JP2013227673A - Method for smelting low-carbon high-manganese steel - Google Patents

Method for smelting low-carbon high-manganese steel Download PDF

Info

Publication number
JP2013227673A
JP2013227673A JP2013071020A JP2013071020A JP2013227673A JP 2013227673 A JP2013227673 A JP 2013227673A JP 2013071020 A JP2013071020 A JP 2013071020A JP 2013071020 A JP2013071020 A JP 2013071020A JP 2013227673 A JP2013227673 A JP 2013227673A
Authority
JP
Japan
Prior art keywords
mass
source
molten steel
vacuum degassing
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013071020A
Other languages
Japanese (ja)
Other versions
JP5910830B2 (en
Inventor
Wataru Todo
渉 藤堂
Tomoyuki Ueno
智之 上野
Hideki Yokoyama
英樹 横山
Hisashi Ogawa
尚志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013071020A priority Critical patent/JP5910830B2/en
Publication of JP2013227673A publication Critical patent/JP2013227673A/en
Application granted granted Critical
Publication of JP5910830B2 publication Critical patent/JP5910830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for smelting low-carbon high-manganese steel including ≥0.02 mass% and <0.10 mass% C and ≥0.5 mass% Mn, at a high Mn yield rate.SOLUTION: A method for smelting low-carbon high-manganese steel includes performing vacuum degassing process for molten steel taken from a convertor to a ladle. During the time from the discharging of the molten steel from the converter to the start of the vacuum degassing process, among the total Mn source to be charged to the molten steel, an Mn source of less than 50 mass% in terms of metal Mn is charged. In a succeeding vacuum degassing, a rimmed treatment is performed without feeding oxygen from a top-blown lance, and after deoxidization using a deoxidizing agent, a killed treatment is performed, as well as an Mn source containing at least C within a range of 0.5 to 10 mass% is charged as the residual Mn source, whereby the concentration of each of C and Mn is adjusted to a desired range.

Description

本発明は、転炉から出鋼した溶鋼を真空脱ガス処理して低炭素高マンガン鋼を溶製する方法に関し、具体的には、Mn源として安価なFeMnを用いても、高い歩留りでMnを添加することができる低炭素高マンガン鋼の溶製方法に関するものである。   The present invention relates to a method for producing low-carbon high-manganese steel by vacuum degassing of molten steel discharged from a converter. Specifically, even if inexpensive FeMn is used as a Mn source, Mn is produced with a high yield. It is related with the melting method of the low carbon high manganese steel which can add.

ラインパイプ用の鋼管材料や自動車用の高強度鋼板等には、低炭素高マンガン鋼が大量に使用されている。ここで、本発明における低炭素高マンガン鋼とは、C含有量が0.02mass%以上かつMn含有量が0.5mass%以上の鋼のことをいう。   Low carbon high manganese steel is used in large quantities for steel pipe materials for line pipes and high strength steel plates for automobiles. Here, the low carbon high manganese steel in the present invention refers to a steel having a C content of 0.02 mass% or more and a Mn content of 0.5 mass% or more.

鋼へのMnの添加は、一般的に、転炉から取鍋に溶鋼を出鋼する時と、上記出鋼した溶鋼を、RH真空脱ガス装置等の真空脱ガス設備を用いて、脱炭と合金元素の成分調整を行う二次精錬時において行われている。Mnの添加に用いるMn原料としては、下記の表1に示した、金属マンガン(Met−Mn、金属Mn)、C濃度が低い低Cフェロマンガン(LCFeMn)およびC濃度が高い高Cフェロマンガン(HCFeMn)の3種が主として用いられている。以降、上記3種を「Mn源」、また、LCFeMnとHCFeMnの2種を「FeMn」または「Mn合金鉄」とも称する。   Addition of Mn to steel is generally performed by decarburizing the molten steel from the converter to the ladle and using the vacuum degassing equipment such as RH vacuum degassing equipment. And is performed during secondary refining to adjust the composition of alloying elements. As Mn raw materials used for the addition of Mn, metal manganese (Met-Mn, metal Mn), low C ferromanganese (LCFeMn) having a low C concentration, and high C ferromanganese having a high C concentration (shown in Table 1 below) Three types of HCFeMn) are mainly used. Hereinafter, the above three types are also referred to as “Mn source”, and the two types of LCFeMn and HCFeMn are also referred to as “FeMn” or “Mn alloy iron”.

Figure 2013227673
Figure 2013227673

Mnは、蒸気圧が高く、損失し易い元素であるため、高Mn鋼は、Mnの蒸発による損失を極力抑えて溶製することが必要となる。そこで、真空脱ガス装置を用いて高Mn鋼を溶製する際には、脱炭時間を短縮するため、Mn源として、C含有量の少ない金属MnやLCFeMnを使用している。しかし、金属Mnは、LCFeMnやHCFeMn等のMn合金鉄と比較して原料コストが高いという問題がある。また、FeMnは、Mn鉱石を輸入して国内で生産しているが、金属Mnは、大部分を輸入に依存しており、安定供給が不安視されている。   Since Mn is an element that has a high vapor pressure and is easily lost, high-Mn steel needs to be melted while minimizing loss due to evaporation of Mn. Then, when melting high Mn steel using a vacuum degassing apparatus, in order to shorten the decarburization time, metal Mn or LCFeMn having a low C content is used as a Mn source. However, metal Mn has a problem that the raw material cost is higher than that of Mn alloy iron such as LCFeMn and HCFeMn. In addition, FeMn is produced domestically by importing Mn ore, but metal Mn largely depends on import, and stable supply is considered uneasy.

