JP2013225687A - Through wiring board and manufacturing method thereof - Google Patents

Through wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP2013225687A
JP2013225687A JP2013127533A JP2013127533A JP2013225687A JP 2013225687 A JP2013225687 A JP 2013225687A JP 2013127533 A JP2013127533 A JP 2013127533A JP 2013127533 A JP2013127533 A JP 2013127533A JP 2013225687 A JP2013225687 A JP 2013225687A
Authority
JP
Japan
Prior art keywords
hole
main surface
substrate
conductor
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013127533A
Other languages
Japanese (ja)
Inventor
Satoshi Yamamoto
敏 山本
Takanao Suzuki
孝直 鈴木
Masami Matsuyama
雅美 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2013127533A priority Critical patent/JP2013225687A/en
Publication of JP2013225687A publication Critical patent/JP2013225687A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a through wiring board in which through wiring without void which becomes a defect, is disposed in a conductor filling the inside of a through hole, and a manufacturing method of the through wiring board with which generation of the void in filling the through hole or a non-through hole with the conductor can be suppressed.SOLUTION: A through hole 4 is disposed which connects one principal surface 2 and the other principal surface 3 constituting a plate-like board 1, and a through wiring board 10 comprises through wiring 6 which is configured by filling the through hole 4 with a conductor 5. The through wiring board 10 is characterized in that, when the through hole 4 is viewed on one longitudinal cross section of the board 1, the through hole 4 is formed in the shape of a trapezoid with inner side faces of the through hole 4 as sides 4p and 4q, the two sides 4p and 4q of the trapezoid are not parallel with each other, and the two sides 4p and 4q are inclined to the same side, respectively, with respect to two perpendiculars Tand Tdrawn to a straight line including a counter side from two apexes forming an upper bottom or a lower bottom of the trapezoid.

Description

本発明は、基板の内部を貫通する貫通配線を有する貫通配線基板およびその製造方法に関する。   The present invention relates to a through wiring substrate having a through wiring penetrating the inside of the substrate and a method for manufacturing the same.

従来、基板の一方の主面と他方の主面とに個別に実装されたデバイスの間を電気的に接続する方法として、基板の内部を貫通する貫通配線を設ける方法が用いられている。
貫通配線基板の一例として、特許文献1には、基板の厚み方向とは異なる方向に延びる部分を有する貫通孔に導体を充填してなる貫通配線を備えた貫通配線基板が記載されている。
2. Description of the Related Art Conventionally, as a method for electrically connecting devices individually mounted on one main surface and the other main surface of a substrate, a method of providing a through wiring penetrating the inside of the substrate has been used.
As an example of the through wiring substrate, Patent Document 1 describes a through wiring substrate including a through wiring in which a through hole having a portion extending in a direction different from the thickness direction of the substrate is filled with a conductor.

その一例として、図17に示すものが挙げられる。この貫通配線基板100は、石英ガラス等からなる基板101を構成する一方の主面102と側面103とを結ぶように貫通孔104を配し、該貫通孔104に銅(Cu)、タングステン(W)、金錫(Au−Sn)等の導体105を充填してなる貫通配線106を備える。   An example is shown in FIG. In this through wiring substrate 100, a through hole 104 is arranged so as to connect one main surface 102 and a side surface 103 constituting a substrate 101 made of quartz glass or the like, and copper (Cu), tungsten (W ), And a through wiring 106 filled with a conductor 105 such as gold tin (Au—Sn).

従来、このような貫通配線106を基板101内部に形成するには、基板101内部を斜めに延びる貫通孔104を形成後、めっき法、スパッタ法、溶融金属充填法、CVD法、超臨界成膜法などにより、前記導体105を充填する方法が用いられている。
これらの方法の中でも、半導体プロセスとの整合性等のため、めっき法による導体充填がしばしば用いられている。
Conventionally, in order to form such a through wiring 106 inside the substrate 101, after forming a through hole 104 extending obliquely inside the substrate 101, a plating method, a sputtering method, a molten metal filling method, a CVD method, a supercritical film formation A method of filling the conductor 105 by a method or the like is used.
Of these methods, conductor filling by plating is often used for consistency with semiconductor processes.

一例として、電界めっきによる貫通配線基板100の従来の製造方法のを図18に示す。まず、基板101の内部に基板101の一方の主面102に対して斜め方向に延伸する貫通孔104を形成する(図18(a))。次いで、その内壁面および一方の主面102に電界めっきのためのシード層115を形成する(図18(b))。つづいて、一方の主面102のシード層115上にレジスト113で適宜パターンを施した後(図18(c))、電界めっきによって導体105を貫通孔104内に充填するために、基板101をめっき液に浸漬し、シード層107とめっき液内に別途設けたアノード電極(不図示)との間に適当な電流を流して、貫通孔104内で導体105を析出させて、貫通配線106を形成する(図18(d))。その後、適当な方法によって、一方の主面102上のシード層115及びレジスト113を除いて、貫通配線基板100を得る(図17)。なお、図17ではシード層115を省略して示していない。
上記では電界めっき法を用いて貫通孔内に導体を充填する手法を説明したが、無電界めっき法によっても貫通孔内に導体充填することができる。
As an example, FIG. 18 shows a conventional method for manufacturing the through wiring substrate 100 by electroplating. First, a through-hole 104 extending in an oblique direction with respect to one main surface 102 of the substrate 101 is formed in the substrate 101 (FIG. 18A). Next, a seed layer 115 for electroplating is formed on the inner wall surface and one main surface 102 (FIG. 18B). Subsequently, after appropriately patterning with a resist 113 on the seed layer 115 on one main surface 102 (FIG. 18C), the substrate 101 is formed in order to fill the conductors 105 into the through holes 104 by electroplating. By immersing in a plating solution, an appropriate current is passed between the seed layer 107 and an anode electrode (not shown) separately provided in the plating solution to deposit a conductor 105 in the through hole 104, thereby forming the through wiring 106. It forms (FIG.18 (d)). Thereafter, the penetrating wiring substrate 100 is obtained by an appropriate method, except for the seed layer 115 and the resist 113 on one main surface 102 (FIG. 17). In FIG. 17, the seed layer 115 is not omitted.
In the above description, the method of filling the through hole with the conductor using the electroplating method has been described, but the through hole can be filled with the conductor also by the electroless plating method.

特開2006−303360号公報JP 2006-303360 A

ところが、前記従来の製造方法では、めっきの際に貫通孔104の内部に導体105が充填されないボイド(空隙)109が形成されて、該ボイド109が残ったままで、貫通孔104の開口部107が導体105によって閉塞してしまう問題がしばしば起きている(図19)。ボイド109が生じてしまうと、その内部にめっき液等の異物が残留し、貫通配線106、貫通配線基板100、及び実装した電子デバイスに少なからず悪影響を与える恐れがある。   However, in the conventional manufacturing method, a void (void) 109 that is not filled with the conductor 105 is formed in the through hole 104 during plating, and the opening 107 of the through hole 104 is formed while the void 109 remains. The problem of being blocked by the conductor 105 often occurs (FIG. 19). If the void 109 is generated, a foreign substance such as a plating solution remains in the void 109, which may adversely affect the through wiring 106, the through wiring board 100, and the mounted electronic device.

本発明は、上記事情に鑑みてなされたものであり、貫通孔内に充填された導体に欠陥となるボイドの無い貫通配線が配された貫通配線基板、および貫通孔又は非貫通孔に導体を充填する際のボイドの発生を抑制しうる貫通配線基板の製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and includes a through-wiring board on which a through-wiring without a void is formed in a conductor filled in the through-hole, and a conductor in the through-hole or non-through-hole It is an object of the present invention to provide a method of manufacturing a through wiring substrate that can suppress the generation of voids during filling.

従来の製造方法における問題を本発明者らが鋭意検討したところ、貫通孔104の開口部107及び108の形状に問題を解決する手掛かりを得た(図20参照)。すなわち、開口部107及び108は、その断面において形状が尖った部分110及び111をそれぞれ有している。ここで、めっきの性質上、その尖った部分110及び111において優先的にめっきが成長してしまい、貫通孔104の内部に導体105が充填される前に、該開口部110及び111が閉塞してしまうために空隙109が生じることを発見し、以下の解決手段を見出すに至った。   When the present inventors diligently examined the problem in the conventional manufacturing method, the clue which solves a problem in the shape of the opening parts 107 and 108 of the through-hole 104 was obtained (refer FIG. 20). That is, the openings 107 and 108 have portions 110 and 111 with sharp shapes in their cross sections, respectively. Here, due to the nature of the plating, the plating grows preferentially at the sharp portions 110 and 111, and the openings 110 and 111 are blocked before the through hole 104 is filled with the conductor 105. As a result, it was discovered that the void 109 was generated, and the following solution was found.

本発明の請求項1に記載の貫通配線基板の製造方法は、平版状の基板を構成する一方の主面と他方の主面とを結ぶ貫通孔を配し、その貫通孔に導体を充填してなる貫通配線を備えており、前記基板の一縦断面おいて前記貫通孔を見たとき、前記貫通孔は、該貫通孔の内側面を側辺とする台形状をなし、前記台形の2つの側辺は、互いに非平行であり、且つ前記台形の上底又は下底をなす2つの頂点から、対辺を含む直線へ引かれる2本の垂線に対して、前記台形の2つの側辺がそれぞれ同じ側に傾いている貫通配線基板の製造方法であって、前記基板の両主面を結ぶ貫通孔となる領域をレーザー照射することにより改質し、前記他方の主面から前記一方の主面に向けて徐々に太くなる改質部を形成する工程(A)と、その改質された部分を除去して、前記一方の主面に第一の開口部を有し、第二の開口部となる端部が前記基板に内在する非貫通孔を形成する工程(B)と、前記非貫通孔の内壁にシード層を形成する工程(C)と、前記シード層を介して前記非貫通孔の内部に導体を充填する工程(D)と、前記他方の主面を研削して、前記非貫通孔を貫通孔となし、前記他方の主面に前記第二の開口部を形成する工程(E)と、を含むことを特徴とする。   According to a first aspect of the present invention, there is provided a method for manufacturing a through wiring substrate, wherein a through hole connecting one main surface and the other main surface constituting a planographic substrate is provided, and the through hole is filled with a conductor. When the through-hole is viewed in one longitudinal section of the substrate, the through-hole has a trapezoidal shape with the inner side surface of the through-hole as a side, and the trapezoidal 2 Two side edges are non-parallel to each other, and two side edges of the trapezoid form two vertical lines drawn from two vertices forming the upper or lower base of the trapezoid to a straight line including the opposite side. A method of manufacturing a through wiring board that is inclined to the same side, wherein a region to be a through hole connecting both main surfaces of the substrate is modified by laser irradiation, and the one main surface is changed from the other main surface. Step (A) for forming a modified portion that gradually increases in thickness toward the surface and the modified portion are excluded. Then, the step (B) of forming a non-through hole having a first opening on the one main surface and an end serving as the second opening existing in the substrate; and A step (C) of forming a seed layer on the inner wall, a step (D) of filling a conductor inside the non-through hole via the seed layer, and grinding the other main surface to form the non-through hole And (E) forming the second opening on the other main surface.

