. Absorption can be reduced based on sufficient elastic deformation to both the chamber side and the equilibrium chamber side. In short, a sufficient pressure fluctuation absorbing function is exhibited by the pressure fluctuation mechanism constituted by the central portion of the movable rubber film, and the vibration isolation characteristics can be improved.

なお、受圧室側支持部は、その全領域が可動ゴム膜の外周縁部を当接保持する当接保持部とされてもよいし、可動ゴム膜の外周縁部よりもさらに内周側に延出する延出部を含んで形成されていてもよい。そして、受圧室側支持部が延出部を有する場合には、延出部の内周側への延出量を調節することにより、可動ゴム膜による圧力吸収機構の防振特性をチューニングすることも可能となる。また、受圧室側支持部において、当接保持部は可動ゴム膜の外周縁部に当接している必要があるが、延出部など他の部位を含む場合には、それらの部位は、可動ゴム膜に対して必ずしも当接している必要はなく、隙間を隔てて対向配置されていてもよい。   The pressure-receiving chamber side support portion may be a contact holding portion in which the entire region abuts and holds the outer peripheral edge portion of the movable rubber film, or further on the inner peripheral side than the outer peripheral edge portion of the movable rubber film. You may form including the extending part which extends. And when the pressure receiving chamber side support part has an extension part, the vibration damping characteristic of the pressure absorption mechanism by the movable rubber film is tuned by adjusting the extension amount to the inner peripheral side of the extension part. Is also possible. Further, in the pressure receiving chamber side support portion, the contact holding portion needs to be in contact with the outer peripheral edge portion of the movable rubber film. However, in the case where other portions such as an extension portion are included, these portions are movable. The rubber film does not necessarily have to be in contact with the rubber film, and may be disposed to face each other with a gap.

また、可動ゴム膜の中央部分とは、平衡室側支持部と受圧室側支持部の当接保持部との間で当接保持されている可動ゴム膜の外周縁部よりも内周側に位置する領域のことをいう。   The central portion of the movable rubber film is closer to the inner peripheral side than the outer peripheral edge of the movable rubber film held in contact between the equilibrium chamber side support portion and the contact holding portion of the pressure receiving chamber side support portion. It refers to the area that is located.

本発明の第二の態様は、前記第一の態様に記載の流体封入式防振装置において、前記可動ゴム膜の外周縁部の周方向で等間隔に離隔する複数箇所が、該周方向で等間隔に離隔配置された複数の前記受圧室側支持部により、前記受圧室側から覆われていると共に、それら受圧室側支持部の前記当接保持部と平衡室側支持部との間で該可動ゴム膜の該外周縁部の該複数箇所が当接保持されているものである。   According to a second aspect of the present invention, there is provided the fluid filled type vibration damping device according to the first aspect, wherein a plurality of locations separated at equal intervals in the circumferential direction of the outer peripheral edge portion of the movable rubber film are in the circumferential direction. Covered from the pressure receiving chamber side by the plurality of pressure receiving chamber side support portions spaced apart at equal intervals, and between the contact holding portion of the pressure receiving chamber side support portion and the equilibrium chamber side support portion. The plurality of locations on the outer peripheral edge of the movable rubber film are held in contact with each other.

本態様によれば、可動ゴム膜の外周縁部における周方向で等間隔に離隔する複数箇所が受圧室側支持部の当接保持部と平衡室側支持部との間で当接保持されていることから、可動ゴム膜の外周縁部を比較的均等な支持バランスにより仕切部材によって支持することができる。また、衝撃的な荷重入力時に短絡流路を発現させる非覆蓋領域が周方向で等間隔に配設されていることから、受圧室における過大な負圧の発生場所に関わらず速やかに負圧を解消して、キャビテーション防止効果を有利に得ることができる。なお、当接保持部の支持強度や非覆蓋領域の弾性変形量等を考慮して、受圧室側支持部は周方向の3箇所に設けられていることが望ましい。   According to this aspect, a plurality of locations spaced at equal intervals in the circumferential direction on the outer peripheral edge portion of the movable rubber film are held in contact between the contact holding portion of the pressure receiving chamber side support portion and the equilibrium chamber side support portion. Therefore, the outer peripheral edge of the movable rubber film can be supported by the partition member with a relatively uniform support balance. In addition, since the non-covering regions that cause the short-circuit flow path when shocking load is input are arranged at equal intervals in the circumferential direction, negative pressure can be quickly applied regardless of the location where excessive negative pressure is generated in the pressure receiving chamber. This eliminates the cavitation preventing effect. In consideration of the support strength of the contact holding portion, the amount of elastic deformation of the non-covering region, etc., it is desirable that the pressure receiving chamber side support portions are provided at three locations in the circumferential direction.

本発明の第三の態様は、前記第一又は第二の態様に記載の流体封入式防振装置において、前記仕切部材において、前記平衡室側支持部の内周側に前記可動ゴム膜に対して前記平衡室の圧力を及ぼす透孔が設けられている一方、前記受圧室側支持部の内周縁部が、該透孔の外周縁部よりも外周側に位置しているものである。   According to a third aspect of the present invention, in the fluid-filled vibration damping device according to the first or second aspect, the partition member has an inner peripheral side of the equilibrium chamber side support portion with respect to the movable rubber film. On the other hand, a through hole for applying pressure to the equilibrium chamber is provided, and an inner peripheral edge portion of the pressure receiving chamber side support portion is located on an outer peripheral side with respect to an outer peripheral edge portion of the through hole.

本態様によれば、受圧室側支持部の内周縁部が、透孔の外周縁部よりも外周側に位置していることから、透孔を通じて平衡室側に弾性変形可能な可動ゴム膜の中央部分の全領域が、受圧室側支持部に干渉することなく受圧室側にも弾性変形可能となる。従って、可動ゴム膜の中央部分において、仕切部材と干渉しない全領域が平衡室側と受圧室側の何れの側にも十分に弾性変形可能とされ、安定した圧力変動吸収機能が有利に発揮される。   According to this aspect, since the inner peripheral edge portion of the pressure receiving chamber side support portion is located on the outer peripheral side with respect to the outer peripheral edge portion of the through hole, the movable rubber film that can be elastically deformed to the equilibrium chamber side through the through hole. The entire area of the central portion can be elastically deformed also on the pressure receiving chamber side without interfering with the pressure receiving chamber side support portion. Therefore, in the central portion of the movable rubber film, the entire region that does not interfere with the partition member can be sufficiently elastically deformed on either the equilibrium chamber side or the pressure receiving chamber side, and a stable pressure fluctuation absorbing function is advantageously exhibited. The

本発明の第四の態様は、前記第一乃至第三の何れかの態様に記載の流体封入式防振装置において、前記可動ゴム膜の外周縁部において、前記非覆蓋領域の周方向長さが、前記受圧室側支持部の当接保持部に当接保持されている部分の周方向長さよりも大きくされているものである。   According to a fourth aspect of the present invention, in the fluid-filled vibration isolator according to any one of the first to third aspects, the circumferential length of the non-covering region in the outer peripheral edge of the movable rubber film. However, it is made larger than the circumferential length of the part contacted and held by the contact holding part of the pressure receiving chamber side support part.

本態様によれば、可動ゴム膜の外周縁部において、仕切部材に拘束されている部分よりも拘束されていない部分が大きくされていることから、非覆蓋領域が短絡流路を発現させる程度まで十分に受圧室側に弾性変形することができ、短絡流路の発現が確実に行われ得る。   According to this aspect, since the portion that is not restrained is larger than the portion that is restrained by the partition member in the outer peripheral edge portion of the movable rubber film, the non-covered region exhibits a short-circuit flow path. It can be sufficiently elastically deformed to the pressure receiving chamber side, and the short-circuit channel can be reliably developed.