そこで、金属Mnに代えて、安価でかつ比較的安定供給が可能な、LCFeMnやHCFeMnのMn合金鉄の使用比率を高める試みがなされてきた。例えば、特許文献1には、Mn量が1mass%以上の高Mn極低炭鋼の溶製において、転炉出鋼時にHCFeMnを20kg/溶鋼t程度投入し、RH処理中に上吹きランスから酸素と不活性ガスを混合送酸して、Mnをロスさせずに脱炭を行い、キルド処理中の金属Mnの使用量を削減して、コストダウンを図る技術が開示されている。ここで、上記キルド処理とは、AlあるいはSiなどで脱酸した溶鋼を真空脱ガス処理して、合金成分の調節、溶解ガス成分の低減、脱酸生成物(介在物)の浮上分離促進などを行う精錬操作のことをいう。
また、特許文献2には、転炉出鋼中に取鍋にHCFeMnを19.0kg/t投入した後、真空脱ガス槽における取鍋内の溶鋼面に対して真空吸引状態で上吹ランスから酸素を吹き付けて溶鋼の真空脱炭を行う高Mn鋼の溶製方法において、転炉出鋼中に取鍋内の溶鋼にAlを添加して取鍋内の溶鋼温度低下を抑制する一方、真空脱ガス槽内の真空度を調整しつつ、上吹ランスから吹き付ける酸素に水を混合して真空脱炭することでMn損失を抑制する技術が開示されている。
Accordingly, attempts have been made to increase the use ratio of LCFeMn or HCFeMn Mn alloy iron, which is inexpensive and can be supplied relatively stably, instead of metal Mn. For example, in Patent Document 1, in the production of a high Mn ultra-low carbon steel having an Mn amount of 1 mass% or more, about 20 kg of HCFeMn / molten steel t is charged at the time of steel leaving the converter, and oxygen is discharged from the top blow lance during RH treatment. And an inert gas are mixed and sent to decarburize without losing Mn, thereby reducing the amount of metal Mn used in the killing process and reducing the cost. Here, the above-mentioned killing treatment includes vacuum degassing treatment of molten steel deoxidized with Al or Si, etc. to adjust the alloy components, reduce dissolved gas components, and promote flotation separation of deoxidized products (inclusions). This refers to the refining operation.
Further, in Patent Document 2, 19.0 kg / t of HCFeMn is introduced into the ladle during the steel output from the converter, and then from the upper blowing lance in a vacuum suction state against the molten steel surface in the ladle in the vacuum degassing tank. In the melting method of high Mn steel that blows oxygen and vacuum decarburization of molten steel, while adding Al to the molten steel in the ladle during the converter steel, it suppresses the temperature drop of the molten steel in the ladle. A technique for suppressing Mn loss by mixing water with oxygen blown from an upper blowing lance and vacuum decarburizing while adjusting the degree of vacuum in the degassing tank is disclosed.

特開平05−195046号公報JP 05-195046 A 特開2003−221613号公報JP 2003-221613 A

しかしながら、C含有量が0.02mass%以上の低炭素鋼では、脱炭反応に必要な溶鋼中の酸素量が少なく、脱炭速度が遅くなる。この点、上記の従来技術は、いずれも脱炭に必要な酸素量を確保するため、RH真空脱ガス装置で上吹きランスから送酸を行いながらリムド処理を行っている。ここで、上記リムド処理とは、未脱酸あるいは半脱酸の溶鋼を真空脱ガス処理して、溶鋼中のCをCOガスとして除去する精錬操作のことをいう。しかし、上吹ランスから送酸された酸素は、溶鋼中のCと反応して脱炭するだけでなく、Mnとも反応するため、送酸によってMnが酸化ロスし、Mn歩留りが低下するという問題がある。   However, in a low carbon steel having a C content of 0.02 mass% or more, the amount of oxygen in the molten steel required for the decarburization reaction is small, and the decarburization rate is slow. In this respect, in each of the above prior arts, in order to ensure the amount of oxygen necessary for decarburization, the rim vacuum treatment is performed while the acid is fed from the top blowing lance with the RH vacuum degassing apparatus. Here, the rimdo treatment refers to a refining operation in which undeoxidized or semi-deoxidized molten steel is vacuum degassed to remove C in the molten steel as CO gas. However, the oxygen sent from the top blow lance not only reacts with C in the molten steel to decarburize, but also reacts with Mn, so that Mn is lost due to feeding and the Mn yield decreases. There is.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、C量が0.02mass%以上0.10mass%未満でかつMn量が0.5mass%以上の鋼を、高いMn歩留りで溶製することができる低炭素高マンガン鋼の有利な溶製方法を提案することにある。   The present invention has been made in view of the above-described problems of the prior art, and the purpose thereof is steel having a C content of 0.02 mass% or more and less than 0.10 mass% and a Mn content of 0.5 mass% or more. Another object of the present invention is to propose an advantageous method for producing low carbon high manganese steel that can be produced with a high Mn yield.

発明者らは、上記課題の解決に向けて鋭意検討を重ねた。その結果、転炉で吹錬した溶鋼を、出鋼から真空脱ガス処理を開始する前までの間に、溶鋼中に添加する全Mn源のうち、金属Mn換算で50mass%未満を投入する半脱酸し、または、いずれの脱酸剤も投入しない未脱酸として脱炭に必要な酸素量を確保し、その後、脱Mnよりも脱Cが優先して進行する真空脱ガス処理で、上吹きランスからの送酸を行うことなくリムド処理して脱炭し、Cのピックアップ許容量に余裕を持たせた上で残りのMn源を投入することで、Mn源として安価なMn合金鉄の使用比率を高めると共に、Mn歩留りを向上できることを見出し、本発明を完成させるに至った。   The inventors have intensively studied to solve the above problems. As a result, the molten steel blown in the converter is put into less than 50 mass% in terms of metal Mn out of all the Mn sources added to the molten steel before the start of vacuum degassing from the steel output. The amount of oxygen necessary for decarburization is ensured as non-deoxidation without deoxidation or addition of any deoxidizer, and then the vacuum degassing treatment in which de-C is advanced over de-Mn, Rim treatment without dehydration without blowing acid from the blow lance, decarburization of the C pick-up allowance, and by introducing the remaining Mn source, Mn source of inexpensive Mn alloy iron The inventors have found that the use ratio can be increased and the Mn yield can be improved, and the present invention has been completed.

