JP2013221794A - Apparatus and method for standardizing ae generation position of frp-made tank - Google Patents

Apparatus and method for standardizing ae generation position of frp-made tank Download PDF

Info

Publication number
JP2013221794A
JP2013221794A JP2012092131A JP2012092131A JP2013221794A JP 2013221794 A JP2013221794 A JP 2013221794A JP 2012092131 A JP2012092131 A JP 2012092131A JP 2012092131 A JP2012092131 A JP 2012092131A JP 2013221794 A JP2013221794 A JP 2013221794A
Authority
JP
Japan
Prior art keywords
frp
tank
wave
sensor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012092131A
Other languages
Japanese (ja)
Other versions
JP5921301B2 (en
Inventor
Kazumasa Terada
和正 寺田
Akira Sato
明良 佐藤
Noriyuki Hiroshima
敬之 廣島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2012092131A priority Critical patent/JP5921301B2/en
Publication of JP2013221794A publication Critical patent/JP2013221794A/en
Application granted granted Critical
Publication of JP5921301B2 publication Critical patent/JP5921301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for standardizing an AE generation position of an FRP-made tank, which can be applied to the FRP-made tank and can accurately standardize the AE generation position of the FRP-made tank in a pressure proof test.SOLUTION: The apparatus includes: a sealing cover 12 capable of fluid-tightly closing an aperture of an FRP-made tank 1 to be a test object; three or more AE sensors 14 separated from each other at distances and installed on the inside of the sealing cover 12 to receive AE waves 3 through only fluid 2 filled in the FRP-made tank 1; and an arithmetic unit 16 for calculating a generation position (AE generation source 4) of the AE waves 3 on the basis of the AE waves 3 received by the AE sensors 14.

Description

本発明は、耐圧試験時にAE発生位置を測定するFRP製タンクのAE発生位置標定装置及び方法に関する。   The present invention relates to an AE generation position locating apparatus and method for an FRP tank that measures an AE generation position during a pressure resistance test.

AE(アコースティックエミッション:音響発生)とは、材料の変形又は破損に伴い材料から発生する弾性波を意味する。また、AE信号とは、AE波を電気信号に変換して得られる物理量を意味し、AEセンサとはAE信号を受信又は検出するセンサを意味する。さらにAE試験又はAE法は、AE信号に基づき材料の変形又は破損の程度やその位置を特定する試験又は試験方法を意味する。   AE (acoustic emission: sound generation) means an elastic wave generated from a material as the material is deformed or broken. The AE signal means a physical quantity obtained by converting an AE wave into an electric signal, and the AE sensor means a sensor that receives or detects the AE signal. Further, the AE test or AE method means a test or test method for specifying the degree of deformation or breakage of a material and its position based on the AE signal.

金属製又は繊維強化プラスチック(FRP)製の圧力タンクに、AEセンサを取り付け、圧力タンクの破壊の兆候を検出することが、特許文献1,2に開示されている。
また、金属製のタンクに複数のAEセンサを取り付け、タンクの底板等に発生するAE信号を検出して、AE発生位置を標定することが特許文献3に提案されている。
Patent Documents 1 and 2 disclose that an AE sensor is attached to a pressure tank made of metal or fiber reinforced plastic (FRP) to detect signs of pressure tank destruction.
Further, Patent Document 3 proposes that a plurality of AE sensors are attached to a metal tank, an AE signal generated on the bottom plate of the tank is detected, and the AE generation position is determined.

国際公開第2009/008515号、「高圧タンクの損傷検知方法、及びそのための装置」International Publication No. 2009/008515, “Damage Detection Method for High Pressure Tank, and Apparatus for It” 特開2010−14624号公報、「圧力タンク及び圧力タンクにおける内部欠陥検出方法」Japanese Patent Application Laid-Open No. 2010-14624, “Pressure Tank and Internal Defect Detection Method in Pressure Tank” 特開2005−17089号公報、「タンク検査方法およびタンク検査装置」JP-A-2005-17089, “Tank Inspection Method and Tank Inspection Device”

特許文献1,2の手段は、圧力タンクの破壊の兆候を検出できるが、その破壊位置、すなわちAE発生位置を標定することはできない。
一方、特許文献3の手段は、AE発生位置の標定ができるが、金属製タンクではなく、FRP製タンクに適用した場合、以下の問題点があった。
The means of Patent Documents 1 and 2 can detect a sign of pressure tank destruction, but cannot determine the destruction position, that is, the AE occurrence position.
On the other hand, although the means of Patent Document 3 can determine the position of the AE generation position, there are the following problems when applied to an FRP tank instead of a metal tank.