本発明の第五の態様は、前記第一乃至第四の何れかの態様に記載の流体封入式防振装置において、前記受圧室側支持部が、前記当接保持部よりも前記可動ゴム膜の内周側に延出する延出部を含んでいるものである。   According to a fifth aspect of the present invention, in the fluid filled type vibration damping device according to any one of the first to fourth aspects, the pressure receiving chamber side support portion is more movable than the contact holding portion. This includes an extending portion that extends to the inner peripheral side.

本態様によれば、受圧室側支持部が、当接保持部と、当接保持部よりも可動ゴム膜の内周側に延出する延出部を含んでいることから、当接保持部にて可動ゴム膜の外周縁部を安定して保持すると共に、延出部の延出量を適当に調節することにより、可動ゴム膜による圧力吸収機構の防振特性をチューニングすることも可能となり、防振特性の設定自由度の向上を図ることができる。   According to this aspect, since the pressure receiving chamber side support portion includes the contact holding portion and the extending portion extending to the inner peripheral side of the movable rubber film from the contact holding portion, the contact holding portion In addition to stably holding the outer peripheral edge of the movable rubber film, it is also possible to tune the anti-vibration characteristics of the pressure absorbing mechanism by the movable rubber film by adjusting the extension amount of the extension part appropriately. Thus, it is possible to improve the degree of freedom in setting the vibration isolation characteristics.

本発明の流体封入式防振装置によれば、可動ゴム膜の外周縁部のうち、受圧室側支持部に覆われている部分は、平衡室側支持部と受圧室側支持部の当接保持部との間で当接保持されていることから、所期の圧力変動吸収機能を安定して発揮することができる。また、受圧室側支持部に覆われていない非覆蓋領域では、平衡室から受圧室に至る短絡流路が安定して発現されるようになっていることから、衝撃的な荷重入力による受圧室でのキャビテーションの発生を抑えることが出来る。しかも、可動ゴム膜の中央部分が、受圧室と平衡室の何れの側からも仕切部材に当接保持されておらず、受圧室と平衡室の圧力変動により受圧室側と平衡室側の両側に確実に弾性変形可能とされていることから、防振特性の向上を図ることができる。   According to the fluid filled type vibration damping device of the present invention, the portion of the outer peripheral edge of the movable rubber film that is covered by the pressure receiving chamber side support portion is in contact with the equilibrium chamber side support portion and the pressure receiving chamber side support portion. Since it is held in contact with the holding portion, the intended pressure fluctuation absorbing function can be stably exhibited. In addition, in the non-covering region that is not covered by the pressure receiving chamber side support part, a short-circuit flow path from the equilibrium chamber to the pressure receiving chamber is stably expressed. It is possible to suppress the occurrence of cavitation. Moreover, the central part of the movable rubber film is not held in contact with the partition member from either side of the pressure receiving chamber and the equilibrium chamber, and both sides of the pressure receiving chamber side and the equilibrium chamber side are caused by pressure fluctuations in the pressure receiving chamber and the equilibrium chamber. Therefore, the anti-vibration characteristics can be improved.

本発明の一実施形態としての自動車用エンジンマウントの縦断面図であって、図2のIII−III断面に相当する図。It is a longitudinal cross-sectional view of the engine mount for motor vehicles as one Embodiment of this invention, Comprising: The figure corresponded in the III-III cross section of FIG. 図1に示された自動車用エンジンマウントを構成する仕切部材の平面図。The top view of the partition member which comprises the engine mount for motor vehicles shown by FIG. 図2におけるIII−III断面図。III-III sectional drawing in FIG. 図2に示された仕切部材を構成する本体仕切板の底面図。The bottom view of the main body partition plate which comprises the partition member shown by FIG. 図1に示された自動車用エンジンマウントにおいて短絡流路の発現状態を説明するための要部説明図。The principal part explanatory drawing for demonstrating the expression state of a short circuit flow path in the engine mount for motor vehicles shown by FIG.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1には、本発明の流体封入式防振装置に係る一実施形態としての自動車用エンジンマウント10が示されている。この自動車用エンジンマウント10は、金属製の第1の取付部材12と金属製の第2の取付部材14が本体ゴム弾性体16で連結された構造とされている。また、自動車用エンジンマウント10は、第1の取付部材12がパワーユニット側に取り付けられる一方、第2の取付部材14がボデー側に取り付けられることにより、パワーユニットをボデーに対して、他の図示しないエンジンマウント等と協働して防振支持せしめるようになっている。かかる装着状態下、自動車用エンジンマウント10には、パワーユニットの分担荷重の入力により本体ゴム弾性体16が弾性変形することに伴って、第1の取付部材12と第2の取付部材14が図1中の上下方向に所定量だけ接近して相対変位せしめられると共に、防振すべき主たる振動が、第1の取付部材12と第2の取付部材14の間に、図1中の略上下方向に入力されることとなる。なお、本実施形態の自動車用エンジンマウント10は、その装着状態下で、図1に示すように、マウント中心軸(第1及び第2の取付部材12,14の中心軸)が略鉛直方向とされることから、以下の説明中において、特に断りのない限り、図1中の上下方向を、上下方向とする。   First, FIG. 1 shows an automobile engine mount 10 as an embodiment according to the fluid filled type vibration damping device of the present invention. The engine mount 10 for an automobile has a structure in which a metal first mounting member 12 and a metal second mounting member 14 are connected by a main rubber elastic body 16. Further, the engine mount 10 for an automobile has a first mounting member 12 attached to the power unit side, while a second mounting member 14 is attached to the body side, so that the power unit is mounted on the body to another engine (not shown). It is designed to support vibration isolation in cooperation with the mount. Under such a mounted state, the first mounting member 12 and the second mounting member 14 are attached to the engine mount 10 for an automobile as the main rubber elastic body 16 is elastically deformed by the input of the shared load of the power unit. The main vibration to be vibrated is moved between the first mounting member 12 and the second mounting member 14 in a substantially vertical direction in FIG. Will be entered. As shown in FIG. 1, the automobile engine mount 10 of the present embodiment has a mount center axis (center axes of the first and second mounting members 12 and 14) in a substantially vertical direction, as shown in FIG. 1. Therefore, in the following description, unless otherwise specified, the vertical direction in FIG. 1 is the vertical direction.

より詳細には、第1の取付部材12は、略逆円錐台のブロック形状を有していると共に、大径側端面から中心軸上に穿設されたねじ穴18を備えている。このねじ穴18に螺着される図示しない固定ボルトにより、第1の取付部材12が、図示しないパワーユニットに固定されるようになっている。   More specifically, the first mounting member 12 has a substantially inverted truncated cone block shape, and includes a screw hole 18 drilled on the central axis from the large-diameter end face. The first mounting member 12 is fixed to a power unit (not shown) by a fixing bolt (not shown) screwed into the screw hole 18.

また、第2の取付部材14は、大径の略円筒形状を有しており、軸方向中間部分には段差部20が設けられている。この段差部20を挟んで軸方向一方の側(図中の上側)が大径部22とされていると共に、軸方向他方の側が小径部24とされている。   The second mounting member 14 has a large-diameter, generally cylindrical shape, and a step portion 20 is provided at an axially intermediate portion. One side (the upper side in the figure) in the axial direction is the large-diameter portion 22 across the stepped portion 20, and the other side in the axial direction is the small-diameter portion 24.

そして、第2の取付部材14の中心軸上で軸方向上方に離隔して、第1の取付部材12が同軸上に配設されていると共に、それら第1の取付部材12と第2の取付部材14が本体ゴム弾性体16で連結されている。   The first mounting member 12 is coaxially disposed on the central axis of the second mounting member 14 so as to be spaced apart upward in the axial direction, and the first mounting member 12 and the second mounting member are mounted on the same axis. The member 14 is connected by a main rubber elastic body 16.

