JP2013221633A - Ultrasonic atomizing device - Google Patents

Ultrasonic atomizing device Download PDF

Info

Publication number
JP2013221633A
JP2013221633A JP2012091624A JP2012091624A JP2013221633A JP 2013221633 A JP2013221633 A JP 2013221633A JP 2012091624 A JP2012091624 A JP 2012091624A JP 2012091624 A JP2012091624 A JP 2012091624A JP 2013221633 A JP2013221633 A JP 2013221633A
Authority
JP
Japan
Prior art keywords
liquid
ultrasonic
water
perforated plate
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012091624A
Other languages
Japanese (ja)
Inventor
Tsutomu Ouchi
努 大内
Nobuyuki Kishine
延幸 岸根
Hatsume Fujita
初芽 藤田
Asako Furuta
麻子 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S-WAVE CO Ltd
Ryohin Keikaku Co Ltd
Wave Co Ltd
Original Assignee
S-WAVE CO Ltd
Ryohin Keikaku Co Ltd
Wave Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S-WAVE CO Ltd, Ryohin Keikaku Co Ltd, Wave Co Ltd filed Critical S-WAVE CO Ltd
Priority to JP2012091624A priority Critical patent/JP2013221633A/en
Publication of JP2013221633A publication Critical patent/JP2013221633A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations

Landscapes

  • Air Humidification (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic atomizing device that can reduce the power consumption by improving the atomization efficiency, scatter a generated mist in a desired direction without using means such as a fan, and suppress generation of a liquid splash on an interface as much as possible.SOLUTION: An ultrasonic atomizing device that atomizes a liquid in a container by applying ultrasonic vibrations to the liquid to form a liquid column on the liquid surface includes: a perforated plate 4 having fine through holes 6 formed; and arrangement means 3 for arranging the perforated plate 4 at a predetermined position, wherein the perforated plate 4 is fitted to the arrangement means 3 through an elastic holding member 5, and also arranged by the arrangement means 3 so that an upper surface 42 is not in contact with the liquid and a lower surface 41 can contact the liquid in a propagation direction of the ultrasonic vibrations.

Description

この発明は、超音波振動を利用して容器内の液体を霧化する超音波霧化装置に関するものである。   The present invention relates to an ultrasonic atomizer that atomizes a liquid in a container using ultrasonic vibration.

従来より、超音波振動子の超音波振動を利用して液体を霧化する超音波霧化装置として、容器内の液体中に超音波振動子を配設して超音波振動を液体内に放射し、液面に液柱を形成して霧化粒子を発生させる装置が知られている(図6参照)。
この超音波振動を利用した霧の発生原理は、液体に超音波振動を与え、液面や液内部に周波数固有のキャピラリ波(毛細表面波)やキャビテーション(空洞現象)を発生させることにより液面に無数の毛細表面波をつくり、霧を発生させるものである。
Conventionally, as an ultrasonic atomizer that atomizes a liquid using the ultrasonic vibration of an ultrasonic vibrator, an ultrasonic vibrator is disposed in the liquid in the container to emit the ultrasonic vibration into the liquid. And the apparatus which forms a liquid column in a liquid surface and generates atomization particle | grains is known (refer FIG. 6).
The principle of mist generation using this ultrasonic vibration is that the liquid level is generated by applying ultrasonic vibration to the liquid and generating capillary waves (capillary surface waves) and cavitation (cavity phenomenon) specific to the frequency and inside the liquid. It produces countless capillary surface waves and generates fog.

上記のような超音波霧化装置における霧化は、液中に発せられる超音波振動の指向性に任せて行われているため超音波振動エネルギーの全てが霧化に使用されるものではなく、また、液体の毛細表面波も自然発生的に生じるものであるから、液面に形成された液柱から発生する霧化粒子はいわば偶然の産物として得られるようなものであり、霧化効率が悪いものとなっている。
このことは、逆に言えば、従来の超音波霧化装置にあっては、所定の霧化量を得るために、霧化に貢献しない無駄な超音波振動分を含んだ形で超音波振動を発するように超音波振動子を動作させなければならず、そのために大きな駆動電力が必要になるということを意味するものであり、電力が無駄に消費されているという問題がある。
Atomization in the ultrasonic atomization apparatus as described above is performed by entrusting the directivity of the ultrasonic vibration emitted in the liquid, so not all of the ultrasonic vibration energy is used for atomization. In addition, since the capillary surface wave of the liquid is also generated spontaneously, the atomized particles generated from the liquid column formed on the liquid surface are obtained as an accidental product, and the atomization efficiency is high. It is bad.
In other words, in the conventional ultrasonic atomizer, in order to obtain a predetermined atomization amount, the ultrasonic vibration including the useless ultrasonic vibration component that does not contribute to the atomization is included. This means that the ultrasonic transducer must be operated so as to emit a large amount of power, and thus a large amount of driving power is required, and there is a problem that power is wasted.

また、上記の通り、従来の超音波霧化装置は、超音波振動子を動作させるための駆動電力が大きいことから、超音波振動子が発熱しやすく、これを冷却するための冷却ファンが必要となる。
また、水切れ時などのように霧化する液体がなくなり無負荷状態となった場合には、発熱などによって超音波振動子が破損するおそれがあるため、破損防止回路を設けておく必要もある。
このため、従来の超音波霧化装置にあっては、回路や装置が大型化してしまうという問題がある。
In addition, as described above, the conventional ultrasonic atomizer has a large driving power for operating the ultrasonic vibrator, so the ultrasonic vibrator easily generates heat, and a cooling fan is required to cool the ultrasonic vibrator. It becomes.
In addition, when the liquid to be atomized disappears, such as when the water runs out, and there is no load, the ultrasonic vibrator may be damaged due to heat generation, and therefore, it is necessary to provide a damage prevention circuit.
For this reason, in the conventional ultrasonic atomizer, there exists a problem that a circuit and an apparatus will enlarge.