FRP製タンクは、強化材に金属繊維、炭素繊維、セラミック繊維、高分子繊維などが用いられ、母材に高分子、ゴム、セラミック、金属などが用いられている。そのため、FRP製タンクは、強化材と母材とでAE波の伝播速度が異なるため、伝播速度が繊維の方向に依存する異方性がある。
また、FRP製タンクから発生するAE信号は、母材と強化材とで相違し、低周波数(例えば25kHz)から高周波数(例えば1MHz)までの広域である。
さらに、FRP製タンクの外殻を伝播するAE波は伝播速度(音速)が違う縦波、横波および、板波が混在している。
In the FRP tank, metal fiber, carbon fiber, ceramic fiber, polymer fiber, or the like is used as a reinforcing material, and polymer, rubber, ceramic, metal, or the like is used as a base material. Therefore, the FRP tank has anisotropy in which the propagation speed depends on the direction of the fiber because the propagation speed of the AE wave differs between the reinforcing material and the base material.
Further, the AE signal generated from the FRP tank is different between the base material and the reinforcing material, and has a wide area from a low frequency (for example, 25 kHz) to a high frequency (for example, 1 MHz).
Further, the AE wave propagating through the outer shell of the FRP tank is mixed with longitudinal waves, transverse waves and plate waves having different propagation speeds (sound speeds).

従って、金属製タンクを対象とした従来のAE発生位置測定手段をそのままFRP製タンクに適用すると、FRP製タンクの外殻を伝播する混在したAE波と、タンク内の液中を伝播するAE波(「縦波」)とが混在しその識別が困難であった。その結果、従来の手段では、AE発生位置の標定誤差が大きかった。   Therefore, when the conventional AE generation position measuring means for the metal tank is applied to the FRP tank as it is, a mixed AE wave propagating through the outer shell of the FRP tank and an AE wave propagating through the liquid in the tank. ("Longitudinal wave") are mixed and it is difficult to distinguish them. As a result, with the conventional means, the AE occurrence position orientation error was large.

また、FRP製タンク(例えば、FRP製ロケットモータケース)の耐圧試験を実施する際には、FRP製タンクの外面に、歪測定用センサや、変位測定用センサを多数取り付ける必要があり、AEセンサの取り付けスペースが不足する問題点があった。   In addition, when performing a pressure resistance test on an FRP tank (for example, an FRP rocket motor case), it is necessary to attach a large number of strain measurement sensors and displacement measurement sensors to the outer surface of the FRP tank. There was a problem that the installation space of was insufficient.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の第1の目的は、FRP製タンクに適用することができ、耐圧試験時にFRP製タンクのAE発生位置を正確に標定することができるFRP製タンクのAE発生位置標定装置及び方法を提供することにある。また、本発明の第2の目的は、FRP製タンクの耐圧試験時に、歪測定用センサや変位測定用センサの設置位置にかかわらず、AEセンサの取り付けスペースを確実に確保できるFRP製タンクのAE発生位置標定装置及び方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the first object of the present invention can be applied to an FRP tank, and an AE generation position locating apparatus and method for an FRP tank capable of accurately locating the AE generation position of the FRP tank during a pressure test. Is to provide. The second object of the present invention is to provide an AE for an FRP tank that can reliably secure a space for mounting an AE sensor regardless of the installation position of a strain measurement sensor or a displacement measurement sensor during a pressure test of the FRP tank. An object of the present invention is to provide a generation position locating apparatus and method.

本発明によれば、被検体であるFRP製タンクの開口を液密に閉鎖可能な密封蓋と、
密封蓋の内側に互いに間隔を隔てて設置され、FRP製タンクに充填された液体のみを介してAE波を受信する3以上のAEセンサと、
AEセンサで受信したAE波に基づき、AE波の発生位置を算出する演算装置とを備える、ことを特徴とするFRP製タンクのAE発生位置標定装置が提供される。
According to the present invention, a sealing lid capable of liquid-tightly closing an opening of an FRP tank as a subject;
Three or more AE sensors that are installed inside the sealing lid and spaced apart from each other and receive AE waves only through the liquid filled in the FRP tank;
There is provided an AE generation position locating device for an FRP tank, comprising an arithmetic unit that calculates an AE wave generation position based on an AE wave received by an AE sensor.

また本発明によれば、被検体であるFRP製タンクの開口を密封蓋で液密に閉鎖し、
3以上のAEセンサを、FRP製タンクに充填された液体のみを介してAE波を受信するように、密封蓋の内側に互いに間隔を隔てて設置し、
FRP製タンク内に液体を充填し、液体の圧力を加圧しながらAEセンサでAE波を受信し、
演算装置により、AEセンサで受信したAE波に基づき、AE波の発生位置を算出する、ことを特徴とするFRP製タンクのAE発生位置標定方法が提供される。
Further, according to the present invention, the opening of the FRP tank as the subject is liquid-tightly closed with the sealing lid,
Three or more AE sensors are installed inside the sealing lid so as to be spaced apart from each other so as to receive AE waves only through the liquid filled in the FRP tank.
The FRP tank is filled with liquid, and the AE sensor receives the AE wave while increasing the pressure of the liquid.
An AE generation position locating method for an FRP tank is provided, wherein the calculation device calculates an AE wave generation position based on the AE wave received by the AE sensor.

