JP2011159871A - Method of forming nanocomposite thermoelectric material thin film - Google Patents

Method of forming nanocomposite thermoelectric material thin film Download PDF

Info

Publication number
JP2011159871A
JP2011159871A JP2010021419A JP2010021419A JP2011159871A JP 2011159871 A JP2011159871 A JP 2011159871A JP 2010021419 A JP2010021419 A JP 2010021419A JP 2010021419 A JP2010021419 A JP 2010021419A JP 2011159871 A JP2011159871 A JP 2011159871A
Authority
JP
Japan
Prior art keywords
thermoelectric material
thin film
dispersed
nanoparticles
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010021419A
Other languages
Japanese (ja)
Inventor
Tateya Murai
盾哉 村井
Takushi Kita
拓志 木太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010021419A priority Critical patent/JP2011159871A/en
Publication of JP2011159871A publication Critical patent/JP2011159871A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a thermoelectric material thin film capable of giving a nanocomposite thermoelectric material thin film in which dispersant nanoparticles composed of insulating materials are dispersed in the mother phase of the thermoelectric material. <P>SOLUTION: The forming method of the thermoelectric material thin film formes the nanocomposite thermoelectric material thin film in which the dispersant nanoparticles are dispersed in the mother phase of the thermoelectric material on a substrate by using a material in which the dispersant nanoparticles are dispersed in the thermoelectric material as a target and by sputtering by beam irradiation which has a larger beam diameter than particle sizes of the dispersant nanoparticles. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ナノコンポジット熱電材料薄膜の製造方法に関し、さらに詳しくは熱電材料中に分散材粒子が均一に分散したナノコンポジット熱電材料薄膜の製造方法に関する。   The present invention relates to a method for producing a nanocomposite thermoelectric material thin film, and more particularly to a method for producing a nanocomposite thermoelectric material thin film in which dispersed particles are uniformly dispersed in a thermoelectric material.

近年、地球温暖化問題から二酸化炭素排出量を削減するために、化石燃料から得られるエネルギーの割合を低減する技術への関心が益々増大しており、その1つとして未利用廃熱エネルギーを電気エネルギーに直接変換し得る熱電材料が挙げられる。
熱電材料とは、火力発電のように熱を一旦運動エネルギーに変換しそれから電気エネルギーに変換する2段階の工程を必要とせず、熱から直接に電気エネルギーに変換することを可能とする材料である。
In recent years, in order to reduce carbon dioxide emissions due to the global warming problem, there is an increasing interest in technologies that reduce the proportion of energy obtained from fossil fuels. Thermoelectric materials that can be directly converted into energy are listed.
A thermoelectric material is a material that enables direct conversion from heat to electric energy without the need for a two-step process of converting heat into kinetic energy and then converting it into electrical energy as in thermal power generation. .

そして、熱から電気エネルギーへの変換は、通常熱電材料から成形したバルク体の両端の温度差を利用して行われる。この温度差によって電圧が生じる現象はゼーペックにより発見されたのでゼーペック効果と呼ばれている。
この熱電材料の性能は、次式で求められる性能指数Zで表わされる。
Z=ασ/κ(=Pf/κ)
The conversion from heat to electrical energy is usually performed using the temperature difference between both ends of a bulk body formed from a thermoelectric material. The phenomenon in which a voltage is generated due to this temperature difference was discovered by Seepec and is called the Seepek effect.
The performance of this thermoelectric material is represented by a figure of merit Z obtained by the following equation.
Z = α 2 σ / κ (= Pf / κ)

ここで、αは熱電材料のゼーベック係数、σは熱電材料の導電率、κは熱電材料の熱伝導率である。ασの項をまとめて出力因子Pfという。そして、Zは温度の逆数の次元を有し、この性能指数Zに絶対温度Tを乗じて得られるZTは無次元の値となる。そしてこのZTを無次元性能指数と呼び、熱電材料の性能を表す指標として用いられている。
熱電材料が幅広く使用されるためにはその性能をさらに向上させることが求められている。そして、熱電材料の性能向上には前記の式から明らかなように、より高いゼーベック係数α、より高い導電率σ、より低い熱伝導率κが求められる。
Here, α is the Seebeck coefficient of the thermoelectric material, σ is the conductivity of the thermoelectric material, and κ is the heat conductivity of the thermoelectric material. The terms α 2 σ are collectively referred to as an output factor Pf. Z has a dimension of the reciprocal of temperature, and ZT obtained by multiplying the figure of merit Z by the absolute temperature T is a dimensionless value. This ZT is called a dimensionless figure of merit and is used as an index representing the performance of the thermoelectric material.
In order to use thermoelectric materials widely, it is required to further improve the performance. As is apparent from the above formula, higher Seebeck coefficient α, higher conductivity σ, and lower thermal conductivity κ are required to improve the performance of the thermoelectric material.