さらに、従来の超音波霧化装置で発生させる霧化粒子は、超音波振動によって液面に形成された液柱から自然に任せて発生させるものであり、湯気のようにゆらゆらと立ち上るにすぎないものであるから、発生した霧を所望の方向に飛散させるためにはファンなどを設けて送風してこれを搬送する必要がある。
また、液面には液柱が形成されるため、界面に液飛沫が生じやすく、液滴が飛散しやすいという問題もある。
Furthermore, the atomized particles generated by the conventional ultrasonic atomizer are generated from the liquid column formed on the liquid surface by ultrasonic vibrations, and rise up as if it were steam. Therefore, in order to disperse the generated mist in a desired direction, it is necessary to provide a fan or the like to blow and convey the mist.
Further, since a liquid column is formed on the liquid surface, there is a problem that liquid droplets are likely to be generated at the interface and the liquid droplets are likely to be scattered.

この点、特開2009−28582号公報において、超音波振動子に対向する側の液体中に、超音波振動子から離れる方向に向けて伝播する超音波振動を集中させる筒体を配設することにより、超音波振動エネルギーを有効利用して安定的な霧化量を実現し、低消費電力化・小型化に寄与する超音波霧化装置が提案されている。
しかしながら、この発明は、筒体を用いて超音波振動を集中させて超音波振動エネルギーを高めることによって霧化効率を向上させているが、液面に液柱を形成して霧化粒子を自然発生的に発生させている点においては従来の超音波霧化装置と変わりがなく、また、発生した霧を所望の方向に飛散させるためにファンなどを設ける必要がある点や、界面に液飛沫が生じ液滴が飛散しやすいという問題は解消されていない。
特開2009−28582号公報
In this regard, in Japanese Patent Application Laid-Open No. 2009-28582, a cylinder for concentrating ultrasonic vibrations propagating in a direction away from the ultrasonic transducer is disposed in the liquid facing the ultrasonic transducer. Therefore, an ultrasonic atomizing device that realizes a stable atomization amount by effectively using ultrasonic vibration energy and contributes to low power consumption and miniaturization has been proposed.
However, this invention improves the atomization efficiency by concentrating the ultrasonic vibration by using the cylindrical body and increasing the ultrasonic vibration energy. However, the liquid column is formed on the liquid surface and the atomized particles are naturally There is no difference from the conventional ultrasonic atomizer in terms of generation, and it is necessary to provide a fan to scatter the generated mist in the desired direction, or liquid splash at the interface However, the problem that the droplets are likely to scatter is not solved.
JP 2009-28582 A

この発明は、霧化効率を向上させて消費電力の削減を図るとともに、発生した霧をファン等の手段を用いることなく所望の方向に飛散させることができ、また、界面における液飛沫の発生を可及的に抑制できる超音波霧化装置を得ることを課題とする。   This invention improves atomization efficiency and reduces power consumption, and can generate the generated fog in a desired direction without using a means such as a fan, and can also generate liquid splashes at the interface. It is an object to obtain an ultrasonic atomizer that can be suppressed as much as possible.

この発明の超音波霧化装置は、容器内の液体に超音波振動を与えて液面に液柱を形成し前記液体を霧化する超音波霧化装置において、微小な貫通孔が多数形成された多孔板と、前記多孔板を所定位置に配設するための配設手段とを備え、前記多孔板は弾性保持部材を介して前記配設手段に取り付け、この配設手段によって前記超音波振動の伝播方向前方において上面が前記液体に接触せずかつ下面が前記液柱に接触可能に配設して構成する。   The ultrasonic atomizing device according to the present invention is an ultrasonic atomizing device in which a liquid column is formed on a liquid surface by applying ultrasonic vibration to a liquid in a container to atomize the liquid. A porous plate, and a disposing means for disposing the porous plate at a predetermined position, and the perforated plate is attached to the disposing means via an elastic holding member, and the ultrasonic vibration is provided by the disposing means. The upper surface is arranged so as not to come into contact with the liquid and the lower surface in contact with the liquid column in front of the propagation direction of the liquid.

前記多孔板は、厚さ0.02mm〜0.05mm程度の金属製薄板に上下方向(厚み方向)に貫通する微小な貫通孔を多数形成したものであればよく、平板状としても曲板状、椀状としてもよい。
前記多孔板に形成される微小な貫通孔は、孔径0.003mmΦ〜0.050mmΦ程度のものが考えられ、多孔板下面側においてテーパー状に拡径する拡径部を備えたものとして形成することもできる(請求項2)。
The perforated plate may be formed by forming a large number of minute through holes penetrating in the vertical direction (thickness direction) on a thin metal plate having a thickness of about 0.02 mm to 0.05 mm. It is good also as a bowl shape.
The minute through-holes formed in the porous plate may be those having a hole diameter of about 0.003 mmΦ to 0.050 mmΦ, and are formed with a diameter-expanding portion that expands in a tapered shape on the lower surface side of the porous plate. (Claim 2).

そして、前記多孔板は、超音波振動の伝播方向前方において、その上面が容器内の液体に接触せず、かつ、超音波振動発振時に超音波振動によって液面に形成される液柱に下面が接触可能となるようにして配設されていればよい。すなわち、前記多孔板の下面は常時液体に接している必要はなく、超音波振動未発振時にあっては液体に接していなくてよい。
また、前記多孔板は、液体を伝播する超音波振動の進行方向に対して垂直に配設する必要はなく、これに対して傾斜させて配設してもよい。
The porous plate has an upper surface that is not in contact with the liquid in the container in front of the propagation direction of the ultrasonic vibration, and a lower surface of the liquid column that is formed on the liquid surface by the ultrasonic vibration when the ultrasonic vibration is oscillated. What is necessary is just to be arrange | positioned so that contact is possible. That is, the lower surface of the perforated plate does not need to be in contact with the liquid at all times, and may not be in contact with the liquid when the ultrasonic vibration is not oscillated.
Further, the perforated plate need not be disposed perpendicular to the traveling direction of the ultrasonic vibration propagating the liquid, and may be disposed so as to be inclined with respect to the traveling direction.

前記多孔板と前記配設手段との間に介在して前記多孔板を前記配設手段に取り付ける弾性保持部材は、弾性素材を用いて前記多孔板上面への液体の浸入を防止しながら前記多孔板を弾性的に保持してこれを前記配設手段に取り付けることができるものであればよく、例えば低硬度のシリコンゴムで厚さ1mm程度のドーナツ板状に形成し、その内周縁に前記多孔板周縁を、外周縁に前記配設手段をそれぞれ取り付けることなどが考えられるが、これに限られるものではない。   An elastic holding member that is interposed between the perforated plate and the disposing means and attaches the perforated plate to the disposing means uses the elastic material to prevent the liquid from entering the upper surface of the perforated plate. Any plate can be used as long as it can hold the plate elastically and attach it to the disposing means. For example, it is formed into a donut plate shape having a thickness of about 1 mm with low-hardness silicon rubber, and the porous It is conceivable to attach the disposing means to the peripheral edge of the plate and the outer peripheral edge, but the present invention is not limited to this.

この発明によれば、容器内の液体に超音波振動を与えて前記液体を霧化する超音波霧化装置において、超音波振動によって液面に形成される液柱に弾性保持部材で弾性的に保持された多孔板を接触可能に配設したので、激しく動く液柱内の液体の勢いが可及的に失われないように多孔板下面と液体とを接触させることができる。このとき、液柱内の液体は超音波振動の収束によって表面張力が剪断されやすい状態にあるが、このような状態の液体に多孔板が接触することによって液体の表面張力の剪断が促進される。そして、表面張力が剪断された液体は微小な貫通孔を通って大気中に勢いよく放出されるが、貫通孔の下面側(液柱と接触する側)と上面側(空気と接触する側)との間には大きな圧力差(水圧と大気圧)が生じていることから、急激な圧力変化の影響を受けて霧化されることとなる。
また、貫通孔を通る液体の速度は霧化粒子になってもそのまま維持されるので速度をもった霧として形成される。
すなわち、従来は自然に任せていた「液体の表面張力の剪断」を、弾性保持部材で保持された多孔板を用いて促進させるようにしたので、従来の超音波霧化装置と比較した場合、同じ条件下において霧化量を増大させることができる。
したがって、同じ霧化量を得ようとした場合、従来の装置よりも小さな超音波振動エネルギーで達成することができるので、省電力化が可能となる。
According to this invention, in the ultrasonic atomizing device that atomizes the liquid by applying ultrasonic vibration to the liquid in the container, the liquid column formed on the liquid surface by the ultrasonic vibration is elastically held by the elastic holding member. Since the held perforated plate is disposed so as to be in contact with the liquid, the lower surface of the perforated plate and the liquid can be brought into contact with each other so as not to lose the momentum of the liquid in the vigorously moving liquid column as much as possible. At this time, the liquid in the liquid column is in a state where the surface tension is easily sheared by the convergence of the ultrasonic vibration, and the shearing of the surface tension of the liquid is promoted by the perforated plate contacting the liquid in such a state. . The liquid whose surface tension has been sheared is released vigorously through the minute through hole into the atmosphere, but the lower surface side (the side in contact with the liquid column) and the upper surface side (the side in contact with air) of the through hole. Since there is a large pressure difference (water pressure and atmospheric pressure) between the two, the atomization occurs under the influence of a rapid pressure change.
Further, since the velocity of the liquid passing through the through hole is maintained as it is even when the atomized particles are formed, it is formed as a mist having a velocity.
In other words, since the conventional "natural shearing of the surface tension of the liquid" was promoted using a perforated plate held by an elastic holding member, when compared with a conventional ultrasonic atomizer, The amount of atomization can be increased under the same conditions.
Therefore, when it is going to obtain the same amount of atomization, since it can achieve with ultrasonic vibration energy smaller than the conventional apparatus, power saving is attained.

また、同じ霧化量を得るために必要とされる超音波振動子の駆動電力を従来よりも低減できるので、超音波振動子の発熱を抑えることもできる。このため、超音波振動子冷却用の冷却ファンを装置内に設ける必要がなくなり、さらには水切れ時などの無負荷状態における超音波振動子の破損防止回路を設ける必要がなくなる。
これにより、一層消費電力を低減させることができるとともに、回路や装置の小型化も実現できる。
In addition, since the driving power of the ultrasonic vibrator required for obtaining the same atomization amount can be reduced as compared with the conventional case, heat generation of the ultrasonic vibrator can also be suppressed. For this reason, it is not necessary to provide a cooling fan for cooling the ultrasonic vibrator in the apparatus, and it is not necessary to provide a circuit for preventing damage to the ultrasonic vibrator in a no-load state such as when water runs out.
Thereby, power consumption can be further reduced and downsizing of circuits and devices can be realized.

さらに、多孔板の微小な貫通孔から噴出される霧は超音波振動エネルギーによって貫通孔の開口方向に勢いを持ったものとして形成されるので、多孔板の上面を所望の方向に向けて多孔板下面を液体に接触させることにより、所望の方向に向けて霧を飛散させることができる。すなわち、発生した霧を所望の方向に運ぶためにファンなどを用いて送風する必要もない。
この意味においても消費電力の低減、装置の小型化を実現することができる。
Furthermore, since the mist ejected from the minute through-holes of the perforated plate is formed as having a momentum in the opening direction of the through-holes by ultrasonic vibration energy, the perforated plate with the upper surface of the perforated plate facing the desired direction By bringing the lower surface into contact with the liquid, the mist can be scattered in a desired direction. That is, there is no need to blow using a fan or the like to carry the generated mist in a desired direction.
In this sense as well, power consumption can be reduced and the apparatus can be downsized.

