JP2013226487A - Co2 recovery device and co2 recovery method - Google Patents

Co2 recovery device and co2 recovery method Download PDF

Info

Publication number
JP2013226487A
JP2013226487A JP2012099045A JP2012099045A JP2013226487A JP 2013226487 A JP2013226487 A JP 2013226487A JP 2012099045 A JP2012099045 A JP 2012099045A JP 2012099045 A JP2012099045 A JP 2012099045A JP 2013226487 A JP2013226487 A JP 2013226487A
Authority
JP
Japan
Prior art keywords
temperature
rich solution
solution
regeneration tower
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012099045A
Other languages
Japanese (ja)
Inventor
Yuji Tanaka
裕士 田中
Hirotsugu Nagayasu
弘貢 長安
Takuya Hirata
琢也 平田
Goji Oishi
剛司 大石
Takashi Kamijo
孝 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2012099045A priority Critical patent/JP2013226487A/en
Priority to PCT/JP2013/060933 priority patent/WO2013161574A1/en
Publication of JP2013226487A publication Critical patent/JP2013226487A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a COrecovery device which is further improved in energy efficiency while achieving stable energy saving, and to provide a method.SOLUTION: A COrecovery device for recovering and removing COin a CO-containing exhaust gas 11 containing COby using a COabsorption liquid 12 in a COabsorption tower 13 comprises: a first heat exchanger 23A being a preheating means which branches some of a rich solution 12A absorbed with COat the absorption tower at a branch X, and preheats a part of the branched rich solution 12Ato a temperature not higher than a temperature of a lean solution; and a rich/lean solution heat exchanger 52 which mergers a part of a rich solution 12Apreheated by the preheating means and a rich solution 12Aat a merging part Y, and heat-exchanges the merged rich solution 12Aand the lean solution 12B which has discharged CO.

Description

本発明は、省エネルギーを図ったCO2回収装置及び方法に関する。 The present invention relates to a CO 2 recovery apparatus and method for energy saving.

近年、地球の温暖化現象の原因の一つとして、CO2による温室効果が指摘され、地球環境を守る上で国際的にもその対策が急務となってきた。CO2の発生源としては化石燃料を燃焼させるあらゆる人間の活動分野に及び、その排出抑制への要求が一層強まる傾向にある。これに伴い大量の化石燃料を使用する火力発電所などの動力発生設備を対象に、ボイラの燃焼排ガスを例えばアミン系CO2吸収液と接触させ、燃焼排ガス中のCO2を除去、回収する方法及び回収されたCO2を大気へ放出することなく貯蔵する方法が精力的に研究されている。 In recent years, the greenhouse effect due to CO 2 has been pointed out as one of the causes of global warming, and countermeasures have become urgent internationally to protect the global environment. The source of CO 2 extends to all human activity fields that burn fossil fuels, and there is a tendency for the demand for emission control to become stronger. Along with this, for a power generation facility such as a thermal power plant that uses a large amount of fossil fuel, a method for removing and recovering CO 2 in the combustion exhaust gas by bringing the combustion exhaust gas of the boiler into contact with, for example, an amine-based CO 2 absorbent In addition, methods for storing the recovered CO 2 without releasing it to the atmosphere have been intensively studied.

また前記のようなCO2吸収液を用い、燃焼排ガスからCO2を除去・回収する工程としては、吸収塔において燃焼排ガスとCO2吸収液とを接触させる工程、CO2を吸収した吸収液を再生塔において加熱し、CO2を遊離させると共に吸収液を再生して再び吸収塔に循環して再使用するものが採用されている(特許文献1)。 Further, as a step of removing and recovering CO 2 from the combustion exhaust gas using the above-mentioned CO 2 absorption liquid, a step of bringing the combustion exhaust gas and the CO 2 absorption liquid into contact with each other in an absorption tower, an absorption liquid that has absorbed CO 2 is used. Heating is performed in a regeneration tower to liberate CO 2 and regenerate the absorption liquid, which is then recycled to the absorption tower and reused (Patent Document 1).

前記CO2吸収液及び工程を用いて燃焼排ガスのようなCO2含有ガスからCO2を吸収除去・回収する方法においては、これらの工程は燃焼設備に付加して設置されるため、その操業費用もできるだけ低減させなければならない。特に前記工程の内、再生工程はCO2をCO2吸収液から放出させるために、多量の熱エネルギー(水蒸気)を消費するので、可能な限り省エネルギープロセスとする必要がある。 In the method of absorbing and removing and recovering CO 2 from a CO 2 -containing gas such as combustion exhaust gas using the CO 2 absorbing liquid and the process, since these processes are added to the combustion equipment, the operating cost is increased. Must be reduced as much as possible. In particular, among the above steps, the regeneration step consumes a large amount of heat energy (water vapor) in order to release CO 2 from the CO 2 absorbing solution, so that it needs to be an energy saving process as much as possible.

従来においては、再生塔に供給するCO2を吸収したリッチ溶液を加熱して、再生塔でのCO2を放出される際に使用する水蒸気量の低減を図ることの提案がある(特許文献2)。 Conventionally, there is a proposal to reduce the amount of water vapor used when CO 2 is released in the regeneration tower by heating the rich solution that has absorbed CO 2 supplied to the regeneration tower (Patent Document 2). ).

特開平7−51537号公報Japanese Patent Laid-Open No. 7-51537 特表2009−531163号公報Special table 2009-531163 gazette 特開2009−214089号公報JP 2009-214089 A

しかしながら、特許文献2の提案では、リッチ溶液を加熱する手段として、吸収塔における一部CO2を吸収したセミリッチ溶液を用いているので、CO2回収装置の運転状態に左右され、安定した省エネルギーを図ることができない、という問題がある。また、リッチ吸収液をセミリッチ溶液で熱交換するので、温度差のみの熱交換となり、安定した省エネルギーを図ることができない、という問題がある。 However, in the proposal of Patent Document 2, as a means for heating the rich solution, a semi-rich solution that partially absorbs CO 2 in the absorption tower is used. Therefore, depending on the operating state of the CO 2 recovery device, stable energy saving is achieved. There is a problem that it cannot be planned. In addition, since the rich absorption liquid is heat-exchanged with the semi-rich solution, there is a problem that heat exchange is performed only with a temperature difference and stable energy saving cannot be achieved.

特許文献3の提案では、CO2を吸収したリッチ溶液を分岐し、一方を加熱しつつ再生塔に供給するものの、加熱したリッチ溶液と加熱しないリッチ溶液との2種類の異なる温度のリッチ溶液が、別々に再生塔内部に導入されるので、再生にバラつきが生じ、良好な再生ができず、安定した省エネルギーを図ることができない、という問題がある。 In the proposal of Patent Document 3, a rich solution that has absorbed CO 2 is branched, and one of them is supplied to the regeneration tower while being heated, but there are two types of rich solutions of different temperatures, a heated rich solution and a non-heated rich solution. However, since they are separately introduced into the regeneration tower, there is a problem in that the regeneration is uneven, the satisfactory regeneration cannot be performed, and stable energy saving cannot be achieved.

本発明は、前記問題に鑑み、安定した省エネルギーを図りつつ、エネルギー効率を一層向上させたCO2回収装置及び方法を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a CO 2 recovery device and method that further improve energy efficiency while achieving stable energy saving.

上述した課題を解決するための本発明の第1の発明は、CO2を含有するCO2含有排ガスとCO2吸収液とを接触させてCO2を除去するCO2吸収塔と、CO2を吸収したリッチ溶液からCO2を分離してCO2吸収液を再生してリーン溶液とする吸収液再生塔と、前記吸収液再生塔でCO2が除去されたリーン溶液をCO2吸収塔でCO2吸収液として再利用するCO2回収装置であって、前記CO2吸収塔でCO2を吸収したリッチ溶液の一部を分岐させ、該分岐した一部のリッチ溶液を予熱する予熱手段と、前記予熱手段で予熱された一部のリッチ溶液をリッチ溶液と合流し、該合流したリッチ溶液と、CO2を放出したリーン溶液とを熱交換するリッチ・リーン溶液熱交換器と、を具備することを特徴とするCO2回収装置にある。 The first aspect of the present invention to solve the above problems, and the CO 2 absorber to remove CO 2 by contacting the CO 2 containing exhaust gas and the CO 2 absorbing liquid containing CO 2, the CO 2 An absorption liquid regeneration tower that separates CO 2 from the absorbed rich solution and regenerates the CO 2 absorption liquid to obtain a lean solution, and the lean solution from which CO 2 has been removed by the absorption liquid regeneration tower is converted into CO by the CO 2 absorption tower. 2 CO 2 recovery device to be reused as an absorbing liquid, a part of the rich solution that has absorbed CO 2 in the CO 2 absorption tower is branched, and a preheating means for preheating the branched part of the rich solution; A rich-lean solution heat exchanger that joins a portion of the rich solution preheated by the preheating means with the rich solution and exchanges heat between the joined rich solution and the lean solution that has released CO 2. It is in the CO 2 recovery device characterized by this.

第2の発明は、第1の発明において、前記予熱手段での予熱温度が、前記リーン溶液の温度以下の温度であることを特徴とするCO2回収装置にある。 A second invention is the CO 2 recovery apparatus according to the first invention, wherein the preheating temperature in the preheating means is equal to or lower than the temperature of the lean solution.