かかる本体ゴム弾性体16は、略円錐台形状とされており、軸方向上方に向かって次第に小径化するテーパ状の外周面を有している。そして、本体ゴム弾性体16に対して、その小径側端面から軸方向下方へ差し込まれた状態で、第1の取付部材12が加硫接着されている。また、本体ゴム弾性体16の大径側端部外周面には、第2の取付部材14が、その大径部22の内周面において重ね合わされて加硫接着されている。要するに、本実施形態では、本体ゴム弾性体16が、第1の取付部材12の外周面と第2の取付部材14の内周面に対して、それぞれ加硫接着された一体加硫成形品とされている。   The main rubber elastic body 16 has a substantially frustoconical shape, and has a tapered outer peripheral surface that gradually decreases in diameter toward the upper side in the axial direction. The first mounting member 12 is vulcanized and bonded to the main rubber elastic body 16 in a state of being inserted downward in the axial direction from the end surface on the small diameter side. Further, the second attachment member 14 is superimposed on the inner peripheral surface of the large-diameter portion 22 and vulcanized and bonded to the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16. In short, in the present embodiment, the main rubber elastic body 16 is an integrally vulcanized molded product that is vulcanized and bonded to the outer peripheral surface of the first mounting member 12 and the inner peripheral surface of the second mounting member 14, respectively. Has been.

而して、かかる本体ゴム弾性体16の一体加硫成形品においては、第2の取付部材14の軸方向上側の開口部が本体ゴム弾性体16で流体密に閉塞されており、軸方向下方に向かって開口する内部凹所30が形成されている。また、第2の取付部材14の小径部24の内周面には、その略全面を覆うシールゴム層32が、本体ゴム弾性体16から一体的に延び出して形成されている。   Thus, in the integrally vulcanized molded product of the main rubber elastic body 16, the axially upper opening of the second mounting member 14 is fluid-tightly closed by the main rubber elastic body 16, and the lower part in the axial direction. An internal recess 30 is formed that opens toward the front. In addition, a seal rubber layer 32 that covers substantially the entire surface is formed on the inner peripheral surface of the small diameter portion 24 of the second mounting member 14 so as to extend integrally from the main rubber elastic body 16.

さらに、この本体ゴム弾性体16の一体加硫成形品における内部凹所30には、軸方向下方の開口部から、仕切部材36と、可撓性膜としてのダイヤフラム40が嵌め入れられて組み付けられている。そして、内部凹所30の開口(第2の取付部材14の下側開口)がダイヤフラム40で流体密に閉塞されて、本体ゴム弾性体16とダイヤフラム40の軸方向対向面間に流体室42が画成されている。また、かかる流体室42が仕切部材36で仕切られて二分されており、仕切部材36の上方には、壁部の一部が本体ゴム弾性体16で構成された受圧室44が形成されていると共に、仕切部材36の下方には、壁部の一部がダイヤフラム40で構成された平衡室46が形成されている。   Furthermore, a partition member 36 and a diaphragm 40 as a flexible film are fitted and assembled into the internal recess 30 in the integrally vulcanized molded product of the main rubber elastic body 16 from the opening portion in the axial direction lower side. ing. The opening of the internal recess 30 (the lower opening of the second mounting member 14) is fluid-tightly closed by the diaphragm 40, and the fluid chamber 42 is formed between the axially opposing surfaces of the main rubber elastic body 16 and the diaphragm 40. It is defined. Further, the fluid chamber 42 is divided into two parts by being partitioned by a partition member 36, and a pressure receiving chamber 44 in which a part of the wall portion is configured by the main rubber elastic body 16 is formed above the partition member 36. In addition, below the partition member 36, an equilibrium chamber 46 is formed in which a part of the wall portion is constituted by the diaphragm 40.

ここにおいて、ダイヤフラム40は、変形容易なように弛みを持たせた薄肉円板形状のゴム膜で構成されており、その外周縁部には、略円環板形状を有するリング金具50が加硫接着されている。そして、このリング金具50が第2の取付部材14の下端開口部に内挿されてかしめ固定されることにより、ダイヤフラム40が第2の取付部材14に固着されて、第2の取付部材14の軸方向下方の開口部が流体密に閉塞されて流体室42が形成されている。また、この流体室42には、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等の非圧縮性流体が封入されている。なお、封入流体として、好適には、0.1Pa・s以下の低粘性流体が採用される。   Here, the diaphragm 40 is composed of a thin disk-shaped rubber film that is slack so that it can be easily deformed, and a ring metal fitting 50 having a substantially annular plate shape is vulcanized on the outer peripheral edge thereof. It is glued. The ring fitting 50 is inserted into the lower end opening of the second mounting member 14 and fixed by caulking, whereby the diaphragm 40 is fixed to the second mounting member 14 and the second mounting member 14 is fixed. A fluid chamber 42 is formed by fluidly closing the axially lower opening. The fluid chamber 42 is filled with an incompressible fluid such as water, alkylene glycol, polyalkylene glycol, or silicone oil. Note that a low-viscosity fluid of 0.1 Pa · s or less is preferably used as the sealed fluid.

また、仕切部材36は、図2〜4に示されているように、薄肉円環板形状の本体仕切板52に対して、上面側に薄肉円環板形状の保持板金具54が重ね合わされて固定された複合構造を有している。なお、これら本体仕切板52と保持板金具54は、合成樹脂材料や金属材料等の硬質材で形成することが出来る。   As shown in FIGS. 2 to 4, the partition member 36 has a thin annular plate-shaped holding plate bracket 54 superimposed on the upper surface side of the thin annular plate-shaped main body partition plate 52. It has a fixed composite structure. The main body partition plate 52 and the holding plate fitting 54 can be formed of a hard material such as a synthetic resin material or a metal material.

また、本体仕切板52の外周縁部には、外周面に開口して周方向に一周以下の長さで連続して延びる周溝56が形成されている。この周溝56の外周面への開口は、第2の取付部材14への組付状態下において小径部24で覆蓋されている。また、周溝56の周方向一方の端部には、受圧室44側に開口する連通孔58が形成されていると共に、周溝56の周方向他方の端部には、平衡室46側に開口する連通孔60が形成されている。これにより、仕切部材36の外周部分を周方向に延びて受圧室44と平衡室46を相互に連通するオリフィス通路62が形成されている。なお、オリフィス通路62の通路長さや断面積等は、オリフィス通路62の内部を流動せしめられる流体の共振周波数が、防振すべきエンジンシェイクに相当する低周波数域となるようにチューニングされている。   In addition, a circumferential groove 56 that is open to the outer peripheral surface and continuously extends in the circumferential direction with a length of one round or less is formed in the outer peripheral edge portion of the main body partition plate 52. The opening to the outer peripheral surface of the circumferential groove 56 is covered with the small diameter portion 24 in the assembled state to the second mounting member 14. Further, a communication hole 58 that opens to the pressure receiving chamber 44 side is formed at one end portion in the circumferential direction of the circumferential groove 56, and the other end portion in the circumferential direction of the circumferential groove 56 toward the equilibrium chamber 46 side. An open communication hole 60 is formed. Thus, an orifice passage 62 is formed that extends in the circumferential direction of the outer peripheral portion of the partition member 36 and communicates the pressure receiving chamber 44 and the equilibrium chamber 46 with each other. Note that the passage length, the cross-sectional area, and the like of the orifice passage 62 are tuned so that the resonance frequency of the fluid that flows inside the orifice passage 62 is in a low frequency region corresponding to the engine shake to be shaken.