すなわち、本発明は、転炉から取鍋に出鋼した溶鋼を真空脱ガス処理してC:0.02mass%以上0.10mass%未満、Mn:0.5mass%以上の低炭素高マンガン鋼を溶製する方法において、転炉出鋼から真空脱ガス処理を開始するまでの間に投入するMn源を、溶鋼に投入する全Mn源のうち、金属Mn換算で50mass%未満とし、続く真空脱ガス処理においては、上吹きランスからの送酸を行うことなくリムド処理した後、脱酸剤を投入してキルド処理するとともに、残りのMn源として、少なくともCを0.5〜10mass%の範囲で含有するMn源を真空脱ガス処理中に投入して、CおよびMnの濃度を目標範囲内に調整することを特徴とする低炭素高マンガン鋼の溶製方法を提案する。   That is, the present invention provides a low carbon high manganese steel with C: 0.02 mass% or more and less than 0.10 mass% and Mn: 0.5 mass% or more by vacuum degassing of the molten steel discharged from the converter to the ladle. In the method of melting, the Mn source to be introduced from the converter steel to the start of vacuum degassing is less than 50 mass% in terms of metal Mn out of the total Mn sources to be introduced into the molten steel, followed by vacuum degassing. In the gas treatment, after performing the rimd treatment without performing the acid supply from the top blowing lance, the deoxidizer is added and killed, and at least C is in the range of 0.5 to 10 mass% as the remaining Mn source. A method for melting low-carbon, high-manganese steel is proposed in which the Mn source contained in the above is introduced into the vacuum degassing process and the concentrations of C and Mn are adjusted within a target range.

本発明の低炭素高マンガン鋼の溶製方法は、上記転炉出鋼から真空脱ガス処理を開始するまでの間に、溶鋼に対して脱酸剤およびMn源を投入しないことを特徴とする。   The melting method of the low carbon high manganese steel of the present invention is characterized in that a deoxidizer and a Mn source are not added to the molten steel before the vacuum degassing treatment is started from the converter steel. .

また、本発明の低炭素高マンガン鋼の溶製方法は、上記真空脱ガス処理においては、脱酸剤を投入して脱酸し、キルド処理を開始する時点の溶鋼中C濃度を目標成分範囲の上限値未満とし、前記キルド処理中にCを0.5〜10mass%の範囲で含有するMn源を投入することを特徴とする。   Further, in the above-described vacuum degassing process, the low carbon high manganese steel melting method of the present invention is deoxidized by introducing a deoxidizing agent, and the C concentration in the molten steel at the time of starting the killing process is the target component range. The Mn source containing C in the range of 0.5 to 10 mass% is introduced during the killing process.

また、本発明の低炭素高マンガン鋼の溶製方法は、上記真空脱ガス処理のリムド処理中にMn源を投入する際、該Mn源のCおよびMnの歩留りが100%と仮定したときのMn源投入後の溶鋼中のCおよびMnの濃度が、下記(1)式;
P≦(C/Mn)×10(12.759−13890/T) ・・・(1)
ただし、P:Mn源投入直後の真空脱ガス槽内圧力(Pa)
C:Mn源投入直後の溶鋼平均組成のC濃度(mass%)
Mn:Mn源投入直後の溶鋼平均組成のMn濃度(mass%)
T:Mn源投入直後の溶鋼温度(K)
を満たすようにMn源を投入することを特徴とする。
Further, the melting method of the low carbon high manganese steel of the present invention is based on the assumption that the yield of C and Mn of the Mn source is 100% when the Mn source is introduced during the rimd process of the vacuum degassing process. The concentration of C and Mn in the molten steel after the Mn source is charged is represented by the following formula (1):
P ≦ (C / Mn) × 10 (12.759-13890 / T) (1)
However, the pressure in the vacuum degassing tank immediately after the P: Mn source is charged (Pa)
C: C concentration (mass%) of the average composition of molten steel immediately after Mn source input
Mn: Mn concentration (mass%) of the average composition of molten steel immediately after the Mn source is charged
T: Molten steel temperature (K) immediately after Mn source is charged
It is characterized in that a Mn source is introduced so as to satisfy the above.

また、本発明の低炭素高マンガン鋼の溶製方法は、C:0.05mass%未満の鋼を溶製するときには、溶鋼中に投入する全Mn源のうち、金属Mn換算で30mass%以上のFeMnを、真空脱ガス処理で脱酸剤を投入する以前の段階で投入することを特徴とする。   Moreover, the melting method of the low carbon high manganese steel of this invention is 30 mass% or more in conversion of metal Mn among the total Mn sources thrown into molten steel, when melting steel of C: less than 0.05 mass%. FeMn is introduced at a stage before the deoxidizer is introduced by vacuum degassing.

また、本発明の低炭素高マンガン鋼の溶製方法は、転炉から出鋼した溶鋼に投入する全Mn源のうち、金属Mn換算で50mass%以上に、Cを0.5〜10mass%の範囲で含有するFeMnを用いることを特徴とする。   Moreover, the melting method of the low carbon high manganese steel of this invention is 50 mass% or more in conversion of metal Mn among all the Mn sources thrown into the molten steel taken out from the converter, and C is 0.5-10 mass%. FeMn contained in a range is used.

本発明によれば、未脱酸または半脱酸として溶存酸素量を十分に確保した溶鋼を真空脱ガス処理して脱炭することで、Cのピックアップ許容量を拡大することができるので、Mn源として安価なMn合金鉄(FeMn)の使用比率を高めることができ、さらに、溶鋼へのMn源の添加を、主に真空脱ガス処理時に行うことで、Mnを高い歩留りで添加することができるので、Mn合金鉄の原単位を大幅に削減することができる。   According to the present invention, the pick-up allowable amount of C can be increased by decarburizing by degassing the molten steel that has sufficiently secured the amount of dissolved oxygen as non-deoxidized or semi-deoxidized. It is possible to increase the use ratio of inexpensive Mn alloy iron (FeMn) as a source, and to add Mn source to the molten steel mainly during vacuum degassing treatment, so that Mn can be added at a high yield. Therefore, the basic unit of Mn alloy iron can be greatly reduced.

実施例における発明例1のMn合金鉄投入フロー図である。It is Mn alloy iron injection | throwing-in flowchart of the invention example 1 in an Example. 実施例における発明例2のMn合金鉄投入フロー図である。It is a Mn alloy iron injection | throwing-in flowchart of the invention example 2 in an Example. 実施例における比較例2のMn合金鉄投入フロー図である。It is a Mn alloy iron injection | throwing-in flowchart of the comparative example 2 in an Example. 実施例における比較例5のMn合金鉄投入フロー図である。It is a Mn alloy iron injection | throwing-in flowchart of the comparative example 5 in an Example.