本発明の請求項2に記載の貫通配線基板の製造方法は、平版状の基板を構成する一方の主面と他方の主面とを結ぶ貫通孔を配し、その貫通孔に導体を充填してなる貫通配線を備えており、前記基板の一縦断面おいて前記貫通孔を見たとき、前記貫通孔は、該貫通孔の内側面を側辺とする台形状をなし、前記台形の2つの側辺は、互いに非平行であり、且つ前記台形の上底又は下底をなす2つの頂点から、対辺を含む直線へ引かれる2本の垂線に対して、前記台形の2つの側辺がそれぞれ同じ側に傾いている貫通配線基板の製造方法であって、前記基板の両主面を結ぶ貫通孔となる領域をレーザー照射することにより改質し、前記他方の主面から前記一方の主面に向けて徐々に太くなる改質部を形成する工程(G)と、その改質された部分を除去して、前記一方及び他方の主面にそれぞれ第一及び第二の開口部を有する貫通孔を形成する工程(H)と、前記他方の主面に導体層を貼付する工程(I)と、前記導体層を介して前記貫通孔の内部に導体を充填する工程(J)と、を含むことを特徴とする。   According to a second aspect of the present invention, there is provided a method of manufacturing a through wiring substrate, wherein a through hole connecting one main surface and the other main surface constituting a planographic substrate is disposed, and the through hole is filled with a conductor. When the through-hole is viewed in one longitudinal section of the substrate, the through-hole has a trapezoidal shape with the inner side surface of the through-hole as a side, and the trapezoidal 2 Two side edges are non-parallel to each other, and two side edges of the trapezoid form two vertical lines drawn from two vertices forming the upper or lower base of the trapezoid to a straight line including the opposite side. A method of manufacturing a through wiring board that is inclined to the same side, wherein a region to be a through hole connecting both main surfaces of the substrate is modified by laser irradiation, and the one main surface is changed from the other main surface. A step (G) of forming a modified portion that gradually increases in thickness toward the surface, and removing the modified portion. A step (H) of forming through holes having first and second openings in the one and other main surfaces, and a step (I) of attaching a conductor layer to the other main surface, And (J) filling the inside of the through hole with a conductor via the conductor layer.

本発明の請求項3に記載の貫通配線基板の製造方法は、平版状の基板を構成する一方の主面と他方の主面とを結ぶ貫通孔を配し、その貫通孔に導体を充填してなる貫通配線を備えており、前記基板の一縦断面おいて前記貫通孔を見たとき、前記貫通孔は、該貫通孔の内側面を側辺とする台形状をなし、前記台形の2つの側辺は、互いに非平行であり、且つ前記台形の上底又は下底をなす2つの頂点から、対辺を含む直線へ引かれる2本の垂線に対して、前記台形の2つの側辺がそれぞれ同じ側に傾いている貫通配線基板の製造方法であって、導体層を有する基材を、前記基板の他方の面に該導体層を接して貼付する工程(M)と、前記基板の両主面を結ぶ貫通孔となる領域をレーザー照射することにより改質し、前記他方の主面から前記一方の主面に向けて徐々に太くなる改質部を形成する工程(N)と、その改質された部分を除去して、前記一方の主面に第一の開口部を有し、前記他方の主面と前記導体層とが接する境界面に第二の開口部を有する貫通孔を形成する工程(O)と、前記導体層を介して前記貫通孔の内部に導体を充填する工程(P)と、を含むことを特徴とする。   According to a third aspect of the present invention, there is provided a method of manufacturing a through wiring substrate, wherein a through hole connecting one main surface and the other main surface constituting a planographic substrate is provided, and the through hole is filled with a conductor. When the through-hole is viewed in one longitudinal section of the substrate, the through-hole has a trapezoidal shape with the inner side surface of the through-hole as a side, and the trapezoidal 2 Two side edges are non-parallel to each other, and two side edges of the trapezoid form two vertical lines drawn from two vertices forming the upper or lower base of the trapezoid to a straight line including the opposite side. A method of manufacturing a through wiring board inclined to the same side, the step (M) of attaching a base material having a conductor layer in contact with the other surface of the board in contact with the conductor layer; A region that becomes a through hole connecting the main surfaces is modified by laser irradiation, and the one of the other main surfaces is The step (N) of forming a modified portion that gradually increases toward the main surface, the modified portion is removed, the first main surface has a first opening, and the other A step (O) of forming a through hole having a second opening at a boundary surface where the main surface and the conductor layer contact each other, and a step (P) of filling a conductor into the through hole through the conductor layer It is characterized by including these.

本発明の貫通配線基板によれば、貫通孔内に充填された導体に欠陥となるボイドの無い貫通配線が配されているので、該貫通孔内で該導体が剥離したり、該ボイド内にトラップされていた異物が漏出する恐れが無く、デバイス実装時の信頼性が高められた貫通配線基板を提供することができる。
また、本発明の貫通配線基板の製造方法によれば、貫通孔又は非貫通孔に導体を充填する際のボイドの発生を抑制することができるので、デバイス実装時の信頼性が高められた貫通配線基板を製造することができる。
According to the through wiring board of the present invention, the conductor filled in the through hole is provided with a through wiring without a void that becomes a defect. Therefore, the conductor is peeled off in the through hole, It is possible to provide a through wiring board with improved reliability at the time of device mounting without fear of leakage of trapped foreign substances.
In addition, according to the method for manufacturing a through wiring board of the present invention, it is possible to suppress the generation of voids when a through hole or a non-through hole is filled with a conductor. A wiring board can be manufactured.

本発明にかかる貫通配線基板の一例を示す断面図である。It is sectional drawing which shows an example of the penetration wiring board concerning this invention. 本発明にかかる貫通配線基板の一例を示す断面図である。It is sectional drawing which shows an example of the penetration wiring board concerning this invention. 本発明にかかる貫通配線基板の一例を示す斜視図である。It is a perspective view which shows an example of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の一例における製造方法を示す平面図および断面図である。It is the top view and sectional drawing which show the manufacturing method in an example of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第一態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 1st aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第一態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 1st aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第一態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 1st aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第一態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 1st aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第二態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 2nd aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第二態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 2nd aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第二態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 2nd aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第二態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 2nd aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第三態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 3rd aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第三態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 3rd aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第三態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 3rd aspect of the manufacturing method of the penetration wiring board concerning the present invention. 本発明にかかる貫通配線基板の製造方法の第三態様を示す平面図および断面図である。It is the top view and sectional drawing which show the 3rd aspect of the manufacturing method of the penetration wiring board concerning the present invention. 従来の貫通配線基板の一例を示す断面図である。It is sectional drawing which shows an example of the conventional penetration wiring board. 従来の貫通配線基板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the conventional penetration wiring board. 従来の貫通配線基板の製造方法において、貫通孔内にボイドが生じた状態を示す断面図である。It is sectional drawing which shows the state in which the void produced in the through-hole in the manufacturing method of the conventional penetration wiring board. 従来の貫通配線基板の製造方法における途中段階を示す断面図である。It is sectional drawing which shows the middle stage in the manufacturing method of the conventional penetration wiring board.

以下、好適な実施の形態に基づき、図面を参照して本発明を説明する。
図1は、本発明にかかる貫通配線基板の一例である貫通配線基板10の厚み方向に切った縦断面図である。この貫通配線基板10は、平版状の基板1を構成する一方の主面2と他方の主面3とを結ぶ貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、基板1の一縦断面おいて貫通孔4を見たとき、貫通孔4は、該貫通孔4の内側面を側辺とする台形状をなし、前記台形の2つの側辺4p及び4qは、互いに非平行であり、且つ前記台形の上底又は下底をなす2つの頂点から、対辺を含む直線へ引かれる2本の垂線T及びTに対して、前記台形の2つの側辺4p及び4qがそれぞれ同じ側に傾いている。
The present invention will be described below based on preferred embodiments with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a through wiring board 10 which is an example of a through wiring board according to the present invention cut in the thickness direction. The through wiring substrate 10 includes a through hole 4 that connects one main surface 2 and the other main surface 3 constituting the planographic substrate 1, and the through hole 4 is filled with a conductor 5. When the through-hole 4 is viewed in one longitudinal section of the substrate 1, the through-hole 4 has a trapezoidal shape with the inner side surface of the through-hole 4 as a side, two side 4p and 4q of the trapezoid is non-parallel to each other, and the two vertices forming the trapezoidal upper bottom or the lower bottom, two vertical lines T 1 and T 2 which are drawn to the straight line including the opposite side On the other hand, the two sides 4p and 4q of the trapezoid are inclined to the same side.

前記台形の上底は、一方の主面2における貫通孔4の第一の開口部7が構成し、前記台形の下底は、他方の主面3における貫通孔4の第二の開口部8が構成し、前記台形の2つの側辺は、貫通孔4の内側面(辺4p及び辺4q)が構成する。図1では、前記上底の長さ>前記下底の長さである。   The upper base of the trapezoid is formed by the first opening 7 of the through hole 4 in one main surface 2, and the lower base of the trapezoid is the second opening 8 of the through hole 4 in the other main surface 3. The two sides of the trapezoid are formed by the inner side surface (side 4p and side 4q) of the through hole 4. In FIG. 1, the length of the upper base> the length of the lower base.

図1において、垂線T及びTはそれぞれ前記台形の下底をなす2つの頂点(下底の両端)から対辺である上底を含む直線(基板1の一方の主面2)へ引かれている。図1の矢印で示すように、前記台形の側辺4pは垂線Tに対して左側に傾いており、前記台形の側辺4pは垂線Tに対して左側に傾いている。すなわち、側辺4p及び4qは、それぞれ垂線T及びTに対して、同じ左側に傾いている。 In FIG. 1, vertical lines T 1 and T 2 are respectively drawn from two vertices (both ends of the lower base) forming the lower base of the trapezoid to a straight line (one main surface 2 of the substrate 1) including the upper base that is the opposite side. ing. As shown by the arrows in FIG. 1, the sides 4p of the trapezoid are inclined to the left with respect to the perpendicular T 1, the trapezoid sides 4p is inclined to the left with respect to the perpendicular T 2. That is, the sides 4p and 4q, to the perpendicular line T 1 and T 2, respectively, are inclined in the same left side.

図2は、本発明にかかる貫通配線基板の一例である貫通配線基板10の厚み方向に切った縦断面図であり、図1と同じ断面を示す。ただし、図2では、基板1の両主面を貫く垂線Tに対する、前記側辺4p及び4qの向きを示している。   FIG. 2 is a longitudinal sectional view taken in the thickness direction of the through wiring board 10 which is an example of the through wiring board according to the present invention, and shows the same cross section as FIG. However, FIG. 2 shows the directions of the side edges 4p and 4q with respect to the normal T passing through both main surfaces of the substrate 1.

すなわち、この貫通配線基板10は、平版状の基板1を構成する一方の主面2と他方の主面3とを結ぶ貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、基板1の一縦断面おいて貫通孔4を見たとき、貫通孔4は、該貫通孔4の内側面を側辺4p及び4qとする台形状をなし、前記台形の2つの側辺4p及び4qは互いに非平行であり、且つ前記台形の各々の側辺に沿う、一方の主面2から他方の主面3への2つの向き(矢印α及び矢印βで表される向き)は、基板1の両主面を貫く垂線Tに対して同じ側に向いている。   That is, the through wiring substrate 10 is provided with a through hole 4 connecting one main surface 2 and the other main surface 3 constituting the planographic substrate 1, and the through hole 4 is filled with a conductor 5. When the through hole 4 is seen in one longitudinal section of the substrate 1, the through hole 4 has side surfaces 4 p and 4 q on the inner side surface of the through hole 4. A trapezoidal shape, the two sides 4p and 4q of the trapezoid are non-parallel to each other, and two directions from one main surface 2 to the other main surface 3 along each side of the trapezoid ( (Directions represented by arrows α and β) are directed to the same side with respect to the normal T passing through both main surfaces of the substrate 1.

