JP5397500B2 - Nanocomposite thermoelectric conversion material and method for producing the same - Google Patents
Nanocomposite thermoelectric conversion material and method for producing the same Download PDFInfo
- Publication number
- JP5397500B2 JP5397500B2 JP2012103854A JP2012103854A JP5397500B2 JP 5397500 B2 JP5397500 B2 JP 5397500B2 JP 2012103854 A JP2012103854 A JP 2012103854A JP 2012103854 A JP2012103854 A JP 2012103854A JP 5397500 B2 JP5397500 B2 JP 5397500B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- scattering particles
- phonon scattering
- conversion material
- dispersed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 73
- 239000000463 material Substances 0.000 title claims description 68
- 239000002114 nanocomposite Substances 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000002245 particle Substances 0.000 claims description 82
- 239000011159 matrix material Substances 0.000 claims description 26
- 238000002844 melting Methods 0.000 claims description 22
- 230000008018 melting Effects 0.000 claims description 22
- 239000002994 raw material Substances 0.000 claims description 16
- 229910000905 alloy phase Inorganic materials 0.000 claims description 12
- 239000000470 constituent Substances 0.000 claims description 10
- 239000002105 nanoparticle Substances 0.000 claims description 10
- 239000002002 slurry Substances 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910000753 refractory alloy Inorganic materials 0.000 claims description 2
- 230000001376 precipitating effect Effects 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 18
- 229910004298 SiO 2 Inorganic materials 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 229910052787 antimony Inorganic materials 0.000 description 12
- 229910052797 bismuth Inorganic materials 0.000 description 12
- 238000000034 method Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000010335 hydrothermal treatment Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910052714 tellurium Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910002908 (Bi,Sb)2(Te,Se)3 Inorganic materials 0.000 description 1
- 229910018989 CoSb Inorganic materials 0.000 description 1
- 238000005169 Debye-Scherrer Methods 0.000 description 1
- 229910017639 MgSi Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910000743 fusible alloy Inorganic materials 0.000 description 1
- 229910001291 heusler alloy Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- SWLJJEFSPJCUBD-UHFFFAOYSA-N tellurium tetrachloride Chemical compound Cl[Te](Cl)(Cl)Cl SWLJJEFSPJCUBD-UHFFFAOYSA-N 0.000 description 1
- 230000005676 thermoelectric effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、熱電変換材料マトリクス中にナノサイズのフォノン散乱粒子が分散したナノコンポジット熱電変換材料およびその製造方法に関する。 The present invention relates to a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a thermoelectric conversion material matrix and a method for producing the same.
熱電変換材料は、2つの基本的な熱電効果であるゼーベック(Seebeck)効果及びペルチェ(Peltier)効果に基づき、熱エネルギと電気エネルギとの直接変換を行なうエネルギ材料である。 The thermoelectric conversion material is an energy material that performs direct conversion between thermal energy and electric energy based on two basic thermoelectric effects, the Seebeck effect and the Peltier effect.
熱電変換材料を用いた熱電発電デバイスは、従来の発電技術に比べて、構造は簡単で、堅牢かつ耐久性が高く、可動部材は存在せず、マイクロ化が容易であり、メンテナンス不要で信頼性が高く、寿命が長く、騒音は発生せず、汚染も発生せず、低温の廃熱を利用可能であるといった多くの利点がある。 Thermoelectric power generation devices using thermoelectric conversion materials have a simple structure, robustness, high durability, no moving parts, easy microfabrication, no maintenance, and reliability compared to conventional power generation technology There are many advantages such as high life, long life, no noise, no pollution and low temperature waste heat can be used.
熱電変換材料を用いた熱電冷却デバイスも、従来の圧縮冷却技術に比べて、フロン不要で汚染は発生せず、小型化は容易で、可動部材は存在せず、騒音も発生しないなどの利点がある。 Compared to conventional compression cooling technology, thermoelectric cooling devices using thermoelectric conversion materials do not require chlorofluorocarbon, do not cause contamination, are easily downsized, have no moving parts, and do not generate noise. is there.
そのため、特に近年のエネルギ問題や環境問題の重大化に伴い、航空・宇宙、国防建設、地質及び気象観測、医療衛生、マイクロ電子などの領域や石油化工、冶金、電力工業における廃熱利用方面などの広範な用途への実用化が期待されている。 Therefore, especially in recent years, energy and environmental issues have become more serious, such as aviation / space, national defense construction, geological and meteorological observation, medical hygiene, microelectronics, etc. Is expected to be put to practical use for a wide range of applications.
熱電変換材料の性能を評価する指数として、パワーファクターP=S2σおよび無次元性能指数ZT=(S2σ/κ)Tが用いられている。ここで、S:ゼーベック係数、σ:導電率、κ:熱伝導率、T:絶対温度である。すなわち、良好な熱電特性を得るには、ゼーベック係数Sおよび導電率σが高く、熱伝導率κが低いことが必要である。 As an index for evaluating the performance of the thermoelectric conversion material, a power factor P = S 2 σ and a dimensionless performance index ZT = (S 2 σ / κ) T are used. Here, S: Seebeck coefficient, σ: conductivity, κ: thermal conductivity, T: absolute temperature. That is, in order to obtain good thermoelectric properties, it is necessary that the Seebeck coefficient S and the electrical conductivity σ are high and the thermal conductivity κ is low.