本発明に係る低炭素高マンガン鋼の溶製方法は、転炉から取鍋に出鋼した溶鋼を、RH真空脱ガス処理装置等を用いて真空脱ガス処理する二次精錬することによって、C:0.02mass%以上0.10mass%未満、Mn:0.5mass%以上の低炭素高マンガン鋼を溶製する方法であり、その基本的技術思想は、転炉で吹錬した溶鋼を半脱酸または未脱酸として脱炭に必要な酸素量を確保し、その後の真空脱ガス処理で、上吹きランスからの送酸を行うことなくリムド処理して脱炭して、Cのピックアップ許容量に余裕を持たせた上で、Mn源を投入するようにすることで、Mn源として安価なMn合金鉄(HCFeMn,LCFeMn)の使用比率を高めると共に、Mnロスを低減し、Mnの歩留りを向上させるところにある。以下、具体的に説明する。   The method for melting low-carbon high-manganese steel according to the present invention is obtained by secondary refining of molten steel discharged from a converter to a ladle by vacuum degassing using an RH vacuum degassing apparatus or the like. : 0.02 mass% or more and less than 0.10 mass%, Mn: 0.5 mass% or more of low carbon high manganese steel is melted. Its basic technical idea is semi-desorption of molten steel blown in a converter. The amount of oxygen necessary for decarburization is secured as acid or non-deoxidized, and in the subsequent vacuum degassing treatment, decarburization is performed without rimming without sending acid from the top blowing lance, and the allowable amount of pickup of C By adding a Mn source with a margin, the ratio of inexpensive Mn alloy iron (HCFeMn, LCFeMn) used as a Mn source is increased, Mn loss is reduced, and the yield of Mn is increased. There is a place to improve. This will be specifically described below.

まず、本発明の溶製方法は、目標成分がC:0.02mass%以上0.10mass%未満、Mn:0.5mass%以上の低炭素高マンガン鋼に適用する。目標C濃度が0.02mass%未満では、Mn源としてCを多く含む安価なMn合金鉄を使用すると、Cピックアップのため所望のC濃度を達成できなくなるおそれがある。一方、Cが0.10mass%を超えると、本発明を適用しなくても、Cを多く含む安価なMn合金鉄を使用することができるからである。   First, the melting method of the present invention is applied to a low carbon high manganese steel having target components of C: 0.02 mass% or more and less than 0.10 mass% and Mn: 0.5 mass% or more. If the target C concentration is less than 0.02 mass%, if an inexpensive Mn alloy iron containing a large amount of C is used as the Mn source, the desired C concentration may not be achieved due to C pickup. On the other hand, if C exceeds 0.10 mass%, inexpensive Mn alloy iron containing a large amount of C can be used without applying the present invention.

なお、本発明の溶製方法を適用する際には、転炉から出鋼する鋼のC濃度は、二次精錬後の目標C濃度の上限値以下とするのが好ましい。目標C濃度の上限値を超えると、目標C濃度が低い場合には、その後の真空脱ガス処理で脱炭しても、C含むMn合金鉄使用によるピックアップのために目標C濃度の上限値を超えてしまうおそれがあるからである。   In addition, when applying the melting method of this invention, it is preferable that C concentration of the steel which comes out from a converter is below the upper limit of the target C concentration after secondary refining. If the upper limit of the target C concentration is exceeded, if the target C concentration is low, even if decarburization is performed in the subsequent vacuum degassing process, the upper limit value of the target C concentration is set for pickup using C-containing Mn alloy iron. It is because there is a risk of exceeding.

次に、本発明の溶製方法においては、転炉出鋼から真空脱ガス処理を開始するまでの間に、溶鋼に投入する全Mn源のうち、金属Mn換算で50mass%未満のMn源を投入して半脱酸状態とするか、あるいは、上記間に脱酸剤を一切投入しないで未脱酸状態し、続く真空脱ガス処理において、残りのMn源を、少なくともCを0.5〜10mass%の範囲で含有するMn源を投入することによって、CおよびMnの濃度を目標範囲内に調整することが重要である。というのは、Mn源中に含まれるMnやCは、弱脱酸元素でもあるため、真空脱ガス処理を開始する前に、溶鋼中に投入する全Mn源のうち、金属Mn換算で50mass%以上を投入してしまうと、溶鋼中の酸素が低減し過ぎて、後述する次工程の真空脱ガス処理における「リムド処理」で、[C]+[O]→CO(g)反応により、脱炭することが難しくなり、また投入したMnの酸化ロスが増大するからである。   Next, in the melting method of the present invention, the Mn source of less than 50 mass% in terms of metal Mn is included among all the Mn sources to be introduced into the molten steel before the vacuum degassing process starts from the converter steel. In a semi-deoxidized state, or in a non-deoxidized state without adding any deoxidizer during the above, in the subsequent vacuum degassing treatment, at least C is 0.5 to It is important to adjust the concentration of C and Mn within the target range by introducing a Mn source contained in the range of 10 mass%. This is because Mn and C contained in the Mn source are weak deoxidizing elements, and therefore, before starting the vacuum degassing treatment, among all the Mn sources to be introduced into the molten steel, 50 mass% in terms of metal Mn. If the above is added, the oxygen in the molten steel will be reduced too much, and in the “rimmed process” in the vacuum degassing process of the next step described later, the [C] + [O] → CO (g) reaction will desorb. This is because it becomes difficult to charcoal and the oxidation loss of Mn added increases.

ただし、Cが0.05mass%未満の鋼を溶製する場合には、上記真空脱ガス処理で、脱酸剤を投入する前に、溶鋼中に投入する全Mn源のうち、金属Mn換算で30mass%以上のFeMnを投入することが好ましい。というのは、FeMnを投入すると、Cのピックアップにより溶鋼中のC濃度が上昇するが、Al脱酸した後のキルド処理では脱炭に必要な酸素が少ないために脱炭することができない。そのため、Cが0.05mass%未満の鋼を溶製する場合には、脱酸剤を投入する前にFeMnを投入しておかないと、Mn源として高価な金属Mnを使用せざるを得なくなるからである。   However, when steel with C of less than 0.05 mass% is melted, in the vacuum degassing treatment, before introducing the deoxidizer, out of all Mn sources to be introduced into the molten steel, in terms of metal Mn. It is preferable to add FeMn at 30 mass% or more. This is because when FeMn is added, the C concentration in the molten steel increases due to the pick-up of C, but in the killing treatment after Al deoxidation, the amount of oxygen necessary for decarburization is small, and therefore decarburization cannot be performed. Therefore, when melting steel with C less than 0.05 mass%, it is necessary to use expensive metal Mn as a Mn source unless FeMn is added before adding a deoxidizer. Because.