第3の発明は、第1又は2の発明において、前記リッチ溶液の吸収液のCO2吸収剤の濃度を計測する濃度計測手段と、再生塔に導入する直前のリッチ溶液の温度を計測する温度計測手段と、再生塔内の圧力を計測する圧力計測手段と、これらの計測結果より、再生塔に導入するリッチ溶液の適正温度を求め、該適正値となるように、予熱温度を制御する制御装置とを具備することを特徴とするCO2回収装置にある。 According to a third invention, in the first or second invention, a concentration measuring means for measuring the concentration of the CO 2 absorbent in the rich solution absorption liquid, and a temperature for measuring the temperature of the rich solution immediately before being introduced into the regeneration tower. Measurement means, pressure measurement means for measuring the pressure in the regeneration tower, and control for controlling the preheating temperature so as to obtain the appropriate temperature of the rich solution to be introduced into the regeneration tower from these measurement results And a CO 2 recovery device.

第4の発明は、第3の発明において、前記再生塔に導入するリッチ溶液の温度が、適正温度設定値よりも低い場合に、前記予熱手段での予熱温度を上昇させる制御を制御装置で実行することを特徴とするCO2回収装置にある。 According to a fourth invention, in the third invention, when the temperature of the rich solution introduced into the regeneration tower is lower than an appropriate temperature set value, the control device executes control for increasing the preheating temperature in the preheating means. In the CO 2 recovery device,

第5の発明は、第3の発明において、前記再生塔に導入するリッチ溶液の温度が、適正温度設定値よりも高い場合に、前記予熱手段での予熱温度を下降させる制御を制御装置で実行することを特徴とするCO2回収装置にある。 According to a fifth invention, in the third invention, when the temperature of the rich solution introduced into the regeneration tower is higher than an appropriate temperature set value, the control device executes control for lowering the preheating temperature in the preheating means. In the CO 2 recovery device,

第6の発明は、第1乃至5のいずれか一つの発明において、前記水洗部を複数段具備することを特徴とするCO2回収装置にある。 A sixth invention is a CO 2 recovery apparatus according to any one of the first to fifth inventions, wherein the water washing section includes a plurality of stages.

第7の発明は、CO2を含有するCO2含有排ガスとCO2吸収液とを接触させてCO2を除去するCO2吸収塔と、CO2を吸収したCO2吸収液からCO2を分離してCO2吸収液を再生する吸収液再生塔とを用い、前記吸収液再生塔でCO2が除去されたリーン溶液をCO2吸収塔で再利用するCO2回収方法であって、前記吸収塔でCO2を吸収したリッチ溶液の一部を分岐させ、該分岐した一部のリッチ溶液を予熱し、前記予熱された一部のリッチ溶液をリッチ溶液と合流し、該合流したリッチ溶液と、CO2を放出したリーン溶液とを熱交換した後、再生塔内に導入することを特徴とするCO2回収方法にある。 A seventh aspect of the present invention is separated and the CO 2 absorber to remove CO 2 by contacting the CO 2 containing exhaust gas and the CO 2 absorbing liquid containing CO 2, the CO 2 from the CO 2 absorbent having absorbed CO 2 and by using the absorbent regenerator to regenerate the CO 2 absorbing solution, the lean solution from which CO 2 has been removed by the absorbing solution regeneration tower a CO 2 recovery method be reused in the CO 2 absorber, the absorbent Branching a part of the rich solution that has absorbed CO 2 in the tower, preheating the branched part rich solution, joining the preheated part rich solution with the rich solution, after heat exchange with the lean solution that has released the CO 2, in the CO 2 recovery method characterized by introducing into the regenerator.

第8の発明は、第7の発明において、前記予熱手段での予熱温度が、前記リーン溶液の温度以下の温度であることを特徴とするCO2回収方法にある。 An eighth invention is the CO 2 recovery method according to the seventh invention, wherein the preheating temperature in the preheating means is a temperature equal to or lower than the temperature of the lean solution.

第9の発明は、第7又は8の発明において、前記リッチ溶液の吸収液のCO2吸収剤の濃度、再生塔に導入する直前のリッチ溶液の温度、及び再生塔内の圧力を計測し、これらの計測結果より、再生塔に導入するリッチ溶液の適正温度を求め、該適正値となるように、予熱温度を制御することを特徴とするCO2回収方法にある。 A ninth invention measures the concentration of the CO 2 absorbent in the rich solution absorption liquid, the temperature of the rich solution immediately before being introduced into the regeneration tower, and the pressure in the regeneration tower in the seventh or eighth invention, From these measurement results, the CO 2 recovery method is characterized in that an appropriate temperature of the rich solution to be introduced into the regeneration tower is obtained and the preheating temperature is controlled so as to be the appropriate value.

第10の発明は、第9の発明において、前記再生塔に導入するリッチ溶液の温度が、適正温度設定値よりも低い場合に、前記予熱手段での予熱温度を上昇させる制御を実行することを特徴とするCO2回収方法にある。 According to a tenth aspect, in the ninth aspect, when the temperature of the rich solution introduced into the regeneration tower is lower than an appropriate temperature setting value, control is performed to increase the preheating temperature in the preheating means. It is in the characteristic CO 2 recovery method.

第11の発明は、第9の発明において、前記再生塔に導入するリッチ溶液の温度が、適正温度設定値よりも高い場合に、前記予熱手段での予熱温度を下降させる制御を実行することを特徴とするCO2回収方法にある。 In an eleventh aspect based on the ninth aspect, when the temperature of the rich solution to be introduced into the regeneration tower is higher than an appropriate temperature setting value, control is performed to lower the preheating temperature in the preheating means. It is in the characteristic CO 2 recovery method.

本発明によれば、CO2回収装置の低レベルの余熱を効率的に用いることで、再生塔における加熱水蒸気の供給量を低減させることができると共に、安定した省エネルギーを図りつつ、エネルギー効率を一層向上させることができる。 According to the present invention, by efficiently using the low level residual heat of the CO 2 recovery device, it is possible to reduce the supply amount of heated steam in the regeneration tower, and further improve energy efficiency while achieving stable energy saving. Can be improved.

図1は、実施例1に係るCO2回収装置の概略図である。FIG. 1 is a schematic diagram of a CO 2 recovery apparatus according to the first embodiment. 図2は、実施例2に係るCO2回収装置の概略図である。FIG. 2 is a schematic diagram of a CO 2 recovery apparatus according to the second embodiment. 図3は、実施例3に係るCO2回収装置の概略図である。FIG. 3 is a schematic diagram of a CO 2 recovery apparatus according to the third embodiment. 図4は、実施例4に係るCO2回収装置の概略図である。FIG. 4 is a schematic diagram of a CO 2 recovery device according to the fourth embodiment. 図5は、実施例5に係るCO2回収装置の概略図である。FIG. 5 is a schematic diagram of a CO 2 recovery device according to the fifth embodiment. 図6は、実施例6に係るCO2回収装置の概略図である。FIG. 6 is a schematic diagram of a CO 2 recovery apparatus according to the sixth embodiment. 図7は、実施例6を実施するリッチ溶液分岐量制御の流れ図である。FIG. 7 is a flowchart of the rich solution branching amount control for carrying out the sixth embodiment. 図8は、実施例6を実施するリッチ溶液分岐量制御の流れ図である。FIG. 8 is a flowchart of the rich solution branching amount control for carrying out the sixth embodiment. 図9は、試験例と従来例とにおける必要熱量を対比したグラフである。FIG. 9 is a graph comparing required heat amounts in the test example and the conventional example.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例に係るCO2回収装置について、図面を参照して説明する。図1は、実施例1に係るCO2回収装置の概略図である。
図1に示すように、本実施例に係るCO2回収装置10Aは、CO2を含有するCO2含有排ガス11AとCO2吸収液(リーン溶液12B)とを接触させてCO2を除去するCO2吸収塔(以下「吸収塔」という)13と、CO2を吸収したCO2吸収液(リッチ溶液12A)を再生する吸収液再生塔14と、前記吸収液再生塔(以下「再生塔」という)14でCO2が除去されたリーン溶液12BをCO2吸収塔13で再利用するCO2回収装置であって、前記CO2吸収塔13が、CO2吸収液によりCO2含有排ガス中のCO2を吸収するCO2吸収部13Aと、前記CO2吸収部13Aのガス流れ後流側に設けられ、洗浄水20によりCO2除去排ガス11Bを冷却すると共に、同伴するCO2吸収液12を前記洗浄水20により回収する水洗部13Bと、前記水洗部13Bの液貯留部21で回収されたCO2吸収液を含む洗浄水20を前記水洗部13Bの頂部側から供給して循環する循環ラインL1とを具備してなる。図1中、符号L11はリッチ溶液供給管、リーン溶液供給管、L13はリッチ溶液分岐・返送管を各々図示する。
A CO 2 recovery apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a CO 2 recovery apparatus according to the first embodiment.
As shown in FIG. 1, CO 2 recovery apparatus 10A according to the present embodiment, CO 2 containing exhaust gas 11A and the CO 2 absorbing liquid containing CO 2 with (lean solution 12B) and contacting the removing CO 2 CO and 2 absorber (hereinafter referred to as "absorption column") 13, an absorbing solution regeneration tower 14 for reproducing CO 2 absorbent having absorbed CO 2 (the rich solution 12A), said absorbent regenerator (hereinafter referred to as "regeneration tower" ) 14 lean solution 12B which CO 2 has been removed by a CO 2 reused in the CO 2 absorber 13, the CO 2 absorption tower 13, the CO 2 absorbent at a CO 2 content in the flue gas CO and CO 2 absorbing section 13A that absorbs 2, provided in the gas flow downstream side of the CO 2 absorbing section 13A, to cool the CO 2 flue gas 11B by wash water 20, the CO 2 absorbing liquid 12 to be entrained the Washing with water 20 And 13B, formed by and a circulation line L 1 which circulates and supplies the washing unit 13B of the liquid reservoir 21 the washing water 20 containing the recovered CO 2 absorbing solution with the top side of the washing unit 13B. In FIG. 1, symbol L 11 indicates a rich solution supply tube and lean solution supply tube, and L 13 indicates a rich solution branch / return tube.

