JP2013227179A - Freeze-thaw resistance low shrinkage ae concrete composition and hardened body thereof - Google Patents

Freeze-thaw resistance low shrinkage ae concrete composition and hardened body thereof Download PDF

Info

Publication number
JP2013227179A
JP2013227179A JP2012101248A JP2012101248A JP2013227179A JP 2013227179 A JP2013227179 A JP 2013227179A JP 2012101248 A JP2012101248 A JP 2012101248A JP 2012101248 A JP2012101248 A JP 2012101248A JP 2013227179 A JP2013227179 A JP 2013227179A
Authority
JP
Japan
Prior art keywords
concrete composition
shrinkage
freeze
reducing agent
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012101248A
Other languages
Japanese (ja)
Other versions
JP5975716B2 (en
Inventor
Kazumasa Inoue
和政 井上
Tateo Mitsui
健郎 三井
Hidehito Shiigai
英仁 椎貝
Toshiyuki Sato
敏之 佐藤
Mitsuo Kinoshita
光男 木之下
Kazuhide Saito
和秀 齊藤
Ryuhei Kobayashi
竜平 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Takenaka Komuten Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, Takenaka Komuten Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2012101248A priority Critical patent/JP5975716B2/en
Publication of JP2013227179A publication Critical patent/JP2013227179A/en
Application granted granted Critical
Publication of JP5975716B2 publication Critical patent/JP5975716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a freeze-thaw resistance low shrinkage AE concrete composition capable of obtaining a hardened body having a dry shrinkage rate reduced to ≤400 micro, and having excellent freeze-thaw resistance; and to provide a hardened body obtained by hardening the composition.SOLUTION: In an AE concrete composition including high-early-strength portland cement, water, fine aggregate, coarse aggregate, a drying shrinkage reducing agent, a cement dispersant and an air amount adjusting agent, a specific drying shrinkage reducing agent is used at the rate of a unit amount of 7-30 kg/m, and the unit amount ratio determined from expression 1: unit amount ratio (%)=(unit amount of water+unit amount of drying shrinkage reducing agent)/(unit amount of early strength portland cement)×100 (%), is controlled in the range of 30-43%.

Description

本発明は凍結融解抵抗性及び乾燥収縮低減性に優れた硬化体を得ることができる凍結融解抵抗性低収縮AEコンクリート組成物及びその硬化体に関する。近年、コンリート構造物の長寿命化や高品質化の観点から、コンリート構造物には特に乾燥収縮によるひび割れの発生を抑制することが要求されている。例えばコンリート構造物の乾燥収縮によるひび割れを抑制するためには、一般建築物において乾燥収縮率を600×10−6(以下、10−6をマイクロという)以下程度にする必要があるといわれており、なかでも鉄筋の拘束部材断面が大きい場合には乾燥収縮率を400マイクロ以下程度にする必要があるといわれている。また一方で、寒冷地のコンリート構造物には同時に耐凍害性を確保する必要があることから、特に凍結融解抵抗性に優れていることが要求されている。本発明は、乾燥収縮率を400マイクロ以下に低減することによって乾燥収縮によるひび割れの発生を抑制し、同時に凍結融解抵抗性に優れた硬化体を得ることができる凍結融解抵抗性低収縮AEコンクリート組成物及びその硬化体に関する。 The present invention relates to a freeze-thaw resistant low-shrinkage AE concrete composition capable of obtaining a cured product excellent in freeze-thaw resistance and drying shrinkage reduction property, and a cured product thereof. In recent years, from the viewpoint of extending the life and quality of a concrete structure, the concrete structure is required to suppress the occurrence of cracks due to drying shrinkage. For example, in order to suppress cracking due to drying shrinkage of a concrete structure, it is said that the drying shrinkage rate in general buildings needs to be about 600 × 10 −6 (hereinafter 10 −6 is referred to as micro) or less. In particular, it is said that when the cross-section of the restraining member of the reinforcing bar is large, it is necessary to make the drying shrinkage rate about 400 micron or less. On the other hand, the concrete structure in a cold region is required to be particularly resistant to freezing and thawing because it is necessary to ensure frost damage resistance at the same time. The present invention suppresses the occurrence of cracks due to drying shrinkage by reducing the drying shrinkage ratio to 400 micron or less, and at the same time, a freeze-thaw resistant low-shrinkage AE concrete composition capable of obtaining a cured body having excellent freeze-thaw resistance. And a cured product thereof.

従来、硬化体の乾燥収縮を低減する手段として、AEコンクリートの調製時に各種の乾燥収縮低減剤を使用することが知られている(例えば特許文献1参照)。一般に、乾燥収縮低減剤はAEコンクリート組成物に多く添加すればするほど、その収縮低減効果が上昇する傾向があるため、大きな効果を期待する場合には練り混ぜ水の一部として無視できない程の量(例えばコンクリート1m当たり5kg以上)を使用することになる。しかし、得られる硬化体の乾燥収縮を低減することと凍結融解に対する抵抗を強くすることは二律背反現象であるため、乾燥収縮低減剤を多く使用すればするほど、得られる硬化体の凍結融解抵抗性が低下するという問題がある。そのため、かかる問題を改善する提案も報告されている(例えば特許文献2〜6参照)。しかし、乾燥収縮率を400マイクロ以下に低減し、同時に凍結融解抵抗性にも優れた硬化体を得るという高レベルな段階には至っていないというのが実情である。 Conventionally, as a means for reducing the drying shrinkage of a cured body, it is known to use various drying shrinkage reducing agents during the preparation of AE concrete (for example, see Patent Document 1). Generally, the more the shrinkage reducing agent is added to the AE concrete composition, the more the shrinkage reducing effect tends to increase. Therefore, when a large effect is expected, it cannot be ignored as a part of the kneaded water. It will be used in an amount (such as concrete 1 m 3 per 5kg or more). However, reducing the drying shrinkage of the cured product and increasing the resistance to freezing and thawing is a trade-off phenomenon, so the more the drying shrinkage reducing agent is used, the more the freeze-thaw resistance of the resulting cured product is. There is a problem that decreases. For this reason, proposals for improving such problems have also been reported (see, for example, Patent Documents 2 to 6). However, the actual situation is that it has not yet reached a high-level stage in which a drying shrinkage rate is reduced to 400 μm or less, and at the same time, a cured product having excellent freeze-thaw resistance is obtained.