続いて、転炉から出鋼した上記半脱酸または未脱酸の溶鋼は、RH真空脱ガス処理装置等の真空脱ガス設備を用いて、真空下で脱炭するリムド処理を行った後、脱酸剤を投入して脱酸し、キルド処理を行う一連の工程からなる真空脱ガス処理を施す必要がある。ここで、真空脱ガス処理を施す理由は、上記「リムド処理」においては、真空度が高いほど、[Mn]+[O]→(MnO)の反応よりも、[C]+[O]→CO(g)の反応の方が優先して起こるため、Mnの酸化ロスを少なくして脱炭することができるからである。そのためには、リムド処理中のMn源投入時における真空度は、0.5〜20torr(67〜2667Pa)の範囲に制御することが望ましい。真空度が20torrを超えると、Mnロス低減効果が小さくなる。一方、上記効果を高める観点からは、真空度が高いほど好ましいが、0.5torr未満まで上げるには巨大な排気設備が必要となるだけでなく、上記効果も飽和するからである。なお、上記「キルド処理」も減圧下で行うことが望ましい。というのは、真空度が高いほど撹拌力が増して介在物の凝集・分離を促進でき、高清浄度鋼の溶製に有利であるからである。   Subsequently, the semi-deoxidized or non-deoxidized molten steel produced from the converter is subjected to a rimmed process for decarburization under vacuum using a vacuum degassing facility such as an RH vacuum degassing apparatus, It is necessary to perform a vacuum degassing process consisting of a series of steps in which a deoxidizer is added to perform deoxidation and kill processing. Here, the reason why the vacuum degassing treatment is performed is that, in the above “rimmed treatment”, the higher the degree of vacuum, the more the reaction [C] + [O] → the reaction of [Mn] + [O] → (MnO). This is because the reaction of CO (g) occurs preferentially, so that decarburization can be performed with less Mn oxidation loss. For this purpose, it is desirable to control the degree of vacuum at the time of charging the Mn source during the rimming process to a range of 0.5 to 20 torr (67 to 2667 Pa). When the degree of vacuum exceeds 20 torr, the effect of reducing Mn loss is reduced. On the other hand, from the viewpoint of enhancing the above effect, it is preferable that the degree of vacuum is high, but not only a huge exhaust facility is required to raise the vacuum to less than 0.5 torr, but also the above effect is saturated. The “killing process” is also preferably performed under reduced pressure. This is because the higher the degree of vacuum, the greater the agitation force, which can promote the agglomeration / separation of inclusions, which is advantageous for melting high cleanliness steel.

また、上記真空脱ガス処理におけるリムド処理においては、上吹きランスから溶鋼への酸素の吹付け(送酸)を実施しないことが必要である。上吹きランスからの送酸は、溶鋼中の酸素濃度を上昇し、[C]+[O]→CO(g)反応を進行させるため、脱炭を促進するには有効であるが、送酸することによって溶鋼表面に形成される火点でのMn蒸発や、真空度の低下による[Mn]+[O]→(MnO)反応の進行によるMnロスが大きくなるからである。   Moreover, in the rimd process in the said vacuum degassing process, it is necessary not to carry out the oxygen blowing (acid delivery) from the top blowing lance to the molten steel. The acid sent from the top blow lance increases the oxygen concentration in the molten steel and advances the [C] + [O] → CO (g) reaction, and is effective in promoting decarburization. This is because the Mn loss due to the progress of the Mn evaporation at the fire point formed on the surface of the molten steel or the progress of the [Mn] + [O] → (MnO) reaction due to the decrease in the degree of vacuum increases.

また、上記真空脱ガス処理において、溶鋼に投入する全Mn源のうち、転炉出鋼から真空脱ガス処理を開始するまでの間に投入しなかった残りのMn源を、少なくともCを0.5〜10mass%の範囲で含有するMn源を用いて投入する必要がある。その理由は、Cを0.5〜10mass%の範囲で含有するMn源は、金属Mnに比べて安価であり、これを使用することによって、金属Mnの使用量を削減し、合金鉄コストを低減することが可能となるからである。   In the vacuum degassing process, among all the Mn sources to be charged into the molten steel, the remaining Mn source that has not been charged until the vacuum degassing process is started from the converter steel is at least C of 0. It is necessary to input using a Mn source contained in a range of 5 to 10 mass%. The reason for this is that a Mn source containing C in a range of 0.5 to 10 mass% is less expensive than metal Mn. By using this, the amount of metal Mn used can be reduced, and the iron alloy cost can be reduced. This is because it can be reduced.

なお、上記真空脱ガス処理におけるMn源の投入を、リムド処理中に行う場合には、投入するMn源のCおよびMnの歩留りが100%と仮定したときのMn源投入後の溶鋼中のCおよびMnの濃度が、下記(1)式;
P≦(C/Mn)×10(12.759−13890/T) ・・・(1)
ただし、P:Mn源投入直後の真空脱ガス槽内圧力(Pa)
C:Mn源投入直後の溶鋼平均組成のC濃度(mass%)
Mn:Mn源投入直後の溶鋼平均組成のMn濃度(mass%)
T:Mn源投入直後の溶鋼温度(K)
を満たすように、Mn源を投入することが好ましい。
In addition, when the Mn source is charged in the vacuum degassing process during the rimming process, the C of the Mn source to be charged and the C in the molten steel after the Mn source is charged when the yield of Mn is assumed to be 100%. And the concentration of Mn is the following formula (1):
P ≦ (C / Mn) × 10 (12.759-13890 / T) (1)
However, the pressure in the vacuum degassing tank immediately after the P: Mn source is charged (Pa)
C: C concentration (mass%) of the average composition of molten steel immediately after Mn source input
Mn: Mn concentration (mass%) of the average composition of molten steel immediately after the Mn source is charged
T: Molten steel temperature (K) immediately after Mn source is charged
It is preferable to introduce a Mn source so as to satisfy the above.

ここで、上記(1)式は、CとMnのどちらが優先的に酸化されるかを表す式であり、上記(1)式を満たすようMn源を投入することによって、MnよりもCが優先的に酸化され、Mnの酸化ロスを抑制することが可能となるからである。   Here, the above equation (1) is an equation representing which of C and Mn is preferentially oxidized, and C is given priority over Mn by introducing a Mn source so as to satisfy the above equation (1). This is because it becomes possible to suppress oxidation loss of Mn.