また、本体仕切板52の中央部分には、受圧室44側に開口する円形の収容凹所64が形成されている。収容凹所64の底面における外周縁部には、後述する可動ゴム膜78の外周縁部を平衡室46側から当接状態で保持する平衡室側支持部70が全周に亘って連続して設けられている。平衡室側支持部70の内周側には、円形の透孔72が本体仕切板52の中央部分を板厚方向に貫通して形成されている。さらに、平衡室側支持部70の上面には、周方向の全周に亘って円弧状断面で連続して延びる係合周溝74が形成されている。また、本体仕切板52の収容凹所64の上方には、受圧室44側に開口する、収容凹所64よりも大径の円形状の嵌合周壁部76が形成されている。   In addition, a circular housing recess 64 that opens to the pressure receiving chamber 44 side is formed in the central portion of the main body partition plate 52. On the outer peripheral edge portion of the bottom surface of the housing recess 64, an equilibrium chamber side support portion 70 that holds an outer peripheral edge portion of a movable rubber film 78, which will be described later, in contact with the equilibrium chamber 46 side is continuously provided over the entire circumference. Is provided. A circular through hole 72 is formed on the inner peripheral side of the equilibrium chamber side support portion 70 so as to penetrate the central portion of the main body partition plate 52 in the plate thickness direction. Furthermore, on the upper surface of the equilibrium chamber side support portion 70, an engagement circumferential groove 74 is formed that extends continuously in an arcuate cross section over the entire circumference in the circumferential direction. Further, a circular fitting peripheral wall 76 having a diameter larger than that of the housing recess 64 and opening to the pressure receiving chamber 44 side is formed above the housing recess 64 of the main body partition plate 52.

さらに、本体仕切板52の収容凹所64には、可動ゴム膜78が収容配置されている。かかる可動ゴム膜78は、全体として円板形状を有しており、特に本実施形態では、外周縁部の全周に亘って円形断面で連続して延びる環状リブ80が一体形成されている。この環状リブ80の外径寸法は、可動ゴム膜78の中央部分の厚さ寸法よりも大きくされており、その結果、可動ゴム膜78は、環状リブ80が形成された外周縁部において中央部分よりも肉厚寸法が大きくされている。   Further, a movable rubber film 78 is accommodated in the accommodation recess 64 of the main body partition plate 52. The movable rubber film 78 has a disk shape as a whole, and in this embodiment, in particular, an annular rib 80 that continuously extends in a circular cross section over the entire circumference of the outer peripheral edge portion is integrally formed. The outer diameter of the annular rib 80 is larger than the thickness of the central portion of the movable rubber film 78. As a result, the movable rubber film 78 has a central portion at the outer peripheral edge where the annular rib 80 is formed. The wall thickness dimension is made larger.

そして、可動ゴム膜78は、軸直角方向に広がるようにして収容凹所64に組み付けられており、可動ゴム膜78の外周縁部の下面が、平衡室側支持部70に対して全周に亘って当接状態で装着されている。なお、環状リブ80の外周面の曲率半径が平衡室側支持部70の係合周溝74の曲率半径と略同一か僅かに大きくされており、上述の装着状態下において、可動ゴム膜78の環状リブ80は、平衡室側支持部70に形成された係合周溝74に嵌め入れられて係合されている。   The movable rubber film 78 is assembled in the housing recess 64 so as to spread in the direction perpendicular to the axis, and the lower surface of the outer peripheral edge of the movable rubber film 78 is all around the balance chamber side support part 70. It is mounted in a contact state. Note that the radius of curvature of the outer peripheral surface of the annular rib 80 is substantially the same as or slightly larger than the radius of curvature of the engagement circumferential groove 74 of the equilibrium chamber side support portion 70. The annular rib 80 is fitted into and engaged with an engagement circumferential groove 74 formed in the equilibrium chamber side support portion 70.

一方、保持板金具54は、略円環板形状とされており、その径方向中央部分に窓部82が形成されている。保持板金具54の外周縁部83の周方向で等間隔に離隔した複数箇所(本実施形態では3箇所)には、可動ゴム膜78の外周縁部を受圧室44側から覆う受圧室側支持部84が径方向内方に突出するように形成されている。このような構成とされた保持板金具54は、図2および図3に示すように、外周縁部83の外周面が本体仕切板52の嵌合周壁部76に嵌着されて、仕切部材36を構成するようになっている。それらの間で可動ゴム膜78を挟持した状態で組み付けられる。このような組み付け状態下、可動ゴム膜78は、受圧室側支持部84で受圧室44側から覆われている領域と、かかる受圧室側支持部84により覆われていない非覆蓋領域86に分けられる。   On the other hand, the holding plate metal 54 has a substantially annular plate shape, and a window portion 82 is formed in the radial center portion thereof. The pressure receiving chamber side support that covers the outer peripheral edge of the movable rubber film 78 from the pressure receiving chamber 44 side is provided at a plurality of positions (three positions in the present embodiment) spaced at equal intervals in the circumferential direction of the outer peripheral edge 83 of the holding plate metal fitting 54. The portion 84 is formed so as to protrude inward in the radial direction. As shown in FIGS. 2 and 3, the holding plate fitting 54 configured as described above is configured such that the outer peripheral surface of the outer peripheral edge portion 83 is fitted into the fitting peripheral wall portion 76 of the main body partition plate 52, and the partition member 36. Is configured. They are assembled with the movable rubber film 78 sandwiched between them. Under such an assembled state, the movable rubber film 78 is divided into a region covered by the pressure receiving chamber side support portion 84 from the pressure receiving chamber 44 side and a non-covered lid region 86 not covered by the pressure receiving chamber side support portion 84. It is done.

図3に示すように、受圧室側支持部84は、平衡室側支持部70との間で可動ゴム膜78の外周縁部に設けられた環状リブ80を当接保持する当接保持部90と、当接保持部90よりも可動ゴム膜78の内周側(径方向内方)に延出する延出部92を含んで構成されている。そして、可動ゴム膜78の外周縁部において、非覆蓋領域86の周方向長さが、受圧室側支持部84の当接保持部90に当接保持されている部分の周方向長さよりも大きくされている。また、受圧室側支持部84の内周縁部たる保持板金具54の窓部82の外周縁部は、本体仕切板52の透孔72の外周縁部よりも外周側に位置されている。   As shown in FIG. 3, the pressure receiving chamber side support portion 84 is in contact with and holds the annular rib 80 provided on the outer peripheral edge portion of the movable rubber film 78 with the equilibrium chamber side support portion 70. And an extending portion 92 that extends further to the inner peripheral side (inward in the radial direction) of the movable rubber film 78 than the abutment holding portion 90. In the outer peripheral edge portion of the movable rubber film 78, the circumferential length of the non-covering region 86 is larger than the circumferential length of the portion of the pressure receiving chamber side support portion 84 that is in contact with and held by the contact holding portion 90. Has been. Further, the outer peripheral edge portion of the window portion 82 of the holding plate fitting 54, which is the inner peripheral edge portion of the pressure receiving chamber side support portion 84, is positioned on the outer peripheral side with respect to the outer peripheral edge portion of the through hole 72 of the main body partition plate 52.

このように、保持板金具54が本体仕切板52の上面に重ね合わされた状態で、保持板金具54の外周縁部が、本体仕切板52の嵌合周壁部76に嵌合されることにより、保持板金具54と本体仕切板52が、相互に位置決め固定されている。   As described above, the outer peripheral edge portion of the holding plate metal piece 54 is fitted to the fitting peripheral wall portion 76 of the main body partition plate 52 in a state where the holding plate metal piece 54 is superimposed on the upper surface of the main body partition plate 52. The holding plate metal 54 and the main body partition plate 52 are positioned and fixed to each other.