特公昭59−3430号公報Japanese Patent Publication No.59-3430 特開平11−349367号公報JP 11-349367 A 特開2002−338315号公報JP 2002-338315 A 特開2004−91259号公報JP 2004-91259 A 特開2008−273766号公報JP 2008-273766 A 特開2008−285336号公報JP 2008-285336 A 特開2010−6626号公報JP 2010-6626 A

本発明が解決しようとする課題は、乾燥収縮率を400マイクロ以下に低減し、同時に凍結融解抵抗性にも優れた硬化体を得ることができる凍結融解抵抗性低収縮AEコンクリート組成物及びこれを硬化して得られる硬化体を提供する処にある。   The problem to be solved by the present invention is to provide a freeze-thaw resistant low-shrinkage AE concrete composition capable of reducing the drying shrinkage rate to 400 micron or less and at the same time obtaining a cured product excellent in freeze-thaw resistance, and It exists in the place which provides the hardening body obtained by hardening.

しかして本発明者らは、前記の課題を解決するべく研究した結果、早強ポルトランドセメント、水、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤及び空気量調節剤を含有して成るAEコンクリート組成物であって、乾燥収縮低減剤として特定のものを特定の割合で用い、且つ単位量率を特定範囲となるようにしたAEコンクリート組成物が正しく好適であることを見出した。   As a result, the present inventors have studied to solve the above-mentioned problems, and as a result, contain the early strong Portland cement, water, fine aggregate, coarse aggregate, dry shrinkage reducing agent, cement dispersant and air amount adjusting agent. It was found that an AE concrete composition comprising a specific component as a drying shrinkage reducing agent at a specific ratio and having a unit amount ratio within a specific range is suitable. .

すなわち本発明は、早強ポルトランドセメント、水、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤及び空気量調節剤を含有して成るAEコンクリート組成物であって、乾燥収縮低減剤として下記の乾燥収縮低減剤を単位量7〜30kg/mの割合で用い、且つ下記の数1から求められる単位量率を30〜43%となるようにしたことを特徴とする凍結融解抵抗性低収縮AEコンクリート組成物に係る。また本発明は、かかる凍結融解抵抗性低収縮AEコンクリート組成物を硬化して得られる硬化体に係る。 That is, the present invention is an AE concrete composition comprising an early-strength Portland cement, water, fine aggregate, coarse aggregate, a drying shrinkage reducing agent, a cement dispersant, and an air amount adjusting agent, and the drying shrinkage reducing agent. The following shrinkage reducing agent is used at a rate of unit amount of 7 to 30 kg / m 3 , and the unit amount rate obtained from the following formula 1 is set to 30 to 43%. Related low shrinkage AE concrete composition. The present invention also relates to a cured product obtained by curing the freeze-thaw resistant low-shrinkage AE concrete composition.

Figure 2013227179
Figure 2013227179

乾燥収縮低減剤:ジエチレングリコールモノブチルエーテル及び下記の化1で示される化合物から選ばれる一つ又は二つ以上   Drying shrinkage reducing agent: one or two or more selected from diethylene glycol monobutyl ether and compounds represented by the following chemical formula 1

Figure 2013227179
Figure 2013227179

化1において、
p,q,r:0又は正の整数であって、かつp+q+r=5〜25を満足する整数
In chemical formula 1,
p, q, r: 0 or a positive integer that satisfies p + q + r = 5 to 25

本発明に係る凍結融解抵抗性低収縮AEコンクリート組成物(以下、本発明のAEコンクリート組成物という)は、早強ポルトランドセメント、水、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤及び空気量調節剤を含有して成るものである。   The freeze-thaw resistant low-shrinkage AE concrete composition according to the present invention (hereinafter referred to as the AE concrete composition of the present invention) is an early-strength Portland cement, water, fine aggregate, coarse aggregate, dry shrinkage reducing agent, cement dispersion And an air amount adjusting agent.

本発明のAEコンクリート組成物で使用するセメントは、早強ポルトランドセメントである。それ以外の普通ポルトランドセメント、中庸熱ポルトランドセメント及び低熱ポルトランドセメント等の他のポルトランドセメントを使用すると、前記したように乾燥収縮低減剤を多量に含有するAEコンクリート組成物において、目的とする優れた凍結融解抵抗性が得られない。   The cement used in the AE concrete composition of the present invention is an early strength Portland cement. When other Portland cements such as ordinary Portland cement, medium-heated Portland cement, and low heat Portland cement are used, in the AE concrete composition containing a large amount of the drying shrinkage reducing agent as described above, excellent excellent freezing can be achieved. Melting resistance is not obtained.

本発明のAEコンクリート組成物において、細骨材としては公知の川砂、海砂、山砂、砕砂等を使用できる。本発明のAEコンクリート組成物では、これらの細骨材の一部として高炉スラグ細骨材を用いるのが好ましい。かかる高炉スラグ細骨材は、JIS−A5011−1に記載されたものであって、高炉スラグ細骨材の粒度による区分に含まれるものが好ましい。なかでも、高炉スラグ細骨材としては、粒度による区分が5mm高炉スラグ細骨材及び/又は2.5mm高炉スラグ細骨材が好ましく、更に粗粒率を2.0〜3.1の範囲に調製したものがより好ましい。本発明のAEコンクリート組成物では、細骨材の一部としてかかる高炉スラグ細骨材を単位量が50〜249kg/mの範囲で用いるのが得られる硬化体の乾燥収縮率を更に低減する上で好ましい。 In the AE concrete composition of the present invention, known river sand, sea sand, mountain sand, crushed sand and the like can be used as the fine aggregate. In the AE concrete composition of the present invention, it is preferable to use blast furnace slag fine aggregate as a part of these fine aggregates. Such blast furnace slag fine aggregate is described in JIS-A5011-1 and is preferably included in the classification according to the particle size of the blast furnace slag fine aggregate. Among them, as the blast furnace slag fine aggregate, the classification by particle size is preferably 5 mm blast furnace slag fine aggregate and / or 2.5 mm blast furnace slag fine aggregate, and the coarse particle ratio is in the range of 2.0 to 3.1. What was prepared is more preferable. In the AE concrete composition of the present invention, the drying shrinkage rate of a cured body obtained by using the blast furnace slag fine aggregate as a part of the fine aggregate in a unit amount of 50 to 249 kg / m 3 is further reduced. Preferred above.

本発明のAEコンクリート組成物において、粗骨材としては、公知の川砂利、砕石、石灰砕石、軽量骨材等を使用できる。なかでも石灰砕石が好ましい。また水としては水道水を使用できる。   In the AE concrete composition of the present invention, as the coarse aggregate, known river gravel, crushed stone, lime crushed stone, lightweight aggregate and the like can be used. Among these, crushed limestone is preferable. Moreover, tap water can be used as water.