熱伝導率κを低減するためには、熱伝導の担い手の一つであるフォノンを散乱させることが有効であり、熱電変換材料マトリクス中にフォノン散乱用の粒子が分散したコンポジット熱電変換材料が提唱されている。 In order to reduce the thermal conductivity κ, it is effective to scatter phonons, one of the players in heat conduction, and a composite thermoelectric conversion material in which phonon scattering particles are dispersed in a thermoelectric conversion material matrix is proposed. Has been.
特許文献1には、BiTe系熱電半導体の粒界または粒内に、化学量論組成に対して過剰濃度のTeを含むTeリッチ相を偏析させ、それに起因する結晶格子の歪により熱伝導率を低下させることが開示されている。 In Patent Document 1, a Te-rich phase containing an excessive concentration of Te with respect to the stoichiometric composition is segregated in the grain boundary or grain of the BiTe-based thermoelectric semiconductor, and the thermal conductivity is increased by distortion of the crystal lattice resulting therefrom. It is disclosed to reduce.
しかし、偏析Teリッチ相がミクロンオーダーのサイズであるため、熱伝導率の低下が僅かしかなく、熱電変換性能を大きく向上させることはできなかった。この技術では、合成を溶融金属から行なっており、粒子サイズを更に小さくすることはできない。 However, since the segregated Te-rich phase has a micron-order size, there was only a slight decrease in thermal conductivity, and the thermoelectric conversion performance could not be greatly improved. In this technique, the synthesis is performed from molten metal, and the particle size cannot be further reduced.
特許文献2には、熱電変換材料のマトリクス中に、フォノンの平均自由行程以下かつキャリアの平均自由行程以上でナノサイズのフォノン散乱粒子を分散させることが開示されている。pH調整セラミック粉末分散液に熱電材料前駆体溶液を混合して還元することも開示されている。 Patent Document 2 discloses that nano-sized phonon scattering particles are dispersed in a matrix of a thermoelectric conversion material with a mean free path of phonons or less and a mean free path of carriers or more. It is also disclosed that a thermoelectric material precursor solution is mixed with a pH-adjusted ceramic powder dispersion for reduction.
特許文献3には、熱電変換材料のマトリクス中にナノサイズのフォノン散乱粒子としてセラミック粒子を分散させることが開示されている。 Patent Document 3 discloses that ceramic particles are dispersed as nano-sized phonon scattering particles in a matrix of a thermoelectric conversion material.
特許文献4には、熱電変換材料のマトリクス中にナノサイズのフォノン散乱粒子として金属粒子を分散させることが開示されている。 Patent Document 4 discloses that metal particles are dispersed as nano-sized phonon scattering particles in a matrix of a thermoelectric conversion material.
特許文献2、3、4の技術は、フォノン散乱粒子をナノサイズとすることにより、ミクロンサイズの粒子に対して顕著に熱伝導率を低下させ、熱電変換性能を大きく向上させることができたが、更に熱伝導率を低下させる余地が残されていた。 Although the techniques of Patent Documents 2, 3, and 4 can make the phonon scattering particles nano-sized, the thermal conductivity is remarkably lowered with respect to micron-sized particles, and the thermoelectric conversion performance can be greatly improved. Furthermore, there is still room for lowering the thermal conductivity.
本発明は、ナノサイズのフォノン散乱粒子による熱伝導率の低減効果を更に高めて大幅に熱電変換性能を高めたナノコンポジット熱電変換材料およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a nanocomposite thermoelectric conversion material that further enhances the effect of reducing thermal conductivity by nano-sized phonon scattering particles and greatly improves thermoelectric conversion performance, and a method for producing the same.
上記の目的を達成するために、本発明のナノコンポジット熱電変換材料は、
熱電変換材料のマトリクス中にナノサイズのフォノン散乱粒子を分散させたナノコンポジット熱電変換材料において、
マトリクスが多結晶組織からなり、結晶粒とは異なる組成の結晶粒界相が存在し、結晶粒内および結晶粒界相内に同一種類のフォノン散乱粒子が分散していることを特徴とする。
In order to achieve the above object, the nanocomposite thermoelectric conversion material of the present invention comprises:
In a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a matrix of thermoelectric conversion material,
The matrix has a polycrystalline structure, a crystal grain boundary phase having a composition different from that of the crystal grains exists, and the same kind of phonon scattering particles are dispersed in the crystal grains and the crystal grain boundary phase.
上記の目的を達成するために、本発明のナノコンポジット熱電変換材料の製造方法は、
熱電変換材料のマトリクス中にナノサイズのフォノン散乱粒子を分散させたナノコンポジット熱電変換材料の製造方法において、
熱電変換材料の各構成元素の塩を溶解させ、かつ、フォノン散乱粒子を分散させた原料溶液を調製する第1工程、
上記原料溶液に還元剤を滴下して、上記フォノン散乱粒子の表面に上記熱電変換材料の各構成元素を析出させてスラリーを形成する第2工程、
上記スラリーを水熱処理して、相対的に高融点の高融点合金相と低融点の低融点合金相とから成るマトリクス前駆体中に上記フォノン散乱粒子が分散した複合体を形成する第3工程、
上記複合体を焼結して、多結晶マトリクス中に上記フォノン散乱粒子が分散した焼結体を形成する第4工程、および
上記焼結体を熱処理することにより、該焼結体の結晶粒界において上記低融点合金相のみを選択的に溶融させ、生成した低融点溶融相中に近傍の上記フォノン散乱粒子を取り込ませ、上記低融点合金相中に該フォノン散乱粒子が分散した複合体としての粒界相を形成する第5工程、
を含むことを特徴とする。
In order to achieve the above object, a method for producing a nanocomposite thermoelectric conversion material of the present invention comprises:
In a method for producing a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a matrix of a thermoelectric conversion material,
A first step of preparing a raw material solution in which the salt of each constituent element of the thermoelectric conversion material is dissolved and the phonon scattering particles are dispersed;
A second step in which a reducing agent is dropped into the raw material solution to deposit a constituent element of the thermoelectric conversion material on the surface of the phonon scattering particles to form a slurry;
The slurry was hydrothermally treated, third step of relatively high melting point of the phonon scattering particles in the body during the ejection before matrix of a refractory alloy phase and a low melting point of the low melting point alloy phase to form a complex dispersed ,
A fourth step in which the composite is sintered to form a sintered body in which the phonon scattering particles are dispersed in a polycrystalline matrix; and the sintered body is subjected to a heat treatment, whereby grain boundaries of the sintered body are formed. As a composite in which only the low melting point alloy phase is selectively melted, the phonon scattering particles in the vicinity are taken into the generated low melting point melt phase, and the phonon scattering particles are dispersed in the low melting point alloy phase. A fifth step of forming a grain boundary phase;
It is characterized by including.