また、保持板金具54において、受圧室側支持部84が、平衡室側支持部70に対して軸方向で所定距離を隔てて対向位置せしめられている。さらに、受圧室側支持部84の当接保持部90の下面には、円弧状断面で周方向に延びる係合周溝94が形成されている。なお、係合周溝94の曲率半径は、環状リブ80の外周面の曲率半径と略同一か僅かに小さくされており、可動ゴム膜78の環状リブ80が、受圧室側支持部84の係合周溝94に嵌め入れられて係合されるようになっている。   In the holding plate metal 54, the pressure receiving chamber side support portion 84 is opposed to the equilibrium chamber side support portion 70 with a predetermined distance in the axial direction. Further, an engagement circumferential groove 94 extending in the circumferential direction with an arcuate cross section is formed on the lower surface of the contact holding portion 90 of the pressure receiving chamber side support portion 84. The radius of curvature of the engagement circumferential groove 94 is substantially the same as or slightly smaller than the radius of curvature of the outer peripheral surface of the annular rib 80, and the annular rib 80 of the movable rubber film 78 is engaged with the pressure receiving chamber side support portion 84. It is inserted into the circumferential groove 94 and engaged therewith.

この保持板金具54が本体仕切板52に組み付けられた状態下で、可動ゴム膜78の環状リブ80が、本体仕切板52側の係合周溝74と受圧室側支持部84側の係合周溝94にそれぞれ嵌め入れられて係合保持されている。要するに、可動ゴム膜78は、仕切部材36への組付状態下、その環状リブ80が、板厚方向の上下両側から、平衡室側支持部70と受圧室側支持部84の当接保持部90との間で当接保持されることにより、可動ゴム膜78の中央領域の受圧室44側および平衡室46側への弾性変形を許容しても、仕切部材36に有利に保持できるのである。特に、本実施形態では、本体仕切板52と保持板金具54のそれぞれに形成された係合周溝74,94間で挟まれて、それら係合周溝74,94に係合されて挟持されていることにより、一層強固に仕切部材36に保持できるのである。なお、本体仕切板52の透孔72の開口周縁部は、下方(可動ゴム膜78から離隔する方向)に向けて湾曲した端縁部断面形状とされており、開口エッジ部による可動ゴム膜78の損傷が防止されている。   Under the state in which the holding plate fitting 54 is assembled to the main body partition plate 52, the annular rib 80 of the movable rubber film 78 is engaged with the engagement circumferential groove 74 on the main body partition plate 52 side and the pressure receiving chamber side support portion 84 side. The circumferential grooves 94 are respectively fitted and held. In short, when the movable rubber film 78 is assembled to the partition member 36, the annular rib 80 has an abutment holding portion between the equilibrium chamber side support portion 70 and the pressure receiving chamber side support portion 84 from both the upper and lower sides in the plate thickness direction. By being held in contact with 90, even if elastic deformation of the central region of the movable rubber film 78 toward the pressure receiving chamber 44 and the equilibrium chamber 46 is allowed, it can be advantageously held by the partition member 36. . In particular, in the present embodiment, it is sandwiched between the engaging circumferential grooves 74 and 94 formed in the main body partition plate 52 and the holding plate fitting 54, respectively, and is engaged and sandwiched by these engaging circumferential grooves 74 and 94. As a result, the partition member 36 can be more firmly held. In addition, the opening peripheral part of the through-hole 72 of the main body partition plate 52 is made into the edge part cross-sectional shape curved toward the downward direction (direction separated from the movable rubber film 78), and the movable rubber film 78 by an opening edge part is carried out. Damage is prevented.

そして、可動ゴム膜78は、その上面が、保持板金具54に形成された窓部82を通じて受圧室44に露呈されており、この窓部82を通じての露呈面に対して受圧室44の圧力が直接的に及ぼされるようになっている。また、可動ゴム膜78の下面は、本体仕切板52に形成された透孔72を通じて平衡室46に露呈されており、この透孔72を通じての露呈面に対して平衡室46の圧力が直接的に及ぼされるようになっている。   The upper surface of the movable rubber film 78 is exposed to the pressure receiving chamber 44 through a window portion 82 formed in the holding plate metal 54, and the pressure of the pressure receiving chamber 44 is applied to the exposed surface through the window portion 82. It has come to be directly affected. The lower surface of the movable rubber film 78 is exposed to the equilibrium chamber 46 through a through hole 72 formed in the main body partition plate 52, and the pressure in the equilibrium chamber 46 is directly applied to the exposed surface through the through hole 72. It has come to be affected.

なお、このことから明らかなように、本実施形態では、保持板金具54の受圧室側支持部84の当接保持部90によって、可動ゴム膜78の外周部分を受圧室44側から当接状態で保持すると共に、本体仕切板52の平衡室側支持部70の上面によって、可動ゴム膜78の外周部分を平衡室46側から当接状態で保持されている。   As is clear from this, in the present embodiment, the outer peripheral portion of the movable rubber film 78 is in contact with the pressure receiving chamber 44 side by the contact holding portion 90 of the pressure receiving chamber side support portion 84 of the holding plate fitting 54. And the outer peripheral portion of the movable rubber film 78 is held in contact with the upper surface of the equilibrium chamber side support portion 70 of the main body partition plate 52 from the equilibrium chamber 46 side.

これにより、オリフィス通路62のチューニング周波数よりも高周波数域の振動、例えばアイドリング振動や走行こもり音等の高周波小振幅振動が入力された場合に、オリフィス通路62の実質的な閉塞化に伴って受圧室44や平衡室46に圧力が惹起された際、可動ゴム膜78の上下面に及ぼされる圧力差に基づいて可動ゴム膜78の中央部分が透孔72内(平衡室46側)および窓部82内(受圧室44側)で上下方向に対して弾性変形せしめられることで、受圧室44の微小な正並びに負の圧力変動を平衡室46に逃がすようになっている。その結果、高周波小振幅振動の入力時におけるオリフィス通路62の実質的な閉塞化に伴う著しい高動ばね化が軽減乃至は回避されて、防振性能の向上が図られることとなる。要するに、本実施形態では、可動ゴム膜78を外周縁部だけで保持可能とした平衡室側支持部70と受圧室側支持部84を含む仕切部材36により圧力変動吸収機構が構成されているのである。   As a result, when vibration in a frequency range higher than the tuning frequency of the orifice passage 62, for example, high-frequency small amplitude vibration such as idling vibration or traveling boom noise, is input, the pressure is received along with the substantial blockage of the orifice passage 62. When pressure is induced in the chamber 44 or the equilibrium chamber 46, the central portion of the movable rubber film 78 is located in the through-hole 72 (equilibrium chamber 46 side) and the window portion based on the pressure difference exerted on the upper and lower surfaces of the movable rubber film 78. By being elastically deformed in the vertical direction in 82 (pressure receiving chamber 44 side), minute positive and negative pressure fluctuations in the pressure receiving chamber 44 are released to the equilibrium chamber 46. As a result, a significant increase in the dynamic spring associated with the substantial blockage of the orifice passage 62 at the time of inputting high-frequency small-amplitude vibration is reduced or avoided, and the vibration-proof performance is improved. In short, in this embodiment, the pressure fluctuation absorbing mechanism is configured by the partition member 36 including the equilibrium chamber side support portion 70 and the pressure receiving chamber side support portion 84 that can hold the movable rubber film 78 only by the outer peripheral edge portion. is there.