本発明のAEコンクリート組成物において、乾燥収縮低減剤としては、ジエチレングリコールモノブチルエーテル及び化1で示される化合物から選ばれる一つ又は二つ以上を使用することができる。二つ以上を使用する場合、それらの混合比率は特に制限されない。なかでも、乾燥収縮低減剤としては、ジエチレングリコールモノブチルエーテル単独物又はジエチレングリコールモノブチルエーテルと化1で示される化合物との混合物を使用するのが好ましい。   In the AE concrete composition of the present invention, as the drying shrinkage reducing agent, one or more selected from diethylene glycol monobutyl ether and a compound represented by Chemical Formula 1 can be used. When using two or more, the mixing ratio is not particularly limited. Among these, as the drying shrinkage reducing agent, it is preferable to use diethylene glycol monobutyl ether alone or a mixture of diethylene glycol monobutyl ether and a compound represented by Chemical Formula 1.

化1で示される化合物は、グリセリンのプロピレンオキサイド付加物であり、また化1で示される化合物において、p、q及びrはいずれも0又は正の整数であって、かつp+q+r=5〜25を満足する整数である。なかでも、p、q及びrがいずれも1〜10の整数であって、且つp+q+r=7〜20を満足するものが好ましい。p+q+rが小さすぎる場合、また逆にp+q+rが大きすぎる場合には、目標とする乾燥収縮低減効果が得られない。また本発明では、かかる乾燥収縮低減剤を、単位量7〜30kg/mの割合で用いるが、好ましくは単位量9〜27kg/mの割合で用いる。化1で示される化合物はいずれも公知の方法で合成できる。 The compound represented by Chemical formula 1 is a propylene oxide adduct of glycerin. In the compound represented by Chemical formula 1, p, q and r are all 0 or a positive integer, and p + q + r = 5 to 25. A satisfying integer. Especially, p, q, and r are all the integers of 1-10, and what satisfies p + q + r = 7-20 is preferable. When p + q + r is too small, and conversely, when p + q + r is too large, the target drying shrinkage reduction effect cannot be obtained. In the present invention, the drying shrinkage reducing agent is used in a unit amount of 7 to 30 kg / m 3 , and preferably used in a unit amount of 9 to 27 kg / m 3 . Any of the compounds represented by Chemical Formula 1 can be synthesized by a known method.

また本発明のAEコンクリート組成物において、セメント分散剤としては公知のものを使用できるが、なかでもポリカルボン酸塩系のものが好ましく、水溶性ビニル共重合体からなるポリカルボン酸塩系のものがより好ましい。これには例えば、特開昭58−74552号公報や特開平1−226757号公報に記載のものが挙げられるが、なかでも分子中に下記の構成単位Aを35〜85モル%、下記の構成単位Bを15〜65モル%及び下記の構成単位Cを0〜5モル%(合計100モル%)有する質量平均分子量5000〜100000の水溶性ビニル共重合体が最も好ましい。かかるセメント分散剤の使用量は通常、早強ポルトランドセメント100質量部当たり、0.05〜2質量部の割合とする。   In the AE concrete composition of the present invention, known cement dispersants can be used. Among them, polycarboxylate-based ones are preferable, and polycarboxylate-based ones composed of water-soluble vinyl copolymers. Is more preferable. Examples thereof include those described in JP-A-58-74552 and JP-A-1-226757. Among them, the following constitutional unit A is contained in the molecule in an amount of 35 to 85 mol%, and the following constitution. A water-soluble vinyl copolymer having a mass average molecular weight of 5,000 to 100,000 and having 15 to 65 mol% of units B and 0 to 5 mol% (100 mol% in total) of the following structural units C is most preferable. The amount of the cement dispersant used is usually 0.05 to 2 parts by mass per 100 parts by mass of early strong Portland cement.

構成単位A:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位B:分子中に7〜150個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位C:(メタ)アリルスルホン酸塩から形成された構成単位
Structural unit A: One or more selected from a structural unit formed from methacrylic acid and a structural unit formed from methacrylate salt. Structural unit B: composed of 7 to 150 oxyethylene units in the molecule. Structural unit formed from methoxypolyethylene glycol methacrylate having a polyoxyethylene group Structural unit C: Structural unit formed from (meth) allyl sulfonate

更に本発明のAEコンクリート組成物において、空気量調節剤としては公知のものを使用できる。これには例えば、ポリオキシアルキレンアルキルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルベンゼンスルホン酸塩、ロジン石けん、高級脂肪酸石けん、アルキルリン酸モノエステル塩、ポリオキシアルキレンアルキルエーテルリン酸エステル塩等が挙げられるが、なかでも得られる硬化体の凍結融解抵抗性に優れる点で、アルキルリン酸モノエステル塩が好ましい。かかる空気量調節剤の使用量は通常、早強ポルトランドセメント100質量部当たり、0.001〜0.01質量部の割合とする。   Furthermore, in the AE concrete composition of the present invention, known air amount adjusting agents can be used. For example, polyoxyalkylene alkyl ether sulfate, alkyl benzene sulfonate, polyoxyethylene alkyl benzene sulfonate, rosin soap, higher fatty acid soap, alkyl phosphate monoester salt, polyoxyalkylene alkyl ether phosphate salt, etc. Among them, an alkyl phosphate monoester salt is preferable in that the cured product obtained has excellent freeze-thaw resistance. The amount of the air amount regulator used is usually 0.001 to 0.01 parts by mass per 100 parts by mass of early strong Portland cement.

本発明のAEコンクリート組成物において、得られる硬化体の凍結融解抵抗性を確保するうえで空気量の調節が不可欠である。空気量は通常、3〜7容量%とするが、好ましくは4〜6容量%とする。空気量が少ない場合は得られる硬化体の凍結融解抵抗性が弱くなり、逆に空気量が多い場合は得られる硬化体の強度が低下する。   In the AE concrete composition of the present invention, it is indispensable to adjust the air amount in order to secure the freeze-thaw resistance of the obtained cured product. The amount of air is usually 3 to 7% by volume, preferably 4 to 6% by volume. When the amount of air is small, the freeze-thaw resistance of the resulting cured body is weakened. Conversely, when the amount of air is large, the strength of the obtained cured body is reduced.

更にまた本発明のAEコンクリート組成物において、前記した数1から求められる単位量率を30〜43%となるようにし、好ましくは34〜41%となるようにすることが重要である。単位量率が43%を超えると、得られる硬化体の凍結融解抵抗性が低くなり、逆に単位量率が30%未満になると、得られる硬化体の自己収縮が大きくなって、いずれにしても単位量率が前記数値の範囲から外れると、本発明の所期の効果が充分に得られない。   Furthermore, in the AE concrete composition of the present invention, it is important that the unit amount ratio obtained from the above-mentioned formula 1 is 30 to 43%, preferably 34 to 41%. When the unit amount ratio exceeds 43%, the freeze-thaw resistance of the resulting cured body is lowered. Conversely, when the unit amount ratio is less than 30%, self-shrinkage of the obtained cured body is increased. However, if the unit amount ratio is out of the above numerical range, the desired effect of the present invention cannot be obtained sufficiently.