本実施例では、前記吸収塔13でCO2を吸収したリッチ溶液12Aの一部を分岐部Xで分岐させ、該分岐した一部のリッチ溶液12A1を、該リッチ溶液12A1の温度よりも高い温度である流体で熱交換して、前記リーン溶液12Bの温度以下の温度まで予熱する予熱手段である第1の熱交換器23Aと、前記予熱手段で予熱された一部のリッチ溶液12A2を、合流部Yでリッチ溶液12A0と合流し、該合流したリッチ溶液12A3と、CO2を放出したリーン溶液12Bとを熱交換するリッチ・リーン溶液熱交換器52とを具備している。 In this embodiment, a part of the rich solution 12A that has absorbed CO 2 in the absorption tower 13 is branched at the branch part X, and the part of the rich solution 12A 1 that is branched is made to be higher than the temperature of the rich solution 12A 1. A first heat exchanger 23A, which is a preheating means that preheats to a temperature lower than the temperature of the lean solution 12B by exchanging heat with a fluid at a high temperature, and a part of the rich solution 12A 2 preheated by the preheating means. and it joined with the rich solution 12A 0 at the merging portion Y, which includes the rich solution 12A 3 of flowing該合, a rich lean solution heat exchanger 52 for heat exchange with the lean solution 12B which releases CO 2 .

前記吸収塔13では、CO2含有排ガス11Aは、CO2吸収塔13の下部側に設けられたCO2吸収部13Aにおいて、例えばアルカノールアミンをベースとするアミン系のCO2吸収液12と対向流接触し、CO2含有排ガス11A中のCO2は、化学反応(R−NH2+H2O+CO2→R−NH3HCO3)によりCO2吸収液12に吸収される。
この結果、CO2吸収部13Aを通過して、CO2吸収塔13の内部を上昇するCO2除去排ガス11Bには、CO2が殆ど残存しないものとなる。
In the absorption tower 13, the CO 2 -containing exhaust gas 11 A is counterflowed with an amine-based CO 2 absorption liquid 12 based on, for example, an alkanolamine in a CO 2 absorption section 13 A provided on the lower side of the CO 2 absorption tower 13. contact, CO 2 in the CO 2 containing exhaust gas 11A is absorbed by the CO 2 absorbing liquid 12 by a chemical reaction (R-NH 2 + H 2 O + CO 2 → R-NH 3 HCO 3).
As a result, almost no CO 2 remains in the CO 2 removal exhaust gas 11B passing through the CO 2 absorption section 13A and rising inside the CO 2 absorption tower 13.

その後、CO2除去排ガス11Bは、チムニートレイ16を介して水洗部13B側へ上昇し、水洗部13Bの頂部側から供給される洗浄水20と気液接触して、CO2除去排ガス11Bに同伴するCO2吸収液12を循環洗浄により回収する。 Thereafter, the CO 2 removal exhaust gas 11B rises to the water washing section 13B side via the chimney tray 16, contacts the washing water 20 supplied from the top side of the water washing section 13B, and accompanies the CO 2 removal exhaust gas 11B. The CO 2 absorbent 12 to be recovered is recovered by circulation cleaning.

水洗部13Bでは、チムニートレイ16の液貯留部21で貯留した洗浄水20を循環ラインL1で循環させて、循環洗浄するようにしている。
なお、循環ラインL1には冷却部22を設け、所定の温度(例えば40℃以下)まで冷却している。
この循環する洗浄水20による洗浄によって、CO2除去排ガス11Bに同伴するCO2吸収液12を回収・除去することができる。
In the water washing section 13B, the washing water 20 stored in the liquid storage section 21 of the chimney tray 16 is circulated through the circulation line L 1 to perform circulation washing.
Note that the circulation line L 1 of the cooling unit 22 is provided, it is cooled to a predetermined temperature (e.g., 40 ° C. or less).
By washing with washing water 20 to the circulation, the CO 2 absorbing liquid 12 accompanying the CO 2 removing exhaust gas 11B can be collected and removed.

その後、CO2吸収液12が除去されたCO2吸収液除去排ガス11Cは、CO2吸収塔13の頂部13aから外部へ排出される。なお、符号19はガス中のミストを捕捉するミストエリミネータを図示する。 Thereafter, the CO 2 absorbent-removed exhaust gas 11C from which the CO 2 absorbent 12 has been removed is discharged from the top portion 13a of the CO 2 absorber 13 to the outside. Reference numeral 19 denotes a mist eliminator that captures mist in the gas.

吸収塔13でCO2を吸収したリッチ溶液12A0は、その塔底部から抜き出され、リッチ溶液供給管L11に介装されたリッチソルベントポンプ51により昇圧され、吸収液再生塔14の頂部側に供給される。 The rich solution 12A 0 that has absorbed CO 2 in the absorption tower 13 is extracted from the bottom of the tower, and is pressurized by the rich solvent pump 51 interposed in the rich solution supply pipe L 11 , so that the top side of the absorption liquid regeneration tower 14 To be supplied.

本実施例では、このリッチ溶液12A0が再生塔14に導入する間において、予熱をして、再生塔14に導入するリッチ溶液12A4の温度を適正温度となるようにしている。
ここで、適正温度とは、例えば再生塔14内の塔内圧力、吸収液のアミン濃度、アミンの種類による沸点、吸収液中のCO2濃度により、決定される温度のことをいう。
In this embodiment, while the rich solution 12A 0 is introduced into the regeneration tower 14, preheating is performed so that the temperature of the rich solution 12A 4 introduced into the regeneration tower 14 becomes an appropriate temperature.
Here, the appropriate temperature refers to a temperature determined by, for example, the pressure in the regeneration tower 14, the amine concentration of the absorption liquid, the boiling point depending on the type of amine, and the CO 2 concentration in the absorption liquid.

本実施例においては、図1に示すように、予熱手段である第1の熱交換器23Aは、洗浄水20が循環する循環ラインL1に介装されている。そして、第1の熱交換器23Aにおいて、洗浄水20の熱を利用して、主流のリッチ溶液12A0から分岐した一部のリッチ溶液12A1を予熱し、予熱リッチ溶液12A2としている。 In the present embodiment, as shown in FIG. 1, the first heat exchanger 23 </ b> A that is a preheating means is interposed in a circulation line L 1 through which the cleaning water 20 circulates. Then, in the first heat exchanger 23A, a part of the rich solution 12A 1 branched from the mainstream rich solution 12A 0 is preheated using the heat of the wash water 20 to obtain a preheat rich solution 12A 2 .

その後、予熱リッチ溶液12A2を、主流のリッチ溶液12A0と合流させて合流リッチ溶液12A3とし、その後、再生塔14においてCO2が放散されたリーン液12Bとリッチ・リーン溶液熱交換器52において熱交換し、高温となったリッチ溶液12A4を再生塔14に導入している。 Thereafter, the preheated rich solution 12A 2 is merged with the mainstream rich solution 12A 0 to form a merged rich solution 12A 3, and then the lean liquid 12B from which CO 2 has been diffused in the regeneration tower 14 and the rich / lean solution heat exchanger 52. The rich solution 12A 4 which has been subjected to heat exchange and has reached a high temperature is introduced into the regeneration tower 14.

この結果、吸収塔13でCO2を吸収した低温(例えば30〜50℃)のリッチ溶液12A0を、低レベルの温度(例えば50〜60℃)である洗浄水20の熱を有効利用して、一部のリッチ溶液12A1の温度を上昇させている。その後、温度が上昇した予熱リッチ溶液12A2を本流のリッチ溶液12A0に合流させた後に、合流リッチ溶液12A3をリッチ・リーン溶液熱交換器52で熱交換させて、再生塔14に供給されるリッチ液12A4の温度を、適性温度設定値まで高めることができる。 As a result, the low temperature (for example, 30 to 50 ° C.) rich solution 12A 0 having absorbed CO 2 by the absorption tower 13 is effectively used by using the heat of the washing water 20 that is a low level temperature (for example, 50 to 60 ° C.). The temperature of some of the rich solutions 12A 1 is increased. Thereafter, the preheated rich solution 12A 2 whose temperature has been increased is merged with the main rich solution 12A 0 , and then the combined rich solution 12A 3 is heat-exchanged by the rich / lean solution heat exchanger 52 and supplied to the regeneration tower 14. The temperature of the rich liquid 12A 4 can be increased to an appropriate temperature set value.

この結果、再生塔内でのリボイラ必要熱量の低減を図ることができる。また、低レベルの循環水の熱の有効利用を図ることができ、システム全体としての省エネルギー化を図ることができる。   As a result, the amount of heat required for the reboiler in the regeneration tower can be reduced. Further, the heat of the low level circulating water can be effectively used, and the energy saving of the entire system can be achieved.

なお、前記再生塔14の頂部側から塔内部に放出されたリッチ溶液12A4は、その塔底部からの水蒸気による加熱により、大部分のCO2を放出する。再生塔14内で一部または大部分のCO2を放出したCO2吸収液12は「セミリーン溶液」と呼称される。この図示しないセミリーン溶液は、再生塔14底部に流下する頃には、ほぼ全てのCO2が除去されたリーン溶液12Bとなる。このリーン溶液12Bは循環ラインL20に介装された再生加熱器61で飽和水蒸気62により、加熱される。加熱後の飽和水蒸気62は水蒸気凝縮水63となる。 The rich solution 12A 4 released into the tower from the top side of the regeneration tower 14 releases most of the CO 2 by heating with water vapor from the bottom of the tower. The CO 2 absorbent 12 that has released part or most of the CO 2 in the regeneration tower 14 is referred to as a “semi-lean solution”. When the semi-lean solution (not shown) flows down to the bottom of the regeneration tower 14, it becomes a lean solution 12B from which almost all of the CO 2 has been removed. The lean solution 12B by saturated steam 62 in the regeneration heater 61 interposed in the circulation line L 20, is heated. The saturated steam 62 after heating becomes steam condensed water 63.

