JP2013219116A - Nanocomposite thermoelectric conversion material - Google Patents

Nanocomposite thermoelectric conversion material Download PDF

Info

Publication number
JP2013219116A
JP2013219116A JP2012086727A JP2012086727A JP2013219116A JP 2013219116 A JP2013219116 A JP 2013219116A JP 2012086727 A JP2012086727 A JP 2012086727A JP 2012086727 A JP2012086727 A JP 2012086727A JP 2013219116 A JP2013219116 A JP 2013219116A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
phonon scattering
scattering particles
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012086727A
Other languages
Japanese (ja)
Inventor
Yohei Kinoshita
洋平 木下
Takushi Kita
拓志 木太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012086727A priority Critical patent/JP2013219116A/en
Publication of JP2013219116A publication Critical patent/JP2013219116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nanocomposite thermoelectric conversion material having enhanced thermoelectric conversion performance, by optimizing the shape of a phonon scattering particle dispersed in a thermoelectric conversion material matrix to further reduce thermal conductivity.SOLUTION: In a nanocomposite thermoelectric conversion material including phonon scattering particles dispersed in a thermoelectric conversion material matrix, the phonon scattering particles have a recessed part. An absolute value of a curvature of the recessed part is preferably 31.6/nm or less.

Description

本発明は、熱電変換材料から成るマトリクス中に、ナノサイズのフォノン散乱粒子が分散したナノコンポジット熱電変換材料に関する。   The present invention relates to a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a matrix made of a thermoelectric conversion material.

熱電変換材料は、2つの基本的な熱電効果であるゼーベック(Seebeck)効果及びペルチェ(Peltier)効果に基づき、熱エネルギと電気エネルギとの直接変換を行なうエネルギ材料である。   The thermoelectric conversion material is an energy material that performs direct conversion between thermal energy and electric energy based on two basic thermoelectric effects, the Seebeck effect and the Peltier effect.

熱電変換材料を用いた熱電発電デバイスは、従来の発電技術に比べて、構造は簡単で、堅牢かつ耐久性が高く、可動部材は存在せず、マイクロ化が容易であり、メンテナンス不要で信頼性が高く、寿命が長く、騒音は発生せず、汚染も発生せず、低温の廃熱を利用可能であるといった多くの利点がある。   Thermoelectric power generation devices using thermoelectric conversion materials have a simple structure, robustness, high durability, no moving parts, easy microfabrication, no maintenance, and reliability compared to conventional power generation technology There are many advantages such as high life, long life, no noise, no pollution and low temperature waste heat can be used.

熱電変換材料を用いた熱電冷却デバイスも、従来の圧縮冷却技術に比べて、フロン不要で汚染は発生せず、小型化は容易で、可動部材は存在せず、騒音も発生しないなどの利点がある。   Compared to conventional compression cooling technology, thermoelectric cooling devices using thermoelectric conversion materials do not require chlorofluorocarbon, do not cause contamination, are easily downsized, have no moving parts, and do not generate noise. is there.

そのため、特に近年のエネルギ問題や環境問題の重大化に伴い、航空・宇宙、国防建設、地質及び気象観測、医療衛生、マイクロ電子などの領域や石油化工、冶金、電力工業における廃熱利用方面などの広範な用途への実用化が期待されている。   Therefore, especially in recent years, energy and environmental issues have become more serious, such as aviation / space, national defense construction, geological and meteorological observation, medical hygiene, microelectronics, etc. Is expected to be put to practical use for a wide range of applications.

熱電変換材料の性能を評価する指数として、パワーファクターP=S2σおよび無次元性能指数ZT=(S2σ/κ)Tが用いられている。ここで、S:ゼーベック係数、σ:導電率、κ:熱伝導率、T:絶対温度である。すなわち、良好な熱電特性を得るには、ゼーベック係数Sおよび導電率σが高く、熱伝導率κが低いことが必要である。 As an index for evaluating the performance of the thermoelectric conversion material, a power factor P = S 2 σ and a dimensionless performance index ZT = (S 2 σ / κ) T are used. Here, S: Seebeck coefficient, σ: conductivity, κ: thermal conductivity, T: absolute temperature. That is, in order to obtain good thermoelectric properties, it is necessary that the Seebeck coefficient S and the electrical conductivity σ are high and the thermal conductivity κ is low.