本発明のAEコンクリート組成物は、以上説明したように、少なくとも早強ポルトランドセメント、水、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤及び空気量調節剤を用い、これらを練り混ぜて調製されるが、練り混ぜ手順は特に制限されない。   As described above, the AE concrete composition of the present invention uses at least early-strength Portland cement, water, fine aggregate, coarse aggregate, dry shrinkage reducing agent, cement dispersant and air amount adjusting agent, and kneads them. Although it is prepared by mixing, the mixing procedure is not particularly limited.

また本発明のAEコンクリート組成物は、本発明の効果を損なわない範囲内で、必要に応じて適宜、消泡剤、防錆剤、急結剤、凝結促進剤、凝結遅延剤、防水剤等の添加剤を併用することができる。   In addition, the AE concrete composition of the present invention is within the range that does not impair the effects of the present invention, and if necessary, an antifoaming agent, a rust inhibitor, a quick setting agent, a setting accelerator, a setting retarder, a waterproofing agent, and the like. These additives can be used in combination.

本発明のAEコンクリート組成物によると、乾燥収縮率を150〜400マイクロ程度に大きく低減し、同時に凍結融解抵抗性に優れた硬化体を得ることができる。メカニズムが複雑であるため、その理由を説明することは難しいが、主に以下の1)と2)が協力して作用するためと推察される。すなわち、1)乾燥収縮低減剤の添加量を制限せずに所定量を混入できることによって、得られる硬化体の乾燥収縮率を大幅に低減する。同時に、2)早強ポルトランドセメント、水及び乾燥収縮低減剤を、単位量率が所定の範囲となるように配合することによって得られる硬化体の組織を緻密化し、水和反応の速い早強ポルトランドセメントの硬化体中に残存する未反応の自由水の絶対量を少なくして、低温凍結した際に自由水が氷に変化する体積膨張圧の破壊力を抑え、凍結融解抵抗性を高める。   According to the AE concrete composition of the present invention, it is possible to greatly reduce the drying shrinkage rate to about 150 to 400 micrometers, and at the same time, it is possible to obtain a cured body having excellent freeze-thaw resistance. Because the mechanism is complex, it is difficult to explain the reason, but it is presumed that the following 1) and 2) act mainly in cooperation. That is, 1) A predetermined amount can be mixed without limiting the addition amount of the drying shrinkage reducing agent, thereby greatly reducing the drying shrinkage rate of the obtained cured product. At the same time, 2) early strength Portland cement with a fast hydration reaction by densifying the structure of the hardened body obtained by blending early strength Portland cement, water and a drying shrinkage reducing agent so that the unit amount ratio falls within a predetermined range. The absolute amount of unreacted free water remaining in the hardened body of the solder is reduced, the destructive force of the volume expansion pressure at which the free water changes to ice when frozen at low temperature is suppressed, and the freeze-thaw resistance is increased.

本発明に係る硬化体は、以上説明した本発明のAEコンクリート組成物を硬化して得られるものである。かかる硬化体のなかでも、乾燥収縮率が150〜400マイクロ(150×10−6〜400×10−6)となるものが好ましい。 The cured body according to the present invention is obtained by curing the AE concrete composition of the present invention described above. Among these hardened bodies, those having a drying shrinkage of 150 to 400 micro (150 × 10 −6 to 400 × 10 −6 ) are preferable.

本発明のAEコンクリート組成物は、建設現場で打設されるAEコンクリート組成物としてだけでなく、コンクリート製品工場で加工される二次製品用のAEコンクリート組成物としても適用できる。   The AE concrete composition of the present invention can be applied not only as an AE concrete composition placed at a construction site, but also as an AE concrete composition for a secondary product processed in a concrete product factory.

本発明によると、得られる硬化体が優れた圧縮強度を発現するだけでなく、同時に乾燥収縮率が大幅に小さく、しかも凍結融解に対する抵抗性が強いという効果がある。   According to the present invention, the obtained cured product not only exhibits excellent compressive strength, but also has an effect that the drying shrinkage rate is significantly small and resistance to freezing and thawing is strong.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また、部は質量部を意味する。   Hereinafter, in order to make the configuration and effects of the present invention more specific, examples and the like will be described. However, the present invention is not limited to the examples. In the following examples and the like, unless otherwise indicated,% means mass%, and part means mass part.

試験区分1(乾燥収縮低減剤としての化1で示される化合物の合成)
・乾燥収縮低減剤(g−1)の合成
グリセリン184g(2.0モル)をオートクレーブに仕込み、触媒として水酸化カリウムを1.8g加えた後、オートクレーブ内を窒素置換した。攪拌しながら、反応温度を125〜140℃に保ち、プロピレンオキサイド1160g(20モル)を圧入して付加反応を行なった。圧入終了後、同温度で2時間熟成して反応を終了し、生成物を得た。この生成物の残存触媒を除くため、吸着材を用いて吸着処理した後、濾別精製した。精製物は、その水酸基価等の分析結果により、化1で示される化合物であるグリセリンのプロピレンオキサイド10モル付加物であった。これを乾燥収縮低減剤(g−1)とした。
Test Category 1 (Synthesis of compounds represented by Chemical Formula 1 as a drying shrinkage reducing agent)
-Synthesis | combination of drying shrinkage reducing agent (g-1) 184g (2.0 mol) of glycerol was prepared to the autoclave, and after adding 1.8g of potassium hydroxide as a catalyst, the inside of an autoclave was nitrogen-substituted. While stirring, the reaction temperature was kept at 125 to 140 ° C., and 1160 g (20 mol) of propylene oxide was injected to carry out an addition reaction. After completion of the press-fitting, the reaction was terminated by aging at the same temperature for 2 hours to obtain a product. In order to remove the residual catalyst of this product, it was subjected to adsorption treatment using an adsorbent and then purified by filtration. The purified product was a propylene oxide 10 mol adduct of glycerin, which is a compound represented by Chemical Formula 1, according to the analysis result of the hydroxyl value and the like. This was designated as a drying shrinkage reducing agent (g-1).

・乾燥収縮低減剤(g−2)及び(g−3)の合成
乾燥収縮低減剤(g−1)の場合と同様にして、グリセリンのプロピレンオキサイド付加物を合成し、これらを乾燥収縮低減剤(g−2)及び(g−3)とした。
-Synthesis of drying shrinkage reducing agents (g-2) and (g-3) In the same manner as in the case of the drying shrinkage reducing agent (g-1), a propylene oxide adduct of glycerin was synthesized, and these were dried shrinkage reducing agents. It was set as (g-2) and (g-3).