本発明のナノコンポジット熱電変換材料は、多結晶体である熱電変換材料マトリックスの結晶粒内だけでなく結晶粒界相にもフォノン散乱粒子を分散させたことにより、フォノン散乱効果が大幅に高まるので、熱伝導率が大きく低下し、それによって極めて高い熱電変換性能が得られる。 In the nanocomposite thermoelectric conversion material of the present invention, the phonon scattering effect is greatly enhanced by dispersing the phonon scattering particles not only within the crystal grains of the polycrystalline thermoelectric conversion material matrix but also in the grain boundary phase. , The thermal conductivity is greatly reduced, thereby obtaining extremely high thermoelectric conversion performance.
本発明のナノコンポジット熱電変換材料の製造方法は、相対的な高融点相と低融点相とが混在した多結晶マトリックスを持つ焼結体の結晶粒界において低融点相のみを選択的に溶融させると、結晶粒界に形成された融解相中に周囲に存在するフォノン散乱粒子が取り込まれるので、熱電変換材料の結晶粒内のみでなく結晶粒界相にもフォノン散乱粒子を分散させることができ、高い熱電変換性能を実現できる。 The method for producing a nanocomposite thermoelectric conversion material of the present invention selectively melts only a low melting point phase at a grain boundary of a sintered body having a polycrystalline matrix in which a relative high melting point phase and a low melting point phase are mixed. Since the phonon scattering particles present in the surroundings are taken into the melt phase formed at the grain boundaries, the phonon scattering particles can be dispersed not only in the crystal grains of the thermoelectric conversion material but also in the grain boundary phase. High thermoelectric conversion performance can be realized.
図1を参照して、本発明のナノコンポジット熱電変換材料の組織を説明する。 The structure of the nanocomposite thermoelectric conversion material of the present invention will be described with reference to FIG.
図1(1)の模式的に示すように、本発明のナノコンポジット熱電変換材料1は多結晶体であり、結晶粒10と結晶粒界相12とから成るマトリックス中にフォノン散乱粒子14が分散している。フォノン散乱粒子14は、結晶粒10内および結晶粒界相12内でフォノンを散乱する。更に、図1(2)に粒界付近を拡大して模式的に示すように、フォノンPは、粒界相12内のフォノン散乱粒子14で散乱されるのに加えて、結晶粒10と粒界相12との界面でも散乱される。すなわち、粒界相の存在しない従来のナノコンポジット熱電変換材料では、フォノンは粒内のフォノン散乱粒子により散乱されるだけであったが、本発明のナノコンポジット熱電変換材料では、これに加えて粒界相内のフォノン散乱粒子と結晶粒/粒界相界面によっても散乱される、三重の散乱作用を受ける。 As schematically shown in FIG. 1 (1), the nanocomposite thermoelectric conversion material 1 of the present invention is a polycrystal, and phonon scattering particles 14 are dispersed in a matrix composed of crystal grains 10 and grain boundary phases 12. doing. The phonon scattering particles 14 scatter phonons in the crystal grains 10 and the grain boundary phase 12. Further, as schematically shown in FIG. 1B by enlarging the vicinity of the grain boundary, the phonon P is scattered by the phonon scattering particles 14 in the grain boundary phase 12, and in addition to the crystal grains 10 and the grains. It is also scattered at the interface with the field phase 12. That is, in the conventional nanocomposite thermoelectric conversion material having no grain boundary phase, phonons are only scattered by the phonon scattering particles in the grains, but in the nanocomposite thermoelectric conversion material of the present invention, in addition to this, It undergoes a triple scattering action that is also scattered by the phonon scattering particles in the field phase and the grain / grain boundary phase interface.
本発明のナノコンポジット熱電変換材料は、多結晶体である熱電変換材料マトリクスの結晶粒内と結晶粒界相内に同一種類のフォノン散乱粒子が分散している。 In the nanocomposite thermoelectric conversion material of the present invention, the same type of phonon scattering particles are dispersed in the crystal grains and the grain boundary phase of the polyelectric thermoelectric conversion material matrix.
本発明の第1の実施形態においては、フォノン散乱粒子は原料溶液中に分散していたものが結晶粒内と結晶境界相内とに分散する。 In the first embodiment of the present invention, the phonon scattering particles dispersed in the raw material solution are dispersed in the crystal grains and in the crystal boundary phase.