熱伝導率κを低減するためには、熱伝導の担い手の一つであるフォノンを散乱させることが有効であり、熱電変換材料マトリクス中にフォノン散乱用の粒子が分散したコンポジット熱電変換材料が提唱されている。   In order to reduce the thermal conductivity κ, it is effective to scatter phonons, one of the players in heat conduction, and a composite thermoelectric conversion material in which phonon scattering particles are dispersed in a thermoelectric conversion material matrix is proposed. Has been.

特許文献1には、組成がCoSb(2.7<x<3.4)である熱電変換材料マトリクス中に、セラミックス粒子を分散させたナノコンポジット熱電変換材料が提案されている。これにより、CoSb熱電変換材料マトリクス単独の熱伝導率が5W/Kmであるのに対して、セラミックス粒子分散させたナノコンポジット熱電変換材料では1.8−3W/Kmに低下したことが報告されている。
しかし、分散させたセラミックス粒子のサイズがサブミクロン〜数百ミクロンであるため、フォノン散乱効果が小さく、熱伝導率の低下効果が不十分であった。
Patent Document 1 proposes a nanocomposite thermoelectric conversion material in which ceramic particles are dispersed in a thermoelectric conversion material matrix having a composition of CoSb x (2.7 <x <3.4). Thus, CoSb against x thermoelectric conversion material matrix alone thermal conductivity in the range of 5W / Km, reported that dropped to 1.8 -3 W / Km in the nanocomposite thermoelectric conversion material obtained by ceramic particles dispersed Has been.
However, since the size of the dispersed ceramic particles is submicron to several hundred microns, the phonon scattering effect is small and the effect of lowering the thermal conductivity is insufficient.

特許文献2には、分散粒子同士の間隔は、熱電変換材料のキャリアの平均自由行程以上で熱電変換材料のフォノンの平均自由行程以下であることが好ましく、1nm以上100nm以下、より好ましくは10nm以上100nm以下であることが開示されている。
しかし、上記従来技術においては、分散粒子の形状については特に配慮はなされておらず、単純な球体または楕円体であることが想定されていた。
In Patent Document 2, the interval between dispersed particles is preferably not less than the mean free path of the carrier of the thermoelectric conversion material and not more than the mean free path of the phonon of the thermoelectric conversion material, preferably 1 nm or more and 100 nm or less, more preferably 10 nm or more. It is disclosed that it is 100 nm or less.
However, in the above prior art, no particular consideration is given to the shape of the dispersed particles, and it is assumed that the particles are simple spheres or ellipsoids.

特開2000−261047号公報Japanese Unexamined Patent Publication No. 2000-261047 特開2008−305919号公報JP 2008-305919 A

本発明は、熱電変換材料マトリクス中に分散させるフォノン散乱粒子の形状を適正化することにより、更に熱伝導率を低下させて熱電変換性能を高めたナノコンポジット熱電変換材料を提供することを目的とする。   It is an object of the present invention to provide a nanocomposite thermoelectric conversion material with improved thermoelectric conversion performance by further reducing the thermal conductivity by optimizing the shape of the phonon scattering particles dispersed in the thermoelectric conversion material matrix. To do.

上記の目的を達成するために、本発明によれば、熱電変換材料マトリクス中にフォノン散乱粒子を分散させたナノコンポジット熱電変換材料において、該フォノン散乱粒子が凹部を有することを特徴とするナノコンポジット熱電変換材料が提供される。   In order to achieve the above object, according to the present invention, a nanocomposite thermoelectric conversion material in which phonon scattering particles are dispersed in a thermoelectric conversion material matrix, wherein the phonon scattering particles have a recess. A thermoelectric conversion material is provided.