一方、上記真空脱ガス処理におけるMn源の投入を、脱酸剤を投入して脱酸した後のキルド処理中に行う場合には、キルド処理を開始する時点の溶鋼中C濃度を目標成分範囲の上限値未満とした上で、Cを0.5〜10mass%の範囲で含有するMn源を用いることが好ましい。この理由は、Cを0.5〜10mass%の範囲で含有するMn源は、金属Mnに比べて安価であり、これを使用することによって、金属Mnの使用量を削減し、合金鉄コストを低減することが可能となるが、キルド処理中にこれを使用すると、C濃度が上昇するため、その分だけキルド処理を開始する時点の溶鋼中C濃度を目標成分範囲の上限値よりも低下させておくことが必要となってしまうからである。   On the other hand, when the Mn source in the vacuum degassing process is performed during the killing process after the deoxidizing agent is added and deoxidized, the C concentration in the molten steel at the start of the killing process is set to the target component range. It is preferable to use a Mn source containing C in a range of 0.5 to 10 mass%. The reason for this is that the Mn source containing C in the range of 0.5 to 10 mass% is less expensive than metal Mn. By using this, the amount of metal Mn used can be reduced, and the alloy iron cost can be reduced. However, if this is used during the killing process, the C concentration increases, and accordingly, the C concentration in the molten steel at the start of the killing process is lowered below the upper limit of the target component range. It is necessary to keep it.

なお、本発明においては、転炉から出鋼した溶鋼に投入する全Mn源のうち、金属Mn換算で50mass%以上に、Cを0.5〜10mass%の範囲で含有するFeMnを用いることが好ましい。これにより、金属Mnの使用量を削減して、合金鉄コストを効果的に低減することができる。   In the present invention, FeMn containing C in the range of 0.5 to 10 mass% is used for 50 mass% or more in terms of metal Mn among all Mn sources to be introduced into the molten steel discharged from the converter. preferable. Thereby, the usage-amount of metal Mn can be reduced and alloy iron cost can be reduced effectively.

本発明の上記溶製方法を用いることによって、高価な金属Mnを用いず、安価はFeMnを用いても、高いMn歩留りで、効率よく低炭素高マンガン鋼を溶製できることができる。   By using the above melting method of the present invention, low carbon high manganese steel can be efficiently melted with a high Mn yield even if FeMn is used at low cost without using expensive metal Mn.

転炉から取鍋に出鋼した溶鋼を、RH真空脱ガス処理装置を用いて、リムド処理して脱炭し、Al系の脱酸剤を投入して脱酸後、キルド処理する一連の工程からなる真空脱ガス処理を施す二次精錬し、表2に示したCおよびMn含有量が異なる成分系のA,B2種類の低炭素高マンガン鋼を溶製した。   A series of processes in which the molten steel discharged from the converter to the ladle is rimmed and decarburized using an RH vacuum degassing apparatus, and an Al-based deoxidizer is added and deoxidized and then killed. The secondary refining which performed the vacuum degassing process which consists of this, and melted | dissolved the low carbon high manganese steel of 2 types of component system A and B which are different in C and Mn content shown in Table 2.

Figure 2013227673
Figure 2013227673

なお、転炉から取鍋への溶鋼の出鋼は、脱酸剤を一切添加しない未脱酸出鋼(No.1,3,7,8および10)と、弱脱酸剤であるHCFeMnおよび/またはLCFeMnを添加する半脱酸出鋼(No.2,4〜6および9)と、金属Al系の脱酸剤を添加する脱酸出鋼(No.11)の3水準とした。
また、溶鋼中に添加するMn源としては、先述した表1に示したC含有量が異なる金属Mn、HCFeMnおよびLCFeMnの3種類を用い、上記Mn源の溶鋼中への添加は、表3−1および表3−2に示したように、転炉出鋼から真空脱ガス処理を開始する前、真空脱ガス処理におけるリムド処理時およびAl脱酸後のキルド処理時の3段階に分けて行った。
また、リムド処理中にMn源を投入した場合(No.1〜3,5,および7〜9)については、Mn源投入直前の溶鋼温度および成分の測定値と投入したMn源の投入量、組成および比熱等とから計算される、Mn源投入直後に均一となった場合の溶鋼のC濃度、Mn濃度および温度と、これらから計算される(1)式右辺の値についても表3−1に示した。
また、リムド処理中のMn源投入前後の脱ガス槽内の真空度は5〜20torr(667〜2667Pa)となるよう制御した。ただし、上吹きランスから送酸する時の真空度は、COガス発生速度が大きいために、排気設備の能力上、50torr(6666Pa)まで低下した。
参考として、図1〜4に表1のNo.1,2,5および11の転炉出鋼から真空脱ガス処理終了までの間のMn合金鉄の投入フローを示した。
It should be noted that the molten steel from the converter to the ladle includes undeoxidized steel (No. 1, 3, 7, 8 and 10) to which no deoxidizer is added, HCFeMn which is a weak deoxidizer, and Three levels of semi-deoxidized steel (No. 2, 4 to 6 and 9) to which LCFeMn is added and deoxidized steel (No. 11) to which a metal Al-based deoxidizer is added are used.
Further, as the Mn source to be added to the molten steel, three types of metals Mn, HCFeMn, and LCFeMn having different C contents shown in Table 1 described above were used. As shown in Table 1 and Table 3-2, before starting vacuum degassing from the converter steel, it was divided into three stages: rimmed in vacuum degassing and killed after Al deoxidation. It was.
When the Mn source is added during the rimming process (Nos. 1-3, 5, and 7-9), the molten steel temperature immediately before the Mn source input and the measured values of the components and the input amount of the input Mn source, Table 3-1 also shows the C concentration, Mn concentration and temperature of the molten steel, which is calculated from the composition and specific heat, etc., and becomes uniform immediately after the Mn source is charged, and the value on the right side of equation (1) calculated from these. It was shown to.
Further, the degree of vacuum in the degassing tank before and after the Mn source was charged during the rim treatment was controlled to be 5 to 20 torr (667 to 2667 Pa). However, the degree of vacuum when sending the acid from the top blowing lance decreased to 50 torr (6666 Pa) due to the capacity of the exhaust equipment because of the high CO gas generation rate.
As a reference, FIGS. The charging flow of Mn alloy iron from 1, 2, 5, and 11 converter steels to the end of vacuum degassing is shown.