本発明の第2の実施形態においては、マトリクスを構成する熱電変換材料の構成元素のうち少なくとも1種を過飽和に原料溶液中に溶解させ、水熱処理中に析出させて、付加的な第2のフォノン散乱粒子とし、これも同様に結晶粒内と結晶粒界相内とに分散する。これによりフォノン散乱作用が更に高まる。この実施形態においては、フォノン散乱粒子と第2のフォノン散乱粒子が粒界相内で数nmの間隔になり、大きな界面粗さとして作用し、更にフォノン散乱作用を高める。 In the second embodiment of the present invention, at least one of the constituent elements of the thermoelectric conversion material constituting the matrix is dissolved in the raw material solution in a supersaturated state, and is precipitated during the hydrothermal treatment, so that the additional second Phonon scattering particles are also dispersed in the crystal grains and the grain boundary phase. This further increases the phonon scattering effect. In this embodiment, the phonon scattering particles and the second phonon scattering particles are spaced by a few nanometers in the grain boundary phase and act as a large interface roughness, further enhancing the phonon scattering effect.
本発明のナノコンポジット熱電変換材料において、マトリクスの結晶粒径は100nm以下のナノサイズであることが望ましい。 In the nanocomposite thermoelectric conversion material of the present invention, the crystal grain size of the matrix is desirably 100 nm or less.
結晶粒界相は、ナノコンポジット熱電変換材料の導電性を良好に確保するために、導電相でなくてはならない。 The grain boundary phase must be a conductive phase in order to ensure good conductivity of the nanocomposite thermoelectric conversion material.
また、結晶粒界相は、結晶粒径に対して十分に薄くなくてはならない。典型的には、100nm以下の結晶粒径に対して、結晶粒界相の厚さは1〜10nm程度であることが望ましい。 The crystal grain boundary phase must be sufficiently thin with respect to the crystal grain size. Typically, for a crystal grain size of 100 nm or less, the thickness of the grain boundary phase is desirably about 1 to 10 nm.
結晶粒内に分散するフォノン散乱粒子は1〜100nm程度、結晶粒界相内に分散するフォノン散乱粒子は1〜10nm程度であることが望ましい。 The phonon scattering particles dispersed in the crystal grains are desirably about 1 to 100 nm, and the phonon scattering particles dispersed in the crystal grain boundary phase are desirably about 1 to 10 nm.
本発明のナノコンポジット熱電変換材料に用いる組成系は特に限定する必要はないが、望ましい組成系としては、(Bi,Sb)2(Te,Se)3系、CoSb3系、PbTe系、SiGe系、MgSi系などが挙げられる。これら以外にも下記の組成系が考えられる。 Although the composition system used for the nanocomposite thermoelectric conversion material of the present invention is not particularly limited, preferred composition systems include (Bi, Sb) 2 (Te, Se) 3 system, CoSb 3 system, PbTe system, SiGe system , MgSi type and the like. In addition to these, the following composition systems are conceivable.
TiNiSn系、ZrNiSn系等のハーフホイスラー合金。 Half-Heusler alloys such as TiNiSn and ZrNiSn.
本発明の望ましい実施形態により、(Bi,Sb)2Te3熱電変換材料のマトリクス中に、フォノン散乱粒子としてSiO2と、第2のフォノン散乱粒子としてSb2O3が分散しているナノコンポジット熱電変換材料を作製した。条件および手順は以下のとおりであった。 According to a preferred embodiment of the present invention, a nanocomposite in which SiO 2 as phonon scattering particles and Sb 2 O 3 as second phonon scattering particles are dispersed in a matrix of (Bi, Sb) 2 Te 3 thermoelectric conversion material. A thermoelectric conversion material was produced. Conditions and procedures were as follows.
図2に、製造工程に伴う内部構造の変遷を順次模式的に示す。 In FIG. 2, the transition of the internal structure accompanying a manufacturing process is typically shown sequentially.
また図3に、原料溶液の調製工程(第1工程)と還元処理工程(第2工程)を示す。 FIG. 3 shows a raw material solution preparation step (first step) and a reduction treatment step (second step).
まず第1工程として、100mlのエタノールに、熱電変換材料の構成元素Bi,Te,Sbの塩として塩化ビスマス(BiCl3)0.4g、塩化テルル(TeCl4)2.56g、塩化アンチモン(SbCl3)1.47gを溶解してエタノール溶液を作成し、この溶液中にフォノン散乱粒子としてSiO2粉末14(平均粒径:5nm)を分散させ、原料溶液とした(図2(A))。ここで、塩化アンチモンは、熱電変換材料(Bi,Sb)2Te3マトリクスに対して室温で過飽和なSbとなる過剰量とした。 First, as a first step, 100 g of ethanol, 0.4 g of bismuth chloride (BiCl 3 ) as a salt of the constituent elements Bi, Te, and Sb of thermoelectric conversion material, 2.56 g of tellurium chloride (TeCl 4 ), antimony chloride (SbCl 3) 1.47 g was dissolved to prepare an ethanol solution, and SiO 2 powder 14 (average particle size: 5 nm) was dispersed as phonon scattering particles in this solution to obtain a raw material solution (FIG. 2A). Here, the antimony chloride was used as an excessive amount that becomes Sb supersaturated at room temperature with respect to the thermoelectric conversion material (Bi, Sb) 2 Te 3 matrix.