一方、再生塔14の塔頂部14aからは塔内においてリッチ溶液12A4及び図示しないセミリーン溶液から逸散された水蒸気を伴ったCO2ガス41が放出される。
そして、水蒸気を伴ったCO2ガス41がガス排出ラインL21により導出され、ガス排出ラインL21に介装された冷却部42により水蒸気が凝縮され、分離ドラム43にて凝縮水44が分離され、CO2ガス45が系外に放出されて、別途圧縮回収等の後処理がなされる。
分離ドラム43にて分離された凝縮水44は凝縮水ラインL22に介装された凝縮水循環ポンプ46にて吸収液再生塔14の上部に供給される。
なお、図示していないが、一部の凝縮水44は洗浄水20の循環ラインL1に供給され、CO2除去排ガス11Cに同伴するCO2吸収液12の吸収に用いるようにしてもよい。
On the other hand, from the top 14a of the regeneration tower 14, CO 2 gas 41 accompanied by water vapor dissipated from the rich solution 12A 4 and a semi-lean solution (not shown) is released in the tower.
Then, CO 2 gas 41 accompanied by water vapor is derived by the gas discharge line L 21, the water vapor is condensed by the cooling unit 42 interposed in the gas discharge line L 21, condensed water 44 is separated in the separation drum 43 The CO 2 gas 45 is released out of the system, and post-processing such as compression recovery is performed separately.
Condensed water 44 separated in the separation drum 43 is supplied to the upper portion of the absorbing solution regeneration tower 14 by the condensed water circulation pump 46 interposed in condensate line L 22.
Although not shown, a portion of the condensed water 44 is fed into the circulation line L 1 of the wash water 20 may be used in the absorption of CO 2 absorbing liquid 12 accompanying the CO 2 flue gas 11C.

再生されたCO2吸収液(リーン溶液12B)はリーン溶液供給管L12を介してリーン溶液ポンプ54によりCO2吸収塔13側に送られ、CO2吸収液12として循環利用される。この際、リーン溶液12Bは、冷却部55により所定の温度まで冷却して、CO2吸収部13A内にノズル56を介して、供給されている。
よって、CO2吸収液12は、CO2吸収塔13と吸収液再生塔14とを循環する閉鎖経路を形成し、CO2吸収塔13のCO2吸収部13Aで再利用される。なお、必要に応じて図示しない補給ラインによりCO2吸収液12は供給され、また必要に応じて図示しないリクレーマによりCO2吸収液12を再生するようにしている。
The regenerated CO 2 absorbent (lean solution 12B) is sent to the CO 2 absorption tower 13 side by the lean solution pump 54 via the lean solution supply pipe L 12 and circulated and used as the CO 2 absorbent 12. At this time, the lean solution 12B is cooled to a predetermined temperature by the cooling unit 55 and is supplied into the CO 2 absorbing unit 13A through the nozzle 56.
Therefore, the CO 2 absorbing liquid 12 forms a closed path for circulating a CO 2 absorption tower 13 and the absorption solution regenerator 14 is reused in the CO 2 absorbing section 13A of the CO 2 absorber 13. Note that the CO 2 absorbent 12 is supplied from a replenishment line (not shown) as necessary, and the CO 2 absorbent 12 is regenerated by a reclaimer (not shown) as needed.

なお、CO2吸収塔13に供給されるCO2含有排ガス11Aは、その前段側に設けられた冷却塔70において、冷却水71により冷却され、その後CO2吸収塔13内に導入される。なお、冷却水71の一部もCO2吸収塔13の洗浄水20として水洗部13Cの頂部に供給され、CO2除去排ガス11Bに同伴するCO2吸収液12の洗浄に用いる場合もある。なお、符号72は循環ポンプ、73は冷却器、74は循環ラインを図示する。 Note that the CO 2 -containing exhaust gas 11A supplied to the CO 2 absorption tower 13 is cooled by the cooling water 71 in the cooling tower 70 provided on the upstream side thereof, and then introduced into the CO 2 absorption tower 13. Incidentally, it is fed to the top of the water washing section 13C as wash water 20 also the CO 2 absorber 13 portion of the cooling water 71, is sometimes used for cleaning the CO 2 absorbing liquid 12 accompanying the CO 2 flue gas 11B. Reference numeral 72 denotes a circulation pump, 73 denotes a cooler, and 74 denotes a circulation line.

このように、本実施例では、前記吸収塔13でCO2を吸収し、再生塔14へ導入するリッチ溶液12Aの一部を分岐させ、該分岐した一部のリッチ溶液12A1を前記リーン溶液の温度(例えば120℃)以下の温度まで第1の熱交換器23Aで予熱し、予熱手段で予熱された一部のリッチ溶液12A2をリッチ溶液12A0と合流し、該合流したリッチ溶液12A3と、CO2を放出したリーン溶液12Bとをリッチ・リーン溶液熱交換器52で熱交換して、さらに高温のリッチ溶液12A4とし、再生塔14内に導入するので、リッチ溶液組成と再生塔圧力に基づく適性温度まで高めることができ、省エネルギー化を図ることができる。 Thus, in the present embodiment, CO 2 is absorbed by the absorption tower 13 and a part of the rich solution 12A introduced into the regeneration tower 14 is branched, and the part of the branched rich solution 12A 1 is used as the lean solution. temperature (e.g., 120 ° C.) was preheated in a first heat exchanger 23A to a temperature below the rich solution 12A 2 some preheated by preheating means joined with the rich solution 12A 0, the rich solution 12A of flowing該合3 and the lean solution 12B from which CO 2 has been released are heat-exchanged by the rich-lean solution heat exchanger 52 to form a higher-temperature rich solution 12A 4 and introduced into the regeneration tower 14, so that the rich solution composition and regeneration The temperature can be increased to an appropriate temperature based on the tower pressure, and energy saving can be achieved.

[試験例]
本発明の実施例1の効果を確認する試験を行った。
即ち、吸収塔13から、再生塔14に導入するリッチ溶液をリッチ・リーン溶液熱交換器52のみを用いた場合の再生塔14におけるリボイラの必要熱量を1とし、リッチ溶液の一部を予熱した後、リッチ・リーン溶液熱交換器52を用いてさらに加熱した場合の再生塔14におけるリボイラの熱量を較べた。この結果を図9に示す。図9に示すように、基準である場合に較べて6%の省エネルギー化を図ることが確認された。
[Test example]
A test was conducted to confirm the effect of Example 1 of the present invention.
That is, the amount of heat required for the reboiler in the regeneration tower 14 when the rich solution introduced into the regeneration tower 14 from the absorption tower 13 only using the rich lean solution heat exchanger 52 is set to 1, and a part of the rich solution is preheated. Then, the amount of heat of the reboiler in the regeneration tower 14 when further heated using the rich / lean solution heat exchanger 52 was compared. The result is shown in FIG. As shown in FIG. 9, it was confirmed that 6% energy saving was achieved as compared with the standard case.

<再生塔14上部放出ガス41の利用>
本発明による実施例に係るCO2回収装置について、図面を参照して説明する。図2は、実施例2に係るCO2回収装置の概略図である。なお、図1に示す実施例1に係るCO2回収装置10Aと同一の構成については、同一符号を付して重複した説明は省略する。
図2に示すように、本実施例のCO2回収装置10Bでは、分岐した一部のリッチ溶液12A1を予熱する予熱手段として、再生塔14の塔頂部14aから排出される、水蒸気を伴ったCO2ガス41を用いた第2の熱交換部23Bとしている。
この第2の熱交換部23Bは、水蒸気を伴ったCO2ガス41が排出されるガス排出ラインL21に介装され、水蒸気を伴ったCO2ガス41で分岐した一部のリッチ溶液12A1を予熱し、予熱リッチ溶液12A2としている。
この水蒸気を伴ったCO2ガス41の温度は、100℃以下(例えば60〜100℃)であるので、分岐した一部のリッチ溶液12A1をリーン溶液12Bの温度以下まで、予熱することができる。
<Utilization of gas 41 released from regeneration tower 14>
A CO 2 recovery apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a schematic diagram of a CO 2 recovery apparatus according to the second embodiment. Note that the CO 2 recovery apparatus 10A same configuration as that according to the first embodiment shown in FIG. 1, and redundant description are denoted by the same reference numerals will be omitted.
As shown in FIG. 2, in the CO 2 recovery apparatus 10B of the present example, as a preheating means for preheating a part of the rich solution 12A 1 branched, the steam discharged from the top 14a of the regeneration tower 14 was accompanied by water vapor. The second heat exchange unit 23B using the CO 2 gas 41 is used.
This second heat exchanging portion 23B is interposed in a gas discharge line L 21 through which CO 2 gas 41 accompanied by water vapor is discharged, and a part of the rich solution 12A 1 branched by the CO 2 gas 41 accompanied by water vapor. Is preheated to obtain a preheat rich solution 12A 2 .
Since the temperature of the CO 2 gas 41 accompanied with the water vapor is 100 ° C. or lower (for example, 60 to 100 ° C.), a part of the rich solution 12A 1 branched can be preheated to the temperature of the lean solution 12B or lower. .