斯くして得た鋼の転炉出鋼成分、RH処理後の溶鋼成分および3種類のMn源の投入量から、Mn歩留り(%)および真空脱ガスによる脱炭量(kg/溶鋼t)を計算し、その結果を、表3−1および表3−2に併記した。   From the steel composition obtained in the converter, the molten steel composition after the RH treatment, and the input amounts of the three types of Mn sources, the Mn yield (%) and the decarburization amount by vacuum degassing (kg / molten steel t) are calculated. The calculation was made and the results are shown in Tables 3-1 and 3-2.

Figure 2013227673
Figure 2013227673

Figure 2013227673
Figure 2013227673

表3−1および表3−2から、本発明の条件を満たすNo.1〜3,7,8および10の発明例は、いずれもMn歩留り82%以上が得られており、特に、RH処理時のMn添加比率を80mass%以上としたNo.1,3,No.7,8および10発明例では、Mn歩留りがいずれも85%以上となっている。
ただし、No.10の発明例は、目標成分のC含有量が0.03mass%と低いにも拘わらず、Al脱酸後のキルド処理でMn源を添加しているため、Mn源の一部に金属Mnを使用してCのピックアップを制限する必要があった。
From Table 3-1 and Table 3-2, No. 1 satisfying the conditions of the present invention is obtained. In each of the invention examples of 1-3, 7, 8, and 10, a Mn yield of 82% or more was obtained, and in particular, No. 1 in which the Mn addition ratio during RH treatment was 80 mass% or more. 1,3, No. In Examples 7, 8, and 10, the Mn yield is 85% or more.
However, no. In Example 10 of the invention, although the M content of the target component is as low as 0.03 mass%, the Mn source is added in the killing treatment after the Al deoxidation, so the metal Mn is added to a part of the Mn source. It was necessary to use and limit the pickup of C.

これに対して、RHでのリムド処理時に送酸を行ったNo.5の比較例は、脱炭量は多いものの、Mnの酸化ロスによりMn歩留りが最も低い値となっている。
また、RH処理開始前にMn源を多く添加したNo.4,6および9の比較例では、いずれもMn歩留りが80%未満でしかない。特に、No.9の比較例は、目標成分のC含有量が0.03mass%と低いにも拘わらず、RH処理開始前のMn源の添加量が多かったため、RH処理で金属Mnを使用せざるを得ず、原料コストが高くなっている。
また、転炉からの溶鋼出鋼時に脱酸を行ったNo.11の比較例は、Mn歩留りは86%と高いものの、リムド処理による脱炭を行っていないため、C濃度の制約からRH処理で金属Mnを多量に使用せざるを得ず、原料コストが高くなっている。
以上の結果から、本発明を適用することにより、高いMn歩留りで、効率よく低炭素高マンガン鋼を溶製できることがわかる。
On the other hand, No. 1 which sent acid during the rim treatment with RH. In Comparative Example 5, although the amount of decarburization is large, the Mn yield is the lowest due to Mn oxidation loss.
In addition, No. 1 containing a large amount of Mn source before the start of RH treatment. In the comparative examples of 4, 6 and 9, all have a Mn yield of less than 80%. In particular, no. Although the comparative example of No. 9 had a low C content of the target component of 0.03 mass%, the amount of Mn source added before the start of the RH treatment was large, so metal Mn had to be used in the RH treatment. The raw material cost is high.
In addition, No. 1 was deoxidized when the molten steel was discharged from the converter. In Comparative Example 11, although the Mn yield was as high as 86%, decarburization was not performed by the rimmed process, so a large amount of metal Mn had to be used in the RH process due to the C concentration limitation, and the raw material cost was high. It has become.
From the above results, it can be seen that by applying the present invention, a low carbon high manganese steel can be efficiently melted with a high Mn yield.

Claims (6)

転炉から取鍋に出鋼した溶鋼を真空脱ガス処理してC:0.02mass%以上0.10mass%未満、Mn:0.5mass%以上の低炭素高マンガン鋼を溶製する方法において、
転炉出鋼から真空脱ガス処理を開始するまでの間に投入するMn源を、溶鋼に投入する全Mn源のうち、金属Mn換算で50mass%未満とし、
続く真空脱ガス処理においては、上吹きランスからの送酸を行うことなくリムド処理した後、脱酸剤を投入してキルド処理するとともに、
残りのMn源として、少なくともCを0.5〜10mass%の範囲で含有するMn源を真空脱ガス処理中に投入して、CおよびMnの濃度を目標範囲内に調整することを特徴とする低炭素高マンガン鋼の溶製方法。
In the method of vacuum degassing the molten steel discharged from the converter to the ladle and melting low carbon high manganese steel with C: 0.02 mass% or more and less than 0.10 mass%, Mn: 0.5 mass% or more,
The total Mn source to be introduced from the converter steel to the start of vacuum degassing treatment is less than 50 mass% in terms of metal Mn among all the Mn sources to be introduced into the molten steel.
In the subsequent vacuum degassing treatment, after performing the rimd treatment without performing the acid sending from the top blowing lance, the deoxidizer is added and the killed treatment is performed.
As the remaining Mn source, a Mn source containing at least C in the range of 0.5 to 10 mass% is introduced during the vacuum degassing process, and the concentrations of C and Mn are adjusted within the target range. Melting method of low carbon high manganese steel.
前記転炉出鋼から真空脱ガス処理を開始するまでの間に、溶鋼に対して脱酸剤およびMn源を投入しないことを特徴とする請求項1に記載の低炭素高マンガン鋼の溶製方法。 2. The low-carbon high-manganese steel according to claim 1, wherein no deoxidizer and Mn source are added to the molten steel before the vacuum degassing process is started from the converter steel. Method. 前記真空脱ガス処理においては、脱酸剤を投入して脱酸し、キルド処理を開始する時点の溶鋼中C濃度を目標成分範囲の上限値未満とし、前記キルド処理中にCを0.5〜10mass%の範囲で含有するMn源を投入することを特徴とする請求項1または2に記載の低炭素高マンガン鋼の溶製方法。 In the vacuum degassing treatment, a deoxidizing agent is added to perform deoxidation, and the C concentration in the molten steel at the time of starting the killing treatment is set to be less than the upper limit value of the target component range. The method for melting low carbon high manganese steel according to claim 1 or 2, wherein a Mn source contained in a range of 10 mass% to 10 mass% is added. 前記真空脱ガス処理のリムド処理中にMn源を投入する際、該Mn源のCおよびMnの歩留りが100%と仮定したときのMn源投入後の溶鋼中のCおよびMnの濃度が、下記(1)式を満たすようにMn源を投入することを特徴とする請求項1〜3のいずれか1項に記載の低炭素高マンガン鋼の溶製方法。