次に第2工程として、NaBH42.5gを100mlのエタノールに溶解した還元剤を、上記の原料溶液に滴下した。これにより、SiO2粒子14の表面に熱電変換材料の各構成元素Bi,Te、Sb(10+12)’が析出したエタノールスラリーが形成された(図2(B))。これを水500ml+エタノール300mlでろ過し、その後更にエタノール300mlでろ過洗浄した。 Next, as a second step, a reducing agent obtained by dissolving 2.5 g of NaBH 4 in 100 ml of ethanol was added dropwise to the raw material solution. As a result, an ethanol slurry was formed in which the constituent elements Bi, Te, and Sb (10 + 12) ′ of the thermoelectric conversion material were deposited on the surface of the SiO 2 particles 14 (FIG. 2B). This was filtered with 500 ml of water + 300 ml of ethanol, and then further washed by filtration with 300 ml of ethanol.
次に第3工程として(図2(C))、密閉したオートクレーブ中で、240℃×24hの水熱処理を行なう。これにより、熱電変換材料の構成元素(10+12)’が相互に拡散し合金化する。ただし、完全に合金化する条件よりは短時間であるため、相対的な高融点合金相と低融点合金相とが混在したマトリクス前駆体(10+12)が生成する。本実施例においては、高融点合金相はSb2Te3または(Bi、Sb)2Te3のSbリッチ相であり、低融点合金相はBi2Te3または(Bi、Sb)2Te3のBiリッチ相である。マトリクス前駆体(10+12)中には、原料溶液中に分散していたフォノン散乱粒子SiO214が分散しており、更に、原料溶液中に過剰量溶解させたSbが析出し、水熱処理中に酸化してSb2O3となり第2のフォノン散乱粒子として分散している。生成物はN2ガスフロー雰囲気で乾燥させ、粉末として回収した。このとき、約2.1gの粉末が回収された。 Next, as a third step (FIG. 2C), hydrothermal treatment at 240 ° C. × 24 h is performed in a closed autoclave. Thereby, the constituent element (10 + 12) ′ of the thermoelectric conversion material is diffused and alloyed. However, completely because more conditions for alloying is short, relative high melting alloy phase and a low melting alloy phase and are mixed matrix Precursor (10 + 12) is produced. In this example, the high melting point alloy phase is Sb 2 Te 3 or (Bi, Sb) 2 Te 3 Sb rich phase, and the low melting point alloy phase is Bi 2 Te 3 or (Bi, Sb) 2 Te 3 . Bi rich phase. During matrix Precursor (10 + 12), the phonon scattering particles SiO 2 14 which has been dispersed in the raw material solution is dispersed, further, the raw material solution excess dissolved Sb precipitates were in, in the hydrothermal treatment Oxidized into Sb 2 O 3 and dispersed as second phonon scattering particles. The product was dried in an N 2 gas flow atmosphere and recovered as a powder. At this time, about 2.1 g of powder was recovered.
更に第4工程として、上記粉末に350℃×5秒でSPS焼結を行い、焼結体を得た(図2(C))。 Furthermore, as a fourth step, the powder was subjected to SPS sintering at 350 ° C. for 5 seconds to obtain a sintered body (FIG. 2C).
最後に第5工程として、焼結体にN2雰囲気中で400℃×24hのアニールを施した。これにより、まず図2(D)に示すように、結晶粒界で低融点合金相(Bi2Te3または(Bi、Sb)2Te3のBiリッチ相)のみが選択的に溶融する。アニールの条件は、低融点合金相のみが融解するように選択する。 Finally, as a fifth step, the sintered body was annealed at 400 ° C. × 24 h in an N 2 atmosphere. As a result, first, as shown in FIG. 2D, only the low melting point alloy phase (Bi 2 Te 3 or (Bi, Sb) 2 Te 3 Bi-rich phase) is selectively melted at the grain boundaries. The annealing conditions are selected so that only the low melting point alloy phase melts.
その際、低融点溶融層12’中には、結晶粒内に分散していたフォノン散乱粒子SiO214および第2のフォノン散乱粒子Sb2O3が取り込まれ、低融点合金相から成る粒界相12中に分散する(図2(E))。 At this time, the phonon scattering particles SiO 2 14 and the second phonon scattering particles Sb 2 O 3 dispersed in the crystal grains are taken into the low melting point molten layer 12 ′, and the grain boundary composed of the low melting point alloy phase is taken. Disperse in the phase 12 (FIG. 2E).
以上により、図4(1)、(2)にTEM像を示すように、本発明の望ましい実施形態により、 (Bi,Sb)2Te3熱電変換材料のマトリクス中に、フォノン散乱粒子としてSiO2と、第2のフォノン散乱粒子としてSb2O3が分散しているナノコンポジット熱電変換材料が得られた。 As described above, as shown in FIGS. 4 (1) and 4 (2), according to a preferred embodiment of the present invention, SiO 2 as phonon scattering particles in the matrix of (Bi, Sb) 2 Te 3 thermoelectric conversion material. As a result, a nanocomposite thermoelectric conversion material in which Sb 2 O 3 was dispersed as the second phonon scattering particles was obtained.
結晶粒界に厚さ1〜10nmの粒界相として(Bi、Sb)2Te3のBiリッチ相が観察される。(Bi、Sb)2Te3のBiリッチ相は導電性である。この粒界相中には粒径1〜10nmのSiO2粒子、Sb2O3粒子が存在する。結晶粒内にも、粒径1〜100nmのSiO2粒子、Sb2O3粒子が存在する。XRDのシェラー法により測定した平均結晶粒径は41nmであった。 A Bi-rich phase of (Bi, Sb) 2 Te 3 is observed as a grain boundary phase having a thickness of 1 to 10 nm at the crystal grain boundary. The Bi rich phase of (Bi, Sb) 2 Te 3 is conductive. In this grain boundary phase, SiO 2 particles and Sb 2 O 3 particles having a particle diameter of 1 to 10 nm are present. In the crystal grains, there are SiO 2 particles and Sb 2 O 3 particles having a particle diameter of 1 to 100 nm. The average crystal grain size measured by XRD Scherrer method was 41 nm.