図2において、前記台形の各々の側辺に沿う、一方の主面2から他方の主面3への前記2つの向きが垂線Tに対して同じ側に向いているとは、矢印α及び矢印βの指し示す方向が、両方とも垂線Tに対して紙面の右側を向いていることをいう。
これに対して、仮に矢印αの指し示す方向が垂線Tに対して紙面の右側を向いていて、矢印ベータの指し示す方向が垂線Tに対して紙面の左側を向いている場合は、前記2つの向きが垂線Tに対して異なる側に向いているという。
In FIG. 2, the two directions from one main surface 2 to the other main surface 3 along each side of the trapezoid are directed to the same side with respect to the perpendicular T. The directions indicated by β are both directed to the right side of the page with respect to the perpendicular T.
On the other hand, if the direction indicated by the arrow α is directed to the right side of the paper with respect to the perpendicular T and the direction indicated by the arrow beta is directed to the left side of the paper with respect to the vertical T, the two directions Is directed to a different side with respect to the perpendicular T.

貫通配線基板10の上記説明を言い換えると、貫通配線基板10は、単一の基板1を構成する一方の主面2と他方の主面3とを結ぶように貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、貫通孔4は一方の主面2及び他方の主面3に対して傾いて延伸し、且つ、その第一の開口部7から第二の開口部8へ向けて略テーパー状に細くなるものである。   In other words, the through wiring board 10 has the through hole 4 arranged so as to connect one main surface 2 and the other main surface 3 constituting the single substrate 1, and the through wiring board 10 has a through hole. A through-wiring board 10 having a through-wiring 6 in which a hole 4 is filled with a conductor 5, the through-hole 4 extending obliquely with respect to one main surface 2 and the other main surface 3, and The first opening 7 narrows in a substantially tapered shape from the second opening 8 toward the second opening 8.

図2の貫通配線基板10の断面は、貫通孔4における第一の開口部7の中心部と第二の開口部8の中心部に沿った断面である。貫通孔4は一方の主面2及び他方の主面3に対して傾いて延伸している。すなわち、図3の斜視図に示すように、貫通孔4の中心軸Jが基板1の厚み方向とは異なる方向に延伸している。前記中心軸Jは、一方の主面2又は他方の主面3に平行な任意の面に含まれる貫通孔4の領域の中心を通るものである。なお、図1及び2は、図3のX−X線に沿う断面図である。   The cross section of the through wiring substrate 10 in FIG. 2 is a cross section along the center of the first opening 7 and the center of the second opening 8 in the through hole 4. The through hole 4 is inclined and extended with respect to the one main surface 2 and the other main surface 3. That is, as shown in the perspective view of FIG. 3, the central axis J of the through hole 4 extends in a direction different from the thickness direction of the substrate 1. The central axis J passes through the center of the region of the through hole 4 included in an arbitrary plane parallel to the one main surface 2 or the other main surface 3. 1 and 2 are cross-sectional views taken along line XX of FIG.

図2の断面図において、貫通孔4の相対する辺4p及び辺4qが一方の主面2となす角をそれぞれ角度θ及び角度φとして表すと、角度θと角度φの和は180度(°)超である。ここで、角度θは鋭角であり、角度φは鈍角である。この場合、辺4p及び辺4qは一方の主面2を貫く垂線Tに対して同じ側に向いている。また、貫通孔4の形状は、第一の開口部7から第二の開口部8へ向けて略テーパー状に細くなる。なお、辺4p及び辺4qは、前記台形の2つの側辺である。   In the cross-sectional view of FIG. 2, if the angles formed by the opposite side 4p and side 4q of the through-hole 4 with one main surface 2 are expressed as an angle θ and an angle φ, respectively, the sum of the angle θ and the angle φ is 180 degrees (° ) Super. Here, the angle θ is an acute angle, and the angle φ is an obtuse angle. In this case, the side 4p and the side 4q are directed to the same side with respect to the perpendicular T passing through one main surface 2. Further, the shape of the through hole 4 becomes narrower in a substantially tapered shape from the first opening 7 toward the second opening 8. Note that the sides 4p and 4q are the two sides of the trapezoid.

前記台形の2つの側辺が互いに非平行であり、且つ基板1の一方の主面2を貫く垂線Tに対して同じ側に向いて、貫通孔4が基板1の一方の主面2及び他方の主面3に対して傾いて延伸していることにより、一方の主面2における開口部7の位置と他方の主面3における開口部8の位置とを自由度高く設計することができるので、貫通配線基板10の両面に実装するそれぞれのデバイスの各電極部の配置に合わせて、貫通配線6を自在に配することができる。   The two sides of the trapezoid are non-parallel to each other and are directed to the same side with respect to the normal T passing through one main surface 2 of the substrate 1, and the through-hole 4 is formed on one main surface 2 and the other of the substrate 1. Since the main surface 3 is inclined and extended, the position of the opening 7 on one main surface 2 and the position of the opening 8 on the other main surface 3 can be designed with a high degree of freedom. The through wiring 6 can be freely arranged in accordance with the arrangement of the electrode portions of the respective devices mounted on both surfaces of the through wiring substrate 10.

また、貫通孔4が、第一の開口部7から第二の開口部8へ向けて細くなる略テーパー状であることにより、貫通配線基板10の製造時に、貫通孔4内に導体5を充填して貫通配線6を形成する際に、ボイド(空隙)の形成を抑制することができる。このため、欠陥となるボイドが無い貫通配線6が配された貫通配線基板10は、その使用時における信頼性を高いものとすることができる。   Further, since the through hole 4 has a substantially tapered shape that becomes narrower from the first opening 7 toward the second opening 8, the conductor 5 is filled in the through hole 4 when the through wiring substrate 10 is manufactured. Thus, when the through wiring 6 is formed, formation of voids (voids) can be suppressed. For this reason, the through-wiring board 10 provided with the through-wiring 6 having no defective voids can have high reliability in use.

以上で示した、本発明の貫通配線基板10における基板1の材料としては、例えばガラス、サファイア、プラスチック、セラミックス等の絶縁体や、シリコン(Si)等の半導体が挙げられる。これらの材料のなかでも、絶縁性の石英ガラスが好ましい。基板材料が石英ガラスであると、後述する貫通孔の内壁に絶縁層を形成する必要がなく、浮遊容量成分の存在等による高速伝送の阻害要因がない等の利点がある。
基板1の厚さ(一方の主面2から他方の主面3までの距離)としては、約150μm〜1mmの範囲で適宜設定できる。
貫通配線基板10に配された貫通孔4に充填する前記導体5としては、例えば金錫(Au−Sn)、銅(Cu)等が挙げられる。
As a material of the board | substrate 1 in the through wiring board 10 of this invention shown above, insulators, such as glass, sapphire, a plastics, ceramics, and semiconductors, such as silicon (Si), are mentioned, for example. Among these materials, insulating quartz glass is preferable. When the substrate material is quartz glass, there is an advantage that there is no need to form an insulating layer on the inner wall of the through hole, which will be described later, and there is no hindrance to high-speed transmission due to the presence of stray capacitance components.
The thickness of the substrate 1 (distance from one main surface 2 to the other main surface 3) can be appropriately set within a range of about 150 μm to 1 mm.
Examples of the conductor 5 that fills the through hole 4 disposed in the through wiring substrate 10 include gold tin (Au—Sn) and copper (Cu).

本発明の貫通配線基板10に備えられる貫通配線6のパターンは、以上の例示に限定されるものではなく、適宜設計することが可能である。   The pattern of the through wiring 6 provided in the through wiring board 10 of the present invention is not limited to the above examples, and can be appropriately designed.

<貫通配線基板の製造方法の第一態様>
次に、本発明の貫通配線基板の一例である貫通配線基板10を製造する方法の第一態様を図4〜図8に示す。
ここで、図4〜図8は、貫通配線基板10を製造する基板1の平面図および断面図である。当該図中、(A)は該基板1の平面図であり、(B)は該平面図のX−X線間に沿う基板1の断面図である。
<First Aspect of Manufacturing Method of Penetration Wiring Board>
Next, FIGS. 4 to 8 show a first embodiment of a method for manufacturing the through wiring board 10 which is an example of the through wiring board of the present invention.
4 to 8 are a plan view and a cross-sectional view of the substrate 1 on which the through wiring substrate 10 is manufactured. In the figure, (A) is a plan view of the substrate 1, and (B) is a cross-sectional view of the substrate 1 taken along line XX of the plan view.

本発明に係る貫通配線基板10の製造方法の第一態様は、以下の工程A〜Eの5工程を少なくとも有する。
ここで、該貫通配線基板10は、図1を用いて説明したように、平版状の基板1を構成する一方の主面2と他方の主面3とを結ぶ貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、基板1の一縦断面おいて貫通孔4を見たとき、貫通孔4は、該貫通孔4の内側面を側辺とする台形状をなし、前記台形の2つの側辺4p及び4qは、互いに非平行であり、且つ前記台形の上底又は下底をなす2つの頂点から、対辺を含む直線へ引かれる2本の垂線T及びTに対して、前記台形の2つの側辺4p及び4qがそれぞれ同じ側に傾いている。
The 1st aspect of the manufacturing method of the penetration wiring board 10 concerning the present invention has at least 5 processes of the following processes AE.
Here, as described with reference to FIG. 1, the through wiring substrate 10 is provided with a through hole 4 that connects one main surface 2 and the other main surface 3 constituting the planographic substrate 1, and A through-wiring board 10 having a through-wiring 6 formed by filling the through-hole 4 with a conductor 5 when the through-hole 4 is viewed in one longitudinal section of the substrate 1 is the through-hole 4. The trapezoidal two sides 4p and 4q are non-parallel to each other and include opposite sides from two vertices forming the upper or lower base of the trapezoid. against two perpendicular T 1 and T 2 which is pulled linearly, two side 4p and 4q of the trapezoid are inclined respectively on the same side.

また、該貫通配線基板10は、図2を用いて説明したように、平版状の基板1を構成する一方の主面2と他方の主面3とを結ぶ貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、基板1の一縦断面おいて貫通孔4を見たとき、貫通孔4は、該貫通孔4の内側面を側辺4p及び4qとする台形状をなし、前記台形の2つの側辺4p及び4qは互いに非平行であり、且つ前記台形の各々の側辺に沿う、一方の主面2から他方の主面3への2つの向き(矢印α及び矢印βで表される向き)は、基板1の両主面を貫く垂線Tに対して同じ側に向いている。   Further, as described with reference to FIG. 2, the through wiring substrate 10 is provided with a through hole 4 connecting one main surface 2 and the other main surface 3 constituting the planographic substrate 1, and the through hole 4 A through-wiring board 10 having a through-wiring 6 in which a hole 5 is filled with a conductor 5, and when the through-hole 4 is viewed in one longitudinal section of the board 1, It has a trapezoidal shape with the inner side faces 4p and 4q, and the two side edges 4p and 4q of the trapezoid are not parallel to each other and extend from one main surface 2 to the other along each side edge of the trapezoid. The two directions (directions represented by arrows α and β) toward the main surface 3 are directed to the same side with respect to the normal T passing through both main surfaces of the substrate 1.

すなわち、貫通配線基板10は、単一の基板1を構成する一方の主面2と他方の主面3とを結ぶように貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、貫通孔4は一方の主面2及び他方の主面3に対して傾いて延伸し、且つ、その第一の開口部7から第二の開口部8へ向けて略テーパー状に細くなるものである。   That is, the through wiring board 10 has a through hole 4 so as to connect one main surface 2 and the other main surface 3 constituting a single substrate 1, and the through hole 4 is filled with a conductor 5. The through-hole wiring board 10 includes the through-hole wiring 6, and the through-hole 4 extends obliquely with respect to the one main surface 2 and the other main surface 3, and the second opening is provided through the first opening 7. It becomes thin in the shape of a taper toward the opening 8.