本発明者は、フォノン散乱粒子が凹部を有すると、熱伝導率が顕著に低下することを見出して本発明を完成させた。   The present inventor has found that the thermal conductivity is remarkably lowered when the phonon scattering particles have concave portions, and has completed the present invention.

図1(1)〜(5)は、TEM像の典型例(全て同一視野)を示す。(1)は、凹部を有する粒子の凹部を破線で示す。(2)は(1)の像を画像処理して粒子の輪郭を示す。(3)および(4)は、それぞれ(3)1個の粒子が1個の凹部を形成している例および(4)複数個の粒子で1個の凹部を形成している例を示す。(5)は、凹部の曲率(負の値)の定義と、観察された曲率の絶対値の最大値(=31.6[1/nm])を示す。1 (1) to (5) show typical examples of TEM images (all having the same field of view). (1) shows the recessed part of the particle | grains which have a recessed part with a broken line. (2) shows the outline of the particle by subjecting the image of (1) to image processing. (3) and (4) show (3) an example in which one particle forms one recess and (4) an example in which one recess is formed by a plurality of particles. (5) shows the definition of the curvature (negative value) of the recess and the maximum absolute value of the observed curvature (= 31.6 [1 / nm]). 図2は、実施例の凹部付SbOフォノン散乱粒子についてTEM視野内で測定したアスペクト比(短辺/長辺)の分布を示す。なお、測定は直径5nm以上の粒子について行った。FIG. 2 shows the distribution of the aspect ratio (short side / long side) measured in the TEM field for the recessed SbO 3 phonon scattering particles of the example. The measurement was performed on particles having a diameter of 5 nm or more. 図3は、実施例の(Bi0.2Sb0.8Te/凹部付SbOナノコンポジット熱電変換材料および比較例の(Bi0.2Sb0.8Te/球状SiOナノコンポジット熱電変換材料について熱伝導率を測定した結果を比較して示す。3, examples (Bi 0.2 Sb 0.8) 2 Te 3 / recess with SbO 3 nanocomposite thermoelectric conversion material and the comparative examples of (Bi 0.2 Sb 0.8) 2 Te 3 / spherical SiO The result of having measured thermal conductivity about 2 nanocomposite thermoelectric conversion material is compared and shown.

これまで、ナノコンポジット熱電変換材料の熱電変換性能に対するフォノン散乱粒子の形状の影響については、全く考慮されてこなかった。
本発明者は、新規な課題としてフォノン散乱粒子の形状と熱電変換性能との関係に着目し、従来は単純な球体または楕円体であった粒子形状を、凹部を有する形状とすることにより、熱伝導率を顕著に低下させること、それにより熱電変換性能を大幅に向上させることができることを新規に見出した。
Until now, the influence of the shape of the phonon scattering particles on the thermoelectric conversion performance of the nanocomposite thermoelectric conversion material has not been considered at all.
The present inventor paid attention to the relationship between the shape of the phonon scattering particles and the thermoelectric conversion performance as a new problem, and by changing the particle shape, which has been a simple sphere or ellipsoid, into a shape having a recess, It was newly found that the conductivity can be remarkably lowered, and thereby the thermoelectric conversion performance can be greatly improved.

本発明において、ナノコンポジット熱電変換材料の熱電変換材料マトリクスの組成およびフォノン散乱粒子の組成は特に限定する必要は無い。
以下に、本発明を実施例によって具体的に説明するが、本発明のマトリクスおよび粒子の組成はこの実施例に限定されるものではない。
In the present invention, the composition of the thermoelectric conversion material matrix of the nanocomposite thermoelectric conversion material and the composition of the phonon scattering particles need not be particularly limited.
EXAMPLES The present invention will be specifically described below with reference to examples, but the matrix and particle composition of the present invention are not limited to these examples.