また、多孔板を超音波振動子から放射される超音波振動の伝播方向前方において、多孔板の上面が液体に接触せずかつ下面が液柱に接触可能となるようにして配設したので、液面における大きな液柱の形成が妨げられ、界面における液飛沫の発生を可及的に抑制することもできる。   Also, since the perforated plate is arranged in front of the propagation direction of the ultrasonic vibration radiated from the ultrasonic vibrator, the upper surface of the perforated plate is not in contact with the liquid and the lower surface is in contact with the liquid column, Formation of a large liquid column on the liquid surface is hindered, and generation of liquid splashes at the interface can be suppressed as much as possible.

また、多孔板は、超音波振動によって液面に形成される液柱に接触可能な位置に配設したので、大きな超音波振動エネルギーが含まれた液体に多孔板が接触することとなり、効率的に霧化を行うことができる。   In addition, since the perforated plate is disposed at a position where it can come into contact with the liquid column formed on the liquid surface by ultrasonic vibration, the perforated plate comes into contact with a liquid containing a large amount of ultrasonic vibration energy. Atomization can be performed.

請求項2の発明によれば、貫通孔は、多孔板の下面側においてテーパー状に拡径する拡径部を備えているので、貫通孔に向かって液体が流れやすくなり、霧がより噴出しやすくなる。   According to the invention of claim 2, since the through-hole has a diameter-expanding portion that expands in a tapered shape on the lower surface side of the perforated plate, the liquid easily flows toward the through-hole, and the mist is more ejected. It becomes easy.

この発明の実施例の概要図Overview of an embodiment of the present invention 異なる態様の配設手段を用いた実施例の概要図Schematic diagram of an embodiment using disposing means of different modes 貫通孔の拡大断面図Expanded cross-sectional view of the through hole 多孔板を傾斜させた実施例を示す図The figure which shows the Example which inclined the perforated panel この発明の実施例における霧化の様子を示す図The figure which shows the mode of atomization in the Example of this invention 従来の超音波霧化装置の概要図Outline diagram of conventional ultrasonic atomizer

図1は、この発明の超音波霧化装置の概要を示す図である。
霧化する水Wを収容する容器1の底には超音波振動子2が配設され、この超音波振動子2から放射される超音波振動の伝播方向前方の液面上方には、配設手段3を用いて多孔板4が超音波振動の伝播する水Wと下面41が接触可能な高さに配設されている。
多孔板4の周縁にはシリコンゴム製の弾性保持部材5が取り付けられ、この保持部材5を介して多孔板4が合成樹脂製の配設手段3に取り付けられている。
この配設手段3は、多孔板4を上記位置に配設するための内壁31を備え、容器1の開口部に着脱可能に取り付けられている。この内壁31は多孔板4の周縁を取り囲むようにして形成することで、多孔板4を上記位置に配設するとともに多孔板4の上面42に水Wが浸入することを防いでいる。この実施例において、配設手段3は容器1の開口部を塞ぐ蓋のような部材として構成してあるが、多孔板4を上記位置に配設できるものであればこの構成に限定されるものではなく、例えば、内壁31の外側に水Wの出入りを遮断しないように脚32を設けて容器1の底面に立設してもよい(図2参照)。
FIG. 1 is a diagram showing an outline of the ultrasonic atomizer of the present invention.
An ultrasonic vibrator 2 is disposed at the bottom of the container 1 for storing the water W to be atomized, and disposed above the liquid surface in front of the propagation direction of the ultrasonic vibration emitted from the ultrasonic vibrator 2. Using the means 3, the perforated plate 4 is disposed at a height at which the water W through which ultrasonic vibration propagates and the lower surface 41 can come into contact with each other.
An elastic holding member 5 made of silicon rubber is attached to the periphery of the porous plate 4, and the porous plate 4 is attached to the disposing means 3 made of synthetic resin via the holding member 5.
The disposing means 3 includes an inner wall 31 for disposing the perforated plate 4 at the above position, and is detachably attached to the opening of the container 1. The inner wall 31 is formed so as to surround the periphery of the porous plate 4, thereby disposing the porous plate 4 at the above position and preventing water W from entering the upper surface 42 of the porous plate 4. In this embodiment, the disposing means 3 is constructed as a member such as a lid that closes the opening of the container 1, but is limited to this constitution as long as the perforated plate 4 can be disposed at the above position. Instead, for example, legs 32 may be provided outside the inner wall 31 so as to prevent the water W from entering and exiting, and may be erected on the bottom surface of the container 1 (see FIG. 2).

多孔板4はSUS・ニッケル合金を用いて厚さ約0.05mmの円板状に形成され、板の厚み方向に貫通した孔径0.005mmΦの微小な貫通孔6が0.06mmピッチで千鳥状に約7000個形成されている。多孔板4に形成された貫通孔6は、多孔板4の下面側41にテーパー状に拡径する拡径部61を備えている(図3参照)。   The perforated plate 4 is formed in a disc shape having a thickness of about 0.05 mm using a SUS / nickel alloy, and minute through holes 6 having a diameter of 0.005 mmΦ penetrating in the thickness direction of the plate are staggered at a pitch of 0.06 mm. About 7000 are formed. The through-hole 6 formed in the porous plate 4 includes a diameter-expanding portion 61 that expands in a tapered shape on the lower surface side 41 of the porous plate 4 (see FIG. 3).

配設手段3と多孔板4との間に介在するシリコンゴム製の弾性保持部材5は、厚さが約1mmのドーナツ板状に形成されており、その内周縁部には多孔板4の外縁が、外周縁部には配設手段3がそれぞれ取り付けられている。   The elastic holding member 5 made of silicon rubber interposed between the disposing means 3 and the perforated plate 4 is formed in a donut plate shape having a thickness of about 1 mm. However, the disposing means 3 is attached to each of the outer peripheral edge portions.