<工程A>
工程Aでは、基板1の両主面を結ぶ貫通孔4となる領域をレーザー照射することにより改質する。
その方法の一例として、図4に示すように、基板1にレーザー光Lを照射して、基板1内に基板1の材料が改質されてなる改質部16を形成する方法が挙げられる。改質部16は、貫通配線6となる領域に設けられる。
<Process A>
In step A, the region to be the through hole 4 connecting both main surfaces of the substrate 1 is modified by laser irradiation.
As an example of the method, as shown in FIG. 4, there is a method of irradiating the substrate 1 with a laser beam L to form a modified portion 16 in which the material of the substrate 1 is modified in the substrate 1. The reforming unit 16 is provided in a region to be the through wiring 6.

基板1の材料としては、例えばガラス、サファイア、プラスチック、セラミックス等の絶縁体や、シリコン(Si)等の半導体が挙げられる。これらの材料のなかでも、絶縁性の石英ガラスが好ましい。基板材料が石英ガラスであると、後述する貫通孔の内壁に絶縁層を形成する必要がなく、浮遊容量成分の存在等による高速伝送の阻害要因がない、等の利点がある。
基板1の厚さ(一方の主面2から他方の主面3までの距離)としては、約150μm〜1mmの範囲で適宜設定できる。
Examples of the material of the substrate 1 include insulators such as glass, sapphire, plastic, and ceramics, and semiconductors such as silicon (Si). Among these materials, insulating quartz glass is preferable. When the substrate material is quartz glass, there is an advantage that there is no need to form an insulating layer on the inner wall of a through hole, which will be described later, and there is no hindrance to high-speed transmission due to the presence of stray capacitance components.
The thickness of the substrate 1 (distance from one main surface 2 to the other main surface 3) can be appropriately set within a range of about 150 μm to 1 mm.

レーザー光Lは、例えば基板1の一方の主面2側から照射され、基板1内の所望の位置で焦点Sを結ぶ。焦点Sを結んだ位置で、該基板1の材料が改質される。したがって、レーザー光Lを照射しながら焦点Sの位置を順次ずらして移動(走査)して、貫通孔4となる領域の全部に対して、焦点Sを結ぶことにより、改質部16を形成することができる。   The laser beam L is irradiated from, for example, one main surface 2 side of the substrate 1 and forms a focal point S at a desired position in the substrate 1. At the position where the focal point S is connected, the material of the substrate 1 is modified. Accordingly, the position of the focal point S is sequentially shifted and moved (scanned) while irradiating the laser light L, and the modified portion 16 is formed by connecting the focal point S to the entire region serving as the through hole 4. be able to.

レーザー光Lの光源としては、例えばフェムト秒レーザーを挙げることができる。該レーザー光Lを照射することによって、例えば径が数μm〜数十μmとした改質部16を得ることができる。また、基板1内部におけるレーザー光Lの焦点Sを結ぶ位置を制御することにより、所望の形状を有する改質部16を形成することができる。   Examples of the light source of the laser light L include a femtosecond laser. By irradiating the laser beam L, for example, the modified portion 16 having a diameter of several μm to several tens of μm can be obtained. Further, by controlling the position at which the focal point S of the laser beam L is connected inside the substrate 1, the modified portion 16 having a desired shape can be formed.

そのレーザー照射の方法としては、例えば貫通孔4の第二の開口部8となる基板1に内在する第二の端部18から、第一の開口部7となる第一の端部17に向けてレーザー照射して改質する際、レーザー光を適宜走査して、第二の端部18から第一の端部17に向けて徐々に太くなる形状(すなわち、第一の端部17から第二の端部18に向けて細くなる略テーパー形状)の改質部16を形成する方法が挙げられる。   As the laser irradiation method, for example, from the second end 18 existing in the substrate 1 serving as the second opening 8 of the through hole 4 toward the first end 17 serving as the first opening 7. When modifying by laser irradiation, the laser beam is appropriately scanned to gradually increase in thickness from the second end portion 18 toward the first end portion 17 (that is, from the first end portion 17 to the first end portion 17). And a method of forming the reforming portion 16 having a substantially tapered shape that narrows toward the second end portion 18.

本実施例では、第一の端部17及び第二の端部18の半径が、それぞれ15μm及び5μmとなるように、角度θ及び角度φが、それぞれ70度及び120度となるように、改質部16を形成した。   In the present embodiment, the angle θ and the angle φ are adjusted to be 70 degrees and 120 degrees, respectively, so that the radii of the first end portion 17 and the second end portion 18 are 15 μm and 5 μm, respectively. A mass 16 was formed.

図4の断面図(B)に示した矢印は、レーザー光Lの焦点Sを走査する向きを表す。すなわち、前記矢印は、第二の端部18から第一の端部17まで該焦点Sを走査することを表す。このとき、矢印の向きで一筆書きの走査を行うことが、製造効率上好ましい。   The arrow shown in the cross-sectional view (B) of FIG. 4 represents the direction in which the focal point S of the laser light L is scanned. That is, the arrow indicates that the focal point S is scanned from the second end 18 to the first end 17. At this time, it is preferable in terms of manufacturing efficiency to perform one-stroke scanning in the direction of the arrow.

以上のように、改質部16を形成する際、レーザー光Lを照射する方向としては、基板1の一方または他方の主面からのみレーザー光Lを照射してもよいし、基板1の両主面からレーザー光Lを照射してもよい。   As described above, when the modified portion 16 is formed, the laser beam L may be irradiated only from one or the other main surface of the substrate 1 or both of the substrates 1 may be irradiated. Laser light L may be irradiated from the main surface.

<工程B>
工程Bでは、工程Aで形成した改質部16を除去して、基板1の一方の主面2に第一の開口部7を有し、第二の開口部8となる第二の端部18が基板1に内在する非貫通孔14を形成する。
その方法の一例として、図5に示すように、改質部16を形成した基板1をエッチング液(薬液)19に浸漬して、改質部16をエッチング(ウエットエッチング)することにより基板1から除去する方法が挙げられる。その結果、改質部16が存在した部分に、非貫通孔14(ブラインドビア)が形成される。本実施態様では基板1の材料として厚さ500μmの石英ガラス板を用い、エッチング液19としてフッ酸(HF)を主成分とする溶液を用いた。このエッチングは、基板1の改質されていない部分に比べて改質部16が非常に速くエッチングされる現象を利用するものであり、結果として改質部16の形状に応じた非貫通孔14を形成することができる。
<Process B>
In step B, the modified portion 16 formed in step A is removed, the first end 7 is formed on one main surface 2 of the substrate 1, and the second end portion that becomes the second opening 8. A non-through hole 14 is formed in the substrate 1.
As an example of the method, as shown in FIG. 5, the substrate 1 on which the modified portion 16 is formed is immersed in an etching solution (chemical solution) 19, and the modified portion 16 is etched (wet etching). The method of removing is mentioned. As a result, a non-through hole 14 (blind via) is formed in a portion where the reforming portion 16 exists. In this embodiment, a quartz glass plate having a thickness of 500 μm is used as the material of the substrate 1, and a solution mainly containing hydrofluoric acid (HF) is used as the etching solution 19. This etching utilizes the phenomenon that the modified portion 16 is etched much faster than the unmodified portion of the substrate 1, and as a result, the non-through hole 14 corresponding to the shape of the modified portion 16. Can be formed.

前記エッチング液19は特に限定されず、例えばフッ酸(HF)を主成分とする溶液、フッ酸に硝酸等を適量添加したフッ硝酸系の混酸等を用いることができる。また、基板1の材料に応じて、他の薬液を用いることもできる。   The etching solution 19 is not particularly limited, and for example, a solution containing hydrofluoric acid (HF) as a main component, or a hydrofluoric acid-based mixed acid obtained by adding an appropriate amount of nitric acid or the like to hydrofluoric acid can be used. Further, other chemicals can be used depending on the material of the substrate 1.

<工程C>
工程Cでは、工程Bで形成した非貫通孔14の内壁および一方の主面2にシード層15を形成する。
その方法の一例として、図6に示すように、まず50nmの厚さのチタン(Ti)薄膜をスパッタ法により成膜し、次いで150nmの厚さの銅(Cu)薄膜をスパッタ法により成膜する二段階の成膜によって、Cu/Ti薄膜からなるシード層15を形成する方法が挙げられる。
シード層15の材質としては、前記チタン及び銅に限定されず、金(Au)や金錫(Au−Sn)を用いることができる。後段の工程Dで充填される導体5の材質に合わせて適宜選択すればよい。
<Process C>
In the process C, the seed layer 15 is formed on the inner wall of the non-through hole 14 formed in the process B and the one main surface 2.
As an example of the method, as shown in FIG. 6, a titanium (Ti) thin film having a thickness of 50 nm is first formed by sputtering, and then a copper (Cu) thin film having a thickness of 150 nm is formed by sputtering. There is a method of forming the seed layer 15 made of a Cu / Ti thin film by two-stage film formation.
The material of the seed layer 15 is not limited to titanium and copper, and gold (Au) or gold tin (Au—Sn) can be used. What is necessary is just to select suitably according to the material of the conductor 5 with which the process D of a back | latter stage is filled.

<工程D>
工程Dでは、工程Cで形成したシード層15を介して非貫通孔16の内部に導体5を充填する。
その方法の一例として、図7に示すように、めっきする部分以外のシード層15の表面をレジスト13で覆った後、めっき液(不図示)に浸漬する方法が挙げられる。ここでは、非貫通孔14の内壁及び第一の開口部7の周辺を除いて、レジスト13をパターニングしてある。前記めっき液の成分としては、非貫通孔14の充填に適した硫酸銅めっき液が好適に用いられる。
<Process D>
In Step D, the conductor 5 is filled into the non-through hole 16 through the seed layer 15 formed in Step C.
As an example of the method, as shown in FIG. 7, the surface of the seed layer 15 other than the portion to be plated is covered with a resist 13 and then immersed in a plating solution (not shown). Here, the resist 13 is patterned except for the inner wall of the non-through hole 14 and the periphery of the first opening 7. As a component of the plating solution, a copper sulfate plating solution suitable for filling the non-through holes 14 is preferably used.

前記めっき液にレジストパターンを施した基板1を浸漬して、シード層15と別途設けたアノード電極(不図示)との間に適当な電流を流すことにより、レジスト13で覆われなかったシード層15を介して、めっき金属である導体5が析出することにより非貫通孔14内部に導体5が充填される。一方の主面上のシード層15及びレジスト層13は、導体5の充填終了後に適宜取り除かれる。   The seed layer not covered with the resist 13 is obtained by immersing the substrate 1 having a resist pattern in the plating solution and passing an appropriate current between the seed layer 15 and a separately provided anode electrode (not shown). The conductor 5, which is a plated metal, is deposited via 15, whereby the conductor 5 is filled into the non-through hole 14. The seed layer 15 and the resist layer 13 on one main surface are appropriately removed after the conductor 5 is filled.

ここで非貫通孔14の形状は、前述のように、第一の開口部7から第二の端部18(第二の開口部8)に向けて略テーパー状に細くなるように加工されているため、導体5が第一の開口部7を閉塞して、非貫通孔14内に導体5が充填されない領域(ボイド)を発生してしまうことを抑制することができる。すなわち、シード層15が形成された非貫通孔14は、第二の端部18から第一の開口部7に向けて徐々に太くなる形状であるため、めっきによってシード層15を介して導体5が析出するとき、細い側の第二の端部18の方が太い側の第一の開口部よりも早く充填される。このため、充填された導体5内部に、欠陥となるボイドが発生することを抑制して、非貫通孔14内に導体5を密に充填した非貫通配線12を得ることができる。   Here, as described above, the shape of the non-through hole 14 is processed so as to become thinner in a substantially tapered shape from the first opening 7 toward the second end 18 (second opening 8). Therefore, it is possible to prevent the conductor 5 from closing the first opening 7 and generating a region (void) in which the conductor 5 is not filled in the non-through hole 14. That is, the non-through hole 14 in which the seed layer 15 is formed has a shape that gradually increases from the second end portion 18 toward the first opening 7, and therefore, the conductor 5 is interposed via the seed layer 15 by plating. The second end 18 on the narrower side is filled faster than the first opening on the thicker side. For this reason, it can suppress that the void which becomes a defect generate | occur | produces in the inside of the filled conductor 5, and can obtain the non-penetrating wiring 12 which filled the conductor 5 in the non-through-hole 14 closely.