〔実施例〕
本発明により、熱電変換材料(Bi0.2Sb0.8Teのマトリクス中に、フォノン散乱粒子として凹部を有するSbOのナノ粒子が分散したナノコンポジット熱電変換材料を作製した。
〔Example〕
According to the present invention, a nanocomposite thermoelectric conversion material was produced in which SbO 3 nanoparticles having recesses as phonon scattering particles were dispersed in a matrix of a thermoelectric conversion material (Bi 0.2 Sb 0.8 ) 2 Te 3 .

<原料溶液調製>
塩化ビスマス(BiCl)0.4g、塩化アンチモン(SbCl)1.34g、塩化テルル(TeCl)2.56gを100mLのエタノールに溶解して原料溶液とした。ここで、上記配合において、塩化アンチモン(SbCl)はマトリクス熱電変換材料(Bi0.2Sb0.8Teの化学量論組成に対してSbが過剰となる量を配合した。
<Raw material solution preparation>
Bismuth chloride (BiCl 3 ) 0.4 g, antimony chloride (SbCl 3 ) 1.34 g, and tellurium chloride (TeCl 4 ) 2.56 g were dissolved in 100 mL of ethanol to obtain a raw material solution. Here, in the above blending, antimony chloride (SbCl 3 ) was blended in such an amount that Sb was excessive with respect to the stoichiometric composition of the matrix thermoelectric conversion material (Bi 0.2 Sb 0.8 ) 2 Te 3 .

<還元剤溶液調製>
水素化ホウ素ナトリウム12gを100mLのエタノールに溶解して還元剤溶液とした。
<Reducing agent solution preparation>
12 g of sodium borohydride was dissolved in 100 mL of ethanol to obtain a reducing agent solution.

<ナノ粒子の合成>
原料溶液に還元剤溶液を滴下して、上記各塩化物の還元析出によりBi、Sb、Teのナノ粒子を合成した。
得られたナノ粒子を含んだエタノールスラリーを、イオン交換水40Lでろ過・洗浄し、更にエタノール10Lでろ過・洗浄した。
<Synthesis of nanoparticles>
A reducing agent solution was added dropwise to the raw material solution, and Bi, Sb, and Te nanoparticles were synthesized by reducing and precipitating the respective chlorides.
The obtained ethanol slurry containing nanoparticles was filtered and washed with 40 L of ion exchange water, and further filtered and washed with 10 L of ethanol.

<合金化>
大気中にて、240℃で48hの水熱処理を行った。これにより、化学量論組成(Bi0.2Sb0.8Teで合金化した熱電変換材料のナノ粒子と、化学量論組成に対して過剰に配合したSbの酸化物SbOのナノ粒子とから成る混合粉末が得られた。
<Alloying>
Hydrothermal treatment was performed at 240 ° C. for 48 hours in the air. As a result, the nanoparticles of the thermoelectric conversion material alloyed with the stoichiometric composition (Bi 0.2 Sb 0.8 ) 2 Te 3 and the Sb oxide SbO 3 compounded excessively with respect to the stoichiometric composition. A mixed powder consisting of nanoparticles was obtained.

<焼結>
混合粉末を成形後、360℃で放電プラズマ焼結を行い、合金である(Bi0.2Sb0.8Te熱電変換材料マトリクス中に、フォノン散乱粒子として凹部を有するSbOナノ粒子が20vol%の濃度で分散した本発明の(Bi0.2Sb0.8Te/凹部付SbOナノコンポジット熱電変換材料を得た。
<Sintering>
After forming the mixed powder, discharge plasma sintering is performed at 360 ° C., and an SbO 3 nanoparticle having recesses as phonon scattering particles in an alloy (Bi 0.2 Sb 0.8 ) 2 Te 3 thermoelectric conversion material matrix Of (Bi 0.2 Sb 0.8 ) 2 Te 3 / recessed SbO 3 nanocomposite thermoelectric conversion material according to the present invention was obtained.