ここで、第2の熱交換器23Bでは、分岐した一部のリッチ溶液12A1を前記リーン溶液の温度(例えば120℃)以下の温度(例えば80〜90℃)まで予熱するのが好ましい。
これは、予熱リッチ溶液12A2の温度が高いような場合には、主流のリッチ溶液12A0と合流した後の合流リッチ溶液12A3の温度が高くなり、再生塔14上部での過度の水分フラッシュによる再生塔出口ガスに同伴する水分量の増加のため、冷却部42での廃熱が増大してしまうからである。
Here, in the second heat exchanger 23B, it is preferable that a part of the branched rich solution 12A 1 is preheated to a temperature (for example, 80 to 90 ° C.) or less (for example, 80 to 90 ° C.) or less.
This is because, when the temperature of the preheated rich solution 12A 2 is high, the temperature of the combined rich solution 12A 3 after being combined with the mainstream rich solution 12A 0 becomes high, and excessive moisture flashes in the upper part of the regeneration tower 14 This is because waste heat in the cooling section 42 increases due to an increase in the amount of water accompanying the regeneration tower outlet gas.

この第2の熱交換器23Bを設置し、水蒸気を伴ったCO2ガス41の熱を利用して、一部のリッチ溶液12A1を熱交換することで、水蒸気を伴ったCO2ガス41の温度は低下する。この結果、第2の熱交換器23Bの後流側のガス排出ラインL21に介装される冷却部42の容量及び使用する冷却水の量の低減を図ることができる。 The second heat exchanger 23B is installed, by utilizing the heat of the CO 2 gas 41 accompanied by water vapor, a part of the rich solution 12A 1 by heat exchange, the CO 2 gas 41 accompanied by water vapor The temperature drops. As a result, it is possible to reduce the capacity of the cooling unit 42 interposed in the downstream gas discharge line L 21 of the second heat exchanger 23B and the amount of cooling water to be used.

このように、本実施例では、前記吸収塔13でCO2を吸収し、再生塔14へ導入するリッチ溶液12Aの一部を分岐させ、該分岐した一部のリッチ溶液12A1を前記リーン溶液の温度(例えば120℃)以下の温度まで第2の熱交換器23Bで予熱し、予熱手段で予熱された一部のリッチ溶液12A2をリッチ溶液12A0と合流し、該合流したリッチ溶液12A3と、CO2を放出したリーン溶液12Bとをリッチ・リーン溶液熱交換器52で熱交換して、さらに高温のリッチ溶液12A4とし、再生塔14内に導入するので、リッチ溶液組成と再生塔圧力に基づく適性温度まで高めることができ、省エネルギー化を図ることができる。 Thus, in the present embodiment, CO 2 is absorbed by the absorption tower 13 and a part of the rich solution 12A introduced into the regeneration tower 14 is branched, and the part of the branched rich solution 12A 1 is used as the lean solution. temperature (e.g., 120 ° C.) was preheated in a second heat exchanger 23B to a temperature below the rich solution 12A 2 some preheated by preheating means joined with the rich solution 12A 0, the rich solution 12A of flowing該合3 and the lean solution 12B from which CO 2 has been released are heat-exchanged by the rich-lean solution heat exchanger 52 to form a higher-temperature rich solution 12A 4 and introduced into the regeneration tower 14, so that the rich solution composition and regeneration The temperature can be increased to an appropriate temperature based on the tower pressure, and energy saving can be achieved.

実施例1と同様に、100℃以下の低レベルの流体の熱の有効利用を図ることができる。   As in the first embodiment, it is possible to effectively use the heat of a fluid at a low level of 100 ° C. or lower.

<リボイラ凝縮水63の利用>
本発明による実施例に係るCO2回収装置について、図面を参照して説明する。図3は、実施例3に係るCO2回収装置の概略図である。なお、図1に示す実施例1に係るCO2回収装置10Aと同一の構成については、同一符号を付して重複した説明は省略する。
図3に示すように、本実施例のCO2回収装置10Cでは、分岐した一部のリッチ溶液12A1を予熱する予熱手段として、再生加熱器61での凝縮水63を用いた第3の熱交換部23Cとしている。
この第3の熱交換部23Cは、凝縮水排出ラインL23に介装され、凝縮水63により分岐した一部のリッチ溶液12A1を予熱し、予熱リッチ溶液12A2としている。
この凝縮水63の温度は、例えば130〜140℃であるので、分岐した一部のリッチ溶液12A1をリーン溶液12Bの温度以下まで、予熱することができる。
<Use of reboiler condensate 63>
A CO 2 recovery apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a schematic diagram of a CO 2 recovery apparatus according to the third embodiment. Note that the CO 2 recovery apparatus 10A same configuration as that according to the first embodiment shown in FIG. 1, and redundant description are denoted by the same reference numerals will be omitted.
As shown in FIG. 3, in the CO 2 recovery apparatus 10C of the present embodiment, the third heat using the condensed water 63 in the regenerative heater 61 as preheating means for preheating a part of the branched rich solution 12A 1. The exchange unit 23C is used.
The third heat exchange unit 23C is interposed condensate drain line L 23, the rich solution 12A 1 part branching preheated by the condensed water 63, and the preheated rich solution 12A 2.
Since the temperature of the condensed water 63 is, for example, 130 to 140 ° C., a part of the branched rich solution 12A 1 can be preheated to the temperature of the lean solution 12B or less.

このように、本実施例では、前記吸収塔13でCO2を吸収し、再生塔14へ導入するリッチ溶液12Aの一部を分岐させ、該分岐した一部のリッチ溶液12A1を前記リーン溶液12Bの温度(例えば120℃)以下の温度まで第3の熱交換器23Cで予熱し、予熱手段で予熱された一部のリッチ溶液12A2をリッチ溶液12A0と合流し、該合流したリッチ溶液12A3と、CO2を放出したリーン溶液12Bとをリッチ・リーン溶液熱交換器52で熱交換して、さらに高温のリッチ溶液12A4とし、再生塔14内に導入するので、リッチ溶液組成と再生塔圧力に基づく適性温度まで高めることができ、省エネルギー化を図ることができる。 Thus, in the present embodiment, CO 2 is absorbed by the absorption tower 13 and a part of the rich solution 12A introduced into the regeneration tower 14 is branched, and the part of the branched rich solution 12A 1 is used as the lean solution. preheated in the third heat exchanger 23C to a temperature temperature (e.g. 120 ° C.) of less 12B, preheated part of the rich solution 12A 2 in the preheating unit joins the rich solution 12A 0, the rich solution flows該合12A 3 and the lean solution 12B from which CO 2 has been released are heat-exchanged by the rich / lean solution heat exchanger 52 to obtain a higher-temperature rich solution 12A 4 and introduced into the regeneration tower 14. The temperature can be increased to an appropriate temperature based on the regeneration tower pressure, and energy saving can be achieved.

<ボイラ排ガス11の利用>
本発明による実施例に係るCO2回収装置について、図面を参照して説明する。図4は、実施例4に係るCO2回収装置の概略図である。なお、図1に示す実施例1に係るCO2回収装置10Aと同一の構成については、同一符号を付して重複した説明は省略する。
図4に示すように、本実施例のCO2回収装置10Dでは、分岐した一部のリッチ溶液12A1を予熱する予熱手段として、ボイラ排ガス11を用いた第4の熱交換部23Dとしている。
この第4の熱交換部23Dは、ボイラ1001からボイラ排ガス11を排出する煙道1001aに介装され、エアヒータ(図示せず)出口のボイラ排ガス11により分岐した一部のリッチ溶液12A1を予熱し、予熱リッチ溶液12A2としている。
このエアヒータ出口のボイラ排ガス11の温度は、例えば90〜140℃であるので、分岐した一部のリッチ溶液12A1をリーン溶液12Bの温度以下まで、予熱することができる。
<Use of boiler exhaust gas 11>
A CO 2 recovery apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a schematic diagram of a CO 2 recovery device according to the fourth embodiment. Note that the CO 2 recovery apparatus 10A same configuration as that according to the first embodiment shown in FIG. 1, and redundant description are denoted by the same reference numerals will be omitted.
As shown in FIG. 4, in the CO 2 recovery apparatus 10D of the present embodiment, a fourth heat exchanging unit 23D using the boiler exhaust gas 11 is used as preheating means for preheating a part of the branched rich solution 12A 1 .
The fourth heat exchanging portion 23D is interposed in a flue 1001a for discharging the boiler exhaust gas 11 from the boiler 1001, and preheats a part of the rich solution 12A 1 branched by the boiler exhaust gas 11 at the outlet of the air heater (not shown). The preheated rich solution 12A 2 is used.
Since the temperature of the boiler exhaust gas 11 at the outlet of the air heater is, for example, 90 to 140 ° C., a part of the rich solution 12A 1 branched can be preheated to the temperature of the lean solution 12B or less.