超音波振動子2は公知の超音波振動子を用いることができるが、この実施例においては、圧電セラミックスの上下面を電極で挟んで平板状に構成された圧電型超音波振動子を用いてある。超音波振動子2には発振回路7が接続されており、この発振回路7から超音波振動子2に高周波電圧を印加することにより、容器1内の水Wに対して垂直方向に超音波振動が発振される。
また、この超音波振動子2は、超音波振動が容器1内の水Wに放射されるよう振動面が液体に接するように配設されていればよく、この実施例においては容器1の底面に配設してあるが、これに限られるものではない。
As the ultrasonic transducer 2, a known ultrasonic transducer can be used. In this embodiment, a piezoelectric ultrasonic transducer configured in a flat plate shape with the upper and lower surfaces of the piezoelectric ceramic sandwiched between electrodes is used. is there. An oscillation circuit 7 is connected to the ultrasonic vibrator 2, and by applying a high frequency voltage from the oscillation circuit 7 to the ultrasonic vibrator 2, ultrasonic vibration is generated in a direction perpendicular to the water W in the container 1. Is oscillated.
The ultrasonic transducer 2 may be disposed so that the vibration surface is in contact with the liquid so that the ultrasonic vibration is radiated to the water W in the container 1. In this embodiment, the bottom surface of the container 1 is used. However, the present invention is not limited to this.

次に、この超音波霧化装置の動作を説明する。
超音波振動子2に高周波電圧を印加すると、超音波振動子2から超音波振動が発振され水Wの中を垂直方向に伝播していく。この超音波振動は水Wの水面に到達するとほとんどが反射して下方に向かい、発振中の超音波振動子2の振動面及び容器1の底面にぶつかって再び上方に向かう。このような超音波振動の伝播が繰り返されることにより、次第に水W内を伝播する超音波振動エネルギーが強まり、その伝播方向前方の水面を隆起させて水柱を形成する。
超音波振動の伝播方向前方の水面上方には、微小な貫通孔6を備えた多孔板4が超音波振動の伝播する水Wに下面41が接触可能に配設されているので、超音波振動エネルギーによって隆起した水柱が多孔板4の下面41と接触する。このとき、水柱内の水Wは超音波振動によって激しく動いているが、多孔板4は薄板状のシリコンゴム製弾性保持部材5によって弾性的に保持され比較的自由な動きが許容されるので、水Wの動きにある程度対応して動くことが可能であり、水Wの激しい動きを大きく損なうことなく水Wと接触することができる。
このとき、隆起した水Wには超音波振動によって液面や液内部にキャピラリ波(毛細表面波)やキャビテーション(空洞現象)が生じて表面張力の剪断が既にある程度発生しているが、この状態の水Wが貫通孔6を通って多孔板4の上面42側から気体中に押し出され、水圧から大気圧への急激な圧力変化の影響を受け、勢いのある霧として噴出される。
また、微小な貫通孔6は、多孔板4の下面側において次第にテーパー状に拡径する拡径部61を備えているので水Wが貫通孔6に流れやすく、霧が噴出しやすくなっている。
Next, the operation of this ultrasonic atomizer will be described.
When a high frequency voltage is applied to the ultrasonic vibrator 2, ultrasonic vibration is oscillated from the ultrasonic vibrator 2 and propagates in the water W in the vertical direction. When the ultrasonic vibration reaches the water surface of the water W, most of the light is reflected and travels downward. The ultrasonic vibration strikes the vibration surface of the oscillating ultrasonic vibrator 2 and the bottom surface of the container 1 and travels upward again. By repeating such propagation of ultrasonic vibration, the ultrasonic vibration energy propagating in the water W gradually increases, and the water surface in the propagation direction is raised to form a water column.
Above the water surface in front of the propagation direction of the ultrasonic vibration, the perforated plate 4 having the minute through holes 6 is disposed so that the lower surface 41 can come into contact with the water W through which the ultrasonic vibration propagates. The water column raised by the energy contacts the lower surface 41 of the porous plate 4. At this time, although the water W in the water column is moving violently by ultrasonic vibration, the porous plate 4 is elastically held by the thin plate-like silicon rubber elastic holding member 5 and relatively free movement is allowed. It is possible to move corresponding to the movement of the water W to some extent, and it is possible to contact the water W without greatly impairing the intense movement of the water W.
At this time, in the raised water W, a capillary wave (capillary surface wave) and cavitation (cavity phenomenon) are generated on the liquid surface and inside the liquid due to ultrasonic vibration, and some shearing of the surface tension has already occurred. The water W is pushed out into the gas from the upper surface 42 side of the perforated plate 4 through the through-hole 6, is affected by a sudden pressure change from the water pressure to the atmospheric pressure, and is ejected as a vigorous mist.
Moreover, since the minute through-hole 6 is provided with the diameter-expanding part 61 which expands gradually in the taper shape on the lower surface side of the perforated plate 4, the water W easily flows into the through-hole 6 and mist is easily ejected. .

ここで、水Wに多孔板4を接触させない場合には、超音波振動子2から放射された超音波振動が集束すると水面に水柱が形成され、そこから自然発生的に霧が形成されることとなるが、この発明の超音波霧化装置を用いれば、この水柱を塞ぐ形で微小な貫通孔6を備えた多孔板4を水Wの水柱に接触させているので、大きな水柱の形成が阻止される。すなわち、界面における液飛沫の発生を可及的に抑制しつつ、超音波振動エネルギーを利用して多孔板4の貫通孔6から勢いのある霧を噴出させることができる。
また、多孔板4の上面42を所望の方向に向けるようにして傾斜させて水Wに接触させれば、その方向に向かって霧を噴出させることもできる(図4参照)。
Here, when the porous plate 4 is not brought into contact with the water W, when the ultrasonic vibration radiated from the ultrasonic transducer 2 is focused, a water column is formed on the water surface, and a mist is spontaneously formed therefrom. However, if the ultrasonic atomizing device of the present invention is used, the porous plate 4 having the minute through holes 6 is closed to the water column so as to close the water column. Be blocked. That is, a vigorous mist can be ejected from the through-hole 6 of the perforated plate 4 using ultrasonic vibration energy while suppressing the generation of liquid splash at the interface as much as possible.
Further, if the upper surface 42 of the porous plate 4 is inclined so as to be directed in a desired direction and brought into contact with the water W, mist can be ejected in that direction (see FIG. 4).