・乾燥収縮低減剤(gr−2)及び(gr−3)の合成
乾燥収縮低減剤(g−1)の場合と同様にして、グリセリンのプロピレンオキサイド付加物を合成し、これらを乾燥収縮低減剤(gr−2)及び(gr−3)とした。以上で合成した乾燥収縮低減剤の内容等を表1に示した。尚、乾燥収縮低減剤(gr−1)はグリセリンである。
Synthesis of drying shrinkage reducing agents (gr-2) and (gr-3) In the same manner as in the case of the drying shrinkage reducing agent (g-1), a propylene oxide adduct of glycerin was synthesized, and these were dried shrinkage reducing agents. It was set as (gr-2) and (gr-3). Table 1 shows the contents of the drying shrinkage reducing agent synthesized above. The drying shrinkage reducing agent (gr-1) is glycerin.

Figure 2013227179
Figure 2013227179

試験区分2(セメント分散剤としての水溶性ビニル共重合体の合成)
・セメント分散剤(a−1)の合成
メタクリル酸60g、メトキシポリ(オキシエチレン単位が23個、以下n=23とする)エチレングリコールメタクリレート300g及びメタリルスルホン酸ナトリウム5g、3−メルカプトプロピオン酸3g及び水490gを反応容器に仕込んだ後、48%水酸化ナトリウム水溶液58gを加え、攪拌しながら部分中和して均一に溶解した。反応容器内の雰囲気を窒素置換した後、反応系の温度を温水浴にて60℃に保ち、過硫酸ナトリウムの20%水溶液25gを加えてラジカル重合反応を開始し、5時間反応を継続して反応を終了した。その後、48%水酸化ナトリウム水溶液23gを加えて反応物を完全中和し、水溶性ビニル共重合体の40%水溶液を得た。この水溶性ビニル共重合体を分析したところ、メタクリル酸ナトリウムから形成された構成単位/メトキシポリ(n=23)エチレングリコールメタクリレートから形成された構成単位/メタリルスルホン酸ナトリウムから形成された構成単位=70/27/3(モル%)の割合で有する質量平均分子量35500(GPC法、プルラン換算)の水溶性ビニル共重合体であった。これをセメント分散剤(a−1)とした。
Test Category 2 (Synthesis of water-soluble vinyl copolymer as cement dispersant)
Synthesis of cement dispersant (a-1) 60 g of methacrylic acid, methoxypoly (23 oxyethylene units, hereinafter referred to as n = 23) 300 g of ethylene glycol methacrylate, 5 g of sodium methallylsulfonate, 3 g of 3-mercaptopropionic acid and After 490 g of water was charged into the reaction vessel, 58 g of a 48% aqueous sodium hydroxide solution was added, and the mixture was partially neutralized with stirring and dissolved uniformly. After the atmosphere in the reaction vessel was replaced with nitrogen, the temperature of the reaction system was maintained at 60 ° C. in a warm water bath, 25 g of a 20% aqueous solution of sodium persulfate was added to start radical polymerization reaction, and the reaction was continued for 5 hours. The reaction was terminated. Thereafter, 23 g of a 48% aqueous sodium hydroxide solution was added to completely neutralize the reaction product, thereby obtaining a 40% aqueous solution of a water-soluble vinyl copolymer. When this water-soluble vinyl copolymer was analyzed, structural units formed from sodium methacrylate / structural units formed from methoxypoly (n = 23) ethylene glycol methacrylate / structural units formed from sodium methallylsulfonate = It was a water-soluble vinyl copolymer having a mass average molecular weight of 35500 (GPC method, converted to pullulan) having a ratio of 70/27/3 (mol%). This was designated as cement dispersant (a-1).

セメント分散剤(a−2)、(a−3)及び(ar−1)〜(ar−3)の合成
セメント分散剤(a−1)の場合と同様にして、水溶性ビニル共重合体を合成し、これらをセメント分散剤(a−2)、(a−3)及び(ar−1)〜(ar−3)とした。以上で合成したセメント分散剤の内容を表2にまとめて示した。




Synthesis of cement dispersants (a-2), (a-3) and (ar-1) to (ar-3) In the same manner as in the case of the cement dispersant (a-1), a water-soluble vinyl copolymer was prepared. These were synthesized and used as cement dispersants (a-2), (a-3) and (ar-1) to (ar-3). Table 2 summarizes the contents of the cement dispersant synthesized above.




Figure 2013227179
Figure 2013227179

表2において、
*1:GPC法、プルラン換算
X−1:メタクリル酸ナトリウムから形成された構成単位
X−2:メタクリル酸から形成された構成単位
Y−1:メトキシポリ(23モル)エチレングリコールメタクリレートから形成された構成単位
Y−2:メトキシポリ(68モル)エチレングリコールメタクリレートから形成された構成単位
Z−1:メタリルスルホン酸ナトリウムから形成された構成単位
Z−2:アリルスルホン酸ナトリウムから形成された構成単位
In Table 2,
* 1: GPC method, pullulan conversion X-1: constitutional unit formed from sodium methacrylate X-2: constitutional unit formed from methacrylic acid Y-1: constitution formed from methoxypoly (23 mol) ethylene glycol methacrylate Unit Y-2: Structural unit formed from methoxypoly (68 mol) ethylene glycol methacrylate Z-1: Structural unit formed from sodium methallyl sulfonate Z-2: Structural unit formed from sodium allyl sulfonate

試験区分3(AEコンクリート組成物の調製)
実施例1
表3の実施例1に記載した配合条件で、50Lのパン型強制練りミキサーに早強ポルトランドセメント(太平洋セメント社製の早強ポルトランドセメント、密度=3.14g/cm、ブレーン値4520)、山砂(君津産山砂、密度=2.60g/cm)、セメント分散剤(表2のセメント分散剤(a−1))、空気量調節剤(オクチルリン酸モノエステルカリウム塩)及び乾燥収縮低減剤(ジエチレングリコールモノブチルエーテル(b−1))のそれぞれ所定量を練り混ぜ水(水道水)と共に投入して45秒間練り混ぜた。次に、粗骨材(秩父産石灰砕石、密度=2.70g/cm)の所定量を投入して60秒間練り混ぜ、目標スランプが18±1cm、目標空気量が4.5±0.5%の範囲とした実施例1のAEコンクリート組成物を調製した。調製したAEコンクリート組成物の内容を表3に示した。
Test Category 3 (Preparation of AE concrete composition)
Example 1
Under the compounding conditions described in Example 1 of Table 3, a 50 L pan-type forced kneading mixer was subjected to early strong Portland cement (early strong Portland cement manufactured by Taiheiyo Cement, density = 3.14 g / cm 3 , brain value 4520), Mountain sand (Kimitsu mountain sand, density = 2.60 g / cm 3 ), cement dispersant (cement dispersant (a-1) in Table 2), air amount regulator (octyl phosphate monoester potassium salt) and drying shrinkage A predetermined amount of each of the reducing agents (diethylene glycol monobutyl ether (b-1)) was added together with kneaded water (tap water) and kneaded for 45 seconds. Next, a predetermined amount of coarse aggregate (Chichibu lime crushed stone, density = 2.70 g / cm 3 ) is added and kneaded for 60 seconds, the target slump is 18 ± 1 cm, and the target air amount is 4.5 ± 0. An AE concrete composition of Example 1 having a range of 5% was prepared. The contents of the prepared AE concrete composition are shown in Table 3.