<工程E>
工程Eでは、工程Dで形成した非貫通配線12を有する基板1の他方の主面3を研削(研磨)して、非貫通孔14及び非貫通配線12をそれぞれ貫通孔4及び貫通配線6となし、他方の主面3に第二の開口部8を形成する。
より具体的には、他方の主面3を研削して、基板1に内在する第二の端部18が他方の主面3に露呈するように、基板1を所望の厚さまで薄くする。また、所望により一方の主面2を研削してもよい。一方の主面2を研削することにより、第一の開口部7における導体5の表面を平滑にすることができる。
前記研削の方法としては、メカノケミカルポリシング(MCP)等の物理・化学的方法を適用すればよい。
以上の工程A〜Eにより、図8に示した貫通配線基板10が得られる。
<Process E>
In step E, the other main surface 3 of the substrate 1 having the non-through wiring 12 formed in step D is ground (polished), and the non-through hole 14 and the non-through wiring 12 are respectively connected to the through hole 4 and the through wiring 6. None, the second opening 8 is formed in the other main surface 3.
More specifically, the other main surface 3 is ground, and the substrate 1 is thinned to a desired thickness so that the second end 18 existing in the substrate 1 is exposed to the other main surface 3. Moreover, you may grind one main surface 2 if desired. By grinding one main surface 2, the surface of the conductor 5 in the first opening 7 can be smoothed.
As the grinding method, a physical / chemical method such as mechanochemical polishing (MCP) may be applied.
Through the above steps A to E, the through wiring substrate 10 shown in FIG. 8 is obtained.

<貫通配線基板の製造方法の第二態様>
次に、本発明の貫通配線基板の一例である貫通配線基板10を製造する方法の第二態様を図9〜図12に示す。
ここで、図9〜図12は、貫通配線基板10を製造する基板1の平面図および断面図である。当該図中、(A)は該基板1の平面図であり、(B)は該平面図のY−Y線間に沿う基板1の断面図である。
<Second Aspect of Manufacturing Method of Penetration Wiring Board>
Next, FIGS. 9 to 12 show a second embodiment of a method for manufacturing the through wiring board 10 which is an example of the through wiring board of the present invention.
Here, FIGS. 9 to 12 are a plan view and a cross-sectional view of the substrate 1 for manufacturing the through wiring substrate 10. In the figure, (A) is a plan view of the substrate 1, and (B) is a cross-sectional view of the substrate 1 taken along line YY in the plan view.

本発明に係る貫通配線基板10の製造方法の第二態様は、以下の工程G〜Jの4工程を少なくとも有する。
ここで、該貫通配線基板10は、図1を用いて説明したように、平版状の基板1を構成する一方の主面2と他方の主面3とを結ぶ貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、基板1の一縦断面おいて貫通孔4を見たとき、貫通孔4は、該貫通孔4の内側面を側辺とする台形状をなし、前記台形の2つの側辺4p及び4qは、互いに非平行であり、且つ前記台形の上底又は下底をなす2つの頂点から、対辺を含む直線へ引かれる2本の垂線T及びTに対して、前記台形の2つの側辺4p及び4qがそれぞれ同じ側に傾いている。
The 2nd aspect of the manufacturing method of the penetration wiring board 10 concerning the present invention has at least 4 processes of the following processes GJ.
Here, as described with reference to FIG. 1, the through wiring substrate 10 is provided with a through hole 4 that connects one main surface 2 and the other main surface 3 constituting the planographic substrate 1, and A through-wiring board 10 having a through-wiring 6 formed by filling the through-hole 4 with a conductor 5 when the through-hole 4 is viewed in one longitudinal section of the substrate 1 is the through-hole 4. The trapezoidal two sides 4p and 4q are non-parallel to each other and include opposite sides from two vertices forming the upper or lower base of the trapezoid. against two perpendicular T 1 and T 2 which is pulled linearly, two side 4p and 4q of the trapezoid are inclined respectively on the same side.

また、該貫通配線基板10は、図2を用いて説明したように、平版状の基板1を構成する一方の主面2と他方の主面3とを結ぶ貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、基板1の一縦断面おいて貫通孔4を見たとき、貫通孔4は、該貫通孔4の内側面を側辺4p及び4qとする台形状をなし、前記台形の2つの側辺4p及び4qは互いに非平行であり、且つ前記台形の各々の側辺に沿う、一方の主面2から他方の主面3への2つの向き(矢印α及び矢印βで表される向き)は、基板1の両主面を貫く垂線Tに対して同じ側に向いている。   Further, as described with reference to FIG. 2, the through wiring substrate 10 is provided with a through hole 4 connecting one main surface 2 and the other main surface 3 constituting the planographic substrate 1, and the through hole 4 A through-wiring board 10 having a through-wiring 6 in which a hole 5 is filled with a conductor 5, and when the through-hole 4 is viewed in one longitudinal section of the board 1, It has a trapezoidal shape with the inner side faces 4p and 4q, and the two side edges 4p and 4q of the trapezoid are not parallel to each other and extend from one main surface 2 to the other along each side edge of the trapezoid. The two directions (directions represented by arrows α and β) toward the main surface 3 are directed to the same side with respect to the normal T passing through both main surfaces of the substrate 1.

すなわち、貫通配線基板10は、単一の基板1を構成する一方の主面2と他方の主面3とを結ぶように貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、貫通孔4は一方の主面2及び他方の主面3に対して傾いて延伸し、且つ、その第一の開口部7から第二の開口部8へ向けて略テーパー状に細くなるものである。   That is, the through wiring board 10 has a through hole 4 so as to connect one main surface 2 and the other main surface 3 constituting a single substrate 1, and the through hole 4 is filled with a conductor 5. The through-hole wiring board 10 includes the through-hole wiring 6, and the through-hole 4 extends obliquely with respect to the one main surface 2 and the other main surface 3, and the second opening is provided through the first opening 7. It becomes thin in the shape of a taper toward the opening 8.

<工程G>
工程Gでは、基板1の両主面を結ぶ貫通孔4となる領域をレーザー照射することにより改質する。
その方法の一例として、図9に示すように、基板1にレーザー光Lを照射して、基板1内に基板1の材料が改質されてなる改質部16を形成する方法が挙げられる。改質部16は、貫通配線6となる領域に設けられる。
<Process G>
In the process G, the region to be the through hole 4 connecting both main surfaces of the substrate 1 is modified by laser irradiation.
As an example of the method, as shown in FIG. 9, there is a method of irradiating the substrate 1 with a laser beam L to form a modified portion 16 formed by modifying the material of the substrate 1 in the substrate 1. The reforming unit 16 is provided in a region to be the through wiring 6.

基板1の材料の説明、レーザー光Lの焦点Sにおける基板1の改質、レーザー光Lの光源の説明は、前述の貫通配線基板の製造方法の第一態様における説明と同じである。   The description of the material of the substrate 1, the modification of the substrate 1 at the focal point S of the laser light L, and the description of the light source of the laser light L are the same as the description in the first aspect of the method for manufacturing the through wiring substrate.

レーザー光Lの照射の方法としては、例えば貫通孔4の第二の開口部8となる第二の端部18から、第一の開口部7となる第一の端部17に向けてレーザー照射して改質する際、レーザー光を適宜走査して、第二の端部18から第一の端部17に向けて徐々に太くなる形状(すなわち、第一の端部17から第二の端部18に向けて細くなる略テーパー形状)の改質部16を形成する方法が挙げられる。   As a method of irradiating the laser beam L, for example, laser irradiation is performed from the second end 18 serving as the second opening 8 of the through hole 4 toward the first end 17 serving as the first opening 7. When the modification is performed, the laser beam is appropriately scanned to gradually increase in thickness from the second end portion 18 toward the first end portion 17 (that is, from the first end portion 17 to the second end portion). And a method of forming the reforming portion 16 having a substantially tapered shape that narrows toward the portion 18.

本実施例では、第一の端部17及び第二の端部18の半径が、それぞれ15μm及び5μmとなるように、角度θ及び角度φが、それぞれ70度及び120度となるように、改質部16を形成した。   In the present embodiment, the angle θ and the angle φ are adjusted to be 70 degrees and 120 degrees, respectively, so that the radii of the first end portion 17 and the second end portion 18 are 15 μm and 5 μm, respectively. A mass 16 was formed.

図9の断面図(B)に示した矢印は、レーザー光Lの焦点Sを走査する向きを表す。すなわち、前記矢印は、第二の端部18から第一の端部17まで該焦点Sを走査することを表す。このとき、矢印の向きで一筆書きの走査を行うことが、製造効率上好ましい。   The arrows shown in the cross-sectional view (B) of FIG. 9 indicate the direction in which the focal point S of the laser light L is scanned. That is, the arrow indicates that the focal point S is scanned from the second end 18 to the first end 17. At this time, it is preferable in terms of manufacturing efficiency to perform one-stroke scanning in the direction of the arrow.

以上のように、改質部16を形成する際、レーザー光Lを照射する方向としては、基板1の一方または他方の主面からのみレーザー光Lを照射してもよいし、基板1の両主面からレーザー光Lを照射してもよい。   As described above, when the modified portion 16 is formed, the laser beam L may be irradiated only from one or the other main surface of the substrate 1 or both of the substrates 1 may be irradiated. Laser light L may be irradiated from the main surface.

<工程H>
工程Hでは、工程Gで形成した改質部16を除去して、基板1の一方の主面2に第一の開口部7を有し、他方の主面3に第二の開口部8を有する貫通孔4を形成する。
その方法の一例として、図10に示すように、改質部16を形成した基板1をエッチング液(薬液)19に浸漬して、改質部16をエッチング(ウエットエッチング)することにより基板1から除去する方法が挙げられる。その結果、改質部16が存在した部分に、貫通孔4(ビア)が形成される。本実施態様では基板1の材料として厚さ500μmの石英ガラス板を用い、エッチング液19としてフッ酸(HF)を主成分とする溶液を用いた。このエッチングは、基板1の改質されていない部分に比べて改質部16が非常に速くエッチングされる現象を利用するものであり、結果として改質部16の形状に応じた貫通孔4を形成することができる。
そのほか、直線状に改質部を形成した後、エッチング液の選択比(改質層と非改質層のエッチングレートの比)が小さい液を適宜選択し、常に基板の片方の面からエッチングが進行するようにすることでテーパー形状の孔を形成することもできる。
<Process H>
In Step H, the modified portion 16 formed in Step G is removed, and the first opening 7 is provided on one main surface 2 of the substrate 1, and the second opening 8 is provided on the other main surface 3. The through-hole 4 is formed.
As an example of the method, as shown in FIG. 10, the substrate 1 on which the modified portion 16 is formed is immersed in an etching solution (chemical solution) 19 and the modified portion 16 is etched (wet etching). The method of removing is mentioned. As a result, the through hole 4 (via) is formed in the portion where the reforming portion 16 exists. In this embodiment, a quartz glass plate having a thickness of 500 μm is used as the material of the substrate 1, and a solution mainly containing hydrofluoric acid (HF) is used as the etching solution 19. This etching utilizes the phenomenon that the modified portion 16 is etched much faster than the unmodified portion of the substrate 1, and as a result, the through hole 4 corresponding to the shape of the modified portion 16 is formed. Can be formed.
In addition, after forming the modified portion in a straight line, a solution having a small etching solution selection ratio (ratio of the etching rate between the modified layer and the non-modified layer) is appropriately selected, and etching is always performed from one side of the substrate. A tapered hole can also be formed by making it advance.