図5は、この発明の超音波霧化装置を用いて形成された実際の霧の様子を示す図であり(配設手段3は図2に示した例による。)、霧が勢いよく噴出されていることが確認できる。   FIG. 5 is a diagram showing a state of an actual mist formed by using the ultrasonic atomizer of the present invention (the disposing means 3 is based on the example shown in FIG. 2), and the mist is ejected vigorously. Can be confirmed.

以下に、この発明の超音波霧化装置を用いた霧化の実験例を示す。
なお、各実験において特別な記載がない場合には、以下を共通条件として実験を行った。
[容器の内側のサイズ]:高さ100mm、幅100mm、奥行100mm
[超音波振動子]:圧電型超音波振動子(直径20mm・厚さ0.2mmの円板状)
[多孔板]:SUS・ニッケル合金製、直径5.5mm・板厚0.05mmの円板状、貫通孔は孔径0.005mmΦで下面側にテーパー状の拡径部を備え、0.06mmピッチで千鳥状に約7000個形成
[弾性保持部材]:シリコンゴム製(硬度20°)、外径20mm・内径5.0mm・厚さ1.0mmのドーナツ板状
[霧化する液体]:水
[電源]:入力AC100V50Hz、出力DC15V700mA
Below, the experiment example of atomization using the ultrasonic atomizer of this invention is shown.
In addition, when there was no special description in each experiment, it experimented on the following common conditions.
[Inside container size]: Height 100 mm, width 100 mm, depth 100 mm
[Ultrasonic vibrator]: Piezoelectric ultrasonic vibrator (disk shape with a diameter of 20 mm and a thickness of 0.2 mm)
[Perforated plate]: Made of SUS / nickel alloy, disk-shaped with a diameter of 5.5 mm and a plate thickness of 0.05 mm, the through-hole has a hole diameter of 0.005 mmΦ and a tapered enlarged portion on the lower surface side, and a pitch of 0.06 mm 7000 in a zigzag pattern [elastic holding member]: silicon rubber (hardness 20 °), outer shape 20 mm, inner diameter 5.0 mm, thickness 1.0 mm donut plate [atomizing liquid]: water [ Power supply]: Input AC100V50Hz, output DC15V700mA

<実験例1>
実験例1は、容器1内の水Wの水深を18mm(水量180ml)、多孔板下面41の水面からの高さを6.2mmとし、超音波振動子2の共振周波数を1.7MHzと2.4MHzとした場合の霧化量を、多孔板4を配設しない場合の霧化量と比較したものである。
この実験によれば、容器1内の水Wの水深(水量)と多孔板4の水面からの高さを同じ条件とした場合、何れの周波数についても、多孔板4を配設した場合の霧化量の方が、多孔板4なしの場合よりも大幅に増加していることが確認できる。
<Experimental example 1>
In Experimental Example 1, the depth of the water W in the container 1 is 18 mm (the amount of water is 180 ml), the height of the lower surface 41 of the porous plate 41 is 6.2 mm, and the resonance frequency of the ultrasonic transducer 2 is 1.7 MHz and 2 The atomization amount when the frequency is 4 MHz is compared with the atomization amount when the porous plate 4 is not provided.
According to this experiment, when the water depth (water amount) of the water W in the container 1 and the height from the water surface of the porous plate 4 are the same, the fog when the porous plate 4 is disposed for any frequency. It can be confirmed that the amount of formation is greatly increased as compared with the case without the porous plate 4.

<実験例2>
実験例2は、容器1内の水Wに与える超音波振動子の周波数を1.7MHz、多孔板4の水面からの高さを6.2mmとし、容器1内の水Wの水深を変化させた場合の霧化量を、多孔板4を配設しない場合の霧化量と比較したものである。
この実験によれば、容器1内の水Wの水深(水量)と多孔板4の水面からの高さを同じ条件とした場合、水深(水量)を変動させても、多孔板4を配設した場合の霧化量の方が、多孔板4なしの場合よりも大幅に増加していることが確認できる。
この実験では周波数を1.7MHzとしたが、周波数条件を変えた場合であってもこれと同様の結果が得られることが予想される。
<Experimental example 2>
In Experimental Example 2, the frequency of the ultrasonic transducer applied to the water W in the container 1 is 1.7 MHz, the height from the water surface of the porous plate 4 is 6.2 mm, and the water depth of the water W in the container 1 is changed. The amount of atomization in the case where the perforated plate 4 is not disposed is compared with the amount of atomization in the case of the above.
According to this experiment, when the water depth (water amount) of the water W in the container 1 and the height from the water surface of the porous plate 4 are the same, the porous plate 4 is disposed even if the water depth (water amount) is varied. It can be confirmed that the amount of atomization in this case is greatly increased as compared with the case without the porous plate 4.
In this experiment, the frequency was 1.7 MHz, but it is expected that the same result can be obtained even when the frequency condition is changed.

上記実験例1,2より、多孔板4を水面から高さ6.2mmに配設して超音波振動の伝播した水Wに接触させた場合、周波数、水深(水量)の条件を変えても、従来の装置より霧化量を増大させることができることが分かる。   From the above experimental examples 1 and 2, when the porous plate 4 is arranged at a height of 6.2 mm from the water surface and brought into contact with the water W in which ultrasonic vibration has propagated, the frequency and water depth (water volume) conditions can be changed. It can be seen that the amount of atomization can be increased as compared with the conventional apparatus.