実施例2〜18及び比較例1〜17
実施例1の場合と同様にして、それぞれ表3に記載した配合条件でAEコンクリート組成物を調製した。調製したAEコンクリート組成物の内容を表3に示した。









Examples 2-18 and Comparative Examples 1-17
In the same manner as in Example 1, AE concrete compositions were prepared under the blending conditions described in Table 3, respectively. The contents of the prepared AE concrete composition are shown in Table 3.









Figure 2013227179
Figure 2013227179

表3において、
単位量:調製したAEコンクリート組成物1m当たりのkg
細骨材:君津産山砂、密度=2.60g/cm
粗骨材:秩父産石灰砕石、密度=2.70g/cm
添加量:セメント100質量部当たりの質量部(固形分としての質量部)
*1:高炉スラグ細骨材(粒度による区分=5mm、粗粒率=2.55、密度=2.76g/cm)を単位量99kg/m及び天然細骨材(君津産山砂)を単位量684kg/mの割合で用いた混合砂
*2:前記と同じ高炉スラグ細骨材を単位量206kg/m及び細骨材(前記、君津産山砂)を単位量583kg/mの割合で用いた混合砂
c−1:早強ポルトランドセメント、密度=3.14g/cm
c−2:普通ポルトランドセメント、密度=3.16g/cm
b−1:ジエチレングリコールモノブチルエーテル
g−1〜g−3,gr−1〜gr−3:表1に記載した乾燥収縮低減剤
a−1〜a−3,ar−1〜ar−3:表2に記載したセメント分散剤
m−1:ジエチレングリコールモノブチルエーテル(b−1)/グリセリンのプロピレンオキサイド付加物(g−1)=75/25(質量比)の混合物
m−2:ジエチレングリコールモノブチルエーテル(b−1)/グリセリンのプロピレンオキサイド付加物(g−1)=50/50(質量比)の混合物
d−1:オクチルリン酸モノエステルカリウム塩
d−2:ロジン石鹸
In Table 3,
Unit weight: kg of AE concrete composition 1 m 3 per prepared
Fine aggregate: Kimitsu mountain sand, density = 2.60 g / cm 3
Coarse aggregate: lime crushed stone from Chichibu, density = 2.70 g / cm 3
Addition amount: parts by mass per 100 parts by mass of cement (parts by mass as solid content)
* 1: Blast furnace slag fine aggregate (classification by particle size = 5 mm, coarse particle ratio = 2.55, density = 2.76 g / cm 3 ), unit quantity 99 kg / m 3 and natural fine aggregate (Kimitsu mountain sand) Mixed sand used at a rate of 684 kg / m 3 * 2: The same blast furnace slag fine aggregate as above with a unit quantity of 206 kg / m 3 and fine aggregate (previously Kimitsu mountain sand) with a unit quantity of 583 kg / m 3 Mixed sand used in proportion c-1: Early strength Portland cement, density = 3.14 g / cm 3
c-2: Ordinary Portland cement, density = 3.16 g / cm 3
b-1: Diethylene glycol monobutyl ether g-1 to g-3, gr-1 to gr-3: dry shrinkage reducing agents described in Table 1 a-1 to a-3, ar-1 to ar-3: Table 2 M-1: Mixture of diethylene glycol monobutyl ether (b-1) / propylene oxide adduct of glycerin (g-1) = 75/25 (mass ratio) m-2: diethylene glycol monobutyl ether (b- 1) / Propylene oxide adduct of glycerin (g-1) = 50/50 (mass ratio) mixture d-1: Octyl phosphate monoester potassium salt d-2: Rosin soap

試験区分4(AEコンクリート組成物の評価)
試験区分1で調製した各例のAEコンクリート組成物について、空気量及びスランプを下記のように求め、結果を表4にまとめて示した。また各例のAEコンクリート組成物を硬化させた硬化体について、乾燥収縮率、凍結融解抵抗性の指標としての凍結融解耐久性指数(300サイクル)及び圧縮強度を下記のように求め、結果を表4にまとめて示した。
Test Category 4 (Evaluation of AE concrete composition)
About the AE concrete composition of each example prepared in Test Category 1, the air amount and slump were determined as follows, and the results are summarized in Table 4. Moreover, about the hardening body which hardened the AE concrete composition of each example, the freeze shrinkage durability index (300 cycles) and compressive strength as an index of dry shrinkage rate, freeze-thaw resistance were calculated | required as follows, and a result was represented. The results are summarized in FIG.

・空気量(容量%):練り混ぜ直後のAEコンクリート組成物について、JIS−A1128に準拠して測定した。
・スランプ(cm):空気量の測定と同時にJIS−A1101に準拠して測定した。
Air content (volume%): AE concrete composition immediately after kneading was measured according to JIS-A1128.
-Slump (cm): Measured according to JIS-A1101 simultaneously with the measurement of the air amount.

・乾燥収縮率:JIS−A1129に準拠し、各例のAEコンクリート組成物を20℃×60%RHの条件下で保存した材齢26週の供試体について、コンパレータ法により乾燥収縮ひずみを測定し、乾燥収縮率を求めた。この数値は小さいほど、乾燥収縮が小さいことを示す。   -Drying shrinkage ratio: Based on JIS-A1129, the dry shrinkage strain was measured by a comparator method for a 26-week-old specimen in which the AE concrete composition of each example was stored at 20 ° C x 60% RH. Then, the drying shrinkage was determined. The smaller this value, the smaller the drying shrinkage.

・凍結融解耐久性指数(300サイクル):各例のAEコンクリート組成物の硬化体について、JISA1148に準拠して測定した値を用い、ASTM−C666−75の耐久性指数で計算した値を示した。この数値は、最大値が100で、100に近いほど、凍結融解に対する抵抗性が優れていることを示す。
・圧縮強度(N/mm):各例のAEコンクリート組成物の硬化体について、JIS−A1108に準拠し、材齢7日と材齢28日で測定した。



















-Freezing and thawing durability index (300 cycles): About the hardened | cured material of the AE concrete composition of each example, the value calculated by the durability index of ASTM-C666-75 was shown using the value measured based on JISA1148. . This numerical value indicates that the maximum value is 100, and the closer to 100, the better the resistance to freezing and thawing.
-Compressive strength (N / mm < 2 >): About the hardened | cured material of the AE concrete composition of each example, based on JIS-A1108, it measured by material age 7 days and material age 28 days.



