〔比較例1〕
工程3の水熱処理の条件を240℃×48hとして均一に合金化した以外は実施例1と同様の条件および手順により、実施例1の工程4までを行なって、粒界相は生成させずにナノコンポジット熱電変換材料を作製した。また、第1工程において塩化アンチモン(SbCl3)の配合量はSb量が化学量論値となるように1.24gとし、第3工程において第2のフォノン散乱粒子Sb2O3は生成させなかった。すなわち、比較例1は、フォノン散乱粒子としてはSiO2粒子のみが存在し、かつ粒界相12は生成しておらず、その他の点では実施例1と同様のナノコンポジット熱電変換材料である。
[Comparative Example 1]
According to the same conditions and procedure as in Example 1 except that the hydrothermal treatment conditions in Step 3 were uniformly 240 ° C. × 48 h, the process up to Step 4 in Example 1 was carried out without generating a grain boundary phase. Nanocomposite thermoelectric conversion materials were prepared. In addition, the blending amount of antimony chloride (SbCl 3 ) in the first step is 1.24 g so that the Sb amount becomes a stoichiometric value, and the second phonon scattering particles Sb 2 O 3 are not generated in the third step. It was. That is, Comparative Example 1 is a nanocomposite thermoelectric conversion material similar to that of Example 1 except that only SiO 2 particles are present as phonon scattering particles and no grain boundary phase 12 is generated.
〔比較例2〕
フォノン散乱粒子としてSiO2およびSb2O3を分散させたが、粒界相は生成させないナノコンポジット熱電変換材料を、下記の条件および手順で作製した。すなわち、比較例2は、粒界相が生成していない以外は実施例1と同様のナノコンポジット熱電変換材料である。
[Comparative Example 2]
A nanocomposite thermoelectric conversion material in which SiO 2 and Sb 2 O 3 were dispersed as phonon scattering particles but no grain boundary phase was produced was produced under the following conditions and procedures. That is, Comparative Example 2 is a nanocomposite thermoelectric conversion material similar to Example 1 except that no grain boundary phase is generated.
図5<1>に示すように、原料溶液の配合および還元処理を行なって、SiO2粒子の表面にSbを析出させてSiO2/Sb粒子を作製した。このとき、Sb層の厚さが数nmになるように析出量を調整した。 As shown in FIG. 5 <1>, perform the blending and reduction of raw materials solution was prepared SiO 2 / Sb particles to precipitate Sb on the surface of the SiO 2 particles. At this time, the amount of precipitation was adjusted so that the thickness of the Sb layer was several nm.
次に、図5<2>に示すように、図5<1>で作製したSiO2/Sb粒子を加えた配合の原料溶液を作製し、これに還元処理を行なって、SiO2/Sb粒子の表面にBi、Te、Sbを析出させ、スラリーとした。得られたスラリーを実施例1と同様に2回洗浄を行った。 Next, as shown in FIG. 5 <2>, a raw material solution containing the SiO 2 / Sb particles prepared in FIG. 5 <1> is prepared and subjected to reduction treatment to obtain SiO 2 / Sb particles. Bi, Te, and Sb were deposited on the surface of the resulting slurry. The obtained slurry was washed twice in the same manner as in Example 1.
次に、実施例1の第3工程と同様に水熱処理を行なった。ただし、処理時間は48hとして、全体に均一に合金化させ単相の(Bi、Sb)2Te3マトリクス前駆体を生成させた。生成物はN2ガスフロー雰囲気で乾燥させ、粉末として回収した。このとき、約2.1gの粉末が回収された。 Next, hydrothermal treatment was performed in the same manner as in the third step of Example 1. However, as the processing time is 48h, the single-phase evenly alloyed throughout (Bi, Sb) to produce a 2 Te 3 matrix Precursor. The product was dried in an N 2 gas flow atmosphere and recovered as a powder. At this time, about 2.1 g of powder was recovered.
次いで、実施例1の第4工程と同様にSPS焼結を行なって、比較例2のナノコンポジット熱電変換材料とした。 Subsequently, SPS sintering was performed similarly to the 4th process of Example 1, and it was set as the nanocomposite thermoelectric conversion material of the comparative example 2.
〔従来例〕
下記文献(*)に開示されている熱電変換材料の特性を従来例として比較に用いた。従来例は、実施例とほぼ等しい組成の熱電変換材料であり、フォノン散乱粒子を用いていない。
(*:Journd of Crystal Growth 277(2003)258−263.)
[Conventional example]
The characteristics of the thermoelectric conversion material disclosed in the following document (*) were used for comparison as a conventional example. The conventional example is a thermoelectric conversion material having a composition almost equal to that of the example and does not use phonon scattering particles.
(*: Journ of Crystal Growth 277 (2003) 258-263.)
表1に、実施例、比較例1、2、従来例の構成をまとめて示す。 Table 1 summarizes the configurations of the examples, comparative examples 1 and 2, and the conventional example.