上記本発明の装置及び方法によれば、FRP製タンクに充填された液体のみを介してAE波を受信する3以上のAEセンサが、密封蓋の内側に互いに間隔を隔てて設置されるので、FRP製タンクの液圧による耐圧試験時において、FRP製タンクの外殻で発生したAE波は、液体のみを介してAEセンサに伝播される。
従って、AEセンサはタンク内の液中を伝播するAE波(「縦波」)のみを受信し、液中の音速は一定と見なせることから、3以上のAEセンサで受信したAE波に基づき、AE波の発生位置を正確に標定することができる。
According to the apparatus and method of the present invention, the three or more AE sensors that receive the AE wave only through the liquid filled in the FRP tank are installed at intervals inside the sealing lid. At the time of a pressure resistance test by the liquid pressure of the FRP tank, the AE wave generated in the outer shell of the FRP tank is propagated to the AE sensor only through the liquid.
Therefore, since the AE sensor receives only the AE wave ("longitudinal wave") propagating in the liquid in the tank, and the sound speed in the liquid can be regarded as constant, based on the AE wave received by three or more AE sensors, The generation position of the AE wave can be accurately determined.

また、本発明によれば、3以上のAEセンサが、密封蓋の内側に設置されるので、FRP製タンクの耐圧試験時に、歪測定用センサや変位測定用センサの設置位置にかかわらず、AEセンサの取り付けスペースを確実に確保できる。
Further, according to the present invention, since three or more AE sensors are installed inside the sealing lid, the AE sensor can be used regardless of the installation position of the strain measurement sensor or the displacement measurement sensor during the pressure test of the FRP tank. The sensor mounting space can be secured reliably.

本発明のAE発生位置標定装置の全体構成図である。1 is an overall configuration diagram of an AE occurrence position locating device according to the present invention. 図2は、取付部材の詳細を示す図である。FIG. 2 is a diagram showing details of the mounting member. 本発明のAE発生位置標定方法の全体フロー図である。It is a whole flow figure of the AE generating position locating method of the present invention.

以下、本発明の好ましい実施形態を、図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明のAE発生位置標定装置10の全体構成図である。   FIG. 1 is an overall configuration diagram of an AE occurrence position locating apparatus 10 according to the present invention.

本発明の試験対象であるFRP製タンク1は、例えばFRPやCFRPなどの複合材料からなるタンクである。なお、FRP製タンク1は、FRP、CFRP以外の複合材料からなるタンクであってもよい。
FRP製タンク1は、内部に液体2を充填し、加圧装置11により液体2の圧力をステップ状に上昇させて加圧するように構成されている。FRP製タンク1の形状は、この例では円筒形であるが、球形、その他の形状であってもよい。
FRP製タンク1の外殻1aの形状は、この例では外側に膨らんだ凸面であるが、平面であっても、内側にへこんだ凹面であってもよい。
The FRP tank 1 which is a test object of the present invention is a tank made of a composite material such as FRP or CFRP. The FRP tank 1 may be a tank made of a composite material other than FRP and CFRP.
The tank 1 made of FRP is configured so that the liquid 2 is filled therein and the pressure of the liquid 2 is increased stepwise by the pressurizing device 11 to pressurize it. The shape of the FRP tank 1 is a cylindrical shape in this example, but may be a spherical shape or other shapes.
In this example, the shape of the outer shell 1a of the FRP tank 1 is a convex surface bulging outward, but it may be a flat surface or a concave surface recessed inward.

FRP製タンク1は、1又は複数の開口1bを有する。開口1bは、この例では、円筒形タンクの対象軸上に、上下2つが設けられている。なお、開口1bは1つでも3以上であってもよい。
また、FRP製タンク1の姿勢は、この例では対象軸を鉛直に示しているが、本発明はこれに限定されず、任意の姿勢であってもよい。
The FRP tank 1 has one or a plurality of openings 1b. In this example, two upper and lower openings 1b are provided on the target axis of the cylindrical tank. The number of openings 1b may be one or three or more.
Moreover, although the attitude | position of the tank 1 made from FRP has shown the object axis | shaft vertically in this example, this invention is not limited to this, Arbitrary attitude | positions may be sufficient.

内部に充填する液体2は、好ましくは加圧水(淡水)であるが、その他の液体(例えば海水、作動油、グリセリン、等)であってもよい。   The liquid 2 to be filled therein is preferably pressurized water (fresh water), but may be other liquids (for example, seawater, hydraulic oil, glycerin, etc.).

図1において、本発明のAE発生位置標定装置10は、密封蓋12、AEセンサ14、演算装置16及び出力装置18を備える。   In FIG. 1, the AE generation position locating device 10 according to the present invention includes a sealing lid 12, an AE sensor 14, an arithmetic device 16, and an output device 18.

密封蓋12は、FRP製タンク1の開口1bを液密に閉鎖可能であり、その内側に、AEセンサ14を取り付ける取付部材13を有する。なおこの例で、密封蓋12は、図で上部の開口1bを閉鎖する上部密封蓋12aと、図で下部の開口1bを閉鎖する下部密封蓋12bとからなる。
なお、開口1bが複数ある場合には、そのすべてに密封蓋12を設け、FRP製タンク1の内部を密閉空間とする必要がある。
The sealing lid 12 can close the opening 1b of the FRP tank 1 in a liquid-tight manner, and has an attachment member 13 to which the AE sensor 14 is attached. In this example, the sealing lid 12 includes an upper sealing lid 12a that closes the upper opening 1b in the drawing and a lower sealing lid 12b that closes the lower opening 1b in the drawing.
When there are a plurality of openings 1b, it is necessary to provide sealing lids 12 for all of them and to make the inside of the FRP tank 1 a sealed space.

取付部材13は、この例では上部密封蓋12aに設けられ、密封蓋12(上部密封蓋12a)を貫通して液密に延びる中空管13aと、中空管13aの内方端に位置するセンサ取付部13bとからなる。
なお、取付部材13の取り付けは、単一の密封蓋12に限定されず、複数の密封蓋12に分散させて取り付けてもよい。
The attachment member 13 is provided in the upper sealing lid 12a in this example, and is located at the inner end of the hollow tube 13a and the hollow tube 13a that extends through the sealing lid 12 (upper sealing lid 12a) in a liquid-tight manner. It consists of a sensor mounting part 13b.
Note that the attachment of the attachment member 13 is not limited to the single sealing lid 12, and the attachment member 13 may be distributed and attached to the plurality of sealing lids 12.

取付部材13は、FRP製タンク1の外殻1aからAEセンサ14へ直接伝播するAE波3aを遮断するように、好ましくはAE波3aが伝播し難い材料で構成され、かつAEセンサ14を液体2の内部に確実に埋没させるように寸法が設定されている。AE波3aは、伝播速度(音速)が異なる縦波、横波、板波が混在しているAE波である。   The attachment member 13 is preferably made of a material that is difficult for the AE wave 3a to propagate so as to block the AE wave 3a that directly propagates from the outer shell 1a of the FRP tank 1 to the AE sensor 14, and the AE sensor 14 is liquid. The dimensions are set so as to be surely buried in the interior of 2. The AE wave 3a is an AE wave in which longitudinal waves, transverse waves, and plate waves having different propagation speeds (sound speeds) are mixed.

図2は、取付部材13の詳細を示す図である。この図において(A)は取付部材13の詳細図、(B)は(A)のB部詳細図である。
図2(A)に示すように、センサ取付部13bは中空管であり、その内側にAEセンサ14が収容され、AEセンサ14にFRP製タンク1内の圧力が作用しないようになっている。
また、図2(B)に示すように、センサ取付部13bの下端にはOリング19を介して中空管蓋20がボルト21で固定され、FRP製タンク1内の液体2がセンサ取付部13b内に侵入しないようになっている。
FIG. 2 is a diagram showing details of the attachment member 13. In this figure, (A) is a detailed view of the mounting member 13, and (B) is a detailed view of part B of (A).
As shown in FIG. 2 (A), the sensor mounting portion 13b is a hollow tube, and the AE sensor 14 is accommodated inside thereof, so that the pressure in the FRP tank 1 does not act on the AE sensor 14. .
As shown in FIG. 2B, a hollow tube lid 20 is fixed to the lower end of the sensor mounting portion 13b with a bolt 21 via an O-ring 19, and the liquid 2 in the FRP tank 1 is moved to the sensor mounting portion. 13b does not enter.

なおOリング19は、他のシール材で置き換えてもよい。Oリング19又はその他のシール材は、例えばニトリルゴム、シリコンゴム等の弾性体である。このような弾性体を用いることにより、FRP製タンク1の外殻1aからAEセンサ14へ直接伝播するAE波3aを遮断することができる。   The O-ring 19 may be replaced with another sealing material. The O-ring 19 or other sealing material is an elastic body such as nitrile rubber or silicon rubber. By using such an elastic body, the AE wave 3a directly propagating from the outer shell 1a of the FRP tank 1 to the AE sensor 14 can be blocked.

なお、液体2と接触する中空管13a、センサ取付部13b、中空管蓋20、ボルト21は、耐食性のある材料、例えばステンレス材であるのがよい。   The hollow tube 13a, the sensor mounting portion 13b, the hollow tube lid 20, and the bolt 21 that are in contact with the liquid 2 are preferably made of a corrosion-resistant material, for example, a stainless material.

3以上のAEセンサ14は、密封蓋12の内側のセンサ取付部13bに互いに間隔を隔てて設置され、FRP製タンク1に充填された液体2のみを介してAE波3を受信するようになっている。
また、AEセンサ14の配置は、少なくとも3つのAEセンサ14で、AE波3の発生位置を特定できるように、好ましくは多角形の各頂点に設置されている。この多角形は、AEセンサ14が3つの場合は正三角形、AEセンサ14がN個の場合は正N角形であるのが好ましいが、これに限定されない。
Three or more AE sensors 14 are installed at a distance from each other in the sensor mounting portion 13b inside the sealing lid 12 and receive the AE wave 3 only through the liquid 2 filled in the FRP tank 1. ing.
The AE sensors 14 are preferably arranged at each vertex of the polygon so that at least three AE sensors 14 can identify the position where the AE wave 3 is generated. This polygon is preferably a regular triangle when there are three AE sensors 14 and a regular N-gon when there are N AE sensors 14, but is not limited thereto.

さらにAEセンサ14をセンサ取付部13bに設置した状態において、AEセンサ14のセンサケーブル14aは、中空管13aの内側を通してFRP製タンク1の外側に取り出され、その出力信号を演算装置16に入力するようになっている。
また、AEセンサ14を設置した状態において、中空管13aの内方端は液密にシールされる。
Further, in a state where the AE sensor 14 is installed in the sensor mounting portion 13b, the sensor cable 14a of the AE sensor 14 is taken out to the outside of the FRP tank 1 through the inside of the hollow tube 13a, and the output signal is input to the arithmetic unit 16. It is supposed to be.
Further, in the state where the AE sensor 14 is installed, the inner end of the hollow tube 13a is sealed in a liquid-tight manner.

AEセンサ14は、FRP製タンク1の耐圧試験時における最大圧力に耐える耐圧性能と防水性能を有する必要がある。またAEセンサ14は、液中を伝
播するAE波3bの帯域を持つセンサである必要がある。
The AE sensor 14 needs to have a pressure resistance performance and a waterproof performance that can withstand the maximum pressure during the pressure resistance test of the FRP tank 1. Further, the AE sensor 14 needs to be a sensor having a band of the AE wave 3b propagating in the liquid.

図1において、演算装置16は、例えばコンピュータであり、3以上のAEセンサ14で受信したAE波3(縦波3b)に基づき、AE波3の発生位置(すなわち、AE発生源4の位置)を算出する。この算出には、3次元位置標定を行う周知のソフトウェアを用いる。   In FIG. 1, the arithmetic device 16 is, for example, a computer, and based on the AE wave 3 (longitudinal wave 3 b) received by three or more AE sensors 14, the generation position of the AE wave 3 (that is, the position of the AE generation source 4). Is calculated. This calculation uses well-known software for performing three-dimensional positioning.

なお、AEセンサ14又は演算装置16に閾値を設け、FRP製タンク1の外殻1aから取付部13に伝播したわずかなAE波3aを含むノイズを除去する。   Note that a threshold value is provided in the AE sensor 14 or the arithmetic unit 16 to remove noise including a slight AE wave 3a propagated from the outer shell 1a of the FRP tank 1 to the mounting portion 13.

上述したように、FRP製タンク1の外殻1aを伝播するAE波3aは、縦波、横波、板波が混在しているAE波であり、その伝播速度(音速)がそれぞれの波により異なるため位置標定が難しい。
一方、液中を伝播するAE波3(縦波3b)は縦波であり、その液中伝播速度は温度、圧力が一定の場合、一定(例えば水の場合、約1500m/s)である。
従って、3以上のAEセンサ14の3次元位置が既知であれば、単一のAE発生源4から各AEセンサ14までの縦波3bの伝播時間を求めることにより、各AEセンサ14からAE発生源4までの距離が求まり、AE発生源4の3次元位置を算出することができる。
As described above, the AE wave 3a propagating through the outer shell 1a of the FRP tank 1 is an AE wave in which a longitudinal wave, a transverse wave, and a plate wave are mixed, and the propagation speed (sound speed) differs depending on each wave. Therefore, positioning is difficult.
On the other hand, the AE wave 3 (longitudinal wave 3b) propagating in the liquid is a longitudinal wave, and the propagation velocity in the liquid is constant when the temperature and pressure are constant (for example, about 1500 m / s in the case of water).
Therefore, if the three-dimensional positions of three or more AE sensors 14 are known, the AE generation from each AE sensor 14 is obtained by obtaining the propagation time of the longitudinal wave 3b from the single AE generation source 4 to each AE sensor 14. The distance to the source 4 is obtained, and the three-dimensional position of the AE generation source 4 can be calculated.

図1において、出力装置18は、例えば表示装置(コンピュータ用のディスプレイ)、プリンタ、又は外部装置への出力デバイスであり、算出したAE発生源4の3次元位置を表示、印刷、又は出力する。   In FIG. 1, an output device 18 is, for example, a display device (computer display), a printer, or an output device to an external device, and displays, prints, or outputs the calculated three-dimensional position of the AE generation source 4.

図3は、本発明のAE発生位置標定方法の全体フロー図である。
この図に示すように、本発明のAE発生位置標定方法は、S1〜S7の各ステップ(工程)からなる。
FIG. 3 is an overall flowchart of the AE occurrence position locating method of the present invention.
As shown in this figure, the AE occurrence position locating method of the present invention includes steps (steps) S1 to S7.

S1では、被検体であるFRP製タンク1と、FRP製タンク1の開口を液密に閉鎖可能な密封蓋12を準備する。
またこの準備において、FRP製タンク1の内部に加圧装置11により液体2を充填し、液体2の圧力をステップ状に上昇又は下降させるように構成する。
In S1, an FRP tank 1 as a subject and a sealing lid 12 capable of liquid-tightly closing the opening of the FRP tank 1 are prepared.
In this preparation, the FRP tank 1 is filled with the liquid 2 by the pressurizing device 11, and the pressure of the liquid 2 is increased or decreased stepwise.

S2では、3以上のAEセンサ14を、FRP製タンク1に充填された液体2のみを介してAE波3を受信するように、密封蓋12の内側に互いに間隔を隔てて設置する。この際、3以上のAEセンサ14を、好ましくはそれぞれ多角形の各頂点に設置する。
また、各AEセンサ14の3次元位置を、演算装置16に設けられた記憶装置(図示せず)に記憶させる。
In S2, three or more AE sensors 14 are installed at an interval from each other inside the sealing lid 12 so as to receive the AE wave 3 only through the liquid 2 filled in the FRP tank 1. At this time, three or more AE sensors 14 are preferably installed at each vertex of the polygon.
Further, the three-dimensional position of each AE sensor 14 is stored in a storage device (not shown) provided in the arithmetic device 16.

S3では、FRP製タンク1の開口を密封蓋12で液密に閉鎖する。   In S <b> 3, the opening of the FRP tank 1 is liquid-tightly closed with the sealing lid 12.

S4では、耐圧試験を実施する。この耐圧試験では、FRP製タンク1に充填された液体2の圧力を、ステップ状に上昇させて加圧するのが好ましい。   In S4, a pressure resistance test is performed. In this pressure test, it is preferable to pressurize the liquid 2 filled in the FRP tank 1 by increasing the pressure in a stepped manner.

S5では、耐圧試験中に3以上のAEセンサ14でAE波3を検出する。
耐圧試験中に、検出されたすべてのAE波3は、演算装置16に設けられた記憶装置(図示せず)に、時系列的に記憶する。
なお耐圧試験中に発生するAE波3は、FRP製タンク1の外殻1aのどこで発生するかは不明である。
In S5, the AE wave 3 is detected by three or more AE sensors 14 during the pressure resistance test.
During the pressure resistance test, all the detected AE waves 3 are stored in a time series in a storage device (not shown) provided in the arithmetic device 16.
It is unclear where the AE wave 3 generated during the pressure test occurs in the outer shell 1a of the FRP tank 1.

S6では、3以上のAEセンサ14で受信したAE波3(縦波3b)に基づき、AE波3の発生位置(すなわち、AE発生源4の位置)を算出する。   In S6, the generation position of the AE wave 3 (that is, the position of the AE generation source 4) is calculated based on the AE wave 3 (longitudinal wave 3b) received by the three or more AE sensors 14.

上述したように、3以上のAEセンサ14の3次元位置が既知であれば、単一のAE発生源4から各AEセンサ14までの縦波3bの伝播時間を求めることにより、各AEセンサ14からAE発生源4までの距離が求まり、AE発生源4の3次元位置を算出することができる。   As described above, if the three-dimensional positions of three or more AE sensors 14 are known, the propagation time of the longitudinal wave 3b from the single AE generation source 4 to each AE sensor 14 is obtained, thereby obtaining each AE sensor 14. The distance from the AE generation source 4 to the AE generation source 4 is obtained, and the three-dimensional position of the AE generation source 4 can be calculated.

S7では、出力装置18により、算出したAE発生源4の3次元位置を表示、印刷、又は出力する。   In S7, the output device 18 displays, prints, or outputs the calculated three-dimensional position of the AE generation source 4.

上述した本発明の装置及び方法によれば、FRP製タンク1に充填された液体2のみを介してAE波3を受信する3以上のAEセンサ14が、密封蓋12の内側に互いに間隔を隔てて設置されるので、FRP製タンク1の液圧による耐圧試験時において、FRP製タンク1の外殻1aで発生したAE波3は、液体2のみを介してAEセンサ14に伝播される。
従って、AEセンサ14はタンク内の液中を伝播するAE波3(縦波3b)のみを受信し、液中の音速は一定と見なせることから、3以上のAEセンサ14で受信したAE波3に基づき、AE波3の発生位置(AE発生源4)を正確に標定することができる。
According to the apparatus and method of the present invention described above, three or more AE sensors 14 that receive the AE wave 3 only through the liquid 2 filled in the FRP tank 1 are spaced apart from each other inside the sealing lid 12. Therefore, the AE wave 3 generated in the outer shell 1a of the FRP tank 1 during the pressure resistance test by the liquid pressure of the FRP tank 1 is propagated to the AE sensor 14 only through the liquid 2.
Therefore, the AE sensor 14 receives only the AE wave 3 (longitudinal wave 3b) propagating in the liquid in the tank, and the sound speed in the liquid can be regarded as constant. Therefore, the AE wave 3 received by three or more AE sensors 14 is received. Therefore, the generation position (AE generation source 4) of the AE wave 3 can be accurately determined.

また、本発明によれば、3以上のAEセンサ14が、密封蓋12の内側に設置されるので、FRP製タンク1の耐圧試験時に、歪測定用センサや変位測定用センサの設置位置にかかわらず、AEセンサ14の取り付けスペースを確実に確保できる。   Further, according to the present invention, since three or more AE sensors 14 are installed inside the sealing lid 12, the strain measurement sensor and the displacement measurement sensor are installed at the time of pressure resistance test of the FRP tank 1. Therefore, the mounting space for the AE sensor 14 can be ensured.

なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   In addition, this invention is not limited to embodiment mentioned above, is shown by description of a claim, and also includes all the changes within the meaning and range equivalent to description of a claim.

1 FRP製タンク、1a 外殻、1b 開口、2 液体、3 AE波、
3a AE波(縦波、横波、板波)、3b 縦波、4 AE発生源、
10 AE発生位置標定装置、11 加圧装置、
12 密封蓋、12a 上部密封蓋、12b 下部密封蓋、
13 取付部材、13a 中空管、13b センサ取付部、
14 AEセンサ、14a センサケーブル、
16 演算装置、18 出力装置、
19 Oリング、20 中空管蓋、21 ボルト
1 FRP tank, 1a outer shell, 1b opening, 2 liquid, 3 AE wave,
3a AE wave (longitudinal wave, transverse wave, plate wave), 3b longitudinal wave, 4 AE generation source,
10 AE generation position locating device, 11 pressurizing device,
12 sealing lid, 12a upper sealing lid, 12b lower sealing lid,
13 mounting member, 13a hollow tube, 13b sensor mounting part,
14 AE sensor, 14a sensor cable,
16 arithmetic units, 18 output units,
19 O-ring, 20 hollow tube lid, 21 bolt

Claims (4)

被検体であるFRP製タンクの開口を液密に閉鎖可能な密封蓋と、
密封蓋の内側に互いに間隔を隔てて設置され、FRP製タンクに充填された液体のみを介してAE波を受信する3以上のAEセンサと、
AEセンサで受信したAE波に基づき、AE波の発生位置を算出する演算装置とを備える、ことを特徴とするFRP製タンクのAE発生位置標定装置。
A sealing lid capable of liquid-tightly closing the opening of the FRP tank as the subject;
Three or more AE sensors that are installed inside the sealing lid and spaced apart from each other and receive AE waves only through the liquid filled in the FRP tank;
An AE generation position locating device for a tank made of FRP, comprising: an arithmetic unit that calculates an AE wave generation position based on an AE wave received by an AE sensor.
前記3以上のAEセンサは、多角形の各頂点に設置されている、ことを特徴とする請求項1に記載のFRP製タンクのAE発生位置標定装置。   The AE generation position locating device for an FRP tank according to claim 1, wherein the three or more AE sensors are installed at each vertex of the polygon. 被検体であるFRP製タンクの開口を密封蓋で液密に閉鎖し、
3以上のAEセンサを、FRP製タンクに充填された液体のみを介してAE波を受信するように、密封蓋の内側に互いに間隔を隔てて設置し、
FRP製タンク内に液体を充填し、液体の圧力を加圧しながらAEセンサでAE波を受信し、
演算装置により、AEセンサで受信したAE波に基づき、AE波の発生位置を算出する、ことを特徴とするFRP製タンクのAE発生位置標定方法。
Close the opening of the FRP tank, which is the subject, with a sealing lid,
Three or more AE sensors are installed inside the sealing lid so as to be spaced apart from each other so as to receive AE waves only through the liquid filled in the FRP tank.
The FRP tank is filled with liquid, and the AE sensor receives the AE wave while increasing the pressure of the liquid.
An AE generation position locating method for a tank made of FRP, characterized in that a calculation device calculates an AE wave generation position based on an AE wave received by an AE sensor.
前記3以上のAEセンサを、多角形の各頂点に設置する、ことを特徴とする請求項3に記載のFRP製タンクのAE発生位置標定方法。   The AE generation position locating method for an FRP tank according to claim 3, wherein the three or more AE sensors are installed at each vertex of the polygon.
JP2012092131A 2012-04-13 2012-04-13 AE generation position locating apparatus and method for FRP tank Active JP5921301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092131A JP5921301B2 (en) 2012-04-13 2012-04-13 AE generation position locating apparatus and method for FRP tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092131A JP5921301B2 (en) 2012-04-13 2012-04-13 AE generation position locating apparatus and method for FRP tank

Publications (2)

Publication Number Publication Date
JP2013221794A true JP2013221794A (en) 2013-10-28
JP5921301B2 JP5921301B2 (en) 2016-05-24

Family

ID=49592866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092131A Active JP5921301B2 (en) 2012-04-13 2012-04-13 AE generation position locating apparatus and method for FRP tank

Country Status (1)

Country Link
JP (1) JP5921301B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181810A (en) * 2015-09-18 2015-12-23 天津大学 CFRP fixing support of acoustic emission sensor
JP2017096773A (en) * 2015-11-24 2017-06-01 株式会社Core技術研究所 Nondestructive inspection method and nondestructive inspection device and information specifying method in elastic wave tomography and information specifying device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910576A (en) * 1995-06-30 1997-01-14 Taisho Pharmaceut Co Ltd Granulation controlling method in agitation granulation and agitating-granulating apparatus
JP2003066015A (en) * 2001-08-21 2003-03-05 Ishikawajima Harima Heavy Ind Co Ltd Signal processing method in acoustic emission method
JP2006250823A (en) * 2005-03-11 2006-09-21 Enviro Tech International:Kk System for evaluating corrosive deterioration of underground tank
JP2010014624A (en) * 2008-07-04 2010-01-21 Honda Motor Co Ltd Pressure tank and detection method of pressure tank internal abnormality
JP2010271093A (en) * 2009-05-20 2010-12-02 Jfe Steel Corp Paneling strength measuring method and paneling strength measuring device of can body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910576A (en) * 1995-06-30 1997-01-14 Taisho Pharmaceut Co Ltd Granulation controlling method in agitation granulation and agitating-granulating apparatus
JP2003066015A (en) * 2001-08-21 2003-03-05 Ishikawajima Harima Heavy Ind Co Ltd Signal processing method in acoustic emission method
JP2006250823A (en) * 2005-03-11 2006-09-21 Enviro Tech International:Kk System for evaluating corrosive deterioration of underground tank
JP2010014624A (en) * 2008-07-04 2010-01-21 Honda Motor Co Ltd Pressure tank and detection method of pressure tank internal abnormality
JP2010271093A (en) * 2009-05-20 2010-12-02 Jfe Steel Corp Paneling strength measuring method and paneling strength measuring device of can body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181810A (en) * 2015-09-18 2015-12-23 天津大学 CFRP fixing support of acoustic emission sensor
JP2017096773A (en) * 2015-11-24 2017-06-01 株式会社Core技術研究所 Nondestructive inspection method and nondestructive inspection device and information specifying method in elastic wave tomography and information specifying device

Also Published As

Publication number Publication date
JP5921301B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
JP4232183B2 (en) Airtight inspection method and apparatus
Li et al. Nonlinear vertical accelerations of a floating torus in regular waves
CN103822822A (en) Method for measuring elastic energy of bubbled film in bubbling test on flat-bottom cylinder
JP5840084B2 (en) AE position location apparatus and method
JP5921301B2 (en) AE generation position locating apparatus and method for FRP tank
JP2015007441A5 (en)
JP2007093321A (en) Sensor structure
JP5224912B2 (en) Vibration monitoring apparatus and monitoring method
Ali et al. Effect of leak geometry on water characteristics inside pipes
CN103837470A (en) Flat bottom cylinder loading measurement method for adhesive force between film and base layer
CN105571675B (en) A kind of gas pipeline safety monitoring system and its monitoring method
Baik et al. Investigation of a method for real time quantification of gas bubbles in pipelines
KR102085721B1 (en) Volume and density measuring apparatus and Maintenance apparatus for liquid storage tank using the same
KR101379934B1 (en) Apparatus and method for measuring the thickness of the scale in a pipe
US8820137B2 (en) Method of determining void rate by nonlinear acoustic resonance spectrometry in a biphase medium and application in a nuclear reactor
JP6216277B2 (en) Leak detection device
CN103837412A (en) Flat bottom cylinder loading measurement method for Youngs elastic modulus of coating film
Shen et al. Development and Applications of a Pressurized Water-Filled Impedance Tube
CN105333929B (en) Remote surveying of liquid level experimental rig
KR101533539B1 (en) Method and apparatus for remotely idendifyiing fluid materials in pipe object
Nordin et al. Hardware development of reflection mode ultrasonic tomography system for monitoring flaws on pipeline
RU2621886C2 (en) Device for determining the wave pressures on the ship&#39;s hull
JP2009025277A (en) Method of inspecting leakage from underground tank by leaked water flow detector
CN103837411B (en) A kind of flat right cylinder of coating film Poisson ratio adds load measuring method
Liu et al. A numerical method for calculating the flow-induced vibration of the microstructure profiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160412

R150 Certificate of patent or registration of utility model

Ref document number: 5921301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250