P≦(C/Mn)×10(12.759−13890/T) ・・・(1)
ただし、P:Mn源投入直後の真空脱ガス槽内圧力(Pa)
C:Mn源投入直後の溶鋼平均組成のC濃度(mass%)
Mn:Mn源投入直後の溶鋼平均組成のMn濃度(mass%)
T:Mn源投入直後の溶鋼温度(K)
When the Mn source is charged during the rimd process of the vacuum degassing process, the C and Mn concentrations in the molten steel after the Mn source is charged when the C and Mn yield of the Mn source is assumed to be 100% are as follows. The method for melting low-carbon high-manganese steel according to any one of claims 1 to 3, wherein a Mn source is added so as to satisfy the formula (1).
P ≦ (C / Mn) × 10 (12.759-13890 / T) (1)
However, the pressure in the vacuum degassing tank immediately after the P: Mn source is charged (Pa)
C: C concentration (mass%) of the average composition of molten steel immediately after Mn source input
Mn: Mn concentration (mass%) of the average composition of molten steel immediately after the Mn source is charged
T: Molten steel temperature (K) immediately after Mn source is charged
C:0.05mass%未満の鋼を溶製するときには、溶鋼中に投入する全Mn源のうち、金属Mn換算で30mass%以上のFeMnを、真空脱ガス処理で脱酸剤を投入する以前の段階で投入することを特徴とする請求項1〜4のいずれか1項に記載の低炭素高マンガン鋼の溶製方法。 C: When melting steel of less than 0.05 mass%, among all Mn sources to be introduced into the molten steel, FeMn of 30 mass% or more in terms of metal Mn, before introducing the deoxidizer by vacuum degassing treatment The method for melting low-carbon high-manganese steel according to any one of claims 1 to 4, wherein the melting is performed in stages. 転炉から出鋼した溶鋼に投入する全Mn源のうち、金属Mn換算で50mass%以上に、Cを0.5〜10mass%の範囲で含有するFeMnを用いることを特徴とする請求項1〜5のいずれか1項に記載の低炭素高マンガン鋼の溶製方法。 The FeMn containing C in a range of 0.5 to 10 mass% is used for 50 mass% or more in terms of metal Mn among all Mn sources to be introduced into molten steel produced from a converter. The method for melting low carbon high manganese steel according to any one of 5.
JP2013071020A 2012-03-29 2013-03-29 Melting method of low carbon high manganese steel Active JP5910830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013071020A JP5910830B2 (en) 2012-03-29 2013-03-29 Melting method of low carbon high manganese steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012075911 2012-03-29
JP2012075911 2012-03-29
JP2013071020A JP5910830B2 (en) 2012-03-29 2013-03-29 Melting method of low carbon high manganese steel

Publications (2)

Publication Number Publication Date
JP2013227673A true JP2013227673A (en) 2013-11-07
JP5910830B2 JP5910830B2 (en) 2016-04-27

Family

ID=49675575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013071020A Active JP5910830B2 (en) 2012-03-29 2013-03-29 Melting method of low carbon high manganese steel

Country Status (1)

Country Link
JP (1) JP5910830B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420440A (en) * 2014-09-19 2016-03-23 鞍钢股份有限公司 Alloy adding method for medium-manganese or high-manganese alloy steel in smelting with converters
CN115698342A (en) * 2020-08-19 2023-02-03 杰富意钢铁株式会社 Smelting method of high manganese steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106618A (en) * 1977-03-02 1978-09-16 Nippon Steel Corp Manufacture of molten a1-si killed steel for continuous casting
JP2003027128A (en) * 2001-07-10 2003-01-29 Nkk Corp Method for producing molten steel in vacuum degassing facility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106618A (en) * 1977-03-02 1978-09-16 Nippon Steel Corp Manufacture of molten a1-si killed steel for continuous casting
JP2003027128A (en) * 2001-07-10 2003-01-29 Nkk Corp Method for producing molten steel in vacuum degassing facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420440A (en) * 2014-09-19 2016-03-23 鞍钢股份有限公司 Alloy adding method for medium-manganese or high-manganese alloy steel in smelting with converters
CN115698342A (en) * 2020-08-19 2023-02-03 杰富意钢铁株式会社 Smelting method of high manganese steel

Also Published As

Publication number Publication date
JP5910830B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5092245B2 (en) Denitrification method for molten steel
CN111876669B (en) Control method of process for smelting low-carbon steel by converter
JP2015030868A (en) Method for refining extra-low nitrogen pure iron
JP5910830B2 (en) Melting method of low carbon high manganese steel
JP5614306B2 (en) Method for melting manganese-containing low carbon steel
JP5217478B2 (en) Method of melting ultra-low carbon steel
JP6551626B2 (en) Method of melting high manganese steel
JP5831194B2 (en) Method for melting manganese-containing low carbon steel
JP7126103B2 (en) Melting method of high manganese steel
JP2010132982A (en) Method of denitrizing molten steel
CN105238907B (en) A kind of method of vacuum refining molten steel
JP3279161B2 (en) Melting method of ultra low carbon high manganese steel
JP3548273B2 (en) Melting method of ultra low carbon steel
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JP3619283B2 (en) Method for producing medium carbon Al killed steel
CN113913580A (en) Production method of ultralow-carbon low-aluminum structural molten steel
JP2008150710A (en) Method for melting low carbon high manganese steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JPH11106823A (en) Method for refining extra-low carbon and extra-low nitrogen stainless steel
JP5621618B2 (en) Method for melting manganese-containing low carbon steel
CN115404309B (en) Molten steel deoxidizing method
JP4066674B2 (en) Manufacturing method of manganese-containing ultra-low carbon steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JP7319548B2 (en) Molten steel desulfurization method
JP2005015890A (en) Method for producing low-carbon high-manganese steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160315

R150 Certificate of patent or registration of utility model

Ref document number: 5910830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250