JP2011129635A - Nano-composite thermoelectric conversion material and method of manufacturing the same - Google Patents

Nano-composite thermoelectric conversion material and method of manufacturing the same Download PDF

Info

Publication number
JP2011129635A
JP2011129635A JP2009285380A JP2009285380A JP2011129635A JP 2011129635 A JP2011129635 A JP 2011129635A JP 2009285380 A JP2009285380 A JP 2009285380A JP 2009285380 A JP2009285380 A JP 2009285380A JP 2011129635 A JP2011129635 A JP 2011129635A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
thermoelectric
nanocomposite
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009285380A
Other languages
Japanese (ja)
Inventor
Tateya Murai
盾哉 村井
Takushi Kita
拓志 木太
Yoshinori Okawachi
義徳 大川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Admatechs Co Ltd
Original Assignee
Toyota Motor Corp
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Admatechs Co Ltd filed Critical Toyota Motor Corp
Priority to JP2009285380A priority Critical patent/JP2011129635A/en
Publication of JP2011129635A publication Critical patent/JP2011129635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nano-composite thermoelectric conversion material that has nano-particles of a dispersed material dispersed in the mother phase of the thermoelectric conversion material, and has low thermal conductivity κ, and a method of manufacturing the same. <P>SOLUTION: The present invention relates to the nano-composite thermoelectric conversion material that has the nano-particles of the dispersed material dispersed in the mother phase of the thermoelectric conversion material, wherein the dispersed material is porous nano-particles each having a hole opened on the external surface of the particle, and the thermoelectric material of the mother phase enters the inside of the hole; and the method of manufacturing the same employing liquid phase synthesis. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ナノコンポジット熱電変換材料およびその製造方法に関し、さらに詳しくは熱電変換材料の母相と分散材のナノ粒子との界面の特定の構成によって低い熱伝導率を与え得るナノコンポジット熱電変換材料および液相合成によるその製造方法に関する。   The present invention relates to a nanocomposite thermoelectric conversion material and a method for producing the same, and more particularly, a nanocomposite thermoelectric conversion material capable of providing low thermal conductivity by a specific configuration of the interface between the matrix of the thermoelectric conversion material and the nanoparticles of the dispersion material And its production method by liquid phase synthesis.

近年、地球温暖化問題から二酸化炭素排出量を削減するために、化石燃料から得られるエネルギーの割合を低減する技術への関心が益々増大しており、その1つとして未利用廃熱エネルギーを電気エネルギーに直接変換し得る熱電変換材料が挙げられる。
熱電変換材料とは、火力発電のように熱を一旦運動エネルギーに変換しそれから電気エネルギーに変換する2段階の工程を必要とせず、熱から直接に電気エネルギーに変換することを可能とする材料である。
In recent years, in order to reduce carbon dioxide emissions due to the global warming problem, there is an increasing interest in technologies that reduce the proportion of energy obtained from fossil fuels. The thermoelectric conversion material which can be directly converted into energy is mentioned.
A thermoelectric conversion material is a material that enables direct conversion from heat to electrical energy without the need for a two-step process of converting heat to kinetic energy and then to electrical energy, as in thermal power generation. is there.

そして、熱から電気エネルギーへの変換は熱電変換材料から成形したバルク体の両端の温度差を利用して行われる。この温度差によって電圧が生じる現象はゼーペックにより発見されたのでゼーペック効果と呼ばれている。
この熱電変換材料の性能は、次式で求められる性能指数Zで表わされる。
Z=ασ/κ(=Pf/κ)
And conversion from a heat | fever to an electrical energy is performed using the temperature difference of the both ends of the bulk body shape | molded from the thermoelectric conversion material. The phenomenon in which a voltage is generated due to this temperature difference was discovered by Seepec and is called the Seepek effect.
The performance of the thermoelectric conversion material is represented by a figure of merit Z obtained by the following equation.
Z = α 2 σ / κ (= Pf / κ)

ここで、αは熱電変換材料のゼーベック係数、σは熱電変換材料の導電率、κは熱電変換材料の熱伝導率である。ασの項をまとめて出力因子Pfという。そして、Zは温度の逆数の次元を有し、この性能指数Zに絶対温度Tを乗じて得られるZTは無次元の値となる。そしてこのZTを無次元性能指数と呼び、熱電変換材料の性能を表す指標として用いられている。
熱電変換材料が幅広く使用されるためにはその性能をさらに向上させることが求められている。そして、熱電変換材料の性能向上には前記の式から明らかなように、より高いゼーベック係数α、より高い導電率σ、より低い熱伝導率κが求められる。
しかし、これらすべての項目を同時に改良することは困難であり、熱電変換材料の前記項目のいずれかを改良する目的で多くの試みがなされている。
Here, α is the Seebeck coefficient of the thermoelectric conversion material, σ is the conductivity of the thermoelectric conversion material, and κ is the heat conductivity of the thermoelectric conversion material. The terms α 2 σ are collectively referred to as an output factor Pf. Z has a dimension of the reciprocal of temperature, and ZT obtained by multiplying the figure of merit Z by the absolute temperature T is a dimensionless value. This ZT is called a dimensionless figure of merit and is used as an index representing the performance of the thermoelectric conversion material.
In order to use the thermoelectric conversion material widely, it is required to further improve its performance. As is apparent from the above formula, higher Seebeck coefficient α, higher conductivity σ, and lower thermal conductivity κ are required to improve the performance of the thermoelectric conversion material.
However, it is difficult to improve all these items at the same time, and many attempts have been made to improve any of the above items of thermoelectric conversion materials.

例えば、特許文献1には、第1の物質がセラミック系などの少なくとも低熱伝導率材料である母相微小粒子、第2の物質がビスマス、アンチモン、テルル系合金等の高熱伝導能材料を含み、第2の物質が独立した極薄い層を形成し、前記母相微小粒子の周辺をほぼ覆い、且つ母相微小粒子間をほぼ隔離し、気孔率が5%以下である熱電ナノコンポジット材料、および固体混合による製造方法が記載されている。   For example, Patent Document 1 includes a matrix microparticle in which a first substance is at least a low thermal conductivity material such as a ceramic, and a second substance includes a high thermal conductivity material such as bismuth, antimony, and tellurium alloy, A thermoelectric nanocomposite material in which a second substance forms an independent ultrathin layer, substantially covers the periphery of the matrix microparticles, and substantially isolates the matrix microparticles, and has a porosity of 5% or less; and A production method by solid mixing is described.

また、特許文献2には、CoSb(2.7<X<3.4)で示される熱電変換材料、具体例としてはCoSbの熱電変換材料の母材中に分散材としてのセラミックス粉末を分散させた熱電変換用半導体材料および前記CoSbで表わされる原料粉末と分散材としてのセラミックス粉末とを混合、成形後、焼成する熱電変換用半導体材料の製造方法が記載されている。しかし、前記公報には熱電変換材料の母相と分散材粒子との界面について言及されておらず、具体的に記載されている前記の熱電変換用半導体材料の熱伝導率はセラミックス粉末を混合しない熱電変換材料の約5W/m/Kに比べると低いが、1.8〜3W/m/Kである。 Patent Document 2 discloses a ceramic powder as a dispersion material in a base material of a thermoelectric conversion material represented by CoSb X (2.7 <X <3.4), specifically, a thermoelectric conversion material of CoSb 3. A method for producing a semiconductor material for thermoelectric conversion is described in which the dispersed semiconductor material for thermoelectric conversion and the raw material powder represented by CoSb X and ceramic powder as a dispersing material are mixed, molded, and fired. However, the publication does not mention the interface between the matrix of the thermoelectric conversion material and the dispersion particles, and the thermal conductivity of the semiconductor material for thermoelectric conversion specifically described does not mix ceramic powder. Although it is low compared with about 5 W / m / K of the thermoelectric conversion material, it is 1.8 to 3 W / m / K.

特開平3−148879号公報JP-A-3-148879 特開2000−261047号公報Japanese Unexamined Patent Publication No. 2000-261047

しかし、これらの従来技術によっても、熱伝導率κの低減は不十分であり、得られる熱電変換材料の性能は低い。
従って、本発明の目的は、熱電変換材料の母相(マトリックス)に分散材のナノ粒子が分散された熱電変換材料であって、低い熱伝導率κを可能とする熱電変換材料を提供することである。
また、本発明の他の目的は、熱電変換材料の母相(マトリックス)に分散材のナノ粒子が分散された熱電変換材料であって、低い熱伝導率κを可能とする熱電変換材料の製造方法を提供することである。
However, even with these conventional techniques, the reduction of the thermal conductivity κ is insufficient, and the performance of the obtained thermoelectric conversion material is low.
Accordingly, an object of the present invention is to provide a thermoelectric conversion material in which nanoparticles of a dispersion material are dispersed in a matrix (matrix) of the thermoelectric conversion material, and which enables a low thermal conductivity κ. It is.
Another object of the present invention is to produce a thermoelectric conversion material in which nanoparticles of a dispersion material are dispersed in a matrix (matrix) of the thermoelectric conversion material, which enables a low thermal conductivity κ. Is to provide a method.

本発明は、熱電材料の母相に分散材のナノ粒子が分散されたナノコンポジット熱電変換材料であって、前記分散材が粒子外表面に開放された空孔を持つ多孔質ナノ粒子であり、且つ前記母相の熱電材料が前記空孔内に入り込んでいるナノコンポジット熱電変換材料に関する。
また、本発明は、熱電材料の前駆体物質の塩と、粒子外表面に開放された空孔を持つ多孔質ナノ粒子とを含むスラリーに還元剤を滴下することにより、熱電材料と分散材の多孔質ナノ粒子との混合体を得る工程を含む、母相の熱電材料が前記空孔内に入り込んでいるナノコンポジット熱電変換材料の製造方法に関する。
本発明において、母相の熱電材料が空孔内に入り込んでいるとは、母相の熱電材料が空孔の開口部近傍内に入り込んでいることを意味する。
The present invention is a nanocomposite thermoelectric conversion material in which nanoparticles of a dispersion material are dispersed in a matrix of a thermoelectric material, wherein the dispersion material is a porous nanoparticle having pores opened on the outer surface of the particle, Further, the present invention relates to a nanocomposite thermoelectric conversion material in which the matrix thermoelectric material has entered the pores.
Further, the present invention provides a thermoelectric material and a dispersion material by dropping a reducing agent into a slurry containing a salt of a precursor material of the thermoelectric material and porous nanoparticles having pores opened on the outer surface of the particle. The present invention relates to a method for producing a nanocomposite thermoelectric conversion material in which a matrix thermoelectric material has entered the pores, the method including a step of obtaining a mixture with porous nanoparticles.
In the present invention, the fact that the thermoelectric material of the parent phase has entered the pores means that the thermoelectric material of the parent phase has entered the vicinity of the opening of the pores.

本発明によれば、熱伝導率κが低いナノコンポジット熱電変換材料を提供することができる。
また、本発明によれば、熱伝導率κが低いナノコンポジット熱電変換材料を容易に得ることができる。
According to the present invention, a nanocomposite thermoelectric conversion material having a low thermal conductivity κ can be provided.
Further, according to the present invention, a nanocomposite thermoelectric conversion material having a low thermal conductivity κ can be easily obtained.

図1は、本発明の一実施態様のナノコンポジット熱電変換材料中に分散しているメソポーラスシリカの状態を示す拡大側面模式図である。FIG. 1 is an enlarged schematic side view showing the state of mesoporous silica dispersed in the nanocomposite thermoelectric conversion material of one embodiment of the present invention. 図2は、本発明の一実施態様のナノコンポジット熱電変換材料熱電変換材料中に分散しているメソポーラスシリカの正面模式図である。FIG. 2 is a schematic front view of mesoporous silica dispersed in the nanocomposite thermoelectric conversion material thermoelectric conversion material of one embodiment of the present invention. 図3は、本発明の一実施態様のナノコンポジット熱電変換材料中のメソポーラスシリカの部分拡大正面模式図である。FIG. 3 is a partially enlarged schematic front view of mesoporous silica in the nanocomposite thermoelectric conversion material of one embodiment of the present invention. 図4は、本発明の一実施態様のナノコンポジット熱電変換材料中のメソポーラスシリカの部分拡大側面模式図である。FIG. 4 is a partially enlarged side schematic view of mesoporous silica in the nanocomposite thermoelectric conversion material of one embodiment of the present invention. 図5は、本発明の一実施態様のナノコンポジット熱電変換材料の製造方法の主要工程のフローチャートを示す。FIG. 5: shows the flowchart of the main processes of the manufacturing method of the nanocomposite thermoelectric conversion material of one embodiment of this invention. 図6は、実施例1で得られたナノコンポジット熱電変換材料の外観STEM像の写しである。FIG. 6 is a copy of the appearance STEM image of the nanocomposite thermoelectric conversion material obtained in Example 1. 図7は、実施例1で得られたナノコンポジット熱電変換材料中のメソポーラスシリカを正面から見た断面像の写しである。FIG. 7 is a copy of a cross-sectional image of mesoporous silica in the nanocomposite thermoelectric conversion material obtained in Example 1 as viewed from the front. 図8は、実施例1で得られたナノコンポジット熱電変換材料中のメソポーラスシリカを側面から見た断面像の写しである。FIG. 8 is a copy of a cross-sectional image of mesoporous silica in the nanocomposite thermoelectric conversion material obtained in Example 1 as viewed from the side.

本発明の実施態様によれば、熱電変換材料の母相に分散材のメソポーラスシリカが分散されたナノコンポジット熱電変換材料であって、前記分散材が粒子外表面に開放された空孔を持つ多孔質ナノ粒子であり、且つ前記母相の熱電材料が前記空孔内に入り込んでいることによって、分散材と母相の界面の凹凸が大きくなり熱伝導率が低下したナノコンポジット熱電変換材料が得られる。   According to an embodiment of the present invention, a nanocomposite thermoelectric conversion material in which mesoporous silica as a dispersion material is dispersed in a matrix of the thermoelectric conversion material, the dispersion material having pores open to the outer surface of the particles. The nanocomposite thermoelectric conversion material is obtained because the thermoelectric material is a porous nanoparticle and the matrix phase thermoelectric material has entered the pores, resulting in large irregularities at the interface between the dispersion material and the matrix phase and a decrease in thermal conductivity. It is done.

また、本発明の実施態様によれば、熱電材料の前駆体物質の塩と、粒子外表面に開放された空孔を持つナノ粒子とを含むスラリーに還元剤を滴下することにより、熱電材料と分散材の多孔質ナノ粒子との混合体を得る工程を含むことによって、多孔質分散材の空孔内に熱電材料が入り込んだ状態で析出し、母相の熱電材料が前記空孔内に入り込んでいるナノコンポジット熱電変換材料を製造し得る。   According to an embodiment of the present invention, the thermoelectric material is obtained by dropping a reducing agent into a slurry containing a salt of a precursor material of the thermoelectric material and nanoparticles having pores opened on the outer surface of the particle. By including the step of obtaining a mixture of the dispersion material with the porous nanoparticles, the thermoelectric material is deposited in the pores of the porous dispersion material, and the thermoelectric material of the parent phase enters the pores. A nanocomposite thermoelectric conversion material can be produced.

以下、本発明について、図1〜図5を用いて説明する。
図1を参照すると、熱電材料の母相中にメソポーラスシリカからなる分散材の多孔質ナノ粒子が分散されて、メソポーラスシリカの空孔内に熱電材料が入り込んで空孔の開口部近傍で界面粗さが発生し、ナノコンポジット熱電変換材料の熱伝導率が低下し得る。本発明における分散材の一例であるメソポーラスシリカは、図2〜図4に示すように粒子外表面に開放された空孔を持つ多孔質ナノ粒子である。
本発明のナノコンポジット熱電変材料の熱伝導率低下は、空孔の開口部近傍での界面粗さによって、フォノン散乱が活発化することによると考えられる。
Hereinafter, the present invention will be described with reference to FIGS.
Referring to FIG. 1, porous nano particles of a dispersion material made of mesoporous silica are dispersed in the matrix of the thermoelectric material, and the thermoelectric material enters into the pores of the mesoporous silica, so that the interface roughening occurs in the vicinity of the pore openings. May occur and the thermal conductivity of the nanocomposite thermoelectric conversion material may decrease. The mesoporous silica which is an example of the dispersion material in the present invention is a porous nanoparticle having pores opened on the outer surface of the particle as shown in FIGS.
It is considered that the decrease in the thermal conductivity of the nanocomposite thermoelectric material of the present invention is due to activation of phonon scattering due to the interface roughness in the vicinity of the opening of the hole.

図5を参照すると、熱電材料の前駆体物質の塩の一例である塩化ビスマス、塩化テルルおよび塩化アンチモンと、メソポーラスシリカを含むスラリーに還元剤であるNaBHのエタノール溶液を滴下することによって、母相の熱電材料を与える前駆体物質の塩をメソポーラスシリカの空孔内に入り込ませ得る。本発明の方法においては、次いで、溶媒からの固形分の分離取得および熱電変換材料を得るための水熱処理による合金化、乾燥工程を続けて行うことによってナノコンポジット熱電変換材料を得ることができる。 Referring to FIG. 5, by adding dropwise an ethanol solution of NaBH 4 as a reducing agent to a slurry containing bismuth chloride, tellurium chloride and antimony chloride, which are examples of a precursor substance salt of a thermoelectric material, and mesoporous silica. The salt of the precursor material that provides the phase thermoelectric material can be entrained in the pores of the mesoporous silica. In the method of the present invention, the nanocomposite thermoelectric conversion material can then be obtained by continuously performing the solidification separation from the solvent and the alloying and drying steps by hydrothermal treatment to obtain the thermoelectric conversion material.

本発明においては、前記の方法において、熱電材料の前駆体物質の塩の溶液と粒子外表面に開放された空孔を持つ多孔質ナノ粒子とを含むスラリーに還元剤を滴下して還元反応を行わせることが必要であり、これによって後続の固形分の分離取得、水熱処理による合金化および乾燥工程を経て、熱電材料の母相中にナノ粒子外表面に開放された空孔を有する多孔質ナノ粒子、例えばメソポーラスナノ粒子、例えばメソポーラスシリカからなる分散材のナノ粒子が分散されて、熱電材料が前記空孔の開口部近傍を含む孔内に入り込むことによって空孔の開口部近傍で界面粗さを発生させることが可能になると考えられる。   In the present invention, in the above method, a reducing agent is dropped into a slurry containing a salt solution of a precursor material of a thermoelectric material and porous nanoparticles having pores opened on the outer surface of the particle to perform a reduction reaction. Porous with pores open to the outer surface of the nanoparticle in the parent phase of the thermoelectric material through subsequent solid separation, alloying by hydrothermal treatment and drying steps Nanoparticles, for example, mesoporous nanoparticles, for example, nanoparticles of a dispersion material made of mesoporous silica, are dispersed, and the thermoelectric material enters into the pores including the vicinity of the opening of the pore, thereby causing the interface roughness in the vicinity of the opening of the pore. It is thought that it will be possible to generate

本発明における粒子外表面に開放された空孔を持つ多孔質ナノ粒子としては、表面に孔を有する多孔質ナノ粒子であれば制限はなく、例えば前記のメソポーラスシリカや、メソポーラスジルコニア、メソポーラスチタニアなどのメソポーラスナノ粒子、好適にはメソポーラスシリカが挙げられる。前記のメソポーラスナノ粒子は、略円筒形、例えば六角形のヘキサゴナル単位を10個〜数10万の個数で有する集合体であると考えられている。そして、略円筒形である孔の平均細孔径は、例えば2〜10nm、その中でも2〜6nmであり、ヘキサゴナルな断面に垂直な方向の長さは通常、50〜1000nm程度である。また、メソポーラスナノ粒子は、通常300〜1500m/g程度の比表面積を有している。そして、メソポーラスナノ粒子は平均粒径が50〜1000nm程度である。 The porous nanoparticle having pores opened on the outer surface of the particle in the present invention is not limited as long as it is a porous nanoparticle having pores on the surface. For example, mesoporous silica, mesoporous zirconia, mesoporous titania, etc. And mesoporous nanoparticles, preferably mesoporous silica. The mesoporous nanoparticles are considered to be aggregates having a substantially cylindrical shape, for example, hexagonal hexagonal units in the number of 10 to several hundred thousand. And the average pore diameter of the hole which is substantially cylindrical is 2 to 10 nm, for example, 2 to 6 nm among them, and the length in the direction perpendicular to the hexagonal cross section is usually about 50 to 1000 nm. The mesoporous nanoparticles usually have a specific surface area of about 300 to 1500 m 2 / g. The mesoporous nanoparticles have an average particle size of about 50 to 1000 nm.

本発明における熱電材料としては、特に制限はなく、例えばBi、Sb、Ag、Pb、Ge、Cu、Sn、As、Se、Te、Fe、Mn、Co、Siから選択される少なくとも2種以上の元素を含む材料、例えばBiTe系あるいはCoおよびSbを主成分とするCoSb化合物の結晶がCo、Sb以外の元素、例えば遷移金属を含むものが挙げられる。前記の遷移金属としては、Cr、Mn、Fe、Ru、Ni、Pt、Cuなどが挙げられる。これらの遷移金属のうちNiを含む熱電変換材料、特に化学組成がCo1−xNiSb(式中、0.03<X<0.09、2.7<X<3.4)であるものはN型熱電変換材料を与え、組成中にFe、Sn、Geを含む熱電変換材料、例えば化学組成がCoSbSn又はCoSbGe(式中、2.7<p<3.4、0<q<0.4、p+q>3)であるものはP型熱電変換材料を与え得る。 There is no restriction | limiting in particular as a thermoelectric material in this invention, For example, at least 2 or more types selected from Bi, Sb, Ag, Pb, Ge, Cu, Sn, As, Se, Te, Fe, Mn, Co, Si A material containing an element, for example, a BiTe-based material or a crystal of a CoSb 3 compound containing Co and Sb as a main component contains an element other than Co and Sb, for example, a transition metal. Examples of the transition metal include Cr, Mn, Fe, Ru, Ni, Pt, and Cu. Thermoelectric conversion material containing Ni among these transition metals, in particular (in the formula, 0.03 <X <0.09,2.7 <X <3.4) chemical composition Co 1-x Ni x Sb Y at Some provide N-type thermoelectric conversion materials, and the composition contains Fe, Sn, Ge, for example, a chemical composition of CoSb p Sn q or CoSb p Ge q (where 2.7 <p <3. 4, 0 <q <0.4, p + q> 3) can give a P-type thermoelectric conversion material.

前記熱電材料の塩としては、例えば、Bi、Sb、Ag、Pb、Ge、Cu、Sn、As、Se、Te、Fe、Mn、Co、Siから選択される少なくとも1種以上の元素の塩、例えばBi、Co、Ni、Sn又はGeの塩、例えば前記元素のハロゲン化物、例えば塩化物、フッ化物、臭素化物、好適には塩化物や、硫酸塩、硝酸塩などが挙げられ、前記熱電材料の他の塩としては、前記元素以外の元素、例えばSbの塩、例えば前記元素のハロゲン化物、例えば塩化物、フッ化物、臭素化物、好適には塩化物や、硫酸塩、硝酸塩などが挙げられる。   Examples of the salt of the thermoelectric material include a salt of at least one element selected from Bi, Sb, Ag, Pb, Ge, Cu, Sn, As, Se, Te, Fe, Mn, Co, and Si, For example, a salt of Bi, Co, Ni, Sn or Ge, for example, a halide of the element, for example, chloride, fluoride, bromide, preferably chloride, sulfate, nitrate, etc. Examples of other salts include elements other than the above-mentioned elements, for example, Sb salts, such as halides of the above-mentioned elements, such as chlorides, fluorides, bromides, preferably chlorides, sulfates, nitrates, and the like.

また、前記のスラリーを与える溶媒としては、前記熱電材料を均一に分散し得るもの、特に溶解し得るものであれば特に制限はなく、例えばメタノール、エタノール、イソプロパノール、ジメチルアセトアミド、N−メチルピロリドン、好適にはメタノール、エタノールなどのアルコールが挙げられる。   Further, the solvent that gives the slurry is not particularly limited as long as it can uniformly disperse the thermoelectric material, and particularly can be dissolved. For example, methanol, ethanol, isopropanol, dimethylacetamide, N-methylpyrrolidone, Suitable examples include alcohols such as methanol and ethanol.

前記の還元剤としては、前記熱電材料の塩を還元し得るものであれば特に制限はなく、例えば第三級ホスフィン、第二級ホスフィンおよび第一級ホスフィン、ヒドラジン、ヒドロキシフェニル化合物、水素、水素化物、ボラン、アルデヒド、還元性ハロゲン化物、多官能性還元体などが挙げられ、その中でも水素化ホウ素アルカリ、例えば水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム等の物質の1種類以上が挙げられる。   The reducing agent is not particularly limited as long as it can reduce the salt of the thermoelectric material. For example, tertiary phosphine, secondary phosphine and primary phosphine, hydrazine, hydroxyphenyl compound, hydrogen, hydrogen One or more kinds of substances such as alkali borohydride, such as sodium borohydride, potassium borohydride, lithium borohydride, etc. Is mentioned.

前記の方法によって、熱電材料/分散材の複合ナノ粒子が溶媒、例えばエタノールのスラリーとして得られるので、通常は複合ナノ粒子を溶媒、例えばエタノール又は多量の水と少量の溶媒との混合溶媒(例えば、容積比で水:溶媒=100:25〜75の割合)でろ過、洗浄し、密閉の加圧容器中、例えば密閉のオートクレーブ中で200〜400℃の温度、10時間以上、例えば10〜100時間、その中でも24〜100時間程度水熱処理を行って、合金化させ得る。次いで、通常は非酸化雰囲気下、例えば不活性雰囲気下に、乾燥させて粉末状のナノコンポジット熱電変換材料を得ることができる。   Since the composite nanoparticle of thermoelectric material / dispersant is obtained as a slurry of a solvent such as ethanol by the above-described method, the composite nanoparticle is usually mixed with a solvent such as ethanol or a mixed solvent of a large amount of water and a small amount of solvent (for example, And a volume ratio of water: solvent = 100: 25 to 75), and then washed, in a sealed pressurized container, for example, in a sealed autoclave, at a temperature of 200 to 400 ° C. for 10 hours or more, for example, 10 to 100 It can be alloyed by hydrothermal treatment for about 24 to 100 hours. Next, it is usually dried under a non-oxidizing atmosphere, for example, an inert atmosphere, to obtain a powdery nanocomposite thermoelectric conversion material.

また、バルク体を得る必要がある場合は、前記の粉末状のナノコンポジット熱電変換材料を400〜600℃の温度でSPS焼結(放電プラズマ焼結:Spark Plasma Sintering)することによって、ナノコンポジット熱電変換材料バルク体を得ることができる。
前記のSPS焼結は、パンチ(上部、下部)、電極(上部、下部)、ダイおよび加圧装置を備えたSPS焼結機を用いて行うことができる。
また、焼結の際に、焼結機の焼結チャンバのみを外気から隔離して不活性の焼結雰囲気にしてもよくあるいはシステム全体をハウジングで囲んで不活性雰囲気にしてもよい。
When it is necessary to obtain a bulk body, the powdery nanocomposite thermoelectric conversion material is subjected to SPS sintering (discharge plasma sintering: Spark Plasma Sintering) at a temperature of 400 to 600 ° C. A bulk conversion material can be obtained.
The SPS sintering can be performed using an SPS sintering machine equipped with a punch (upper part, lower part), an electrode (upper part, lower part), a die and a pressure device.
Further, at the time of sintering, only the sintering chamber of the sintering machine may be isolated from the outside air to be an inert sintering atmosphere, or the entire system may be surrounded by a housing to be an inert atmosphere.

前記の方法によって、前記のように熱電材料の母相に分散材の多孔質ナノ粒子が分散され母相の熱電材料が空孔内に入り込んでいて、熱伝導率が0.7W/m/K以下である粉末状又はバルク状のナノコンポジット熱電変換材料を得ることができる。   By the above method, the porous nano particles of the dispersing material are dispersed in the matrix of the thermoelectric material as described above, and the thermoelectric material of the matrix has entered the pores, and the thermal conductivity is 0.7 W / m / K. The following powdery or bulk nanocomposite thermoelectric conversion material can be obtained.

本発明のナノコンポジット熱電変換材料を用いて、それ自体公知の方法によって、N型ナノコンポジット熱電変換材料、P型ナノコンポジット熱電変換材料、電極および絶縁性基板を組み立て得る。   Using the nanocomposite thermoelectric conversion material of the present invention, an N-type nanocomposite thermoelectric conversion material, a P-type nanocomposite thermoelectric conversion material, an electrode, and an insulating substrate can be assembled by a method known per se.

本明細書では、実施態様として特定の熱電材料と分散材との組合せに基いて具体的に説明したが、本発明は前記特定の化学組成の熱電材料と分散材との組合せに限定されず、本発明における特徴を満足するものであれば任意の熱電材料の母相と分散材の多孔質ナノ粒子との組合せに対して適用することが可能である。   In the present specification, the embodiment is specifically described based on a combination of a specific thermoelectric material and a dispersion material, but the present invention is not limited to the combination of the thermoelectric material and the dispersion material having the specific chemical composition, As long as the characteristics of the present invention are satisfied, the present invention can be applied to a combination of a matrix of any thermoelectric material and porous nanoparticles of a dispersion material.

以下、本発明の実施例を示す。
以下の各例において、得られた熱電変換材料の評価は以下に示す方法によって行った。なお、以下の測定法は例示であって同等の測定法を用いて同様に測定し得る。
1.STEM試料作製
直径10mmx1〜2mmの焼結体をアイソメリットにより1〜2mmx1〜2mmに切り出した。その後、厚さが100μm以下になるまで機械研磨を行って試料を作製した。その後、STEM用Cuメッシュに接着剤(商品名:アラルダイト)で上記試料を接着させ、乾燥した。次に、それをディンプルグラインダー(GATAN製)により一部分を20μm以下の厚さになるまで機械研削した。その後、Arイオンミリング(GATAN製)を用いて、薄くなった一部分の厚さが10〜100nmになるまで薄片化した。
Examples of the present invention will be described below.
In each of the following examples, the obtained thermoelectric conversion material was evaluated by the following method. In addition, the following measuring methods are illustrations, and can be similarly measured using an equivalent measuring method.
1. STEM Sample Preparation A sintered body having a diameter of 10 mm × 1 to 2 mm was cut into 1 to 2 mm × 1 to 2 mm by isomerit. Thereafter, mechanical polishing was performed until the thickness became 100 μm or less to prepare a sample. Thereafter, the sample was bonded to a Cu mesh for STEM with an adhesive (trade name: Araldite) and dried. Next, it was mechanically ground with a dimple grinder (manufactured by GATAN) until a part of the film was 20 μm or less in thickness. Thereafter, using Ar ion milling (manufactured by GATAN), the thinned portion was thinned until the thickness of the thinned portion became 10 to 100 nm.

2.STEM観察
上記の試料作製工程にて厚さが100nm以下になった部分についてSTEM観察を行った。STEM観察の条件は以下の通りである。
装置:テクナイ(FEI社製)
加速電圧:300kV
3.界面粗さの解析
各試料について高分解能STEM像を撮影し、直接観察を行った。撮影した高分解能像をFFT変換し、IFFT(逆フーリエ)変換することで、格子情報のみを取り出して画像解析を行って、平均値である界面粗さを求めた。
2. STEM Observation STEM observation was performed on the portion where the thickness became 100 nm or less in the sample preparation process. The conditions for STEM observation are as follows.
Equipment: Technai (manufactured by FEI)
Acceleration voltage: 300kV
3. Analysis of interface roughness High resolution STEM images of each sample were taken and directly observed. The captured high-resolution image was subjected to FFT transform and IFFT (inverse Fourier transform) to extract only the lattice information, and image analysis was performed to obtain the average interface roughness.

4.界面密度の測定
STEMにより約50個の粒子の粒径を測定し、平均化したものから界面密度を算出した。
5.熱伝導率の測定
定常法熱伝導率評価法による(測定温度:27℃)。
4). Measurement of Interface Density The particle size of about 50 particles was measured by STEM, and the interface density was calculated from the average.
5). Measurement of thermal conductivity According to a steady-state thermal conductivity evaluation method (measurement temperature: 27 ° C.).

実施例1
図5に示すフローチャートに従って、以下に示す工程で液相合成を行った。
原料スラリーの調製
エタノール100mLに、下記原料を混合してスラリーを調製した。
母相原料 塩化ビスマス(BiCl) 0.4g
塩化アンチモン(SbCl)1.34g
母相原料兼分散粒子原料
塩化テルル(TeCl) 2.56g
メソポーラスシリカ 0.19g
(アドマテックス社製、商品名:アドマポーラス、エタノールスラリーとして使用、平均細孔径:約4nm、平均粒径400nm)
Example 1
According to the flowchart shown in FIG. 5, liquid phase synthesis was performed in the following steps.
Preparation of raw material slurry The following raw material was mixed with 100 mL of ethanol to prepare a slurry.
Mother phase raw material Bismuth chloride (BiCl 3 ) 0.4 g
Antimony chloride (SbCl 3 ) 1.34 g
Matrix raw material and dispersed particle raw material
Tellurium chloride (TeCl 4 ) 2.56 g
Mesoporous silica 0.19g
(Manufactured by Admatechs, trade name: Admaporous, used as ethanol slurry, average pore size: about 4 nm, average particle size 400 nm)

還元
エタノール100mlに還元剤としてNaBH2.8gを溶解した溶液を上記原料スラリーに滴下した。
還元により析出したメソポーラスシリカを含んだエタノールスラリーを、水500ml+エタノール300mlの溶液でろ過・洗浄し、更にエタノール300mLでろ過・洗浄した。
Reduction A solution obtained by dissolving 2.8 g of NaBH 4 as a reducing agent in 100 ml of ethanol was added dropwise to the raw material slurry.
The ethanol slurry containing mesoporous silica precipitated by reduction was filtered and washed with a solution of 500 ml of water and 300 ml of ethanol, and further filtered and washed with 300 ml of ethanol.

熱処理
その後、密閉式のオートクレーブに装入し、240℃×48hrの水熱処理を行なって母材を合金化させた。
次いで、Nガスフロー雰囲気で乾燥させ、粉末を回収した。このとき、約2.9gの粉末が回収された。
焼結
回収した粉末を360℃で放電プラズマ焼結(SPS)し、熱電材料(Bi,Sb)Teから成る母材(中に、分散材として20vol%のメソポーラシシリカが分散したナノコンポジット熱電変換材料を得た。
Heat treatment After that, it was placed in a closed autoclave and hydrothermally treated at 240 ° C. for 48 hours to alloy the base material.
Subsequently, it was dried in an N 2 gas flow atmosphere, and the powder was recovered. At this time, about 2.9 g of powder was recovered.
Sintering The collected powder is subjected to spark plasma sintering (SPS) at 360 ° C., and a base material (in which 20 vol% mesoporous silica is dispersed as a dispersion material) is made of a thermoelectric material (Bi, Sb) 2 Te 3. A composite thermoelectric conversion material was obtained.

構成相の観察
得られた粉末をSTEM観察した。図6に外観STEM像を、図7にメソポーラスシリカを正面から見た断面像を、図8にメソポーラスを側面から見た断面像を示す。
図7から、メソポーラスシリカの細孔の中に熱電材料(Bi,Sb)Teが埋まっているため、断面ではアイランド状に黒点が見られる。
また、図8から、ナノコンポジット熱電変換材料中に非常に大きな(10nm)界面粗さが発生している。
性能
以下に、構造的な特徴である平均粒径、界面密度、界面粗さと熱伝導率、熱伝導率低下率を示す。
Observation of constituent phase The obtained powder was observed by STEM. FIG. 6 shows an appearance STEM image, FIG. 7 shows a cross-sectional image of the mesoporous silica viewed from the front, and FIG. 8 shows a cross-sectional image of the mesoporous viewed from the side.
From FIG. 7, since the thermoelectric material (Bi, Sb) 2 Te 3 is buried in the pores of the mesoporous silica, black spots are seen in an island shape in the cross section.
Further, from FIG. 8, very large (10 nm) interface roughness is generated in the nanocomposite thermoelectric conversion material.
Performance The following are the structural characteristics of average particle diameter, interface density, interface roughness and thermal conductivity, and thermal conductivity reduction rate.

ナノコンポジット熱電変換材料の評価結果
分散材:平均粒径400nmのメソポーラスシリカ
界面密度(1/nm):0.005
界面粗さ(nm):10
熱伝導率(W/m/K):0.7
熱伝導低下率(%):53
熱伝導率低下率は、比較のための従来例として最良と思われる文献に記載の後述の参考例1で得られた熱電変換材料の熱伝導率に対する低下率を示す。
実施例1のナノコンポジット熱電変換材料は従来値に対して熱伝導率が約1/2と顕著に改善されたことが分かる。
Evaluation result of nanocomposite thermoelectric conversion material Dispersant: Mesoporous silica interface density (1 / nm) having an average particle diameter of 400 nm: 0.005
Interface roughness (nm): 10
Thermal conductivity (W / m / K): 0.7
Thermal conduction reduction rate (%): 53
The thermal conductivity decrease rate indicates the decrease rate with respect to the thermal conductivity of the thermoelectric conversion material obtained in Reference Example 1 described later described in the literature considered to be the best as a conventional example for comparison.
It can be seen that the nanocomposite thermoelectric conversion material of Example 1 has a markedly improved thermal conductivity of about ½ of the conventional value.

比較例1
分散材として、平均粒径400nmのメソポーラスシリカに代えて平均粒径400nmの球状シリカ(表面に穴がない中実なシリカ、PGMスラリーとして使用し、PGM:プロピレングリコール1−モノメチルエーテル)を用いた他は実施例1と同様に実施して、球状シシリカ粒子が分散したナノコンポジット熱電変換材料を得た。
得られたナノコンポジット熱電変換材料についての評価結果を以下に示す。
ナノコンポジット熱電変換材料の評価結果
分散材:平均粒径400nmの球状シリカ
界面密度(1/nm):0.005
界面粗さ(nm):0.1
熱伝導率(W/m/K):1.3
熱伝導低下率(%):13
比較例1のナノコンポジット熱電変換材料は従来値に対して熱伝導率が少ししか向上していない。
Comparative Example 1
Instead of mesoporous silica having an average particle size of 400 nm, spherical silica (solid silica having no holes on the surface, used as PGM slurry, PGM: propylene glycol 1-monomethyl ether) was used as a dispersion material. Others were carried out in the same manner as in Example 1 to obtain a nanocomposite thermoelectric conversion material in which spherical silica silica particles were dispersed.
The evaluation result about the obtained nanocomposite thermoelectric conversion material is shown below.
Evaluation results of nanocomposite thermoelectric conversion material Dispersant: Spherical silica interface density with average particle size of 400 nm (1 / nm): 0.005
Interface roughness (nm): 0.1
Thermal conductivity (W / m / K): 1.3
Thermal conductivity reduction rate (%): 13
The nanocomposite thermoelectric conversion material of Comparative Example 1 has a slightly improved thermal conductivity with respect to the conventional value.

参考例1
文献:J. Jiang et al. Journal of Crystal Growth 277(2005)258-263に記載の方法に従って、純度99.9%のBi、Sb、Te粉末をカーボンコーティングされた石英管に封入し、ロッキング炉内で、700℃まで加熱して(BiTe(SbTe1−XのXを変えて合金を作製した。その後、ゾーンメルテリィング炉(単結晶を作製する装置)で0.6mm/hの成長速度で結晶材を作製した。
上記のうち、実施例1で得られた熱電変換材料と組成が最も近いものは(BiTe(SbTe1−Xの中でX=0.24、すなわちBi0.48Sb1.52Teのものであった。この熱伝導率=1.5W/m/Kであった。
Reference example 1
Literature: According to the method described in J. Jiang et al. Journal of Crystal Growth 277 (2005) 258-263, Bi, Sb, Te powder with a purity of 99.9% was enclosed in a carbon-coated quartz tube, and a rocking furnace The alloy was produced by heating to 700 ° C. and changing X of (Bi 2 Te 3 ) X (Sb 2 Te 3 ) 1-X . Thereafter, a crystal material was produced at a growth rate of 0.6 mm / h in a zone melting furnace (an apparatus for producing a single crystal).
Among the above, those having the closest composition to the thermoelectric conversion material obtained in Example 1 are (Bi 2 Te 3 ) X (Sb 2 Te 3 ) 1-X where X = 0.24, that is, Bi 0. 48 Sb 1.52 Te 3 . The thermal conductivity was 1.5 W / m / K.