<特性の評価>
実施例で作製した本発明のナノコンポジット熱電変換材料の特性を評価した結果を図6、図7、図8に示す。図には、比較例1,2および従来例の特性も併せて示す。
<Evaluation of characteristics>
The results of evaluating the characteristics of the nanocomposite thermoelectric conversion material of the present invention produced in the examples are shown in FIGS. 6, 7, and 8. The figure also shows the characteristics of Comparative Examples 1 and 2 and the conventional example.
図6に示すように、これら4者はゼーベック係数がほぼ同じであり、組成、キャリア濃度等がほぼ同じであることが分かる。 As shown in FIG. 6, it can be seen that these four elements have substantially the same Seebeck coefficient, and the composition, carrier concentration, etc. are substantially the same.
図7に示すように、熱伝導率は、フォノン散乱粒子の存在により、実施例および比較例1、2は従来例に比べて劇的に低下しており、特に実施例は、比較例1、2に比べても更に低下している。これは、粒界相自体と粒界相中の2種のフォノン散乱粒子の存在により、熱の散乱界面が大幅に増加したことによると考えられる。 As shown in FIG. 7, the thermal conductivity is drastically lowered in Examples and Comparative Examples 1 and 2 as compared with the conventional example due to the presence of phonon scattering particles. Compared to 2, it is further reduced. This is considered to be due to the fact that the heat scattering interface is greatly increased by the presence of the grain boundary phase itself and the two types of phonon scattering particles in the grain boundary phase.
図8に示すように、無次元性能指数ZTは、熱伝導率が大幅に低下したことにより、顕著に向上している。すなわち、ZT値は、フォノン散乱粒子なしの従来例が0.9〜1.0、フォノン散乱粒子がSiO2のみで粒界相がない比較例1が1.4〜1.5、フォノン散乱粒子がSiO2とSb2O3で粒界相がない比較例2が1.5〜1.6であるのに対して、粒界相が存在し、かつ、フォノン散乱粒子がSiO2とSb2O3である実施例は2.2〜2.3と顕著に向上している。比較例1と比較例2を比べると、比較例2の方が第2のフォノン散乱粒子であるSb2O3の存在により特性が向上する。しかし、実施例と比較例2を比較すると、粒界相の存在により特性が大きく向上しており、粒界相の効果の方が大きいことが分かる。従って、データは記載されていないが、第1のフォノン散乱粒子と粒界相のみでも効果があり、それに加えて第2の分散粒子と分散させれば、さらに効果があることが分かる。 As shown in FIG. 8, the dimensionless figure of merit ZT is significantly improved due to the significant decrease in thermal conductivity. That is, the ZT value is 0.9 to 1.0 in the conventional example without the phonon scattering particles, 1.4 to 1.5 in the comparative example 1 in which the phonon scattering particles are only SiO 2 and there is no grain boundary phase, and the phonon scattering particles. Comparative Example 2 having no grain boundary phase with SiO 2 and Sb 2 O 3 is 1.5 to 1.6, whereas a grain boundary phase is present, and phonon scattering particles are SiO 2 and Sb 2. a O 3 is embodiment is remarkably improved as 2.2-2.3. Comparing Comparative Example 1 and Comparative Example 2, the characteristics of Comparative Example 2 are improved due to the presence of Sb 2 O 3 which is the second phonon scattering particle. However, comparing Example and Comparative Example 2, it can be seen that the characteristics are greatly improved due to the presence of the grain boundary phase, and the effect of the grain boundary phase is greater. Therefore, although data is not described, it can be seen that only the first phonon scattering particles and the grain boundary phase are effective, and in addition to that, if the particles are dispersed with the second dispersed particles, it is further effective.
本発明によれば、フォノン散乱粒子を分散させた結晶粒界相を具備したことにより、ナノサイズのフォノン散乱粒子による熱伝導率の低減効果を更に高めて大幅に熱電変換性能を高めたナノコンポジット熱電変換材料およびその製造方法が提供される。 According to the present invention, by providing a grain boundary phase in which phonon scattering particles are dispersed, a nanocomposite that further enhances the effect of reducing thermal conductivity by nano-sized phonon scattering particles and greatly improves thermoelectric conversion performance. A thermoelectric conversion material and a method for producing the same are provided.