〔比較例〕
比較のため、熱電変換材料(Bi0.2Sb0.8Teのマトリクス中に、フォノン散乱粒子として球状のSiOナノ粒子が分散したナノコンポジット熱電変換材料を作製した。
[Comparative Example]
For comparison, a nanocomposite thermoelectric conversion material in which spherical SiO 2 nanoparticles were dispersed as phonon scattering particles in a matrix of thermoelectric conversion material (Bi 0.2 Sb 0.8 ) 2 Te 3 was prepared.

<原料溶液調製>
塩化ビスマス(BiCl)0.4g、塩化アンチモン(SbCl)0.96g、塩化テルル(TeCl)2.56g、SiOナノ粒子(平均粒径5nm)20vol%を100mLのエタノールに溶解して原料溶液とした。
<Raw material solution preparation>
Bismuth chloride (BiCl 3 ) 0.4 g, antimony chloride (SbCl 3 ) 0.96 g, tellurium chloride (TeCl 4 ) 2.56 g, SiO 2 nanoparticles (average particle size 5 nm) 20 vol% were dissolved in 100 mL ethanol. A raw material solution was obtained.

<還元剤溶液調製>
水素化ホウ素ナトリウム12gを100mLのエタノールに溶解して還元剤溶液とした。
<Reducing agent solution preparation>
12 g of sodium borohydride was dissolved in 100 mL of ethanol to obtain a reducing agent solution.

<ナノ粒子の合成>
原料溶液に還元剤溶液を滴下して、上記各塩化物の還元析出によりBi、Sb、Teのナノ粒子を合成した。SiOナノ粒子は配合したままの状態で維持される。
各ナノ粒子を含んだエタノールスラリーを、イオン交換水40Lでろ過・洗浄し、更にエタノール10Lでろ過・洗浄した。
<Synthesis of nanoparticles>
A reducing agent solution was added dropwise to the raw material solution, and Bi, Sb, and Te nanoparticles were synthesized by reducing and precipitating the respective chlorides. The SiO 2 nanoparticles are maintained as they are blended.
The ethanol slurry containing each nanoparticle was filtered and washed with 40 L of ion exchange water, and further filtered and washed with 10 L of ethanol.

<合金化>
大気中にて、240℃で48hの水熱処理を行った。これにより、化学量論組成(Bi0.2Sb0.8Teで合金化した熱電変換材料のナノ粒子と、最初に原料溶液に配合したSiOナノ粒子(5nm)とから成る混合粉末が得られた。
<Alloying>
Hydrothermal treatment was performed at 240 ° C. for 48 hours in the air. Thus, a mixture comprising nanoparticles of thermoelectric conversion material alloyed with stoichiometric composition (Bi 0.2 Sb 0.8 ) 2 Te 3 and SiO 2 nanoparticles (5 nm) initially blended in the raw material solution. A powder was obtained.

<焼結>
混合粉末を成形後、360℃で放電プラズマ焼結を行い、合金である(Bi0.2Sb0.8Te熱電変換材料マトリクス中に、フォノン散乱粒子として球状のSiOナノ粒子が20vol%の濃度で分散した比較例の(Bi0.2Sb0.8Te/球状SiOナノコンポジット熱電変換材料を得た。
<Sintering>
After forming the mixed powder, discharge plasma sintering is performed at 360 ° C., and spherical SiO 2 nanoparticles as phonon scattering particles are formed in an alloy (Bi 0.2 Sb 0.8 ) 2 Te 3 thermoelectric conversion material matrix. A comparative (Bi 0.2 Sb 0.8 ) 2 Te 3 / spherical SiO 2 nanocomposite thermoelectric conversion material dispersed at a concentration of 20 vol% was obtained.