前記エッチング液19は特に限定されず、例えばフッ酸(HF)を主成分とする溶液、フッ酸に硝酸等を適量添加したフッ硝酸系の混酸等を用いることができる。また、基板1の材料に応じて、他の薬液を用いることもできる。   The etching solution 19 is not particularly limited, and for example, a solution containing hydrofluoric acid (HF) as a main component, or a hydrofluoric acid-based mixed acid obtained by adding an appropriate amount of nitric acid or the like to hydrofluoric acid can be used. Further, other chemicals can be used depending on the material of the substrate 1.

<工程I>
工程Iでは、他方の主面3に導体層21を貼付する。
その方法の一例として、図11に示すように、厚さ1mmの銅板からなる導体層21を治具(不図示)によって、他方の主面3に固着させる方法が挙げられる。
導体層21の材質としては、銅に限定されず、チタン、金、金錫等の導電性物質からなるものが使用でき、その厚さは適宜設定される。
<Process I>
In step I, the conductor layer 21 is affixed to the other main surface 3.
As an example of the method, as shown in FIG. 11, there is a method in which a conductor layer 21 made of a copper plate having a thickness of 1 mm is fixed to the other main surface 3 with a jig (not shown).
The material of the conductor layer 21 is not limited to copper, and a material made of a conductive material such as titanium, gold, gold-tin, or the like can be used, and the thickness thereof is appropriately set.

<工程J>
工程Jでは、工程Iで固着させた導体層21を介して貫通孔4の内部に導体5を充填する。
その方法の一例として、導体層21が他方の主面3に貼付された基板1をめっき液(不図示)に浸漬する方法が挙げられる。前記めっき液の成分としては、貫通孔4の充填に適した硫酸銅めっき液が好適に用いられる。
<Process J>
In step J, the conductor 5 is filled into the through hole 4 through the conductor layer 21 fixed in step I.
As an example of the method, there is a method in which the substrate 1 having the conductor layer 21 attached to the other main surface 3 is immersed in a plating solution (not shown). As a component of the plating solution, a copper sulfate plating solution suitable for filling the through holes 4 is preferably used.

基板1を浸漬して、導電層21と別途設けたアノード電極(不図示)との間に適当な電流を流すことにより、導電層21が貫通孔4の第二の開口部8と接している部分を介して、めっき金属である導体5が析出することにより貫通孔4内部に導体5が充填される(図12参照)。   The conductive layer 21 is in contact with the second opening 8 of the through hole 4 by immersing the substrate 1 and flowing an appropriate current between the conductive layer 21 and a separately provided anode electrode (not shown). The conductor 5 which is a plating metal deposits through the portion, whereby the conductor 5 is filled into the through hole 4 (see FIG. 12).

ここで貫通孔4の形状は、前述のように、第一の開口部7から第二の開口部8に向けて略テーパー状に細くなるように加工されているため、導体5が第一の開口部7を閉塞して、貫通孔4内に導体5が充填されない領域(ボイド)を発生してしまうことを抑制することができる。すなわち、貫通孔4は、第二の開口部8から第一の開口部7に向けて徐々に太くなる形状であるため、めっきによって導電層21を介して導体5が析出し、細い側の第二の開口部8から太い側の第一の開口部7向けて導体5が充填されるとき、貫通孔4内のめっき液がスムーズに置換し、貫通孔内に新鮮なめっき液が均一に満たされた状態となるため、析出異常のない安定しためっき成長が行われる。このため、充填された導体5内部に、欠陥となるボイドが発生することを抑制して、貫通孔4内に導体5を密に充填した貫通配線6を得ることができる。   Here, since the shape of the through hole 4 is processed so as to become thinner in a substantially tapered shape from the first opening 7 toward the second opening 8 as described above, the conductor 5 is formed in the first hole 7. It is possible to prevent the opening 7 from being blocked and generating a region (void) in which the conductor 5 is not filled in the through hole 4. That is, since the through-hole 4 has a shape that gradually increases from the second opening 8 toward the first opening 7, the conductor 5 is deposited through the conductive layer 21 by plating, and the thin-side first When the conductor 5 is filled from the second opening 8 toward the thicker first opening 7, the plating solution in the through hole 4 is smoothly replaced, and the fresh plating solution is uniformly filled in the through hole. Therefore, stable plating growth without precipitation abnormality is performed. For this reason, it is possible to obtain the through wiring 6 in which the conductor 5 is densely filled in the through hole 4 by suppressing the generation of a void as a defect in the filled conductor 5.

貫通配線6が形成された貫通配線基板10の他方の主面3から、導体層15は適当な方法により除かれる。また、貫通配線基板10の両主面を研磨することにより、第一の開口部7及び第二の開口部8に露呈する導体5の表面を平滑にしてもよい。
以上の工程G〜Jにより、図8に示した貫通配線基板10が得られる。
The conductor layer 15 is removed by an appropriate method from the other main surface 3 of the through wiring substrate 10 on which the through wiring 6 is formed. Further, the surfaces of the conductor 5 exposed to the first opening 7 and the second opening 8 may be smoothed by polishing both main surfaces of the through wiring substrate 10.
Through the above steps G to J, the through wiring substrate 10 shown in FIG. 8 is obtained.

ここで説明した第二態様の製造方法では、レジストパターニングや第二の主面3の研削等の工程が必須ではないため、前述の第一態様の製造方法と比べて、工程数を少なくすることができるので製造効率が良い。
また、第二の開口部8に接する導電層21を介して導体5が析出するので、第二の開口部8から第一の開口部7に向けて導体5が貫通孔4を充填する傾向があり、ボイドの形成をより一層抑制することができる。
In the manufacturing method of the second aspect described here, steps such as resist patterning and grinding of the second main surface 3 are not essential, so the number of processes is reduced as compared with the manufacturing method of the first aspect described above. Manufacturing efficiency is good.
Further, since the conductor 5 is deposited through the conductive layer 21 in contact with the second opening 8, the conductor 5 tends to fill the through hole 4 from the second opening 8 toward the first opening 7. Yes, the formation of voids can be further suppressed.

<貫通配線基板の製造方法の第三態様>
次に、本発明の貫通配線基板の一例である貫通配線基板10を製造する方法の第三態様を図13〜図16に示す。
ここで、図13〜図16は、貫通配線基板10を製造する基板1の平面図および断面図である。当該図中、(A)は該基板1の平面図であり、(B)は該平面図のZ−Z線間に沿う基板1の断面図である。
<Third Aspect of Manufacturing Method of Penetration Wiring Board>
Next, FIGS. 13 to 16 show a third embodiment of a method for manufacturing the through wiring board 10 which is an example of the through wiring board of the present invention.
Here, FIGS. 13 to 16 are a plan view and a cross-sectional view of the substrate 1 for manufacturing the through wiring substrate 10. In the figure, (A) is a plan view of the substrate 1, and (B) is a cross-sectional view of the substrate 1 taken along the line ZZ in the plan view.

本発明に係る貫通配線基板10の製造方法の第三態様は、以下の工程M〜Pの4工程を少なくとも有する。
ここで、該貫通配線基板10は、図1を用いて説明したように、平版状の基板1を構成する一方の主面2と他方の主面3とを結ぶ貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、基板1の一縦断面おいて貫通孔4を見たとき、貫通孔4は、該貫通孔4の内側面を側辺とする台形状をなし、前記台形の2つの側辺4p及び4qは、互いに非平行であり、且つ前記台形の上底又は下底をなす2つの頂点から、対辺を含む直線へ引かれる2本の垂線T及びTに対して、前記台形の2つの側辺4p及び4qがそれぞれ同じ側に傾いている。
The 3rd aspect of the manufacturing method of the penetration wiring board 10 concerning the present invention has at least 4 processes of the following processes MP.
Here, as described with reference to FIG. 1, the through wiring substrate 10 is provided with a through hole 4 that connects one main surface 2 and the other main surface 3 constituting the planographic substrate 1, and A through-wiring board 10 having a through-wiring 6 formed by filling the through-hole 4 with a conductor 5 when the through-hole 4 is viewed in one longitudinal section of the substrate 1 is the through-hole 4. The trapezoidal two sides 4p and 4q are non-parallel to each other and include opposite sides from two vertices forming the upper or lower base of the trapezoid. against two perpendicular T 1 and T 2 which is pulled linearly, two side 4p and 4q of the trapezoid are inclined respectively on the same side.

また、該貫通配線基板10は、図2を用いて説明したように、平版状の基板1を構成する一方の主面2と他方の主面3とを結ぶ貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、基板1の一縦断面おいて貫通孔4を見たとき、貫通孔4は、該貫通孔4の内側面を側辺4p及び4qとする台形状をなし、前記台形の2つの側辺4p及び4qは互いに非平行であり、且つ前記台形の各々の側辺に沿う、一方の主面2から他方の主面3への2つの向き(矢印α及び矢印βで表される向き)は、基板1の両主面を貫く垂線Tに対して同じ側に向いている。   Further, as described with reference to FIG. 2, the through wiring substrate 10 is provided with a through hole 4 connecting one main surface 2 and the other main surface 3 constituting the planographic substrate 1, and the through hole 4 A through-wiring board 10 having a through-wiring 6 in which a hole 5 is filled with a conductor 5, and when the through-hole 4 is viewed in one longitudinal section of the board 1, It has a trapezoidal shape with the inner side faces 4p and 4q, and the two side edges 4p and 4q of the trapezoid are not parallel to each other and extend from one main surface 2 to the other along each side edge of the trapezoid. The two directions (directions represented by arrows α and β) toward the main surface 3 are directed to the same side with respect to the normal T passing through both main surfaces of the substrate 1.

すなわち、貫通配線基板10は、単一の基板1を構成する一方の主面2と他方の主面3とを結ぶように貫通孔4を配し、その貫通孔4に導体5を充填してなる貫通配線6を備えた貫通配線基板10であって、貫通孔4は一方の主面2及び他方の主面3に対して傾いて延伸し、且つ、その第一の開口部7から第二の開口部8へ向けて略テーパー状に細くなるものである。   That is, the through wiring board 10 has a through hole 4 so as to connect one main surface 2 and the other main surface 3 constituting a single substrate 1, and the through hole 4 is filled with a conductor 5. The through-hole wiring board 10 includes the through-hole wiring 6, and the through-hole 4 extends obliquely with respect to the one main surface 2 and the other main surface 3, and the second opening is provided through the first opening 7. It becomes thin in the shape of a taper toward the opening 8.

<工程M>
工程Mでは、導体層22を有する基材23を、基板1の他方の面3に該導体層22を接して貼付する。
その方法の一例として、図13に示すように、厚さ50μmの銅薄膜からなる導体層22が片面に設けられた樹脂製の基材23を治具(不図示)を用いて、基板1の他方の面3に該導体層22を接するように固着させる方法が挙げられる。
基材23の片面に銅薄膜を形成する方法としては、例えばスパッタリング法が挙げられる。
<Process M>
In step M, a base material 23 having a conductor layer 22 is attached to the other surface 3 of the substrate 1 in contact with the conductor layer 22.
As an example of the method, as shown in FIG. 13, a substrate 23 made of a resin having a conductor layer 22 made of a copper thin film having a thickness of 50 μm provided on one side is used with a jig (not shown). A method of fixing the conductor layer 22 so as to be in contact with the other surface 3 may be mentioned.
As a method of forming a copper thin film on one surface of the base material 23, for example, a sputtering method can be mentioned.