このように、本実施例では、前記吸収塔13でCO2を吸収し、再生塔14へ導入するリッチ溶液12Aの一部を分岐させ、該分岐した一部のリッチ溶液12A1を前記リーン溶液の温度(例えば120℃)以下の温度まで第4の熱交換器23Dで予熱し、予熱手段で予熱された一部のリッチ溶液12A2をリッチ溶液12A0と合流し、該合流したリッチ溶液12A3と、CO2を放出したリーン溶液12Bとをリッチ・リーン溶液熱交換器52で熱交換して、さらに高温のリッチ溶液12A4とし、再生塔14内に導入するので、リッチ溶液組成と再生塔圧力に基づく適性温度まで高めることができ、省エネルギー化を図ることができる。 Thus, in the present embodiment, CO 2 is absorbed by the absorption tower 13 and a part of the rich solution 12A introduced into the regeneration tower 14 is branched, and the part of the branched rich solution 12A 1 is used as the lean solution. temperature (e.g., 120 ° C.) was preheated in the fourth heat exchanger 23D to a temperature below the rich solution 12A 2 some preheated by preheating means joined with the rich solution 12A 0, the rich solution 12A of flowing該合3 and the lean solution 12B from which CO 2 has been released are heat-exchanged by the rich-lean solution heat exchanger 52 to form a higher-temperature rich solution 12A 4 and introduced into the regeneration tower 14, so that the rich solution composition and regeneration The temperature can be increased to an appropriate temperature based on the tower pressure, and energy saving can be achieved.

<セミリッチ溶液)>
本発明による実施例に係るCO2回収装置について、図面を参照して説明する。図5は、実施例5に係るCO2回収装置の概略図である。なお、図1に示す実施例1に係るCO2回収装置10Aと同一の構成については、同一符号を付して重複した説明は省略する。
図5に示すように、本実施例のCO2回収装置10Eでは、分岐した一部のリッチ溶液12A1を予熱する予熱手段として、再生塔14の中間部分において、セミリッチ溶液の一部を抜き出し、この一部のセミリッチ溶液12B0を用いた第5の熱交換部23Eとしている。
この第5の熱交換部23Eは、セミリッチ溶液12B0の抜き出しラインL24に介装され、セミリッチ溶液12B0により分岐した一部のリッチ溶液12A1を予熱し、予熱リッチ溶液12A2としている。
このセミリッチ溶液12B0の温度は、例えば100〜120℃であるので、分岐した一部のリッチ溶液12A1をリーン溶液12Bの温度以下まで、予熱することができる。
<Semi-rich solution>
A CO 2 recovery apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a schematic diagram of a CO 2 recovery device according to the fifth embodiment. Note that the CO 2 recovery apparatus 10A same configuration as that according to the first embodiment shown in FIG. 1, and redundant description are denoted by the same reference numerals will be omitted.
As shown in FIG. 5, in the CO 2 recovery apparatus 10E of the present embodiment, as a preheating means for preheating a part of the rich solution 12A 1 branched, a part of the semi-rich solution is extracted in the intermediate part of the regeneration tower 14, and a fifth heat exchanging unit 23E using the semi-rich solution 12B 0 of this portion.
The fifth heat exchanging unit 23E is interposed extraction line L 24 of the semi-rich solution 12B 0, preheating the rich solution 12A 1 part branching the semi-rich solution 12B 0, is set to preheat the rich solution 12A 2.
Since the temperature of the semi-rich solution 12B 0 is, for example, 100 to 120 ° C., a part of the rich solution 12A 1 branched can be preheated to a temperature equal to or lower than the temperature of the lean solution 12B.

このように、本実施例では、前記吸収塔13でCO2を吸収し、再生塔14へ導入するリッチ溶液12Aの一部を分岐させ、該分岐した一部のリッチ溶液12A1を前記リーン溶液の温度(例えば120℃)以下の温度まで第5の熱交換器23Eで予熱し、予熱手段で予熱された一部のリッチ溶液12A2をリッチ溶液12A0と合流し、該合流したリッチ溶液12A3と、CO2を放出したリーン溶液12Bとをリッチ・リーン溶液熱交換器52で熱交換して、さらに高温のリッチ溶液12A4とし、再生塔14内に導入するので、リッチ溶液組成と再生塔圧力に基づく適性温度まで高めることができ、省エネルギー化を図ることができる。 Thus, in the present embodiment, CO 2 is absorbed by the absorption tower 13 and a part of the rich solution 12A introduced into the regeneration tower 14 is branched, and the part of the branched rich solution 12A 1 is used as the lean solution. temperature (e.g., 120 ° C.) was preheated in the fifth heat exchanger 23E to a temperature below the rich solution 12A 2 some preheated by preheating means joined with the rich solution 12A 0, the rich solution 12A of flowing該合3 and the lean solution 12B from which CO 2 has been released are heat-exchanged by the rich-lean solution heat exchanger 52 to form a higher-temperature rich solution 12A 4 and introduced into the regeneration tower 14, so that the rich solution composition and regeneration The temperature can be increased to an appropriate temperature based on the tower pressure, and energy saving can be achieved.

本発明による実施例に係るCO2回収装置について、図面を参照して説明する。図6は、実施例6に係るCO2回収装置の概略図である。なお、図1に示す実施例1に係るCO2回収装置10Aと同一の構成については、同一符号を付して重複した説明は省略する。また、図7及び8は、実施例6を実施するリッチ溶液分岐量制御の流れ図である。
図6に示すように、本実施例のCO2回収装置10Fでは、実施例1のCO2回収装置10Aにおいて、さらにリッチ溶液12A0のCO2吸収剤の濃度を計測する濃度計測手段81と、再生塔14に導入する直前の加熱リッチ溶液12A4の温度を計測する温度計測手段82と、再生塔14内の圧力を測定する圧力計測手段83とを具備し、それらの情報を制御手段84で判断して、主リッチ溶液12A0から抜き出す一部のリッチ溶液12A1の流量の制御を、リッチ溶液分岐・返送管L13に介装した流量調整弁85の操作により行うようにしている。
A CO 2 recovery apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a schematic diagram of a CO 2 recovery apparatus according to the sixth embodiment. Note that the CO 2 recovery apparatus 10A same configuration as that according to the first embodiment shown in FIG. 1, and redundant description are denoted by the same reference numerals will be omitted. 7 and 8 are flowcharts of the rich solution branching amount control for carrying out the sixth embodiment.
As shown in FIG. 6, in the CO 2 recovery device 10F of the present embodiment, in the CO 2 recovery device 10A of the first embodiment, a concentration measuring unit 81 that further measures the concentration of the CO 2 absorbent in the rich solution 12A 0 ; A temperature measuring means 82 for measuring the temperature of the heated rich solution 12A 4 immediately before being introduced into the regeneration tower 14 and a pressure measuring means 83 for measuring the pressure in the regeneration tower 14 are provided. Accordingly, the flow rate of a part of the rich solution 12A 1 extracted from the main rich solution 12A 0 is controlled by operating the flow rate adjusting valve 85 interposed in the rich solution branch / return pipe L 13 .

リッチ溶液の吸収液のCO2吸収剤の濃度を計測する濃度計測手段81は、吸収塔底部からリッチ溶液12A0が抜き出されるリッチ溶液供給管L11に介装され、温度計測手段82は、再生塔14への導入直前のリッチ溶液供給管L11に介装され、圧力計測手段83は、ガス排出ラインL21に介装されている。そして、これらの計測結果より、再生塔14に導入するリッチ溶液12A4の適正温度を求め、該適正値となるように、予熱温度を制御装置により制御するようにしている。 The concentration measuring means 81 for measuring the concentration of the CO 2 absorbent in the rich solution absorption liquid is interposed in the rich solution supply pipe L 11 from which the rich solution 12A 0 is extracted from the bottom of the absorption tower, and the temperature measuring means 82 is The pressure measuring means 83 is interposed in the gas discharge line L 21 and is interposed in the rich solution supply pipe L 11 immediately before introduction into the regeneration tower 14. Then, from these measurement results, an appropriate temperature of the rich solution 12A 4 introduced into the regeneration tower 14 is obtained, and the preheating temperature is controlled by the control device so as to be the appropriate value.

そして、図7に示すように、リッチ溶液中の吸収剤の濃度が上昇する(条件A)、リッチ溶液中のCO2濃度が低下する(条件B)、再生塔圧力が上昇する(条件C)の少なくとも一つが変動した場合、再生塔14に供給されるリッチ液12A4の温度が、低すぎることとなるので、再生塔14に供給するリッチ溶液の温度設定値を上昇させる制御を実施する(S10)。
このような場合、リッチ溶液の一部のリッチ溶液12A1の分岐量を上昇させる制御を行う(S11)。
再生塔入口のリッチ溶液の供給温度を確認して(S12)、適切(正常)であれば、現状の運転を維持する(S13)。
これに対し、温度が低ければ(低い)、再度、S11に戻り、リッチ溶液の分岐量を上昇させる制御を行う。
これにより、再生塔入口供給液の温度を適切に維持するようにしている。
As shown in FIG. 7, the concentration of the absorbent in the rich solution increases (condition A), the CO 2 concentration in the rich solution decreases (condition B), and the regeneration tower pressure increases (condition C). When at least one of these changes, the temperature of the rich liquid 12A 4 supplied to the regeneration tower 14 is too low, and therefore, control is performed to increase the temperature set value of the rich solution supplied to the regeneration tower 14 ( S10).
In such a case, control is performed to increase the branching amount of a part of the rich solution 12A 1 (S11).
The supply temperature of the rich solution at the regeneration tower inlet is confirmed (S12), and if it is appropriate (normal), the current operation is maintained (S13).
On the other hand, if the temperature is low (low), the process returns to S11 again, and control is performed to increase the branch amount of the rich solution.
Thereby, the temperature of the supply liquid at the inlet of the regeneration tower is appropriately maintained.

この結果、再生塔14での加熱によるCO2放散に余分な熱エネルギーが必要とならず、再生塔に供給されるリッチ液温度の不適正な条件を防止することにより、省エネ化が図れる。 As a result, extra heat energy is not required for CO 2 emission due to heating in the regeneration tower 14, and energy saving can be achieved by preventing an inappropriate condition of the rich liquid temperature supplied to the regeneration tower.