本発明によれば、熱電材料の母相(マトリックス)に分散材のナノ粒子が分散された熱電変換材料であって、低い熱伝導率κを可能とする熱電変換材料およびそのような熱電変換材料製造方法が提供される。   According to the present invention, a thermoelectric conversion material in which nanoparticles of a dispersion material are dispersed in a parent phase (matrix) of a thermoelectric material, the thermoelectric conversion material enabling low thermal conductivity κ, and such a thermoelectric conversion material A manufacturing method is provided.

Claims (2)

熱電変換材料の母相に分散材のナノ粒子が分散されたナノコンポジット熱電変換材料であって、前記分散材が粒子外表面に開放された空孔を持つ多孔質ナノ粒子であり、且つ前記母相の熱電材料が前記空孔内に入り込んでいるナノコンポジット熱電変換材料。   A nanocomposite thermoelectric conversion material in which nanoparticles of a dispersion material are dispersed in a matrix of a thermoelectric conversion material, wherein the dispersion material is a porous nanoparticle having pores opened on the outer surface of the particle, and A nanocomposite thermoelectric conversion material in which a thermoelectric material of a phase enters the pores. 溶媒中、熱電材料の前駆体物質の塩と、粒子外表面に開放された空孔を持つ多孔質ナノ粒子とを含むスラリーに還元剤を滴下することにより、熱電材料と分散材の多孔質ナノ粒子との混合体を得る工程を含む、母相の熱電材料が前記空孔内に入り込んでいるナノコンポジット熱電変換材料の製造方法。   By adding a reducing agent to a slurry containing a salt of a precursor material of a thermoelectric material in a solvent and porous nanoparticles having pores opened on the outer surface of the particle, the porous nanoparticle of the thermoelectric material and the dispersion material is dropped. The manufacturing method of the nanocomposite thermoelectric conversion material in which the thermoelectric material of a parent phase has penetrated in the said void | hole including the process of obtaining a mixture with particle | grains.
JP2009285380A 2009-12-16 2009-12-16 Nano-composite thermoelectric conversion material and method of manufacturing the same Pending JP2011129635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285380A JP2011129635A (en) 2009-12-16 2009-12-16 Nano-composite thermoelectric conversion material and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285380A JP2011129635A (en) 2009-12-16 2009-12-16 Nano-composite thermoelectric conversion material and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011129635A true JP2011129635A (en) 2011-06-30

Family

ID=44291931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285380A Pending JP2011129635A (en) 2009-12-16 2009-12-16 Nano-composite thermoelectric conversion material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011129635A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219116A (en) * 2012-04-05 2013-10-24 Toyota Motor Corp Nanocomposite thermoelectric conversion material
JP2014239160A (en) * 2013-06-07 2014-12-18 パナソニック株式会社 Thermoelectric element and thermoelectric module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219116A (en) * 2012-04-05 2013-10-24 Toyota Motor Corp Nanocomposite thermoelectric conversion material
JP2014239160A (en) * 2013-06-07 2014-12-18 パナソニック株式会社 Thermoelectric element and thermoelectric module

Similar Documents

Publication Publication Date Title
EP2331457B1 (en) Nanocomposite thermoelectric conversion material, thermoelectric conversion element including the same, and method of producing nanocomposite thermoelectric conversion material
Mun et al. Boundary engineering for the thermoelectric performance of bulk alloys based on bismuth telluride
JP5206768B2 (en) Nanocomposite thermoelectric conversion material, method for producing the same, and thermoelectric conversion element
JP5024393B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
EP2442930B1 (en) Nanocomposite thermoelectric conversion material and method of producing the same
WO2008149871A1 (en) Thermoelectric conversion element, and method for production thereof
US8568607B2 (en) High-pH synthesis of nanocomposite thermoelectric material
JP6054606B2 (en) Thermoelectric semiconductor
US20130330225A1 (en) Production method for nanocomposite thermoelectric conversion material
JP5149761B2 (en) BiTe / Ceramics / Nanocomposite Thermoelectric Material Manufacturing Method
KR101776899B1 (en) Thermoelectric powder and thermoelectric materials manufactured using the same
JP2011129635A (en) Nano-composite thermoelectric conversion material and method of manufacturing the same
JP5853483B2 (en) Nanocomposite thermoelectric conversion material
JP2008108876A (en) Thermoelectric conversion element and manufacturing method therefor
KR20170024471A (en) Thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
JP6747828B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP2011159871A (en) Method of forming nanocomposite thermoelectric material thin film
JP6333204B2 (en) Thermoelectric conversion material, method for producing the same, and thermoelectric conversion element using the same
Chen et al. Facile hydrothermal synthesis of AgPb 10 LaTe 12 materials: controlled synthesis, growth mechanism and shape-dependent electrical transportation properties
JP2016127258A (en) Thermoelectric conversion material, production method therefor and thermoelectric conversion element using the same
JP2012023201A (en) Manufacturing method of thermoelectric conversion material
KR20170024467A (en) Thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
JP5397500B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
US20160190422A1 (en) Thermoelectric conversion material, manufacturing method of the same, and thermoelectric conversion device using the same
Kadel Synthesis and Characterization of Thermoelectric Nanomaterials