しかし、これらすべての項目を同時に改良することは困難であり、熱電材料の前記項目のいずれかを改良する目的で多くの試みがなされている。
また、基板上に薄膜を形成する手段の1つとしてスパッタリングが知られており、ターゲットとして単一の物質だけでなく2種以上の物質を組み合わせて用いることにより、複合的な特性を有する機能性材料が得られることから、この分野でも様々な技術が提案されている。
However, it is difficult to improve all these items at the same time, and many attempts have been made to improve any of the above items of thermoelectric materials.
Sputtering is also known as one of the means for forming a thin film on a substrate, and it has a composite property by using not only a single substance but also a combination of two or more substances as a target. Various techniques have been proposed in this field because materials can be obtained.

例えば、特許文献1には、真空槽中に所望の信号パターンが形成された基板と金属材料と樹脂膜生成物質とを共に収納し、基板の信号パターン面に前記金属が混入された樹脂膜をスパッタリングして薄膜層を形成する光情報記録媒体の製造方法が記載されている。
また、特許文献2には、半導体微粒子とマトリックスを与えるテルル系ガラスの複合ガラスをターゲットとしてスパッタリング法を用いて半導体微粒子をテルル系ガラスマトリックスに分散させた薄膜を作製する非線形光学材料の製造方法が記載されている。
For example, in Patent Document 1, a substrate on which a desired signal pattern is formed in a vacuum chamber, a metal material, and a resin film generating substance are housed together, and a resin film in which the metal is mixed on the signal pattern surface of the substrate is provided. A method of manufacturing an optical information recording medium in which a thin film layer is formed by sputtering is described.
Further, Patent Document 2 discloses a method for producing a nonlinear optical material for producing a thin film in which semiconductor fine particles are dispersed in a tellurium-based glass matrix by using a sputtering method using a tellurium-based glass composite glass that gives semiconductor fine particles and a matrix as a target. Are listed.

また、特許文献3には、不活性ガス雰囲気中でターゲット材料にパルスレーザ光を照射し、レーザアブレーションにより原子を放出させて粒子を生成させ、粒子をビームとして引き出し、引き出された粒子の表面に異種の物質相を形成し、マトリクス用物質相で被覆された熱電材ナノ粒子を基板上に堆積させる熱電変換材料の製造方法が記載されている。そして、具体例として、チャンバ内でターゲットとマトリクス用材料供給源とを別々の箇所から供給して、ナノ微粒子とアモルファスSiO膜とが堆積した熱電変換材料を得た例が示されている。しかし、ナノ微粒子が分散したナノコンポジットについては記載されていない。 Patent Document 3 discloses that a target material is irradiated with pulsed laser light in an inert gas atmosphere, atoms are emitted by laser ablation to generate particles, and the particles are extracted as a beam. A method of manufacturing a thermoelectric conversion material is described in which thermoelectric material nanoparticles that form different types of material phases and are coated with a matrix material phase are deposited on a substrate. As a specific example, there is shown an example in which a target and a matrix material supply source are supplied from different locations in a chamber to obtain a thermoelectric conversion material in which nanoparticles and an amorphous SiO 2 film are deposited. However, it does not describe a nanocomposite in which nanoparticle is dispersed.

また、特許文献4には、強磁性材の中に非磁性材の粒子が分散した非磁性材粒子分散型強磁性材スパッタリングターゲットが記載されている。そして、具体例として、強磁性材の微粉と非磁性材のSiO粉とを1000〜1200℃の温度、例えば1200℃で焼結した強磁性材の中に非磁性材である細紐状の微細なSiOの粒子が分散したスパッタリングターゲットを使用してDCスパッタにより成膜した例が示されている。 Patent Document 4 describes a non-magnetic material particle-dispersed ferromagnetic sputtering target in which non-magnetic material particles are dispersed in a ferromagnetic material. As a specific example, a ferromagnetic material fine powder and a non-magnetic material SiO 2 powder sintered at a temperature of 1000 to 1200 ° C., for example, 1200 ° C. An example in which a film is formed by DC sputtering using a sputtering target in which fine SiO 2 particles are dispersed is shown.

さらに、特許文献5には、パルスレーザーアブレーション法を用いて、ターゲットとして、貴金属ナノ粒子を構成する第1の金属と無機材料を構成する第2の金属との合金又は複合体を用いて基板上に貴金属ナノ粒子の周りを無機材料が配する構造の貴金属ナノ粒子分散薄膜を製造する方法が記載されている。そして、具体例として、第1の金属の小板と第2の金属又は無機材料の小板とを端面において接合した板状のもの、あるいは2つの板を積層したものをターゲットとして用いること、そしてこれらを用いて薄膜を得た例が示されている。   Further, Patent Document 5 discloses that a pulse laser ablation method is used to form a target on a substrate using an alloy or a composite of a first metal constituting noble metal nanoparticles and a second metal constituting an inorganic material. Describes a method for producing a noble metal nanoparticle-dispersed thin film having a structure in which an inorganic material is arranged around noble metal nanoparticles. And, as a specific example, using a plate-like one obtained by joining a first metal platelet and a second metal or inorganic material platelet at the end face, or a laminate of two plates as a target, and The example which obtained the thin film using these is shown.

特開昭63−282286号公報JP-A 63-282286 特開平3−168728号公報Japanese Patent Laid-Open No. 3-168728 特開2002−076452号公報JP 2002-076452 A 国際公開2007−080781号公報International Publication No. 2007-080781 特開2009−018403号公報JP 2009-018403 A

本発明者らは、熱電材料の性能向上を図るためには熱伝導率を低減することが重要であり、それには熱電材料の母相中に分散材ナノ粒子が分散したナノコンポジット熱電材料薄膜が適当であることを見出した。
しかし、上記の従来公知の技術を適用したのでは、熱電材料の母相中に絶縁材料からなる分散材ナノ粒子が分散したナノコンポジット熱電材料薄膜を得ることは困難であることが明らかになった。
従って、本発明の目的は、熱電材料の母相中に絶縁材料からなる分散材ナノ粒子が分散したナノコンポジット熱電材料薄膜を与え得る熱電材料薄膜の製造方法を提供することである。
In order to improve the performance of thermoelectric materials, it is important for the present inventors to reduce the thermal conductivity. For this purpose, a nanocomposite thermoelectric material thin film in which dispersed nanoparticles are dispersed in the matrix of the thermoelectric material is used. I found it suitable.
However, it has been found that it is difficult to obtain a nanocomposite thermoelectric material thin film in which a dispersion nanoparticle made of an insulating material is dispersed in a matrix of a thermoelectric material by applying the above-described conventionally known technology. .
Accordingly, an object of the present invention is to provide a method for producing a thermoelectric material thin film capable of providing a nanocomposite thermoelectric material thin film in which a dispersion nanoparticle made of an insulating material is dispersed in a matrix of the thermoelectric material.

本発明は、熱電材料中に分散材ナノ粒子が分散した原料をターゲットとして用いて、該分散材ナノ粒子の粒子サイズより大きいビーム径を有するビーム照射によってスパッタリングして基板上に熱電材料の母相中に分散材のナノ粒子が分散されたナノコンポジット熱電材料薄膜を形成することを特徴とする熱電材料薄膜の製造方法に関する。
本発明において、ナノ粒子とは、粒径が1〜100nmの範囲の微粒子を意味する。
The present invention uses a raw material in which a dispersion nanoparticle is dispersed in a thermoelectric material as a target, and performs sputtering by beam irradiation having a beam diameter larger than the particle size of the dispersion nanoparticle to perform a parent phase of the thermoelectric material on a substrate. The present invention relates to a method for producing a thermoelectric material thin film, comprising forming a nanocomposite thermoelectric material thin film in which nanoparticles of a dispersing material are dispersed.
In the present invention, the nanoparticle means a fine particle having a particle size in the range of 1 to 100 nm.

本発明によれば、熱電材料の母相中に絶縁材料からなる分散材ナノ粒子が分散したナノコンポジット熱電材料薄膜を容易に得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the nanocomposite thermoelectric material thin film in which the dispersion | distribution material nanoparticle which consists of insulating materials was disperse | distributed in the parent phase of the thermoelectric material can be obtained easily.