<実験例3>
実験例3は、容器1内の水Wの水深を23.0mm(水量230ml)とし、超音波振動子の周波数ごとに多孔板4の水面からの高さを変化させた場合における霧化量の変化を見るための実験である。
この実験によれば、容器1内の水Wの水深(水量)を同じ条件(水深23.0mm)とした場合、何れの超音波振動子の周波数においても、多孔板4下面と水面との間に間隙を設けて水面に形成される水柱に多孔板4の下面41を接触させて霧化を行った場合に霧化量を大幅に増大させることができ、多孔板の高さを6.2mmとした場合に最大の霧化量となることが分かる。
<Experimental example 3>
In Experimental Example 3, the depth of the water W in the container 1 is 23.0 mm (water volume 230 ml), and the amount of atomization when the height from the water surface of the porous plate 4 is changed for each frequency of the ultrasonic vibrator. This is an experiment to see changes.
According to this experiment, when the water depth (water amount) of the water W in the container 1 is set to the same condition (water depth 23.0 mm), the gap between the lower surface of the perforated plate 4 and the water surface is the frequency of any ultrasonic transducer. When the atomization is performed by bringing the lower surface 41 of the porous plate 4 into contact with the water column formed on the water surface with a gap in the surface, the amount of atomization can be greatly increased, and the height of the porous plate is 6.2 mm. It can be seen that the maximum atomization amount is obtained.

<実験例4>
実験例4は、超音波振動子の周波数ごとに、容器1内の水Wの水深と多孔板4の水面からの高さをそれぞれ変化させた場合における霧化量の変化を見るための実験である。
この実験によれば、多孔板4を平常時(超音波振動未発振時)に水面に接触せず
超音波振動発振時にのみ接触する位置(すなわち、超音波振動によって水面に形成される水柱に多孔板4が接触する位置)に配設した場合、何れの周波数においても、水深にかかわらず霧化量が大幅に増大していることが分かる。
<Experimental example 4>
Experimental example 4 is an experiment for seeing changes in the amount of atomization when the water depth in the container 1 and the height from the water surface of the porous plate 4 are changed for each frequency of the ultrasonic transducer. is there.
According to this experiment, the porous plate 4 is not in contact with the water surface during normal times (when the ultrasonic vibration is not oscillated), but is contacted only when the ultrasonic vibration is oscillated (that is, the water column formed on the water surface by ultrasonic vibration is porous. When it is disposed at a position where the plate 4 is in contact, it can be seen that the atomization amount is greatly increased regardless of the water depth at any frequency.

<実験例5>
実験例5は、シリコンゴム製の弾性保持部材5の硬度を変化させた場合の霧化量の変化を見るための実験である。なお、超音波振動子の周波数は1.7MHz、水Wの水深は19mm(水量190ml)、弾性保持部材5の厚さは1.0mmとし、多孔板4の水面からの高さは2通りで行った。
この実験によれば、シリコンゴムの硬度に関わらず、霧化量を増大させることができることが分かる。
<Experimental example 5>
Experimental Example 5 is an experiment for seeing a change in atomization amount when the hardness of the elastic holding member 5 made of silicon rubber is changed. The frequency of the ultrasonic vibrator is 1.7 MHz, the water depth of water W is 19 mm (water volume 190 ml), the thickness of the elastic holding member 5 is 1.0 mm, and the height of the porous plate 4 from the water surface is two ways. went.
According to this experiment, it can be seen that the amount of atomization can be increased regardless of the hardness of the silicon rubber.

<実験例6>
実験例6は、シリコンゴム製の弾性保持部材5で多孔板4を保持した場合とピンセットで直接保持した場合の霧化量の違いを見るための実験である。なお、超音波振動子の周波数は1.7MHz、水Wの水深は18mm(水量180ml)、多孔板4の水面からの高さは6.2mm、シリコンゴムの硬度は5°とした。
この実験によれば、シリコンゴム製の弾性保持部材5を用いた場合に霧化量を大幅に増大させることができることが分かる。
<Experimental example 6>
Experimental Example 6 is an experiment for seeing the difference in the amount of atomization between the case where the porous plate 4 is held by the elastic holding member 5 made of silicon rubber and the case where the porous plate 4 is held directly by tweezers. The frequency of the ultrasonic vibrator was 1.7 MHz, the depth of water W was 18 mm (water volume 180 ml), the height of the porous plate 4 from the water surface was 6.2 mm, and the hardness of the silicon rubber was 5 °.
According to this experiment, it is understood that the amount of atomization can be greatly increased when the elastic holding member 5 made of silicon rubber is used.

この発明は、超音波振動を利用して容器内の液体を霧化する超音波霧化装置に関するものであり、産業上の利用可能性を有するものである。   The present invention relates to an ultrasonic atomizing device that atomizes a liquid in a container using ultrasonic vibration, and has industrial applicability.

1 容器
2 超音波振動子
3 配設手段
31 内壁
32 脚
4 多孔板
41 多孔板下面
42 多孔板上面
5 弾性保持部材
6 貫通孔
61 下面側拡径部
7 発振回路
W 水
DESCRIPTION OF SYMBOLS 1 Container 2 Ultrasonic vibrator 3 Arrangement means 31 Inner wall 32 Leg 4 Porous plate 41 Porous plate lower surface 42 Porous plate upper surface 5 Elastic holding member 6 Through-hole 61 Lower surface side enlarged portion 7 Oscillation circuit W Water

Claims (2)