Figure 2013227179
Figure 2013227179

表4において、
*1:所望の流動性が得られなかったので測定しなかった。
○,×:乾燥収縮率の場合は400×10−6以下、また凍結融解耐久性指数の場合は80%以上をクリアしたときを○、これらをクリアできなかったときを×とした。
In Table 4,
* 1: Since the desired fluidity was not obtained, it was not measured.
○, ×: 400 × 10 −6 or less in the case of drying shrinkage, and 80% or more in the case of the freeze-thaw durability index, and × when these could not be cleared.

表4の結果からも明らかなように、各実施例のAEコンクリート組成物は、流動性が確保されると同時に、得られる硬化体の乾燥収縮率が400×10−6よりも小さく、同時に凍結融解耐久性指数が高く、また必要とされる圧縮強度が得られている。一方、比較例のAEコンクリート組成物では、乾燥収縮低減剤の単位量が所定の割合から外れた場合、また単位量率が所定の範囲から外れた場合、更に早強ポルトランドセメント以外の普通ポルトランドセメントを使用した場合等、本発明の構成要件を満たさない場合には、本発明が目的とする凍結融解抵抗性に優れた低収縮AEコンクリート組成物は得られていない。 As is clear from the results in Table 4, the AE concrete composition of each example has fluidity, and at the same time, the resulting cured product has a drying shrinkage of less than 400 × 10 −6 and is frozen at the same time. The melt durability index is high, and the required compressive strength is obtained. On the other hand, in the AE concrete composition of the comparative example, when the unit amount of the drying shrinkage reducing agent deviates from the predetermined ratio, or when the unit amount ratio deviates from the predetermined range, the ordinary Portland cement other than the early strong Portland cement is used. In the case where the constituent requirements of the present invention are not satisfied, such as the case of using a low-shrinkage AE concrete composition excellent in freeze-thaw resistance, which is the object of the present invention, has not been obtained.

Claims (10)

早強ポルトランドセメント、水、細骨材、粗骨材、乾燥収縮低減剤、セメント分散剤及び空気量調節剤を含有して成るAEコンクリート組成物であって、乾燥収縮低減剤として下記の乾燥収縮低減剤を単位量7〜30kg/mの割合で用い、且つ下記の数1から求められる単位量率を30〜43%となるようにしたことを特徴とする凍結融解抵抗性低収縮AEコンクリート組成物。
Figure 2013227179
乾燥収縮低減剤:ジエチレングリコールモノブチルエーテル及び下記の化1で示される化合物から選ばれる一つ又は二つ以上
Figure 2013227179
(化1において、
p,q,r:0又は正の整数であって、且つp+q+r=5〜25を満足する整数)
AE concrete composition containing early strength Portland cement, water, fine aggregate, coarse aggregate, dry shrinkage reducing agent, cement dispersant and air amount adjusting agent, and the following dry shrinkage as a dry shrinkage reducing agent A freeze-thaw resistant low-shrinkage AE concrete characterized in that a reducing agent is used at a rate of a unit amount of 7 to 30 kg / m 3 and a unit amount ratio obtained from the following formula 1 is 30 to 43%. Composition.
Figure 2013227179
Drying shrinkage reducing agent: one or two or more selected from diethylene glycol monobutyl ether and compounds represented by the following chemical formula 1
Figure 2013227179
(In chemical formula 1,
p, q, r: 0 or a positive integer and an integer satisfying p + q + r = 5 to 25)
単位量率を34〜41%となるようにした請求項1記載の凍結融解抵抗性低収縮AEコンクリート組成物。   The freeze-thaw resistant low-shrinkage AE concrete composition according to claim 1, wherein the unit amount ratio is 34 to 41%. 乾燥収縮低減剤がジエチレングリコールモノブチルエーテル又はジエチレングリコールモノブチルエーテルと化1で示される化合物との混合物である請求項1又は2記載の凍結融解抵抗性低収縮AEコンクリート組成物。   The freeze-thaw resistant low-shrinkage AE concrete composition according to claim 1 or 2, wherein the drying shrinkage reducing agent is diethylene glycol monobutyl ether or a mixture of diethylene glycol monobutyl ether and a compound represented by Chemical Formula 1. 乾燥収縮低減剤の単位量が9〜27kg/mである請求項1〜3のいずれか一つの項記載の凍結融解抵抗性低収縮AEコンクリート組成物。 The freeze-thaw resistant low-shrinkage AE concrete composition according to any one of claims 1 to 3 , wherein a unit amount of the drying shrinkage reducing agent is 9 to 27 kg / m 3 . セメント分散剤が、分子中に下記の構成単位Aを35〜85モル%、下記の構成単位Bを15〜65モル%及び下記の構成単位Cを0〜5モル%(合計100モル%)有する質量平均分子量5000〜100000の水溶性ビニル共重合体である請求項1〜4のいずれか一つの項記載の凍結融解抵抗性低収縮AEコンクリート組成物。
構成単位A:メタクリル酸から形成された構成単位及びメタクリル酸塩から形成された構成単位から選ばれる一つ又は二つ以上
構成単位B:分子中に7〜150個のオキシエチレン単位で構成されたポリオキシエチレン基を有するメトキシポリエチレングリコールメタクリレートから形成された構成単位
構成単位C:(メタ)アリルスルホン酸塩から形成された構成単位
The cement dispersant has 35 to 85 mol% of the following structural unit A, 15 to 65 mol% of the following structural unit B, and 0 to 5 mol% of the following structural unit C (100 mol% in total) in the molecule. The freeze-thaw resistant low-shrinkage AE concrete composition according to any one of claims 1 to 4, which is a water-soluble vinyl copolymer having a mass average molecular weight of 5,000 to 100,000.
Structural unit A: One or more selected from a structural unit formed from methacrylic acid and a structural unit formed from methacrylate salt. Structural unit B: composed of 7 to 150 oxyethylene units in the molecule. Structural unit formed from methoxypolyethylene glycol methacrylate having a polyoxyethylene group Structural unit C: Structural unit formed from (meth) allyl sulfonate
空気量調節剤がアルキルリン酸モノエステル塩である請求項1〜5のいずれか一つの項記載の凍結融解抵抗性低収縮AEコンクリート組成物。   The freeze-thaw resistant low-shrinkage AE concrete composition according to any one of claims 1 to 5, wherein the air amount adjusting agent is an alkyl phosphate monoester salt. 空気量を3〜7容量%含有する請求項1〜6のいずれか一つの項記載の凍結融解抵抗性低収縮AEコンクリート組成物。   The freeze-thaw resistant low-shrinkage AE concrete composition according to any one of claims 1 to 6, which contains 3 to 7% by volume of air. 細骨材の一部としてJIS−A5011−1に記載された高炉スラグ細骨材の粒度による区分に含まれる高炉スラグ細骨材を単位量50〜249kg/mの範囲で用いる請求項1〜7のいずれか一つの項記載の凍結融解抵抗性低収縮AEコンクリート組成物。 The blast furnace slag fine aggregate contained in the classification according to the particle size of the blast furnace slag fine aggregate described in JIS-A5011-1 as a part of the fine aggregate is used in a unit amount of 50 to 249 kg / m 3 . 8. The freeze-thaw resistant low-shrinkage AE concrete composition according to any one of items 7 to 9. 請求項1〜8のいずれか一つの項記載の凍結融解抵抗性低収縮AEコンクリート組成物を硬化して得られる硬化体。   A cured product obtained by curing the freeze-thaw resistant low-shrinkage AE concrete composition according to any one of claims 1 to 8. 乾燥収縮率が150×10−6〜400×10−6である請求項9記載の硬化体。 The cured product according to claim 9, which has a drying shrinkage ratio of 150 × 10 −6 to 400 × 10 −6 .
JP2012101248A 2012-04-26 2012-04-26 Freeze-thaw resistant low shrinkage AE concrete composition and cured body thereof Active JP5975716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101248A JP5975716B2 (en) 2012-04-26 2012-04-26 Freeze-thaw resistant low shrinkage AE concrete composition and cured body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101248A JP5975716B2 (en) 2012-04-26 2012-04-26 Freeze-thaw resistant low shrinkage AE concrete composition and cured body thereof