導体層22の材質としては、銅に限定されず、チタン、金、金錫等の導電性物質からなるものが使用でき、その厚さは適宜設定される。
基材23の材質としては、樹脂に限定されず、Si等からなる半導体基板や金属板であってもよい。その厚さは適宜設定される。
The material of the conductor layer 22 is not limited to copper, and a material made of a conductive material such as titanium, gold, gold-tin or the like can be used, and the thickness thereof is appropriately set.
The material of the base material 23 is not limited to resin, and may be a semiconductor substrate or a metal plate made of Si or the like. The thickness is appropriately set.

<工程N>
工程Nでは、基板1の両主面を結ぶ貫通孔4となる領域をレーザー照射することにより改質する。
その方法の一例として、図14に示すように、基板1にレーザー光Lを照射して、基板1内に基板1の材料が改質されてなる改質部16を形成する方法が挙げられる。改質部16は、貫通配線6となる領域に設けられる。
<Process N>
In step N, the region to be the through hole 4 connecting both main surfaces of the substrate 1 is modified by laser irradiation.
As an example of the method, as shown in FIG. 14, there is a method of irradiating the substrate 1 with a laser beam L to form a modified portion 16 in which the material of the substrate 1 is modified in the substrate 1. The reforming unit 16 is provided in a region to be the through wiring 6.

基板1の材料の説明、レーザー光Lの焦点Sにおける基板1の改質、レーザー光Lの光源の説明は、前述の貫通配線基板の製造方法の第一態様における説明と同じである。   The description of the material of the substrate 1, the modification of the substrate 1 at the focal point S of the laser light L, and the description of the light source of the laser light L are the same as the description in the first aspect of the method for manufacturing the through wiring substrate.

レーザー光Lの照射の方法としては、例えば貫通孔4の第二の開口部8となる第二の端部18から、第一の開口部7となる第一の端部17に向けてレーザー照射して改質する際、レーザー光を適宜走査して、第二の端部18から第一の端部17に向けて徐々に太くなる形状(すなわち、第一の端部17から第二の端部18に向けて細くなる略テーパー形状)の改質部16を形成する方法が挙げられる。   As a method of irradiating the laser beam L, for example, laser irradiation is performed from the second end 18 serving as the second opening 8 of the through hole 4 toward the first end 17 serving as the first opening 7. When the modification is performed, the laser beam is appropriately scanned to gradually increase in thickness from the second end portion 18 toward the first end portion 17 (that is, from the first end portion 17 to the second end portion). And a method of forming the reforming portion 16 having a substantially tapered shape that narrows toward the portion 18.

本実施例では、第一の端部17及び第二の端部18の半径が、それぞれ15μm及び5μmとなるように、角度θ及び角度φが、それぞれ70度及び120度となるように、改質部16を形成した。   In the present embodiment, the angle θ and the angle φ are adjusted to be 70 degrees and 120 degrees, respectively, so that the radii of the first end portion 17 and the second end portion 18 are 15 μm and 5 μm, respectively. A mass 16 was formed.

図14の断面図(B)に示した矢印は、レーザー光Lの焦点Sを走査する向きを表す。
すなわち、前記矢印は、第二の端部18から第一の端部17まで該焦点Sを走査することを表す。このとき、矢印の向きで一筆書きの走査を行うことが、製造効率上好ましい。
An arrow shown in the cross-sectional view (B) of FIG. 14 represents a direction in which the focal point S of the laser light L is scanned.
That is, the arrow indicates that the focal point S is scanned from the second end 18 to the first end 17. At this time, it is preferable in terms of manufacturing efficiency to perform one-stroke scanning in the direction of the arrow.

以上のように、改質部16を形成する際、レーザー光Lを照射する方向としては、基板1の一方または他方の主面からのみレーザー光Lを照射してもよいし、基板1の両主面からレーザー光Lを照射してもよい。   As described above, when the modified portion 16 is formed, the laser beam L may be irradiated only from one or the other main surface of the substrate 1 or both of the substrates 1 may be irradiated. Laser light L may be irradiated from the main surface.

<工程O>
工程Oでは、工程Pで形成した改質部16を除去して、一方の主面2に第一の開口部7を有し、他方の主面3と導体層22とが接する境界面に前記第二の開口部8を有する貫通孔4を形成する。
その方法の一例として、図15に示すように、改質部16を形成した基板1をエッチング液(薬液)19に浸漬して、改質部16をエッチング(ウエットエッチング)することにより基板1から除去する方法が挙げられる。その結果、改質部16が存在した部分に、貫通孔4(ビア)が形成される。本実施態様では基板1の材料として厚さ500μmの石英ガラス板を用い、エッチング液19としてフッ酸(HF)を主成分とする溶液を用いた。このエッチングは、基板1の改質されていない部分に比べて改質部16が非常に速くエッチングされる現象を利用するものであり、結果として改質部16の形状に応じた貫通孔4を形成することができる。
そのほか、直線状に改質部を形成した後、エッチング液の選択比(改質層と非改質層のエッチングレートの比)が小さい液を適宜選択し、常に基板の片方の面からエッチングが進行するようにすることでテーパー形状の孔を形成することもできる。
<Process O>
In step O, the modified portion 16 formed in step P is removed, the first opening 7 is provided on one main surface 2, and the boundary surface where the other main surface 3 and the conductor layer 22 are in contact with each other is described above. A through hole 4 having a second opening 8 is formed.
As an example of the method, as shown in FIG. 15, the substrate 1 on which the modified portion 16 is formed is immersed in an etching solution (chemical solution) 19, and the modified portion 16 is etched (wet etching). The method of removing is mentioned. As a result, the through hole 4 (via) is formed in the portion where the reforming portion 16 exists. In this embodiment, a quartz glass plate having a thickness of 500 μm is used as the material of the substrate 1, and a solution mainly containing hydrofluoric acid (HF) is used as the etching solution 19. This etching utilizes the phenomenon that the modified portion 16 is etched much faster than the unmodified portion of the substrate 1, and as a result, the through hole 4 corresponding to the shape of the modified portion 16 is formed. Can be formed.
In addition, after forming the modified portion in a straight line, a solution having a small etching solution selection ratio (ratio of the etching rate between the modified layer and the non-modified layer) is appropriately selected, and etching is always performed from one side of the substrate. A tapered hole can also be formed by making it advance.

前記エッチング液19は特に限定されず、例えばフッ酸(HF)を主成分とする溶液、フッ酸に硝酸等を適量添加したフッ硝酸系の混酸等を用いることができる。また、基板1の材料に応じて、他の薬液を用いることもできる。   The etching solution 19 is not particularly limited, and for example, a solution containing hydrofluoric acid (HF) as a main component, or a hydrofluoric acid-based mixed acid obtained by adding an appropriate amount of nitric acid or the like to hydrofluoric acid can be used. Further, other chemicals can be used depending on the material of the substrate 1.

<工程P>
工程Pでは、工程Mで基板1の他方の主面3に固着させた基材23の片面に設けられた導電層22を介して貫通孔4の内部に導体5を充填する。
その方法の一例として、導体層22が他方の主面3に貼付された基板1をめっき液(不図示)に浸漬する方法が挙げられる。前記めっき液の成分としては、貫通孔4の充填に適した硫酸銅めっき液が好適に用いられる。
<Process P>
In the process P, the conductor 5 is filled into the through hole 4 through the conductive layer 22 provided on one side of the base material 23 fixed to the other main surface 3 of the substrate 1 in the process M.
As an example of the method, there is a method in which the substrate 1 having the conductor layer 22 attached to the other main surface 3 is immersed in a plating solution (not shown). As a component of the plating solution, a copper sulfate plating solution suitable for filling the through holes 4 is preferably used.

基板1を浸漬して、導電層22と別途設けたアノード電極(不図示)との間に適当な電流を流すことにより、導電層22が貫通孔4の第二の開口部8と接している部分を介して、めっき金属である導体5が析出することにより貫通孔4内部に導体5が充填される(図16参照)。   The conductive layer 22 is in contact with the second opening 8 of the through hole 4 by immersing the substrate 1 and flowing an appropriate current between the conductive layer 22 and a separately provided anode electrode (not shown). The conductor 5 which is a plating metal deposits through the portion, whereby the conductor 5 is filled into the through hole 4 (see FIG. 16).

ここで貫通孔4の形状は、前述のように、第一の開口部7から第二の開口部8に向けて略テーパー状に細くなるように加工されているため、導体5が第一の開口部7を閉塞して、貫通孔4内に導体5が充填されない領域(ボイド)を発生してしまうことを抑制することができる。すなわち、貫通孔4は、第二の開口部8から第一の開口部7に向けて徐々に太くなる形状であるため、めっきによって導電層22を介して導体5が析出し、細い側の第二の開口部8から太い側の第一の開口部7向けて導体5が充填されるとき、貫通孔4内のめっき液がスムーズに置換し、貫通孔内に新鮮なめっき液が均一に満たされた状態となるため、析出異常のない安定しためっき成長が行われる。このため、充填された導体5内部に、欠陥となるボイドが発生することを抑制して、貫通孔4内に導体5を密に充填した貫通配線6を得ることができる。   Here, since the shape of the through hole 4 is processed so as to become thinner in a substantially tapered shape from the first opening 7 toward the second opening 8 as described above, the conductor 5 is formed in the first hole 7. It is possible to prevent the opening 7 from being blocked and generating a region (void) in which the conductor 5 is not filled in the through hole 4. That is, since the through-hole 4 has a shape that gradually increases from the second opening 8 toward the first opening 7, the conductor 5 is deposited through the conductive layer 22 by plating, and the thin side first When the conductor 5 is filled from the second opening 8 toward the thicker first opening 7, the plating solution in the through hole 4 is smoothly replaced, and the fresh plating solution is uniformly filled in the through hole. Therefore, stable plating growth without precipitation abnormality is performed. For this reason, it is possible to obtain the through wiring 6 in which the conductor 5 is densely filled in the through hole 4 by suppressing the generation of a void as a defect in the filled conductor 5.

貫通配線6が形成された貫通配線基板10の他方の主面3から、導体層22及び基材23は適当な方法により除かれる。また、貫通配線基板10の両主面を研磨することにより、第一の開口部7及び第二の開口部8に露呈する導体5の表面を平滑にしてもよい。
以上の工程M〜Pにより、図8に示した貫通配線基板10が得られる。
The conductor layer 22 and the base material 23 are removed by an appropriate method from the other main surface 3 of the through wiring substrate 10 on which the through wiring 6 is formed. Further, the surfaces of the conductor 5 exposed to the first opening 7 and the second opening 8 may be smoothed by polishing both main surfaces of the through wiring substrate 10.
Through the above steps MP, the through wiring substrate 10 shown in FIG. 8 is obtained.

ここで説明した第三態様の製造方法では、レジストパターニングや第二の主面3の研削等の工程が必須ではないため、前述の第一態様の製造方法と比べて、工程数を少なくすることができるので製造効率が良い。
また、第二の開口部8に接する導電層22を介して導体5が析出するので、第二の開口部8から第一の開口部7に向けて導体5が貫通孔4を充填する傾向があり、ボイドの形成をより一層抑制することができる。
In the manufacturing method of the third aspect described here, steps such as resist patterning and grinding of the second main surface 3 are not essential, so the number of processes is reduced compared to the manufacturing method of the first aspect described above. Manufacturing efficiency is good.
Further, since the conductor 5 is deposited via the conductive layer 22 in contact with the second opening 8, the conductor 5 tends to fill the through hole 4 from the second opening 8 toward the first opening 7. Yes, the formation of voids can be further suppressed.

本発明の貫通配線基板を用いることにより、その両主面にデバイスを実装する3次元実装や、複数のデバイスを一つのパッケージ内でシステム化するシステムインパッケージ(SiP)など、各種デバイスの高密度実装に好適に利用することができる。   By using the through wiring board of the present invention, high density of various devices such as three-dimensional mounting for mounting devices on both main surfaces and system in package (SiP) for systemizing a plurality of devices in one package. It can be suitably used for mounting.

1…基板1…一方の主面、3…他方の主面、4…貫通孔、5…導体、6…貫通配線、7…第一の開口部、8…第二の開口部、10…貫通配線基板、13…レジスト、14…非貫通孔、15…シード層、16…改質部、17…一方の端部、18…他方の端部、19…エッチング液、21…導電層、22…導電層、23…基材、L…レーザー光線、T,T,T…垂線。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate 1 ... One main surface, 3 ... The other main surface, 4 ... Through-hole, 5 ... Conductor, 6 ... Through wiring, 7 ... 1st opening part, 8 ... 2nd opening part, 10 ... Through-hole Wiring board, 13 ... resist, 14 ... non-through hole, 15 ... seed layer, 16 ... modified portion, 17 ... one end, 18 ... other end, 19 ... etching solution, 21 ... conductive layer, 22 ... Conductive layer, 23 ... base material, L ... laser beam, T, T 1 , T 2 ... perpendicular line.

Claims (3)

平版状の基板を構成する一方の主面と他方の主面とを結ぶ貫通孔を配し、その貫通孔に導体を充填してなる貫通配線を備えており、前記基板の一縦断面おいて前記貫通孔を見たとき、前記貫通孔は、該貫通孔の内側面を側辺とする台形状をなし、前記台形の2つの側辺は、互いに非平行であり、且つ前記台形の上底又は下底をなす2つの頂点から、対辺を含む直線へ引かれる2本の垂線に対して、前記台形の2つの側辺がそれぞれ同じ側に傾いている貫通配線基板の製造方法であって、
前記基板の両主面を結ぶ貫通孔となる領域をレーザー照射することにより改質し、前記他方の主面から前記一方の主面に向けて徐々に太くなる改質部を形成する工程(A)と、その改質された部分を除去して、前記一方の主面に第一の開口部を有し、第二の開口部となる端部が前記基板に内在する非貫通孔を形成する工程(B)と、前記非貫通孔の内壁にシード層を形成する工程(C)と、前記シード層を介して前記非貫通孔の内部に導体を充填する工程(D)と、前記他方の主面を研削して、前記非貫通孔を貫通孔となし、前記他方の主面に前記第二の開口部を形成する工程(E)と、を含むことを特徴とする貫通配線基板の製造方法。
A through hole connecting one main surface and the other main surface constituting the planographic substrate is provided, and a through wiring formed by filling the through hole with a conductor is provided. When the through-hole is viewed, the through-hole has a trapezoidal shape with the inner surface of the through-hole as a side, the two sides of the trapezoid are not parallel to each other, and the upper base of the trapezoid Or a through wiring board manufacturing method in which the two sides of the trapezoid are inclined to the same side with respect to two perpendicular lines drawn from two vertices forming the lower base to a straight line including the opposite side,
A step of modifying a region to be a through hole connecting both main surfaces of the substrate by laser irradiation, and forming a modified portion that gradually increases from the other main surface toward the one main surface (A And the modified portion is removed to form a non-through hole having a first opening on the one main surface and an end serving as the second opening existing in the substrate. A step (B), a step (C) of forming a seed layer on the inner wall of the non-through hole, a step (D) of filling a conductor into the non-through hole via the seed layer, and the other And a step (E) of grinding a main surface to form the non-through hole as a through hole and forming the second opening in the other main surface. Method.
平版状の基板を構成する一方の主面と他方の主面とを結ぶ貫通孔を配し、その貫通孔に導体を充填してなる貫通配線を備えており、前記基板の一縦断面おいて前記貫通孔を見たとき、前記貫通孔は、該貫通孔の内側面を側辺とする台形状をなし、前記台形の2つの側辺は、互いに非平行であり、且つ前記台形の上底又は下底をなす2つの頂点から、対辺を含む直線へ引かれる2本の垂線に対して、前記台形の2つの側辺がそれぞれ同じ側に傾いている貫通配線基板の製造方法であって、
前記基板の両主面を結ぶ貫通孔となる領域をレーザー照射することにより改質し、前記他方の主面から前記一方の主面に向けて徐々に太くなる改質部を形成する工程(G)と、その改質された部分を除去して、前記一方及び他方の主面にそれぞれ第一及び第二の開口部を有する貫通孔を形成する工程(H)と、前記他方の主面に導体層を貼付する工程(I)と、前記導体層を介して前記貫通孔の内部に導体を充填する工程(J)と、を含むことを特徴とする貫通配線基板の製造方法。
A through hole connecting one main surface and the other main surface constituting the planographic substrate is provided, and a through wiring formed by filling the through hole with a conductor is provided. When the through-hole is viewed, the through-hole has a trapezoidal shape with the inner surface of the through-hole as a side, the two sides of the trapezoid are not parallel to each other, and the upper base of the trapezoid Or a through wiring board manufacturing method in which the two sides of the trapezoid are inclined to the same side with respect to two perpendicular lines drawn from two vertices forming the lower base to a straight line including the opposite side,
A step of modifying a region to be a through hole connecting both main surfaces of the substrate by laser irradiation, and forming a modified portion that gradually increases from the other main surface toward the one main surface (G ), And removing the modified portion to form through holes having first and second openings in the one and other main surfaces, respectively, and in the other main surface A method of manufacturing a through wiring board, comprising: attaching a conductor layer (I); and filling the inside of the through hole with a conductor via the conductor layer (J).
平版状の基板を構成する一方の主面と他方の主面とを結ぶ貫通孔を配し、その貫通孔に導体を充填してなる貫通配線を備えており、前記基板の一縦断面おいて前記貫通孔を見たとき、前記貫通孔は、該貫通孔の内側面を側辺とする台形状をなし、前記台形の2つの側辺は、互いに非平行であり、且つ前記台形の上底又は下底をなす2つの頂点から、対辺を含む直線へ引かれる2本の垂線に対して、前記台形の2つの側辺がそれぞれ同じ側に傾いている貫通配線基板の製造方法であって、
導体層を有する基材を、前記基板の他方の面に該導体層を接して貼付する工程(M)と、前記基板の両主面を結ぶ貫通孔となる領域をレーザー照射することにより改質し、前記他方の主面から前記一方の主面に向けて徐々に太くなる改質部を形成する工程(N)と、その改質された部分を除去して、前記一方の主面に第一の開口部を有し、前記他方の主面と前記導体層とが接する境界面に第二の開口部を有する貫通孔を形成する工程(O)と、前記導体層を介して前記貫通孔の内部に導体を充填する工程(P)と、を含むことを特徴とする貫通配線基板の製造方法。
A through hole connecting one main surface and the other main surface constituting the planographic substrate is provided, and a through wiring formed by filling the through hole with a conductor is provided. When the through-hole is viewed, the through-hole has a trapezoidal shape with the inner surface of the through-hole as a side, the two sides of the trapezoid are not parallel to each other, and the upper base of the trapezoid Or a through wiring board manufacturing method in which the two sides of the trapezoid are inclined to the same side with respect to two perpendicular lines drawn from two vertices forming the lower base to a straight line including the opposite side,
A step of attaching a base material having a conductor layer to the other surface of the substrate in contact with the conductor layer (M), and modifying a region to be a through hole connecting both main surfaces of the substrate by laser irradiation And forming a modified portion that gradually increases in thickness from the other principal surface toward the one principal surface, and removing the modified portion to form a modified portion on the one principal surface. (O) forming a through hole having one opening, and having a second opening at a boundary surface where the other main surface and the conductor layer are in contact with each other, and the through hole through the conductor layer And a step (P) of filling the inside of the conductor with a conductor.
JP2013127533A 2013-06-18 2013-06-18 Through wiring board and manufacturing method thereof Pending JP2013225687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127533A JP2013225687A (en) 2013-06-18 2013-06-18 Through wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127533A JP2013225687A (en) 2013-06-18 2013-06-18 Through wiring board and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009294989A Division JP5600427B2 (en) 2009-12-25 2009-12-25 Material substrate for through wiring board

Publications (1)

Publication Number Publication Date
JP2013225687A true JP2013225687A (en) 2013-10-31

Family

ID=49595509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127533A Pending JP2013225687A (en) 2013-06-18 2013-06-18 Through wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2013225687A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294923A (en) * 1999-02-01 2000-10-20 Jgc Corp Filling method of metal into ceramic board and metal- filled ceramic board
JP2002359446A (en) * 2001-05-31 2002-12-13 Hitachi Ltd Wiring board and manufacturing method therefor
JP2004356160A (en) * 2003-05-27 2004-12-16 Dainippon Printing Co Ltd Method of manufacturing wiring board
JP2004363186A (en) * 2003-06-02 2004-12-24 Hamamatsu Photonics Kk Electrode board and its manufacturing method
JP2006332346A (en) * 2005-05-26 2006-12-07 Tdk Corp Substrate, electronic component and method of manufacturing same
JP2008288577A (en) * 2007-04-18 2008-11-27 Fujikura Ltd Substrate treatment method, through-wire substrate and its manufacturing method, and electronic component
JP2009117771A (en) * 2007-11-09 2009-05-28 Fujikura Ltd Method of manufacturing semiconductor package

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294923A (en) * 1999-02-01 2000-10-20 Jgc Corp Filling method of metal into ceramic board and metal- filled ceramic board
JP2002359446A (en) * 2001-05-31 2002-12-13 Hitachi Ltd Wiring board and manufacturing method therefor
JP2004356160A (en) * 2003-05-27 2004-12-16 Dainippon Printing Co Ltd Method of manufacturing wiring board
JP2004363186A (en) * 2003-06-02 2004-12-24 Hamamatsu Photonics Kk Electrode board and its manufacturing method
JP2006332346A (en) * 2005-05-26 2006-12-07 Tdk Corp Substrate, electronic component and method of manufacturing same
JP2008288577A (en) * 2007-04-18 2008-11-27 Fujikura Ltd Substrate treatment method, through-wire substrate and its manufacturing method, and electronic component
JP2009117771A (en) * 2007-11-09 2009-05-28 Fujikura Ltd Method of manufacturing semiconductor package

Similar Documents

Publication Publication Date Title
JP5600427B2 (en) Material substrate for through wiring board
JP4564343B2 (en) Manufacturing method of through hole substrate filled with conductive material
JP2004311919A (en) Through-hole filling method
JP2008053568A (en) Semiconductor device and method for manufacturing the same
JP5344667B2 (en) Circuit board, manufacturing method thereof, and circuit module
US9443799B2 (en) Interposer with lattice construction and embedded conductive metal structures
CN108463065B (en) Substrate and method for manufacturing the same
JP6217465B2 (en) Wiring structure manufacturing method, wiring structure, and electronic device using the same
JP2005310934A (en) Multilayer wiring board and its manufacturing method
JP5708762B2 (en) Method for manufacturing through electrode substrate
JP2013225687A (en) Through wiring board and manufacturing method thereof
JP5453763B2 (en) Method for manufacturing through electrode substrate
JP2012190900A (en) Semiconductor device and method of manufacturing the same
JP2017005205A (en) Wiring board and manufacturing method of the same
KR20100023805A (en) Conductive via formation
JP2008028336A (en) Method of manufacturing electronic component
JP4598438B2 (en) Manufacturing method of multilayer wiring board
JP7379906B2 (en) Manufacturing method of wiring board, wiring board forming board, wiring board intermediate product, wiring board and wiring board with element
JP2012169669A (en) Semiconductor device
JP5228094B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2023085366A1 (en) Through-via substrate, mounting substrate, and method for manufacturing through-via substrate
WO2022173057A1 (en) Through via substrate
US11462501B2 (en) Interconnect substrate and method of making the same
JP6981038B2 (en) Through Silicon Via Board and Its Manufacturing Method
JPH06104568A (en) Production of multilayer wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701