Claims (2)
熱電変換材料の各構成元素の塩を溶解させ、かつ、フォノン散乱粒子を分散させた原料溶液を調製する第1工程、
上記原料溶液に還元剤を滴下して、上記フォノン散乱粒子の表面に上記熱電変換材料の各構成元素を析出させてスラリーを形成する第2工程、
上記スラリーを水熱処理して、相対的に高融点の高融点合金相と低融点の低融点合金相とから成るマトリクス前駆体中に上記フォノン散乱粒子が分散した複合体を形成する第3工程、
上記複合体を焼結して、多結晶マトリクス中に上記フォノン散乱粒子が分散した焼結体を形成する第4工程、および
上記焼結体を熱処理することにより、該焼結体の結晶粒界において上記低融点合金相のみを選択的に溶融させ、生成した低融点溶融相中に近傍の上記フォノン散乱粒子を取り込ませ、上記低融点合金相中に該フォノン散乱粒子が分散した複合体としての粒界相を形成する第5工程、
を含むことを特徴とするナノコンポジット熱電変換材料の製造方法。 In a method for producing a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a matrix of a thermoelectric conversion material,
A first step of preparing a raw material solution in which the salt of each constituent element of the thermoelectric conversion material is dissolved and the phonon scattering particles are dispersed;
A second step in which a reducing agent is dropped into the raw material solution to deposit a constituent element of the thermoelectric conversion material on the surface of the phonon scattering particles to form a slurry;
The slurry was hydrothermally treated, third step of relatively high melting point of the phonon scattering particles in the body during the ejection before matrix of a refractory alloy phase and a low melting point of the low melting point alloy phase to form a complex dispersed ,
A fourth step in which the composite is sintered to form a sintered body in which the phonon scattering particles are dispersed in a polycrystalline matrix; and the sintered body is subjected to a heat treatment, whereby grain boundaries of the sintered body are formed. As a composite in which only the low melting point alloy phase is selectively melted, the phonon scattering particles in the vicinity are taken into the generated low melting point melt phase, and the phonon scattering particles are dispersed in the low melting point alloy phase. A fifth step of forming a grain boundary phase;
A method for producing a nanocomposite thermoelectric conversion material, comprising:
上記第1工程において、上記原料溶液に、上記熱電変換材料の各構成元素のうち、少なくとも1種を室温における固溶限に対して過剰量を溶解させ、
上記第3工程において、上記マトリクス前駆体中に上記過剰量の構成元素を析出させて第2のフォノン散乱粒子として分散させ、
上記第5工程において、上記フォノン散乱粒子と共に上記第2のフォノン散乱粒子も分散した上記粒界相を形成する
ことを特徴とするナノコンポジット熱電変換材料の製造方法。 In claim 1,
In the first step, an excess amount of at least one of the constituent elements of the thermoelectric conversion material is dissolved in the raw material solution with respect to a solid solubility limit at room temperature,
In the third step, it is dispersed as a second phonon scattering particles by precipitating the constituent element of the excess body during ejection before the matrix,
The method for producing a nanocomposite thermoelectric conversion material, wherein in the fifth step, the grain boundary phase in which the second phonon scattering particles are dispersed together with the phonon scattering particles is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012103854A JP5397500B2 (en) | 2012-04-27 | 2012-04-27 | Nanocomposite thermoelectric conversion material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012103854A JP5397500B2 (en) | 2012-04-27 | 2012-04-27 | Nanocomposite thermoelectric conversion material and method for producing the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010008299A Division JP5024393B2 (en) | 2010-01-18 | 2010-01-18 | Nanocomposite thermoelectric conversion material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012182476A JP2012182476A (en) | 2012-09-20 |
JP5397500B2 true JP5397500B2 (en) | 2014-01-22 |
Family
ID=47013355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012103854A Expired - Fee Related JP5397500B2 (en) | 2012-04-27 | 2012-04-27 | Nanocomposite thermoelectric conversion material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5397500B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09260729A (en) * | 1996-03-19 | 1997-10-03 | Nissan Motor Co Ltd | Thermoelectric transducer material and manufacture thereof |
JP2000261044A (en) * | 1999-03-10 | 2000-09-22 | Sumitomo Special Metals Co Ltd | Thermoelectric conversion material and its manufacture |
JP4374578B2 (en) * | 2004-12-03 | 2009-12-02 | 株式会社豊田中央研究所 | Thermoelectric material and manufacturing method thereof |
JP4900061B2 (en) * | 2007-06-06 | 2012-03-21 | トヨタ自動車株式会社 | Thermoelectric conversion element and manufacturing method thereof |
JP5088116B2 (en) * | 2007-12-06 | 2012-12-05 | トヨタ自動車株式会社 | Method for manufacturing thermoelectric conversion element |
JP5038984B2 (en) * | 2008-06-26 | 2012-10-03 | トヨタ自動車株式会社 | Method for producing bismuth telluride thermoelectric conversion element |
-
2012
- 2012-04-27 JP JP2012103854A patent/JP5397500B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012182476A (en) | 2012-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5024393B2 (en) | Nanocomposite thermoelectric conversion material and method for producing the same | |
US8845918B2 (en) | Thermoelectric material and composites made from thermoelectric material and a method for fabricating thereof | |
KR101346325B1 (en) | Fabrication method of thermoelectric materials using core-shell structured nanoparticle, and the thermoelectric materials thereby | |
JP4803282B2 (en) | Nanocomposite thermoelectric conversion material and method for producing the same | |
JP5528873B2 (en) | Composite thermoelectric material and method for producing the same | |
JP2014022674A (en) | Thermoelectric material | |
JP5149761B2 (en) | BiTe / Ceramics / Nanocomposite Thermoelectric Material Manufacturing Method | |
JP5418146B2 (en) | Nanocomposite thermoelectric conversion material and method for producing the same | |
KR101068964B1 (en) | Thermoelectric material and method of manufacturing thermoelectric material by chemical process | |
JP2013008722A (en) | Nanocomposite thermoelectric conversion material and manufacturing method thereof | |
JP2013074051A (en) | Method of manufacturing nano-composite thermoelectric conversion material, and nano-composite thermoelectric conversion material manufactured by the method | |
KR101205901B1 (en) | Fabrication method of thermoelectric materials and the thermoelectric materials thereby | |
JP5853483B2 (en) | Nanocomposite thermoelectric conversion material | |
KR101142917B1 (en) | Method for fabricating thermoelectric nano composition powder | |
KR20240036123A (en) | Method for manufacturing thermoelectric material | |
JP5397500B2 (en) | Nanocomposite thermoelectric conversion material and method for producing the same | |
JP2014013869A (en) | Nano-composite thermoelectric conversion material and manufacturing method thereof | |
JP2014165260A (en) | Method of producing thermoelectric conversion material | |
TWI589039B (en) | N-type bismuth telluride based thermoelectric composite and method for manufacturing the same | |
KR20190028944A (en) | Method for manufacturing thermoelectric material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130813 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130815 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131007 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5397500 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |