JP2009025277A - Method of inspecting leakage from underground tank by leaked water flow detector - Google Patents

Method of inspecting leakage from underground tank by leaked water flow detector Download PDF

Info

Publication number
JP2009025277A
JP2009025277A JP2007211131A JP2007211131A JP2009025277A JP 2009025277 A JP2009025277 A JP 2009025277A JP 2007211131 A JP2007211131 A JP 2007211131A JP 2007211131 A JP2007211131 A JP 2007211131A JP 2009025277 A JP2009025277 A JP 2009025277A
Authority
JP
Japan
Prior art keywords
water flow
water
tank container
inspection
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007211131A
Other languages
Japanese (ja)
Inventor
Kengo Yoshida
健吾 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007211131A priority Critical patent/JP2009025277A/en
Publication of JP2009025277A publication Critical patent/JP2009025277A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein 80-180 minutes or more of inspection time is required per one tank container in a conventional technique, and wherein a time of stopping business in a gasoline station until finishing the inspection of a plurality of underground tanks is required to be shortened at an early time, as a reason for solving early the problem, since a simple method realized early of about 40 minutes of inspection time is required in its initial stage, even when either of water or air exists in the periphery of a storage tank buried underground. <P>SOLUTION: The water continuously intrudes into an underside of an oil liquid stored in the tank container, as a slow water flow, when the water continuously intrudes from a leakage hole by depressurization. This method of the present invention uses a leaked water flow detector having a function capable of detecting the intrusion moving and the water flow of the slow water. The water flow detector is provided in a short period, in case of a simple method, and is advanced successively to high performance one capable of shortening further the inspection time, by complicating a little accompanying mechanical structure or the like. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガソリンスタンドの地下に埋設される危険物貯蔵タンク容器の法定で定める漏洩検査の方法に関するものである。  The present invention relates to a leakage inspection method stipulated by law of a dangerous goods storage tank container buried underground in a gas station.

特許公開2005−265469号広報は、容器内部の気圧を減圧する事で、容器に収容される油液中に空気が進入した場合、気泡が破裂する時に発生する振動を、加速度センサーで検出する方法であるが、気泡が破裂する振動の大きさと漏洩孔の大きさの直接的な関係が薄い欠点があり、その欠点を解決するため、特許公開2006−29835号広報では、音響センサーで空気振動を検出する方法が採用されています。
しかし、大地中に埋設されたタンク容器の漏洩孔周辺に雨水や地下水が滞留する場合は、漏洩孔から水が進入するのですが、進入する水の振動や水流を検出する事は、両者いずれの方法でも不可能であり、又、気泡による破裂は起こり得ないので、測定や検査が不可能となる問題が残されています。
Japanese Patent Publication No. 2005-265469 discloses a method in which an acceleration sensor detects vibrations that occur when bubbles burst when air enters the oil contained in the container by reducing the pressure inside the container. However, there is a drawback that the direct relationship between the magnitude of the vibration that bursts the bubble and the size of the leak hole is thin, and in order to solve the disadvantage, in Japanese Patent Publication No. 2006-29835, air vibration is detected by an acoustic sensor. The detection method is adopted.
However, when rainwater or groundwater stays around the leak hole of a tank container buried in the ground, water enters from the leak hole. This method is also impossible, and there is still a problem that measurement and inspection are impossible because bursting due to bubbles cannot occur.

従って、法定で定める漏洩検査に於いては、上記のいずれかの方法と同時に、タンク容器内の水位の上昇を検出する方法を別途、義務付けた方法のみが認可されています。
しかし、水位の上昇を検出をする方法は、タンク容器一個に付き80分から180分以上の検査時間を必要とし、複数の地下タンクの検査が完了するまでの時間が更に長くなるが、その間、ガソリンスタンドの営業の停止する必要がある問題が発生しています。
そのため、短時間でも検査が可能な方法によるガソリンスタンド地下タンク容器の漏洩検査方法が求められています。
特開2005−265469号広報 特開2006−29835号広報
Therefore, in the leak inspection stipulated by law, only one of the above methods and only a method that obligates the method of detecting the rise in the water level in the tank container are approved.
However, the method of detecting the rise in the water level requires an inspection time of 80 to 180 minutes per tank container, and the time until the inspection of a plurality of underground tanks is further increased. There is a problem that requires the stand to be closed.
For this reason, there is a need for a leak inspection method for underground tank containers at gas stations that can be inspected in a short time.
Japanese Laid-Open Patent Publication No. 2005-265469 Japanese Laid-Open Patent Publication No. 2006-29835

大地中に埋設されたタンク容器の漏洩孔周辺に、雨水や地下水が滞留する場合は、水が容器内に浸入する時の流入音などの振動の発生、及び、伝播がしにくく、従来技術の振動を検出する原理による加速度センサー方式や音響センサー方式では、漏洩孔の検出は不可能である事から、タンク容器内の水位の上昇を検出する方法と併用する方法のみが認可されています。
しかし、水位の上昇検出には、タンク容器一個に付き80分から180分以上の検査時間が必要であり、複数の地下タンクの検査が完了する迄のガソリンスタンドの営業が停止する時間を短縮する事が早急に要求されています。
従って当初は簡易で低性能な40分程度の検査時間でも、早急に実現できる方法で良く、将来、機構を多少複雑にすれば、検査時間を更に短縮が期待できる方法であれば、更に良い。
If rainwater or groundwater stays in the vicinity of the leak hole of a tank container buried in the ground, vibrations such as inflow sound when water enters the container and propagation are difficult. In the acceleration sensor method and the acoustic sensor method based on the principle of detecting vibration, it is impossible to detect leak holes, so only the method used in combination with the method for detecting the rise in the water level in the tank container is approved.
However, in order to detect the rise in water level, an inspection time of 80 to 180 minutes is required for each tank container, and the time at which the operation of the gas station is stopped until the inspection of multiple underground tanks is completed can be shortened. Is urgently required.
Therefore, it is possible to use a method that can be realized quickly even with a simple and low-performance inspection time of about 40 minutes, and it is better if the method can be expected to further shorten the inspection time if the mechanism is somewhat complicated in the future.

タンク容器内部の上方の空気が存在する気相部を減圧した場合でも、漏洩孔が存在しなければ、地下に埋設され、密封されている大型タンク容器に収容される液体中に水流は起こり得ず、液体は静止し、液体中の圧力差は無く、極めて安定状態である。
一方、一定の値に減圧する事により漏洩孔より水が浸入し続ける場合は、タンク容器内部のガソリンなど油液体の下方にゆるやかな水流として水は侵入しながら、移動し続ける。
このゆるやかな水の侵入移動、ゆるやかな水流を検出する機能の水流検出器を用いる方法で課題を解決できる。
簡易で低性能な物でも早急に実現できる方法が求められているので、当初は低性能であっても、水流検出器に付随する機械機構を多少複雑にするなどで高性能の物へと容易に進化が可能であり、逐次、検査時間を更に短縮可能となる。
Even if the gas phase part where the air above the tank container exists is decompressed, if there is no leak hole, water flow can occur in the liquid contained in the large tank container that is buried underground and sealed. In other words, the liquid is stationary, there is no pressure difference in the liquid, and it is in a very stable state.
On the other hand, when water continues to enter from the leak hole by reducing the pressure to a certain value, the water continues to move while entering as a gentle water flow under the oil liquid such as gasoline inside the tank container.
The problem can be solved by a method using a gentle water intrusion movement and a water flow detector having a function of detecting a gentle water flow.
There is a need for a simple and low-performance method that can be quickly implemented, so even if it is initially low-performance, it can be easily converted into a high-performance product by adding some complexity to the mechanical mechanism associated with the water flow detector. The inspection time can be further shortened sequentially.

大地中に埋設された貯蔵タンク周囲の水、又は、空気のいずれが存在する場合でも、検査できるガソリンスタンド地下タンク容器の漏洩検査の方法は、当初は簡易で低性能な40分程度の時間でも良く、早急に実現できる方法が求めらているので、当初は早急に可能な方法から実現するが、水流検出器に付随する機械的構造を多少複雑にすれば高性能の物へと進化が可能であり、逐次、検査時間を更に短縮可能である。
早急な理由は、タンク容器一個に付き80分から180分以上の検査時間が必要であり、複数の地下タンクの検査が完了する迄のガソリンスタンドの営業が停止する時間を短縮する事が早急に要求されているからである。
Even if there is water or air around the storage tank buried in the ground, the method of leak inspection of the gas tank underground tank container that can be inspected is initially simple and low performance even for about 40 minutes There is a need for a method that can be realized quickly, so it can be realized from the method that can be realized as soon as possible. In turn, the inspection time can be further shortened.
The immediate reason is that an inspection time of 80 to 180 minutes or more is required for each tank container, and it is urgently requested to shorten the time at which gas station operations are stopped until the inspection of multiple underground tanks is completed. Because it is.

タンク容器内部の上方の空気が存在する気相部を一定値に減圧した場合でも、漏洩孔が存在しなければ、地下に埋設され、密封されている大型タンク容器に収容される液体中に水流は起こり得ず、液体は静止し、液体中の圧力差は無く、極めて安定状態である。
一方、漏洩孔より水が浸入し続ける場合は、タンク容器に収容されるガソリンなどの油液より重い水は、油液の下方にゆるやかな水流として移動し続ける。
このゆるやかな水の移動、ゆるやかな水流を検出する機能の漏洩水流検出器1を用て、地下タンクの漏洩孔の有無を判定する漏洩検査方法であり、図1は、実施例に於ける最良の形態である。
Even when the gas phase part where the air above the tank container is present is decompressed to a certain value, if there is no leakage hole, water flows into the liquid contained in the large tank container buried underground and sealed. Cannot occur, the liquid is stationary, there is no pressure difference in the liquid, and it is in a very stable state.
On the other hand, when water continues to enter from the leak hole, water heavier than oil such as gasoline stored in the tank container continues to move as a gentle water flow below the oil.
This is a leakage inspection method for determining the presence or absence of leakage holes in an underground tank using the leakage water flow detector 1 having a function of detecting a gentle movement of water and a gentle water flow. FIG. 1 is the best in the embodiment. It is a form.

以下に、漏洩水流検出器の動作と実施例を説明する。
油液の中に水が浸入して行く様子の明細は、タンク容器内を一定値に減圧する事で、微小な漏洩孔から進入し続ける水は、当初、疎密波としての圧力振動をもった水流であるが、じょじょにゆるやかな圧力振動を伴た疎密波の水流となり、タンク容器内部のガソリンなどの油液より重い水は、油液の下方にゆるやかな水流として水は侵入、油液を押し広げながら移動し続ける。
Hereinafter, the operation of the leaked water flow detector and an embodiment will be described.
The details of how water enters the oil liquid is that the pressure inside the tank container is reduced to a constant value, so that the water that continues to enter from the minute leak holes initially had pressure oscillations as dense waves. Although it is a water flow, it gradually becomes a dense wave flow with gentle pressure oscillation, and water that is heavier than oil such as gasoline inside the tank vessel penetrates as a gentle water flow below the oil, pushing the oil Keep moving while spreading.

この時の圧力変化の様子の明細は、水流の進行方向の前面である水と、後面の油液では、僅かな圧力差(重量差、重力差)を生じながら、油液を押し広げるように、油液体中に水がゆるやかに浸入して行く。
同時に、漏洩孔から進入した水は疎密波としてのゆるやかな圧力振動を伴うので、水流の前面は、圧力値が高く、僅かな振動を伴い、後面は圧力値が低く振動は少ない。
The details of the state of pressure change at this time are such that the water that is the front in the direction of the water flow and the oil liquid on the rear surface are spread with a slight pressure difference (weight difference, gravity difference). , Water slowly enters the oil liquid.
At the same time, water entering from the leak hole is accompanied by gentle pressure vibration as a sparse and dense wave, so that the front surface of the water flow has a high pressure value and a slight vibration, and the rear surface has a low pressure value and little vibration.

減圧器を停止させ、大気圧に開放すれば、漏洩孔からの水の浸入は停止し、全てのセンサーの圧力値は、静止し、同じ値であり、各センサーの圧力値出力に差が生じる事は無い。  If the decompressor is stopped and opened to atmospheric pressure, water intrusion from the leak hole stops, and the pressure values of all sensors remain the same and have the same pressure value output. There is nothing.

図2は、複数の高感度圧力センサー9を多数用いて、放射状に配置した漏洩水流検出器の例の上面図であり、それぞれの位置で得られる圧力の差を求める事で、ゆるやかな水の移動、ゆるやかな水流であっても、上記に説明した様な原理で、漏洩孔の有無を検出できる。
又、空気が進入した場合の為に、従来技術の漏洩空気振動検出器2を併用するが、空気振動の検出は、数分程度の検査時間で充分であるので、問題が無い。
FIG. 2 is a top view of an example of a leaky water flow detector arranged radially using a plurality of high-sensitivity pressure sensors 9, and by calculating the difference in pressure obtained at each position, Even with a moving and gentle water flow, the presence or absence of a leak hole can be detected by the principle described above.
Further, the leaked air vibration detector 2 of the prior art is used in combination for the case where air enters, but there is no problem because the inspection time of about several minutes is sufficient for detection of air vibration.

当初は簡易で低性能な物でも早急に実現できる方法が求められているので、図3は、筒状の水流検出器外郭1の周囲に、放射状に高感度圧力センサー9を配置した漏洩水流検出器の例の側面図であり、減圧を停止し大気圧時に安定させた時の各センサーの圧力値分布と、所定の減圧時に安定させた時の圧力値分布との測定を複数回繰り返して測定し、それぞれの状態の各センサーの圧力値分布を比較する事で、漏洩孔の有無を検出できる。  At first, a simple and low-performance method that can be quickly implemented is required. Therefore, FIG. 3 shows leakage water flow detection in which high-sensitivity pressure sensors 9 are radially arranged around the outer shell 1 of the tubular water flow detector. It is a side view of an example of a vessel, and the measurement of the pressure value distribution of each sensor when the pressure reduction is stopped and stabilized at atmospheric pressure, and the pressure value distribution when stabilized at a predetermined pressure reduction is repeated several times. The presence or absence of a leak hole can be detected by comparing the pressure value distribution of each sensor in each state.

今後、更に高感度の圧力センサーの開発や、更に多くの圧力センサーを配置する機械構造、例えば、雨傘の骨組構造の先端部に圧力センサーを取り付ける等を実用化する事で、放射状のセンサーの距離間が増す事から圧力差が向上するなど、逐次、検査時間を更に短縮する事が可能である。  In the future, the distance between radial sensors will be improved by developing more sensitive pressure sensors and putting a pressure sensor at the tip of the frame structure of an umbrella, for example, to install more pressure sensors. The inspection time can be further shortened sequentially, for example, the pressure difference is improved due to the increase in the interval.

図4は、現行の法定で認可されている方法に適合さる為に、本発明の方法に、従来技術の水位の上昇検出手段10を追加した実施例であり、本発明の方法が法定で新たに認可される迄の期間は従来方法で検査し、本発明の方法の性能評価と実績を深める目的のものである。  FIG. 4 shows an embodiment in which the water level rise detecting means 10 of the prior art is added to the method of the present invention in order to adapt to the method approved by the current statutory law. The period until the product is approved is for the purpose of inspecting by the conventional method and deepening the performance evaluation and performance of the method of the present invention.

実施例に於ける最良の形態で、漏洩水流検出器を用いた地下タンクの漏洩孔の有無を判定する検査方法である。In the best mode of the embodiment, this is an inspection method for determining the presence or absence of leakage holes in an underground tank using a leakage water flow detector. 複数の高感度圧力センサーを放射状に配置した漏洩水流検出器の例の上面図である。It is a top view of an example of a leak water flow detector which has arranged a plurality of highly sensitive pressure sensors radially. 筒状の水流検出器外郭の周囲に、放射状に高感度圧力センサーを配置した簡易な漏洩水流検出器の例の側面図である。It is a side view of the example of the simple leak water flow detector which has arrange | positioned the highly sensitive pressure sensor radially around the outer periphery of a cylindrical water flow detector. 現行の法定で認可されている方法に適合させる目的で、本発明の方法に一時的に、従来技術の水位上昇検出手段を追加した実施例である。This is an embodiment in which a water level rise detection means of the prior art is temporarily added to the method of the present invention for the purpose of adapting to a method approved by the current statutory law.

符号の説明Explanation of symbols

1 漏洩水流検出器
2 漏洩空気振動検出器
3 電気処理部
(漏洩信号の演算処理、測定データー表示、出力機能を含む)
4 減圧手段
5 被測定物である地下タンク容器
6 地下タンク容器の外郭
7 漏洩孔
8 水流
9 高感度圧力センサー
10 水位上昇検出手段
DESCRIPTION OF SYMBOLS 1 Leakage water flow detector 2 Leakage air vibration detector 3 Electric processing part (Including leak signal calculation processing, measurement data display, and output function)
4 Depressurization means 5 Underground tank container to be measured 6 Outer shell of underground tank container 7 Leakage hole 8 Water flow 9 High sensitivity pressure sensor 10 Water level rise detection means

Claims (2)

図1のように、ガソリンスタンドに埋設される被測定物である地下タンク容器5の外郭6に存在する漏洩孔7より、タンク容器の内部に流入する水流8を検出する機能を有した漏洩水流検出器1を用いる特徴と、漏洩孔の測定検査時間を60分以内で完了する特徴を有し、タンク容器5の内部に水位上昇測定機能の設置を必要としない特徴とを併せ有し、漏洩孔から空気が流入する時の振動を検出する機能を有した漏洩空気振動検出器2と、漏洩信号の演算処理、測定データー表示、出力機能を含む電気処理部3と、減圧手段4が付随した方法によるガソリンスタンドの地下タンク容器の漏洩検査機。  As shown in FIG. 1, a leaked water flow having a function of detecting a water flow 8 flowing into the tank container from a leak hole 7 existing in the outer shell 6 of the underground tank container 5, which is an object to be measured embedded in a gas station. A feature that uses the detector 1 and a feature that completes the measurement and inspection time of the leak hole within 60 minutes, and that does not require the installation of a water level rise measuring function inside the tank vessel 5 Leaked air vibration detector 2 having a function of detecting vibration when air flows in from the hole, an electrical processing unit 3 including a leak signal calculation process, measurement data display and output function, and a decompression means 4 are attached. Leak inspection machine for underground tank container of gas station by method. 請求項1に、現行の法定で認可されている方法に適合さる目的で、図4のように、水位上昇検出手段10を一時的に付加したガソリンスタンドの地下タンク容器の漏洩検査機。  4. A leak inspection machine for an underground tank container of a gas station to which a water level rise detection means 10 is temporarily added as shown in FIG.
JP2007211131A 2007-07-18 2007-07-18 Method of inspecting leakage from underground tank by leaked water flow detector Pending JP2009025277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211131A JP2009025277A (en) 2007-07-18 2007-07-18 Method of inspecting leakage from underground tank by leaked water flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211131A JP2009025277A (en) 2007-07-18 2007-07-18 Method of inspecting leakage from underground tank by leaked water flow detector

Publications (1)

Publication Number Publication Date
JP2009025277A true JP2009025277A (en) 2009-02-05

Family

ID=40397204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211131A Pending JP2009025277A (en) 2007-07-18 2007-07-18 Method of inspecting leakage from underground tank by leaked water flow detector

Country Status (1)

Country Link
JP (1) JP2009025277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198576A (en) * 2016-04-28 2017-11-02 株式会社工技研究所 Leak testing device and testing method, for underground tanks
JP7450862B2 (en) 2022-04-18 2024-03-18 株式会社タツノ Leakage test equipment and test method for underground storage tanks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198576A (en) * 2016-04-28 2017-11-02 株式会社工技研究所 Leak testing device and testing method, for underground tanks
JP7450862B2 (en) 2022-04-18 2024-03-18 株式会社タツノ Leakage test equipment and test method for underground storage tanks

Similar Documents

Publication Publication Date Title
JP7219302B2 (en) Pipe Leak Detector and Leak Detection Procedure
KR960008291A (en) Fluid leak position detection device and detection method in pipeline
FR2882141B1 (en) METHOD AND DEVICE FOR DETECTING IN THE GROUND THE OBSTRUCTION OF A PRESSURE SOCKET OF A STATIC PRESSURE SENSOR OF AN AIRCRAFT
CN103868984B (en) Ground high pressure pipe joint internal surface damage detecting device
CN104007041B (en) Coal seam hydrogen sulfide content determinator
JP4459300B2 (en) Method for inspecting fluid containers for leak holes
CN203201548U (en) System for identifying location of piston capable of moving along length direction of well
WO2015082702A3 (en) Downhole sonar
JP2009025277A (en) Method of inspecting leakage from underground tank by leaked water flow detector
WO2016194331A1 (en) Degradation analysis device, degradation analysis method, degradation analysis program, and storage medium
US7603900B2 (en) Leakage inspection apparatus for liquid storage tank technical field
JP2008020198A (en) Hydrogen leakage sensor and hydrogen leakage sensing method
JP2008026052A (en) Apparatus for inspecting leakage of annular work
JP2009092639A (en) Leakage test method by leakage vibration wave form in dangerous content storage tank
JP2009002923A (en) Underground tank leakage inspection method using detector for vibration propagating in solid interior
JP2016095265A (en) Leakage detection method and leakage detection device
JP6694320B2 (en) Leakage inspection device and inspection method for underground tank
JP2014219342A (en) Leakage detection method and device of buried duct
JP5921301B2 (en) AE generation position locating apparatus and method for FRP tank
JP3749908B2 (en) Liquid storage tank leak inspection method
JP2009002922A (en) Detection sensor for leakage vibration propagating in solid interior
JP4336236B2 (en) Tank leak detection device
JP2005098894A (en) Leak detection system for liquid storage tank
KR20160001590U (en) Apparatus for detecting leakage of double wall pipe by using internal air flow
JP4133950B2 (en) Tank leak test method and apparatus