Publications (2)

Publication Number Publication Date
JP2013227179A true JP2013227179A (en) 2013-11-07
JP5975716B2 JP5975716B2 (en) 2016-08-23

Family

ID=49675251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101248A Active JP5975716B2 (en) 2012-04-26 2012-04-26 Freeze-thaw resistant low shrinkage AE concrete composition and cured body thereof

Country Status (1)

Country Link
JP (1) JP5975716B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074603A (en) * 2013-10-11 2015-04-20 ランデス株式会社 Mortar or concrete composition using blast furnace slag fine aggregate, having improved resistance to frost damage, and product molded therefrom
JP6813225B1 (en) * 2020-07-13 2021-01-13 竹本油脂株式会社 Additives for hydraulic compositions and hydraulic compositions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874552A (en) * 1981-10-30 1983-05-06 株式会社日本触媒 Cement dispersant
JPH01226757A (en) * 1988-03-04 1989-09-11 Takemoto Oil & Fat Co Ltd Dispersing agent for cement
JPH11180747A (en) * 1997-12-22 1999-07-06 Nof Corp Contraction reducing agent for cement
JP2001294466A (en) * 2000-04-13 2001-10-23 Taiheiyo Cement Corp Admixture for hydraulic composition and hydraulic composition
JP2009249228A (en) * 2008-04-07 2009-10-29 Takenaka Komuten Co Ltd Ultralow-shrinkage ae concrete composition
JP2010006662A (en) * 2008-06-27 2010-01-14 Mitsubishi Materials Corp Highly durable concrete composition and method for producing highly durable concrete
JP2011006305A (en) * 2009-06-29 2011-01-13 Takemoto Oil & Fat Co Ltd Low shrinkage ae concrete composition using blast furnace slag cement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874552A (en) * 1981-10-30 1983-05-06 株式会社日本触媒 Cement dispersant
JPH01226757A (en) * 1988-03-04 1989-09-11 Takemoto Oil & Fat Co Ltd Dispersing agent for cement
JPH11180747A (en) * 1997-12-22 1999-07-06 Nof Corp Contraction reducing agent for cement
JP2001294466A (en) * 2000-04-13 2001-10-23 Taiheiyo Cement Corp Admixture for hydraulic composition and hydraulic composition
JP2009249228A (en) * 2008-04-07 2009-10-29 Takenaka Komuten Co Ltd Ultralow-shrinkage ae concrete composition
JP2010006662A (en) * 2008-06-27 2010-01-14 Mitsubishi Materials Corp Highly durable concrete composition and method for producing highly durable concrete
JP2011006305A (en) * 2009-06-29 2011-01-13 Takemoto Oil & Fat Co Ltd Low shrinkage ae concrete composition using blast furnace slag cement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074603A (en) * 2013-10-11 2015-04-20 ランデス株式会社 Mortar or concrete composition using blast furnace slag fine aggregate, having improved resistance to frost damage, and product molded therefrom
JP6813225B1 (en) * 2020-07-13 2021-01-13 竹本油脂株式会社 Additives for hydraulic compositions and hydraulic compositions
JP2022016816A (en) * 2020-07-13 2022-01-25 竹本油脂株式会社 Additive for hydraulic composition, and hydraulic composition

Also Published As

Publication number Publication date
JP5975716B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
KR101659442B1 (en) Concrete composition using blast furnace slag composition
JP6192208B2 (en) Preparation method of non-shrink AE concrete and non-shrink AE concrete
JP4607161B2 (en) Low shrinkage ultra high strength fiber reinforced cement composition, low shrinkage ultra high strength fiber reinforced mortar or concrete, and low shrinkage ultra high strength cement admixture
WO1995011204A1 (en) Self-leveling water-base composition
JP6077156B2 (en) Dispersant composition for hydraulic composition
JP4798806B2 (en) Low shrinkage AE concrete composition using blast furnace cement
JP4883757B2 (en) AE concrete manufacturing method and AE concrete
JP2013203635A (en) Concrete composition using blast furnace cement, and concrete hardened body
JP5545617B2 (en) Concrete composition using blast furnace cement
JP4459912B2 (en) Drying shrinkage reducing agent and hardened cement using the same
JP5748271B2 (en) Non-shrink AE concrete composition
JP6689676B2 (en) Dispersant composition for hydraulic composition
JP5058098B2 (en) Method for preparing low shrinkage AE concrete for civil engineering and low shrinkage AE concrete for civil engineering
WO2016158921A1 (en) Dispersant composition for hydraulic composition
JP5975716B2 (en) Freeze-thaw resistant low shrinkage AE concrete composition and cured body thereof
JP5822397B2 (en) AE concrete composition using blast furnace cement
JP5660724B2 (en) Preparation method of non-shrink AE concrete and non-shrink AE concrete
JP2012116712A (en) Method of preparing ultra low-shrinkage ae concrete and ultra low-shrinkage ae concrete
JP2018048067A (en) Dispersant composition for hydraulic compositions
JP5344692B2 (en) Preparation method of AE concrete using blast furnace cement and AE concrete
JP6077157B2 (en) Dispersant composition for hydraulic composition
JP5870877B2 (en) Cement admixture and method for producing cement composition using the same
JP6029233B2 (en) AE concrete preparation method and AE concrete
JP5949325B2 (en) Cement admixture and method for producing cement composition using the same.
JP2004091259A (en) Cement blend and method for using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160719

R150 Certificate of patent or registration of utility model

Ref document number: 5975716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250