また一方、段差の乗り越え等に際して衝撃的で大きな振幅振動が入力されることに伴い、受圧室44に過大で急激な負圧が生ぜしめられた際には、受圧室44に発生する負圧と平衡室46との圧力差に基づいて可動ゴム膜78に対して受圧室44側に膨らむ方向の変形力が及ぼされる。その結果、図5に示されているように、可動ゴム膜78の外周縁部において、受圧室44側への変位が許容されている非覆蓋領域86が、上方にめくれ上がるような弾性変形が許容されて生ぜしめられる。その結果、可動ゴム膜78の外周縁部は、窓部82の形成部位において、平衡室側支持部70から上方に離隔せしめられることとなり、それに伴って、可動ゴム膜78と平衡室側支持部70の隙間により、受圧室44と平衡室46を直接に連通せしめる短絡流路96が発現せしめられる。   On the other hand, when an excessively large and sudden negative pressure is generated in the pressure receiving chamber 44 due to the input of shocking and large amplitude vibration when the step is overcome, the negative pressure generated in the pressure receiving chamber 44 is reduced. Based on the pressure difference from the equilibrium chamber 46, a deformation force is exerted on the movable rubber film 78 in the direction of swelling toward the pressure receiving chamber 44. As a result, as shown in FIG. 5, at the outer peripheral edge portion of the movable rubber film 78, the non-covering region 86 that is allowed to be displaced toward the pressure receiving chamber 44 is elastically deformed so as to be turned up. Allowed and produced. As a result, the outer peripheral edge portion of the movable rubber film 78 is separated upward from the equilibrium chamber side support portion 70 at the portion where the window portion 82 is formed. Accordingly, the movable rubber film 78 and the equilibrium chamber side support portion are separated. Due to the gap 70, a short-circuit channel 96 that allows the pressure receiving chamber 44 and the equilibrium chamber 46 to communicate directly is developed.

この短絡流路96が発現すると、可動ゴム膜78で制限されることなく、平衡室46から受圧室44への直接の流体流動が許容されることとなるから、受圧室44に惹起される急激な負圧が可及的速やかに解消され、或いは過大な負圧の発生が回避されることとなる。それ故、衝撃的な荷重入力に際してのキャビテーションに起因する異音の発生が効果的に防止され得るのである。なお、図5は、短絡流路96の発現を判り易くするために、可動ゴム膜78の弾性変形量を誇張表現したものである。   When this short-circuit channel 96 is developed, the fluid flow directly from the equilibrium chamber 46 to the pressure receiving chamber 44 is allowed without being restricted by the movable rubber film 78, so The negative pressure is eliminated as quickly as possible, or the generation of an excessive negative pressure is avoided. Therefore, the generation of abnormal noise due to cavitation when an impact load is input can be effectively prevented. FIG. 5 exaggerates the elastic deformation amount of the movable rubber film 78 in order to make it easy to understand the expression of the short-circuit channel 96.

以上述べてきたように、本実施形態によれば、可動ゴム膜78の中央部分が、受圧室44と平衡室46の何れの側からも仕切部材36に当接保持されておらず、受圧室44と平衡室46の圧力変動により受圧室44側と平衡室46側の両側に確実に弾性変形可能とされている。これにより、オリフィス通路62のチューニング周波数よりも高周波数域で問題となる振動が入力された際に、オリフィス通路62の著しい流通抵抗の増大に伴う受圧室44の圧力変動を、可動ゴム膜78の中央部分の受圧室44側と平衡室46側の両側へ十分な弾性変形に基づき吸収低減することができ、防振特性の向上を図ることができる。   As described above, according to this embodiment, the central portion of the movable rubber film 78 is not held in contact with the partition member 36 from either side of the pressure receiving chamber 44 and the equilibrium chamber 46, and the pressure receiving chamber Due to the pressure fluctuations of the pressure chamber 44 and the equilibrium chamber 46, it is possible to reliably elastically deform both the pressure receiving chamber 44 side and the equilibrium chamber 46 side. As a result, when a vibration that is a problem in a frequency range higher than the tuning frequency of the orifice passage 62 is input, the pressure fluctuation of the pressure receiving chamber 44 caused by a significant increase in the flow resistance of the orifice passage 62 is caused to be generated in the movable rubber film 78. Absorption can be reduced based on sufficient elastic deformation to both the pressure receiving chamber 44 side and the equilibrium chamber 46 side of the central portion, and the vibration isolation characteristics can be improved.

しかも、可動ゴム膜78の外周縁部は、平衡室側支持部70と受圧室側支持部84との間で当接保持されており、仕切部材36に対して確実に位置決め保持されていることから、可動ゴム膜78の弾性変形に伴う圧力変動吸収機能を安定して発揮することができる。そして、受圧室44に過大な負圧が発生した場合には、非覆蓋領域86が良好に弾性変形されて短絡流路96が発現され、受圧室44の負圧も速やかに解消することができる。このように、本実施形態では、短絡流路96の発現と可動ゴム膜78による受圧室44の圧力変動吸収機能を、部品点数の増加や装置の大型化を伴うことなく、高度に実現できるのである。   Moreover, the outer peripheral edge portion of the movable rubber film 78 is held in contact between the equilibrium chamber side support portion 70 and the pressure receiving chamber side support portion 84, and is reliably positioned and held with respect to the partition member 36. Thus, the function of absorbing pressure fluctuation accompanying the elastic deformation of the movable rubber film 78 can be stably exhibited. When an excessive negative pressure is generated in the pressure receiving chamber 44, the non-covering region 86 is elastically deformed satisfactorily and the short circuit channel 96 is developed, so that the negative pressure in the pressure receiving chamber 44 can be quickly eliminated. . Thus, in the present embodiment, the expression of the short-circuit channel 96 and the pressure fluctuation absorbing function of the pressure receiving chamber 44 by the movable rubber film 78 can be highly realized without increasing the number of components and the size of the apparatus. is there.

特に、本実施形態では、可動ゴム膜78の外周縁部における周方向で等間隔に離隔する複数箇所が受圧室側支持部84の当接保持部90と平衡室側支持部70との間で当接保持されていることから、可動ゴム膜78の外周縁部を比較的均等な支持バランスにより仕切部材36によって支持することができる。また、衝撃的な荷重入力時に短絡流路96を発現させる非覆蓋領域86が周方向で等間隔に配設されていることから、受圧室44における過大な負圧の発生場所に関わらず速やかに負圧を解消して、キャビテーション防止効果を有利に得ることができる。なお、当接保持部90の支持強度や非覆蓋領域86の弾性変形量等を考慮して、受圧室側支持部84は周方向の3箇所に設けられていることが望ましいが、これに限定されない。   In particular, in this embodiment, a plurality of locations that are equally spaced in the circumferential direction on the outer peripheral edge of the movable rubber film 78 are between the contact holding portion 90 of the pressure receiving chamber side support portion 84 and the equilibrium chamber side support portion 70. Since they are held in contact with each other, the outer peripheral edge of the movable rubber film 78 can be supported by the partition member 36 with a relatively uniform support balance. In addition, since the non-covering regions 86 that allow the short-circuit channel 96 to appear when an impact load is input are arranged at equal intervals in the circumferential direction, the pressure receiving chamber 44 can be promptly used regardless of where the excessive negative pressure is generated. The negative pressure can be eliminated and a cavitation preventing effect can be obtained advantageously. In consideration of the support strength of the contact holding portion 90 and the amount of elastic deformation of the non-covering region 86, the pressure receiving chamber side support portions 84 are preferably provided at three locations in the circumferential direction. Not.

さらに、本実施形態では、受圧室側支持部84の内周縁部が、透孔72の外周縁部よりも外周側に位置していることから、透孔72を通じて平衡室46側に弾性変形可能な可動ゴム膜78の中央部分の全領域が、受圧室44側支持面に干渉することなく受圧室44側にも弾性変形可能となる。従って、可動ゴム膜78の中央部分において、仕切部材36と干渉しない全領域が平衡室46側と受圧室44側の何れの側にも十分に弾性変形可能とされ、安定した圧力変動吸収機能が有利に発揮される。   Furthermore, in this embodiment, since the inner peripheral edge of the pressure receiving chamber side support portion 84 is located on the outer peripheral side with respect to the outer peripheral edge of the through hole 72, it can be elastically deformed toward the equilibrium chamber 46 through the through hole 72. The entire region of the central portion of the movable rubber film 78 can be elastically deformed also on the pressure receiving chamber 44 side without interfering with the pressure receiving chamber 44 side support surface. Therefore, in the central portion of the movable rubber film 78, the entire region that does not interfere with the partition member 36 can be sufficiently elastically deformed on either the equilibrium chamber 46 side or the pressure receiving chamber 44 side, and a stable pressure fluctuation absorbing function can be achieved. It is beneficial.

特に、可動ゴム膜78の外周縁部において、受圧室側支持部84の当接保持部90により平衡室側支持部70との間で保持されている部分の周方向長さよりも、非覆蓋領域86の周方向長さが大きくされていることから、非覆蓋領域86が短絡流路96を発現させる程度まで十分に受圧室44側に弾性変形することができ、短絡流路96の発現が確実に行われ得る。   In particular, in the outer peripheral edge portion of the movable rubber film 78, the non-covering region is larger than the circumferential length of the portion held between the pressure holding chamber side support portion 84 and the equilibrium chamber side support portion 70 by the contact holding portion 90. Since the circumferential length of 86 is increased, the non-covered region 86 can be sufficiently elastically deformed toward the pressure receiving chamber 44 to the extent that the short-circuit channel 96 is developed, and the short-circuit channel 96 is reliably developed. Can be done.

また、受圧室側支持部84が、当接保持部90と、当接保持部90よりも可動ゴム膜78の内周側に延出する延出部92を含んでいることから、当接保持部90にて可動ゴム膜78の外周縁部を安定して保持すると共に、延出部92の延出量を適当に調節することにより、可動ゴム膜78による圧力吸収機構の防振特性をチューニングすることも可能となり、防振特性の設定自由度の向上を図ることができる。   Further, the pressure receiving chamber side support portion 84 includes the contact holding portion 90 and the extending portion 92 that extends further to the inner peripheral side of the movable rubber film 78 than the contact holding portion 90. The outer peripheral edge of the movable rubber film 78 is stably held by the portion 90, and the vibration damping characteristics of the pressure absorbing mechanism by the movable rubber film 78 are tuned by appropriately adjusting the extension amount of the extension portion 92. It is also possible to improve the degree of freedom in setting the vibration isolation characteristics.

なお、出願人が先に提案した特許文献2に記載の構造の流体封入式防振装置と、本実施形態の流体封入式防振装置の防振特性を実測したところ、オリフィス通路62による減衰効果は、特許文献2と同程度の効果が得られることがわかった。また、可動ゴム膜78の弾性変形による圧力変動吸収機能については、60〜200Hzの周波数域の入力振動に対して装置の低動ばね特性が略10%程度向上されることが確認できた。   In addition, when the vibration-proof characteristics of the fluid-filled vibration isolator having the structure described in Patent Document 2 previously proposed by the applicant and the fluid-filled vibration-proof device of the present embodiment were measured, the damping effect by the orifice passage 62 was measured. It was found that the same effect as in Patent Document 2 can be obtained. Further, it was confirmed that the low dynamic spring characteristic of the device was improved by about 10% with respect to the input vibration in the frequency range of 60 to 200 Hz with respect to the pressure fluctuation absorbing function by the elastic deformation of the movable rubber film 78.

以上、本発明の実施形態について詳述してきたが、これらはあくまでも例示であって、本発明は、これら実施形態における具体的な記載によって、何等、限定的に解釈されるものでない。   As mentioned above, although embodiment of this invention was explained in full detail, these are illustration to the last, Comprising: This invention is not limited at all by the specific description in these embodiment.

例えば、上述の実施形態では、受圧室側支持部84の当接保持部90と延出部92を含む全領域が可動ゴム膜78に当接されていたが、必要に応じて、延出部92と可動ゴム膜78との間に隙間を設けるようにしてもよい。また、受圧室側支持部84に延出部92を必ずしも設ける必要はなく、受圧室側支持部84の全体が当接保持部90とされていてもよい。   For example, in the above-described embodiment, the entire region including the contact holding part 90 and the extension part 92 of the pressure-receiving chamber side support part 84 is in contact with the movable rubber film 78. A gap may be provided between 92 and the movable rubber film 78. Further, the extension portion 92 is not necessarily provided in the pressure receiving chamber side support portion 84, and the entire pressure receiving chamber side support portion 84 may be the contact holding portion 90.

また、平衡室側支持部70において、係合周溝74は、可動ゴム膜78の外周縁部に当接している必要があるが、それ以外の部分例えば円環状の突部98の先端部は、可動ゴム膜78に対して必ずしも当接している必要はなく、隙間を隔てて対向配置されていてもよい。これにより、可動ゴム膜78の上下方向での微小変形が許容されて、防振効果の向上が期待できる。   Further, in the equilibrium chamber side support portion 70, the engagement circumferential groove 74 needs to be in contact with the outer peripheral edge portion of the movable rubber film 78, but the other portion, for example, the tip portion of the annular protrusion 98 is The movable rubber film 78 is not necessarily in contact with the movable rubber film 78, and may be disposed to face each other with a gap. Thereby, a minute deformation in the vertical direction of the movable rubber film 78 is allowed, and an improvement in the vibration isolation effect can be expected.

また、受圧室側支持部84は、必ずしも周方向に等間隔に複数個設ける必要はなく、周方向に非等間隔で複数設けてもよく、また、周状の1か所に分断部分を有する周状に延びる1つの受圧室側支持部を設けてもよい。   Further, it is not always necessary to provide a plurality of pressure receiving chamber side support portions 84 at equal intervals in the circumferential direction, and a plurality of pressure receiving chamber side support portions 84 may be provided at unequal intervals in the circumferential direction, and have a divided portion at one circumferential position. One pressure receiving chamber side support portion extending in a circumferential shape may be provided.

その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   In addition, although not enumerated one by one, the present invention can be carried out in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the present invention.

10:自動車用エンジンマウント(流体封入式防振装置)、12:第1の取付部材、14:第2の取付部材、16:本体ゴム弾性体、36:仕切部材、40:ダイヤフラム(可撓性膜)、44:受圧室、46:平衡室、62:オリフィス通路、70:平衡室側支持部、72:透孔、78:可動ゴム膜、84:受圧室側支持部、86:非覆蓋領域、90:当接保持部、92:延出部、96:短絡流路 10: Engine mount for automobile (fluid-filled vibration isolator), 12: first mounting member, 14: second mounting member, 16: rubber elastic body of main body, 36: partition member, 40: diaphragm (flexibility Membrane), 44: Pressure receiving chamber, 46: Equilibrium chamber, 62: Orifice passage, 70: Equilibrium chamber side support portion, 72: Through hole, 78: Movable rubber membrane, 84: Pressure receiving chamber side support portion, 86: Non-covering region , 90: contact holding part, 92: extension part, 96: short circuit flow path

Claims (5)