≪分散粒子形状の確認≫
実施例で作製した本発明の(Bi0.2Sb0.8Te/凹部付SbOナノコンポジット熱電変換材料のTEM観察を行った。
≪Confirmation of dispersed particle shape≫
TEM observation of the (Bi 0.2 Sb 0.8 ) 2 Te 3 / recessed SbO 3 nanocomposite thermoelectric conversion material of the present invention produced in the examples was performed.

図1(1)〜(5)に、TEM像の典型例(全て同一視野)を示す。
(1)は、凹部を有する粒子の凹部を破線で示す。
(2)は(1)の像を画像処理して粒子の輪郭を示す。
(3)および(4)は、それぞれ(3)1個の粒子が1個の凹部を形成している例および(4)複数個の粒子で1個の凹部を形成している例を示す。
(5)は、凹部の曲率(負の値)の定義と、観察された曲率の絶対値の最大値(=31.6[1/nm])を示す。
1 (1) to 1 (5) show typical examples of TEM images (all having the same field of view).
(1) shows the recessed part of the particle | grains which have a recessed part with a broken line.
(2) shows the outline of the particle by subjecting the image of (1) to image processing.
(3) and (4) show (3) an example in which one particle forms one recess and (4) an example in which one recess is formed by a plurality of particles.
(5) shows the definition of the curvature (negative value) of the recess and the maximum absolute value of the observed curvature (= 31.6 [1 / nm]).

比較例の(Bi0.2Sb0.8Te/球状SiOナノコンポジット熱電変換材料については、フォノン散乱粒子であるSiOナノ粒子は最初に配合した球状のまま維持されていた。 For (Bi 0.2 Sb 0.8) 2 Te 3 / spherical SiO 2 nanocomposite thermoelectric conversion material of the comparative example, SiO 2 nanoparticles are phonon scattering particles had been maintained at the first spherical blended.

≪分散粒子のアスペクト比≫
図2に、実施例の凹部付SbOフォノン散乱粒子についてTEM視野内で測定したアスペクト比(短辺/長辺)の分布を示す。なお、測定は直径5nm以上の粒子について行った。図2に示したように、測定対象とした全ての粒子がアスペクト比1未満、さらに詳しくは0.8以下であり、円形(アスペクト比=1)のものは認められなかった。平均アスペクト比は0.472であった。
<< Aspect ratio of dispersed particles >>
FIG. 2 shows the distribution of the aspect ratio (short side / long side) measured in the TEM field for the recessed SbO 3 phonon scattering particles of the example. The measurement was performed on particles having a diameter of 5 nm or more. As shown in FIG. 2, all the particles to be measured had an aspect ratio of less than 1, more specifically, 0.8 or less, and a circular shape (aspect ratio = 1) was not recognized. The average aspect ratio was 0.472.

上記の結果は、粒子の任意の断面形状(平面形状)についての測定結果であるが、立体形状が球状であればその任意の断面形状(平面形状)は必ず円形になるはずである。したがって、すくなくとも測定可能な直径5nm以上の範囲においては、実施例の凹部付SbOフォノン散乱粒子は全て球状粒子ではないと結論付けられる。 The above result is a measurement result for an arbitrary cross-sectional shape (planar shape) of the particle. However, if the three-dimensional shape is spherical, the arbitrary cross-sectional shape (planar shape) must be circular. Therefore, it can be concluded that all the SbO 3 phonon scattering particles with recesses in the examples are not spherical particles in the range of at least 5 nm in diameter that can be measured.

≪熱伝導率の評価≫
実施例の(Bi0.2Sb0.8Te/凹部付SbOナノコンポジット熱電変換材料および比較例の(Bi0.2Sb0.8Te/球状SiOナノコンポジット熱電変換材料について熱伝導率を測定した。測定結果を図3に示す。
≪Evaluation of thermal conductivity≫
Example (Bi 0.2 Sb 0.8 ) 2 Te 3 / SbO 3 nanocomposite thermoelectric conversion material with recess and comparative example (Bi 0.2 Sb 0.8 ) 2 Te 3 / spherical SiO 2 nanocomposite thermoelectric The thermal conductivity was measured for the conversion material. The measurement results are shown in FIG.