容器内の液体に超音波振動を与えて液面に液柱を形成し前記液体を霧化する超音波霧化装置において、
微小な貫通孔が多数形成された多孔板と、前記多孔板を所定位置に配設するための配設手段とを備え、
前記多孔板は弾性保持部材を介して前記配設手段に取り付けられ、この配設手段によって前記超音波振動の伝播方向前方において上面が前記液体に接触せずかつ下面が前記液柱に接触可能に配設された、
超音波霧化装置。
In an ultrasonic atomizing device that atomizes the liquid by applying ultrasonic vibration to the liquid in the container to form a liquid column on the liquid surface,
A perforated plate in which a large number of minute through-holes are formed, and a disposing means for disposing the perforated plate at a predetermined position,
The perforated plate is attached to the disposing means via an elastic holding member, and the disposing means allows the upper surface to not contact the liquid and the lower surface to contact the liquid column in front of the propagation direction of the ultrasonic vibration. Arranged,
Ultrasonic atomizer.
貫通孔は、多孔板の下面側においてテーパー状に拡径する拡径部を備えた、
請求項1記載の超音波霧化装置。
The through hole was provided with a diameter-expanding portion that expands in a tapered shape on the lower surface side of the porous plate,
The ultrasonic atomizer of Claim 1.
JP2012091624A 2012-04-13 2012-04-13 Ultrasonic atomizing device Pending JP2013221633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012091624A JP2013221633A (en) 2012-04-13 2012-04-13 Ultrasonic atomizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091624A JP2013221633A (en) 2012-04-13 2012-04-13 Ultrasonic atomizing device

Publications (1)

Publication Number Publication Date
JP2013221633A true JP2013221633A (en) 2013-10-28

Family

ID=49592735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091624A Pending JP2013221633A (en) 2012-04-13 2012-04-13 Ultrasonic atomizing device

Country Status (1)

Country Link
JP (1) JP2013221633A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115006A1 (en) * 2014-01-31 2015-08-06 株式会社良品計画 Ultrasonic atomizer, ultrasonic humidifier, and ultrasonic aroma vaporization device
CN105546704A (en) * 2016-02-23 2016-05-04 欧兰普电子科技(厦门)有限公司 Atomization humidifier
JP2016221460A (en) * 2015-06-01 2016-12-28 株式会社良品計画 Ultrasonic atomizer
WO2018047508A1 (en) * 2016-09-08 2018-03-15 オムロンヘルスケア株式会社 Mesh nebulizer
CN110385209A (en) * 2019-08-08 2019-10-29 深圳市尚品虹科技有限公司 A kind of atomizer control method and control device
CN111036477A (en) * 2018-10-15 2020-04-21 詹明杰 Ultrasonic mist generator
WO2020082838A1 (en) * 2018-10-22 2020-04-30 珠海格力电器股份有限公司 Light cover having waterproof function, control panel assembly, and cooling fan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209673A (en) * 1984-04-16 1984-11-28 Matsushita Electric Ind Co Ltd Ultrasonic atomizer
JPS6217735U (en) * 1985-07-17 1987-02-02
JPS6245618U (en) * 1985-09-06 1987-03-19
JP2007330940A (en) * 2006-06-19 2007-12-27 Matsushita Electric Works Ltd Ultrasonic fog generating apparatus
WO2012043682A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Hydrogen peroxide solution atomization device, sterilization substance generation device, gas generation device and isolator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209673A (en) * 1984-04-16 1984-11-28 Matsushita Electric Ind Co Ltd Ultrasonic atomizer
JPS6217735U (en) * 1985-07-17 1987-02-02
JPS6245618U (en) * 1985-09-06 1987-03-19
JP2007330940A (en) * 2006-06-19 2007-12-27 Matsushita Electric Works Ltd Ultrasonic fog generating apparatus
WO2012043682A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Hydrogen peroxide solution atomization device, sterilization substance generation device, gas generation device and isolator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115006A1 (en) * 2014-01-31 2015-08-06 株式会社良品計画 Ultrasonic atomizer, ultrasonic humidifier, and ultrasonic aroma vaporization device
JP2016221460A (en) * 2015-06-01 2016-12-28 株式会社良品計画 Ultrasonic atomizer
CN105546704A (en) * 2016-02-23 2016-05-04 欧兰普电子科技(厦门)有限公司 Atomization humidifier
WO2018047508A1 (en) * 2016-09-08 2018-03-15 オムロンヘルスケア株式会社 Mesh nebulizer
US11752278B2 (en) 2016-09-08 2023-09-12 Omron Healthcare Co., Ltd. Mesh nebulizer
CN111036477A (en) * 2018-10-15 2020-04-21 詹明杰 Ultrasonic mist generator
WO2020082838A1 (en) * 2018-10-22 2020-04-30 珠海格力电器股份有限公司 Light cover having waterproof function, control panel assembly, and cooling fan
CN110385209A (en) * 2019-08-08 2019-10-29 深圳市尚品虹科技有限公司 A kind of atomizer control method and control device
CN110385209B (en) * 2019-08-08 2021-05-07 深圳市尚品虹科技有限公司 Atomizer control method and control device

Similar Documents

Publication Publication Date Title
JP2013221633A (en) Ultrasonic atomizing device
TWI556873B (en) Ultrasonic atomization device
JP5253574B2 (en) Fog or microbubble generation method and mist or microbubble generator using surface acoustic wave
Deepu et al. Dynamics of ultrasonic atomization of droplets
JP5183777B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
US20080156320A1 (en) Ultrasonic nebulizer and method for atomizing liquid
US20070051827A1 (en) Spraying device
JP6539468B2 (en) Ultrasonic atomizer
JP2017144428A (en) Ultrasonic atomizer
JP4938357B2 (en) Cleaning method and cleaning equipment
JP5392753B2 (en) Atomization device and atomization method using the same
JP2012011319A (en) Atomizer and spray device
JP4990707B2 (en) Ultrasonic fog generator
JP2016221460A (en) Ultrasonic atomizer
JP2017196546A (en) Gas introduction device and gas introduction method
JP4812657B2 (en) Ultrasonic atomizer and equipment equipped with the same
JP5238453B2 (en) Electrostatic atomizer
JP2006000797A (en) Ultrasonic cleaning apparatus
JPS58216753A (en) Atomizer
JPH05184993A (en) Ultrasonic spray apparatus
JPS6246224B2 (en)
TW201817496A (en) Atomizer
JP2012143684A (en) Ultrasonic atomizer
JPH04207798A (en) Ultrasonic atomizer
JP7333935B2 (en) Mist supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728