また、図8に示すように、リッチ溶液中の吸収剤の濃度が低下する(条件D)、リッチ溶液中のCO2濃度が上昇する(条件E)、再生塔圧力が低下する(条件F)の少なくとも一つが変動した場合、再生塔14に供給されるリッチ液12A4の温度が、高くなりすぎることとなるので、再生塔14に供給するリッチ溶液の温度設定値を下降させる制御を実施する(S20)。
このような場合、リッチ溶液の一部のリッチ溶液12A1の分岐量を下降させる制御を行う(S21)。
再生塔入口のリッチ溶液の供給温度を確認して(S22)、適切(正常)であれば、現状の運転を維持する(S23)。
これに対し、温度が高ければ(高い)、再度、S21に戻り、リッチ溶液の分岐量を下降させる制御を行う。
これにより、再生塔入口供給液の温度を適切に維持するようにしている。
Further, as shown in FIG. 8, the concentration of the absorbent in the rich solution decreases (condition D), the CO 2 concentration in the rich solution increases (condition E), and the regeneration tower pressure decreases (condition F). When at least one of these changes, the temperature of the rich liquid 12A 4 supplied to the regeneration tower 14 becomes too high. Therefore, control is performed to lower the temperature setting value of the rich solution supplied to the regeneration tower 14. (S20).
In such a case, control is performed to lower the branching amount of a part of the rich solution 12A 1 (S21).
The supply temperature of the rich solution at the regeneration tower inlet is confirmed (S22), and if it is appropriate (normal), the current operation is maintained (S23).
On the other hand, if the temperature is high (high), the process returns to S21 again, and control is performed to lower the branch amount of the rich solution.
Thereby, the temperature of the supply liquid at the inlet of the regeneration tower is appropriately maintained.

この結果、再生塔14上部での過度の水分フラッシュによる再生塔出口ガスに同伴する水分量の増加を防ぎ、冷却部42での廃熱の増大を防止することができる。   As a result, it is possible to prevent an increase in the amount of moisture accompanying the regeneration tower outlet gas due to excessive moisture flushing at the top of the regeneration tower 14 and to prevent an increase in waste heat in the cooling section 42.

また、本実施例では、リッチ液の組成と再生塔供給部での温度を連続的に検知することで、リッチ溶液12A0よりも高温の流体(洗浄水20)と熱交換させるリッチ液分岐量を調節することにより、リッチ溶液12A4の再生塔14への供給温度を適正に維持し、連続的に省エネルギー化を図ることができる。 Further, in this embodiment, by continuously sensing the temperature of the composition and regenerator supply of the rich solution, the rich fluid branch amount as to heat exchange hot fluid (wash water 20) than the rich solution 12A 0 By adjusting this, the supply temperature of the rich solution 12A 4 to the regeneration tower 14 can be properly maintained, and energy saving can be continuously achieved.

下記表1及び2に運転条件と再生塔14に供給するリッチ溶液12A4の供給温度の設定値の例を示す。
表1に示すように、再生塔での設定温度条件の温度が90℃の場合を「標準」と設定した場合、リッチ溶液中の吸収剤の濃度が上昇する(条件A:標準の1.05倍)、リッチ溶液中のCO2濃度が低下する(条件B:標準の0.95倍)、再生塔圧力が上昇する(条件C:標準の1.05倍)となった場合には、再生塔14に供給するリッチ溶液12A4の温度の設定値を100℃に変更する。そして、リッチ溶液の一部を分岐して予熱手段で予熱し、再生塔14に供給するリッチ溶液12A4の温度が100℃になるように、調整弁85を操作する制御を行う。
これにより、リッチ溶液12A4の再生塔入口供給温度を所定の設定値に維持することができる。
Tables 1 and 2 below show examples of operating conditions and set values of the supply temperature of the rich solution 12A 4 supplied to the regeneration tower 14.
As shown in Table 1, when “standard” is set when the temperature of the set temperature condition in the regeneration tower is 90 ° C., the concentration of the absorbent in the rich solution increases (condition A: 1.05 of the standard). If the CO 2 concentration in the rich solution decreases (condition B: 0.95 times the standard) and the regeneration tower pressure increases (condition C: 1.05 times the standard), regeneration The set value of the temperature of the rich solution 12A 4 supplied to the tower 14 is changed to 100 ° C. Then, a part of the rich solution is branched and preheated by the preheating means, and the control of the adjustment valve 85 is performed so that the temperature of the rich solution 12A 4 supplied to the regeneration tower 14 becomes 100 ° C.
Thereby, the regeneration tower inlet supply temperature of the rich solution 12A 4 can be maintained at a predetermined set value.

Figure 2013226487
Figure 2013226487

また、表2に示すように、再生塔での設定温度条件の温度が90℃の場合を「標準」と設定した場合、リッチ溶液中の吸収剤の濃度が低下する(条件A:標準の0.95倍)、リッチ溶液中のCO2濃度が上昇する(条件B:標準の1.05倍)、再生塔圧力が低下する(条件C:標準の0.95倍)となった場合には、再生塔14に供給するリッチ溶液12A4の温度の設定値を75℃に変更する。そして、リッチ溶液の一部を分岐して予熱手段で予熱し、再生塔14に供給するリッチ溶液12A4の温度が75℃になるように、調整弁85を操作する制御を行う。
これにより、リッチ溶液12A4の再生塔入口供給温度を所定の設定値に維持することができる。
Moreover, as shown in Table 2, when the temperature of the set temperature condition in the regeneration tower is set to 90 ° C., the concentration of the absorbent in the rich solution decreases (Condition A: standard 0). .95 times), when the CO 2 concentration in the rich solution increases (condition B: 1.05 times the standard) and the regeneration tower pressure decreases (condition C: 0.95 times the standard) Then, the set value of the temperature of the rich solution 12A 4 supplied to the regeneration tower 14 is changed to 75 ° C. Then, a part of the rich solution is branched and preheated by the preheating means, and the control of the adjustment valve 85 is performed so that the temperature of the rich solution 12A 4 supplied to the regeneration tower 14 becomes 75 ° C.
Thereby, the regeneration tower inlet supply temperature of the rich solution 12A 4 can be maintained at a predetermined set value.

Figure 2013226487
Figure 2013226487

10A〜10F CO2回収装置
11A CO2含有排ガス
12 CO2吸収液
12A リッチ溶液
12B リーン溶液
13 CO2吸収塔(吸収塔)
13A CO2吸収部
13B 水洗部
14 吸収液再生塔(再生塔)
20 洗浄水
10A to 10F CO 2 recovery device 11A CO 2 -containing exhaust gas 12 CO 2 absorbent 12A rich solution 12B lean solution 13 CO 2 absorption tower (absorption tower)
13A CO 2 absorption part 13B Flushing part 14 Absorption liquid regeneration tower (regeneration tower)
20 Wash water

Claims (11)