図3から、フォノン散乱粒子が球状である比較例の熱伝導率が0.47[W/Km]であるのに対し、フォノン散乱粒子が凹部を有する形状である実施例の熱伝導率は0.30[W/Km]であり、球状粒子の場合の0.64%に低下している。無次元性能指数ZT=(S2σ/κ)Tで表した熱電変換性能はκの逆数に比例するから、フォノン散乱粒子を従来の球状から本発明の凹部付形状に変更することにより、1/0.64=1.57倍すなわち57%向上する。 From FIG. 3, the thermal conductivity of the comparative example in which the phonon scattering particles are spherical is 0.47 [W / Km], whereas the thermal conductivity of the example in which the phonon scattering particles have a concave shape is 0. .30 [W / Km], which is reduced to 0.64% in the case of spherical particles. Since the thermoelectric conversion performance represented by the dimensionless figure of merit ZT = (S 2 σ / κ) T is proportional to the reciprocal of κ, changing the phonon scattering particles from the conventional spherical shape to the concave shape of the present invention gives 1 /0.64=1.57 times, that is, 57% improvement.

本発明によれば、熱電変換材料マトリクス中に分散させるフォノン散乱粒子の形状を、凹部を有する形態に限定することにより、更に熱伝導率を低下させて熱電変換性能を高めたナノコンポジット熱電変換材料が提供される。   According to the present invention, by limiting the shape of the phonon scattering particles dispersed in the thermoelectric conversion material matrix to a form having a concave portion, the nanocomposite thermoelectric conversion material further reducing the thermal conductivity and improving the thermoelectric conversion performance. Is provided.

Claims (3)

熱電変換材料マトリクス中にフォノン散乱粒子を分散させたナノコンポジット熱電変換材料において、該フォノン散乱粒子が凹部を有することを特徴とするナノコンポジット熱電変換材料。   A nanocomposite thermoelectric conversion material in which phonon scattering particles are dispersed in a thermoelectric conversion material matrix, wherein the phonon scattering particles have a recess. 請求項1において、上記凹部の曲率の絶対値が31.6/nm以下であることを特徴とするナノコンポジット熱電変換材料。   2. The nanocomposite thermoelectric conversion material according to claim 1, wherein an absolute value of the curvature of the concave portion is 31.6 / nm or less. 請求項1または2において、直径が5nm以上のフォノン散乱粒子のアスペクト比が0.8以下であることを特徴とするナノコンポジット熱電変換材料。   3. The nanocomposite thermoelectric conversion material according to claim 1, wherein the aspect ratio of phonon scattering particles having a diameter of 5 nm or more is 0.8 or less.
JP2012086727A 2012-04-05 2012-04-05 Nanocomposite thermoelectric conversion material Pending JP2013219116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086727A JP2013219116A (en) 2012-04-05 2012-04-05 Nanocomposite thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086727A JP2013219116A (en) 2012-04-05 2012-04-05 Nanocomposite thermoelectric conversion material

Publications (1)

Publication Number Publication Date
JP2013219116A true JP2013219116A (en) 2013-10-24