本体ゴム弾性体で弾性連結された第1の取付部材および第2の取付部材と、
前記第2の取付部材によって支持された仕切部材と、
前記仕切部材を挟んだ一方の側に位置して壁部の一部が該本体ゴム弾性体によって構成されて非圧縮性流体が封入された受圧室と、
前記仕切部材を挟んだ他方の側に位置して壁部の一部が可撓性膜で構成されて前記非圧縮性流体が封入された平衡室と、
前記受圧室と前記平衡室を相互に連通するオリフィス通路と、
前記仕切部材の中央部分に配設されて前記受圧室と前記平衡室の圧力が両側面に及ぼされる可動ゴム膜と、を備えている流体封入式防振装置において、
前記仕切部材に、前記可動ゴム膜の外周縁部を前記平衡室側から当接状態で保持する平衡室側支持部と、該可動ゴム膜の該外周縁部を受圧室側から覆う受圧室側支持部が設けられていると共に、
前記可動ゴム膜の前記外周縁部は、前記受圧室側支持部に覆われている部分において該受圧室側支持部に形成された当接保持部と前記平衡室側支持部との間で当接保持されている一方、該受圧室側支持部に覆われていない非覆蓋領域において前記受圧室側への弾性変形が許容されており、該非覆蓋領域の該受圧室側への弾性変形に基づいて該可動ゴム膜の該外周縁部が前記平衡室側支持部から離隔することにより前記平衡室から前記受圧室に至る短絡流路が発現されるようになっており、
前記可動ゴム膜の中央部分が、前記受圧室と前記平衡室の圧力変動により前記受圧室側と前記平衡室側への弾性変形することに基づき、前記オリフィス通路のチューニング周波数よりも高周波数域の受圧室の圧力変動を吸収する圧力変動吸収機構が構成されていることを特徴とする流体封入式防振装置。
A first attachment member and a second attachment member elastically connected by a main rubber elastic body;
A partition member supported by the second mounting member;
A pressure receiving chamber in which a part of the wall portion is formed of the main rubber elastic body and in which an incompressible fluid is sealed, located on one side of the partition member;
An equilibrium chamber that is located on the other side of the partition member and in which a part of the wall portion is formed of a flexible film and in which the incompressible fluid is enclosed,
An orifice passage communicating the pressure receiving chamber and the equilibrium chamber with each other;
In a fluid-filled vibration isolator comprising a movable rubber film that is disposed in a central part of the partition member and that exerts pressure on the pressure receiving chamber and the equilibrium chamber on both side surfaces,
An equilibrium chamber side support portion that holds the outer peripheral edge portion of the movable rubber film in contact with the partition member from the equilibrium chamber side, and a pressure receiving chamber side that covers the outer peripheral edge portion of the movable rubber film from the pressure receiving chamber side. A support is provided,
The outer peripheral edge portion of the movable rubber film is abutted between the contact holding portion formed on the pressure receiving chamber side support portion and the equilibrium chamber side support portion in a portion covered with the pressure receiving chamber side support portion. On the other hand, elastic deformation toward the pressure receiving chamber is allowed in the non-covering area that is not covered by the pressure-receiving-chamber-side support portion, and is based on elastic deformation of the non-covering area toward the pressure-receiving chamber. The outer peripheral edge of the movable rubber film is separated from the equilibrium chamber side support portion, so that a short-circuit channel from the equilibrium chamber to the pressure receiving chamber is developed,
The central portion of the movable rubber film is elastically deformed to the pressure receiving chamber side and the equilibrium chamber side due to pressure fluctuations of the pressure receiving chamber and the equilibrium chamber, and therefore has a higher frequency range than the tuning frequency of the orifice passage. A fluid-filled vibration isolator comprising a pressure fluctuation absorbing mechanism that absorbs pressure fluctuation in a pressure receiving chamber.
前記可動ゴム膜の外周縁部の周方向で等間隔に離隔する複数箇所が、該周方向で等間隔に離隔配置された複数の前記受圧室側支持部により、前記受圧室側から覆われていると共に、それら受圧室側支持部の前記当接保持部と平衡室側支持部との間で該可動ゴム膜の該外周縁部の該複数箇所が当接保持されている請求項1に記載の流体封入式防振装置。   A plurality of locations spaced apart at equal intervals in the circumferential direction of the outer peripheral edge of the movable rubber film are covered from the pressure receiving chamber side by a plurality of pressure receiving chamber side support portions that are spaced apart at equal intervals in the circumferential direction. The plurality of locations on the outer peripheral edge of the movable rubber film are held in contact between the contact holding portion of the pressure receiving chamber side support portion and the equilibrium chamber side support portion. Fluid-filled vibration isolator. 前記仕切部材において、前記平衡室側支持部の内周側に前記可動ゴム膜に対して前記平衡室の圧力を及ぼす透孔が設けられている一方、前記受圧室側支持部の内周縁部が、該透孔の外周縁部よりも外周側に位置している請求項1又は2に記載の流体封入式防振装置。   In the partition member, a through hole is provided on the inner peripheral side of the equilibrium chamber side support portion to exert pressure on the movable rubber film against the equilibrium chamber, while an inner peripheral edge portion of the pressure receiving chamber side support portion is The fluid filled type vibration damping device according to claim 1, wherein the fluid filled type vibration damping device is located on the outer peripheral side of the outer peripheral edge portion of the through hole. 前記可動ゴム膜の外周縁部において、前記非覆蓋領域の周方向長さが、前記受圧室側支持部の当接保持部に当接保持されている部分の周方向長さよりも大きくされている請求項1〜3の何れか1項に記載の流体封入式防振装置。   In the outer peripheral edge portion of the movable rubber film, the circumferential length of the non-covering region is made larger than the circumferential length of the portion that is held in contact with the contact holding portion of the pressure receiving chamber side support portion. The fluid-filled vibration isolator according to any one of claims 1 to 3. 前記受圧室側支持部が、前記当接保持部よりも前記可動ゴム膜の内周側に延出する延出部を含んでいる請求項1〜4の何れか1項に記載の流体封入式防振装置。   The fluid-filled type according to any one of claims 1 to 4, wherein the pressure-receiving chamber-side support portion includes an extending portion that extends to an inner peripheral side of the movable rubber film with respect to the contact holding portion. Anti-vibration device.
JP2012098389A 2012-04-24 2012-04-24 Fluid filled vibration isolator Active JP5899039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012098389A JP5899039B2 (en) 2012-04-24 2012-04-24 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098389A JP5899039B2 (en) 2012-04-24 2012-04-24 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2013227991A true JP2013227991A (en) 2013-11-07
JP5899039B2 JP5899039B2 (en) 2016-04-06

Family

ID=49675814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098389A Active JP5899039B2 (en) 2012-04-24 2012-04-24 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP5899039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017304A (en) * 2016-07-27 2018-02-01 住友理工株式会社 Fluid sealed type vibration-proof device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190602A (en) * 2007-02-02 2008-08-21 Tokai Rubber Ind Ltd Fluid-sealed vibration isolating device
JP2009002420A (en) * 2007-06-20 2009-01-08 Yamashita Rubber Co Ltd Liquid-sealed vibration control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190602A (en) * 2007-02-02 2008-08-21 Tokai Rubber Ind Ltd Fluid-sealed vibration isolating device
JP2009002420A (en) * 2007-06-20 2009-01-08 Yamashita Rubber Co Ltd Liquid-sealed vibration control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018017304A (en) * 2016-07-27 2018-02-01 住友理工株式会社 Fluid sealed type vibration-proof device

Also Published As

Publication number Publication date
JP5899039B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP4820792B2 (en) Fluid filled vibration isolator
JP2007046777A (en) Fluid-filled type engine mount
JP2008101719A (en) Fluid sealed vibration absorbing device
JP4218061B2 (en) Fluid filled vibration isolator
JP4861843B2 (en) Fluid filled vibration isolator
JP3729107B2 (en) Fluid filled vibration isolator
JP5119018B2 (en) Fluid filled vibration isolator
JP6240482B2 (en) Fluid filled vibration isolator
JP2009243511A (en) Fluid-filled engine mount for automobile
JP2013160265A (en) Fluid-sealed vibration-damping device
JP5899039B2 (en) Fluid filled vibration isolator
JP4871902B2 (en) Fluid filled vibration isolator
JP6710123B2 (en) Fluid filled type vibration damping device
JP4075066B2 (en) Fluid filled engine mount
JP2010031988A (en) Fluid-sealed vibration control device
JP2008163970A (en) Fluid-sealed vibration control device
JP4792414B2 (en) Fluid filled vibration isolator
JP2007255442A (en) Liquid filled vibration isolation device
JP2007032745A (en) Fluid-filled vibration isolator
JP5677898B2 (en) Fluid filled vibration isolator
JP5061132B2 (en) Fluid filled vibration isolator
JP2012172737A (en) Fluid-sealed antivibration device
JP2008196508A (en) Fluid-sealed vibration isolating device
JP5014239B2 (en) Fluid filled vibration isolator
JP5893482B2 (en) Liquid-filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5899039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150