CO2を含有するCO2含有排ガスとCO2吸収液とを接触させてCO2を除去するCO2吸収塔と、
CO2を吸収したリッチ溶液からCO2を分離してCO2吸収液を再生してリーン溶液とする吸収液再生塔と、
前記吸収液再生塔でCO2が除去されたリーン溶液をCO2吸収塔でCO2吸収液として再利用するCO2回収装置であって、
前記CO2吸収塔でCO2を吸収したリッチ溶液の一部を分岐させ、該分岐した一部のリッチ溶液を予熱する予熱手段と、
前記予熱手段で予熱された一部のリッチ溶液をリッチ溶液と合流し、該合流したリッチ溶液と、CO2を放出したリーン溶液とを熱交換するリッチ・リーン溶液熱交換器と、を具備することを特徴とするCO2回収装置。
And the CO 2 absorber to remove CO 2 by contacting the CO 2 containing exhaust gas and the CO 2 absorbing liquid containing CO 2,
And absorbing solution regeneration tower to lean solution to separate the CO 2 to play the CO 2 absorbing solution from the rich solution that has absorbed CO 2,
Wherein the absorption liquid lean solution from which CO 2 has been removed in the regeneration tower a CO 2 is reused as a CO 2 absorbing solution in a CO 2 absorption tower,
A preheating means for branching a part of the rich solution that has absorbed CO 2 in the CO 2 absorption tower and preheating the branched rich solution;
A rich-lean solution heat exchanger that joins a portion of the rich solution preheated by the preheating means with the rich solution and exchanges heat between the joined rich solution and the lean solution that has released CO 2. A CO 2 recovery device characterized by that.
請求項1において、
前記予熱手段での予熱温度が、前記リーン溶液の温度以下の温度であることを特徴とするCO2回収装置。
In claim 1,
The CO 2 recovery apparatus, wherein the preheating temperature in the preheating means is a temperature equal to or lower than the temperature of the lean solution.
請求項1又は2において、
前記リッチ溶液の吸収液のCO2吸収剤の濃度を計測する濃度計測手段と、再生塔に導入する直前のリッチ溶液の温度を計測する温度計測手段と、再生塔内の圧力を計測する圧力計測手段と、
これらの計測結果より、再生塔に導入するリッチ溶液の適正温度を求め、該適正値となるように、予熱温度を制御する制御装置とを具備することを特徴とするCO2回収装置。
In claim 1 or 2,
Concentration measuring means for measuring the concentration of the CO 2 absorbent in the absorbent of the rich solution, temperature measuring means for measuring the temperature of the rich solution immediately before being introduced into the regeneration tower, and pressure measurement for measuring the pressure in the regeneration tower Means,
A CO 2 recovery apparatus comprising: a control device that obtains an appropriate temperature of the rich solution introduced into the regeneration tower from these measurement results and controls the preheating temperature so as to obtain the appropriate value.
請求項3において、
前記再生塔に導入するリッチ溶液の温度が、適正温度設定値よりも低い場合に、前記予熱手段での予熱温度を上昇させる制御を制御装置で実行することを特徴とするCO2回収装置。
In claim 3,
A CO 2 recovery apparatus, wherein when the temperature of the rich solution introduced into the regeneration tower is lower than an appropriate temperature set value, control for increasing the preheating temperature in the preheating means is executed by a control device.
請求項3において、
前記再生塔に導入するリッチ溶液の温度が、適正温度設定値よりも高い場合に、前記予熱手段での予熱温度を下降させる制御を制御装置で実行することを特徴とするCO2回収装置。
In claim 3,
A CO 2 recovery device, wherein when the temperature of the rich solution introduced into the regeneration tower is higher than an appropriate temperature set value, the control device executes control for lowering the preheating temperature in the preheating means.
請求項1乃至5のいずれか一つにおいて、
前記水洗部を複数段具備することを特徴とするCO2回収装置。
In any one of Claims 1 thru | or 5,
A CO 2 recovery device comprising a plurality of stages of the water washing section.
CO2を含有するCO2含有排ガスとCO2吸収液とを接触させてCO2を除去するCO2吸収塔と、CO2を吸収したCO2吸収液からCO2を分離してCO2吸収液を再生する吸収液再生塔とを用い、前記吸収液再生塔でCO2が除去されたリーン溶液をCO2吸収塔で再利用するCO2回収方法であって、
前記吸収塔でCO2を吸収したリッチ溶液の一部を分岐させ、該分岐した一部のリッチ溶液を予熱し、前記予熱された一部のリッチ溶液をリッチ溶液と合流し、該合流したリッチ溶液と、CO2を放出したリーン溶液とを熱交換した後、再生塔内に導入することを特徴とするCO2回収方法。
And the CO 2 absorber to remove CO 2 by contacting the CO 2 containing exhaust gas and the CO 2 absorbing liquid containing CO 2, to separate the CO 2 from the CO 2 absorbent having absorbed CO 2 CO 2 absorbing solution A CO 2 recovery method in which a lean solution from which CO 2 has been removed in the absorption liquid regeneration tower is reused in a CO 2 absorption tower.
A portion of the rich solution that has absorbed CO 2 in the absorption tower is branched, the branched portion of the rich solution is preheated, the preheated portion of the rich solution is merged with the rich solution, and the combined rich solution A CO 2 recovery method, wherein the solution and the lean solution from which CO 2 has been released are heat-exchanged and then introduced into the regeneration tower.
請求項7において、
前記予熱手段での予熱温度が、前記リーン溶液の温度以下の温度であることを特徴とするCO2回収方法。
In claim 7,
A CO 2 recovery method, wherein a preheating temperature in the preheating means is a temperature equal to or lower than a temperature of the lean solution.
請求項7又は8において、
前記リッチ溶液の吸収液のCO2吸収剤の濃度、再生塔に導入する直前のリッチ溶液の温度、及び再生塔内の圧力を計測し、
これらの計測結果より、再生塔に導入するリッチ溶液の適正温度を求め、該適正値となるように、予熱温度を制御することを特徴とするCO2回収方法。
In claim 7 or 8,
Measuring the concentration of the CO 2 absorbent in the rich solution absorption liquid, the temperature of the rich solution immediately before being introduced into the regeneration tower, and the pressure in the regeneration tower;
A CO 2 recovery method characterized by obtaining an appropriate temperature of the rich solution to be introduced into the regeneration tower from these measurement results and controlling the preheating temperature so as to be the appropriate value.
請求項9において、
前記再生塔に導入するリッチ溶液の温度が、適正温度設定値よりも低い場合に、前記予熱手段での予熱温度を上昇させる制御を実行することを特徴とするCO2回収方法。
In claim 9,
A CO 2 recovery method characterized in that, when the temperature of the rich solution introduced into the regeneration tower is lower than an appropriate temperature set value, control for increasing the preheating temperature in the preheating means is executed.
請求項9において、
前記再生塔に導入するリッチ溶液の温度が、適正温度設定値よりも高い場合に、前記予熱手段での予熱温度を下降させる制御を実行することを特徴とするCO2回収方法。
In claim 9,
A CO 2 recovery method, characterized in that when the temperature of the rich solution introduced into the regeneration tower is higher than an appropriate temperature set value, control is performed to lower the preheating temperature in the preheating means.
JP2012099045A 2012-04-24 2012-04-24 Co2 recovery device and co2 recovery method Pending JP2013226487A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012099045A JP2013226487A (en) 2012-04-24 2012-04-24 Co2 recovery device and co2 recovery method
PCT/JP2013/060933 WO2013161574A1 (en) 2012-04-24 2013-04-11 Co2 recovery device, and co2 recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099045A JP2013226487A (en) 2012-04-24 2012-04-24 Co2 recovery device and co2 recovery method

Publications (1)

Publication Number Publication Date
JP2013226487A true JP2013226487A (en) 2013-11-07

Family

ID=49482903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099045A Pending JP2013226487A (en) 2012-04-24 2012-04-24 Co2 recovery device and co2 recovery method

Country Status (2)

Country Link
JP (1) JP2013226487A (en)
WO (1) WO2013161574A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745659B1 (en) 2015-12-01 2017-06-12 공주대학교 산학협력단 Apparatus for removing carbon dioxide and the method for removing carbon dioxide by using the same
JP2020151661A (en) * 2019-03-20 2020-09-24 三菱重工エンジニアリング株式会社 Absorption liquid regenerative apparatus, co2 recovery apparatus, and modification method of absorption liquid regenerative apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104477911B (en) * 2014-11-26 2016-08-24 浙江大学 Simplify heat chemistry ZnSI Cycle-decomposition carbon dioxide and the method and device of water
CN107399778A (en) * 2017-08-30 2017-11-28 博能盛诺(北京)生物质能源科技有限公司 For separating the equipment and system of the carbon dioxide in Methane decarbonization liquid
BE1030055B1 (en) * 2021-12-21 2023-07-19 Thyssenkrupp Ind Solutions Ag Carbon Dioxide Separation Device
BE1030056B1 (en) * 2021-12-21 2023-07-19 Thyssenkrupp Ind Solutions Ag Carbon Dioxide Separation Device
WO2023117704A1 (en) * 2021-12-21 2023-06-29 Thyssenkrupp Industrial Solutions Ag Carbon dioxide separation device
WO2023117705A1 (en) * 2021-12-21 2023-06-29 Thyssenkrupp Industrial Solutions Ag Carbon dioxide separation apparatus
CN116445196B (en) * 2023-04-03 2024-03-19 广州兴丰能源科技有限公司 Method and device for efficiently regenerating amine liquid of coupling heat pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948426B2 (en) * 1992-11-17 1999-09-13 関西電力株式会社 Method for controlling amine compound concentration in carbon dioxide absorbing solution
JP4690659B2 (en) * 2004-03-15 2011-06-01 三菱重工業株式会社 CO2 recovery device
JP5641194B2 (en) * 2010-03-31 2014-12-17 新日鉄住金エンジニアリング株式会社 Carbon dioxide gas recovery device
JP2011240321A (en) * 2010-04-20 2011-12-01 Babcock Hitachi Kk Exhaust gas treatment system having carbon dioxide removal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745659B1 (en) 2015-12-01 2017-06-12 공주대학교 산학협력단 Apparatus for removing carbon dioxide and the method for removing carbon dioxide by using the same
JP2020151661A (en) * 2019-03-20 2020-09-24 三菱重工エンジニアリング株式会社 Absorption liquid regenerative apparatus, co2 recovery apparatus, and modification method of absorption liquid regenerative apparatus
JP7177734B2 (en) 2019-03-20 2022-11-24 三菱重工エンジニアリング株式会社 ABSORBENT LIQUID REGENERATION DEVICE, CO2 RECOVERY DEVICE, AND METHOD OF MODIFYING ABSORBENT LIQUID REGENERATION DEVICE

Also Published As

Publication number Publication date
WO2013161574A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
WO2013161574A1 (en) Co2 recovery device, and co2 recovery method
JP5922451B2 (en) CO2 recovery device
JP5976812B2 (en) Exhaust gas treatment system
AU2012378451B2 (en) Method of recovering carbon dioxide and recovery apparatus
WO2013039041A1 (en) Co2 recovery device and co2 recovery method
JP2013186091A (en) Degradation product concentration measurement device, and acidic gas removal device
JP5738137B2 (en) CO2 recovery apparatus and CO2 recovery method
JP2014036942A (en) Co2 recovery device and method
JP2008307520A (en) Co2 or h2s removal system, co2 or h2s removal method
JP5707894B2 (en) Carbon dioxide recovery method and recovery apparatus
CA2810138C (en) Exhaust gas treatment system
JP6004821B2 (en) CO2 recovery apparatus and CO2 recovery method
JP6723635B2 (en) CO2 recovery device and CO2 recovery method
US20120285171A1 (en) Heat recovery system and heat recovery method of co2 recovery unit
WO2016072292A1 (en) Co2 recovery device and co2 recovery method
JP5237204B2 (en) CO2 recovery apparatus and method
JP2011000528A (en) Co2 recovering device and co2 recovering method
JP5703240B2 (en) Amine recovery device, amine recovery method, and carbon dioxide recovery system
JP6811759B2 (en) CO2 capture device and CO2 capture method
JP5863741B2 (en) CO2 recovery device
JP2012196603A (en) Method and device for recovering carbon dioxide
Iijima et al. CO 2 recovery system