Family

ID=49590914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086727A Pending JP2013219116A (en) 2012-04-05 2012-04-05 Nanocomposite thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP2013219116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112308A (en) * 2015-12-18 2017-06-22 トヨタ自動車株式会社 Method for manufacturing n-type thermoelectric conversion material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164940A (en) * 1998-11-27 2000-06-16 Aisin Seiki Co Ltd Thermoelectric semiconductor composition and manufacture thereof
JP2010114419A (en) * 2008-10-10 2010-05-20 Toyota Motor Corp Nano-composite thermoelectric conversion material, thermoelectric conversion element using the same, production process of nano-composite thermoelectric conversion material
JP2011035259A (en) * 2009-08-04 2011-02-17 Toyota Motor Corp Nano-composite thermoelectric conversion material and method of manufacturing the same
JP2011091321A (en) * 2009-10-26 2011-05-06 Toyota Motor Corp Nanocomposite thermoelectric conversion material and method for manufacturing the same
JP2011129635A (en) * 2009-12-16 2011-06-30 Toyota Motor Corp Nano-composite thermoelectric conversion material and method of manufacturing the same
JP2011249749A (en) * 2010-05-24 2011-12-08 Korea Inst Of Machinery & Materials Thermoelectric material and composite material containing the same as raw material, and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164940A (en) * 1998-11-27 2000-06-16 Aisin Seiki Co Ltd Thermoelectric semiconductor composition and manufacture thereof
JP2010114419A (en) * 2008-10-10 2010-05-20 Toyota Motor Corp Nano-composite thermoelectric conversion material, thermoelectric conversion element using the same, production process of nano-composite thermoelectric conversion material
JP2011035259A (en) * 2009-08-04 2011-02-17 Toyota Motor Corp Nano-composite thermoelectric conversion material and method of manufacturing the same
JP2011091321A (en) * 2009-10-26 2011-05-06 Toyota Motor Corp Nanocomposite thermoelectric conversion material and method for manufacturing the same
JP2011129635A (en) * 2009-12-16 2011-06-30 Toyota Motor Corp Nano-composite thermoelectric conversion material and method of manufacturing the same
JP2011249749A (en) * 2010-05-24 2011-12-08 Korea Inst Of Machinery & Materials Thermoelectric material and composite material containing the same as raw material, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112308A (en) * 2015-12-18 2017-06-22 トヨタ自動車株式会社 Method for manufacturing n-type thermoelectric conversion material

Similar Documents

Publication Publication Date Title
EP2331457B1 (en) Nanocomposite thermoelectric conversion material, thermoelectric conversion element including the same, and method of producing nanocomposite thermoelectric conversion material
EP2442930B1 (en) Nanocomposite thermoelectric conversion material and method of producing the same
JP5024393B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
US8217255B2 (en) Method of producing thermoelectric conversion element
Bulat et al. Structure and transport properties of bulk nanothermoelectrics based on Bi x Sb 2− x Te 3 fabricated by SPS method
US8721912B2 (en) Nanocomposite thermoelectric conversion material and method of producing the same
Bao et al. Thermoelectric performance of p-type (Bi, Sb) 2Te3 incorporating amorphous Sb2S3 nanospheres
Delorme et al. Effect of precursors size on the thermoelectric properties of Ca3Co4O9 ceramics
JP6189582B2 (en) Method for producing nanocomposite thermoelectric conversion material
JP5149761B2 (en) BiTe / Ceramics / Nanocomposite Thermoelectric Material Manufacturing Method
JP2014022731A (en) Thermoelectric material
JP2013074051A (en) Method of manufacturing nano-composite thermoelectric conversion material, and nano-composite thermoelectric conversion material manufactured by the method
JP2013008722A (en) Nanocomposite thermoelectric conversion material and manufacturing method thereof
US20150280096A1 (en) Phonon scattering material, nanocomposite thermoelectric material, and method of producing the same
JP2017076775A (en) Nano-composite type thermoelectric element and method of manufacturing the same
JP2013219116A (en) Nanocomposite thermoelectric conversion material
JP5387215B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
JP2014013869A (en) Nano-composite thermoelectric conversion material and manufacturing method thereof
US20160107239A1 (en) Method for manufacturing nanocomposite thermoelectric conversion material
US10672966B2 (en) Method of producing thermoelectric material
JP2012146928A (en) Method for manufacturing nanocomposite thermoelectric conversion material
JP2011096717A (en) Nano-composite thermoelectric conversion material, and method of manufacturing the same
JP5397500B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
CN117715497A (en) Antioxidant skutterudite-based thermoelectric composite material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407