図1は、本発明の一実施態様の工程におけるターゲットと薄膜の状態を示す模式図である。FIG. 1 is a schematic diagram showing the state of a target and a thin film in the process of one embodiment of the present invention. 図2は、本発明の一実施態様のナノコンポジット熱電材料薄膜を形成している成膜工程を示す模式図である。FIG. 2 is a schematic diagram showing a film forming process for forming a nanocomposite thermoelectric material thin film according to an embodiment of the present invention. 図3は、実施例1で得られたナノコンポジット熱電材料薄膜の高分解能TEM像の写しである。FIG. 3 is a copy of a high-resolution TEM image of the nanocomposite thermoelectric material thin film obtained in Example 1. 図4は、実施例1で得られたナノコンポジット熱電材料薄膜の分散材を構成する元素であるSiのEELSマッピング像の写しである。FIG. 4 is a copy of an EELS mapping image of Si, which is an element constituting the dispersion material of the nanocomposite thermoelectric material thin film obtained in Example 1.

本発明の実施態様によれば、熱電材料中に分散材ナノ粒子が分散した原料をターゲットとして用いて、該分散材ナノ粒子の粒子サイズより大きいビーム径を有する電子線ビーム照射によってスパッタリングして、基板上に熱電材料の母相中に分散材のナノ粒子が分散されたナノコンポジット熱電材料薄膜を形成することによって、ナノコンポジット熱電材料薄膜が得られる。   According to an embodiment of the present invention, sputtering is performed by irradiation with an electron beam having a beam diameter larger than the particle size of the dispersion nanoparticle using a raw material in which the dispersion nanoparticle is dispersed in a thermoelectric material as a target. A nanocomposite thermoelectric material thin film is obtained by forming a nanocomposite thermoelectric material thin film in which nanoparticles of a dispersion material are dispersed in a matrix of a thermoelectric material on a substrate.

以下、本発明について、図1および図2を用いて説明する。
図1を参照すると、熱電材料中に分散材ナノ粒子が分散した原料をターゲットとして用いて、電子線ビーム照射し、その際に該分散材ナノ粒子の粒子サイズより大きいビーム径を有する電子線ビーム照射によってスパッタリングすると、ビームの照射領域内に分散粒子と熱電材料のマトリクスが存在するので、分散粒子と熱電材料のマトリクスとを同時にスパッタリングすることができ、基板上に熱電材料の母相中に絶縁材料からなる分散材ナノ粒子が均一に分散したナノコンポジット熱電材料薄膜を作製することが可能となる。
Hereinafter, the present invention will be described with reference to FIGS. 1 and 2.
Referring to FIG. 1, an electron beam beam having a beam diameter larger than the particle size of the dispersion nanoparticle is irradiated using the raw material in which the dispersion nanoparticle is dispersed in the thermoelectric material as a target. When sputtering by irradiation, there is a matrix of dispersed particles and thermoelectric material in the irradiation area of the beam, so that the dispersed particles and matrix of thermoelectric material can be sputtered simultaneously and insulated on the substrate in the matrix of the thermoelectric material. It is possible to produce a nanocomposite thermoelectric material thin film in which dispersed nanoparticles of materials are uniformly dispersed.

本発明においては、図2に示すように、成膜装置内に前記のターゲットおよび基板を固定し、ビーム、例えば電子線を照射し、その際に前記分散材ナノ粒子の粒子サイズより大きいビーム径を有するビーム照射によってスパッタリングして基板上に熱電材料の母相中に分散材のナノ粒子が分散されたナノコンポジット熱電材料薄膜を形成する。
前記のビーム照射による成膜法としては、ビームを照射し得る方法であれば任意の物理的蒸着法が用いられ得て、例えば電子線照射やレーザー照射による真空蒸着法、イオンビームスパッタリング法、イオンプレーティング法、電子線エピタキシャル成長法などが挙げられる。
本発明においては、前記分散材ナノ粒子の粒子サイズより大きいビーム径を有するビーム照射することが必要であり、前記のビーム径としては、例えば100〜500nm程度であり得る。
In the present invention, as shown in FIG. 2, the target and the substrate are fixed in a film forming apparatus and irradiated with a beam, for example, an electron beam. At this time, the beam diameter is larger than the particle size of the dispersion nanoparticle. The nanocomposite thermoelectric material thin film in which the nanoparticles of the dispersion material are dispersed in the matrix of the thermoelectric material is formed on the substrate by sputtering by beam irradiation having the following.
As the film formation method by the beam irradiation, any physical vapor deposition method can be used as long as it is a method capable of irradiating the beam. For example, vacuum deposition method by ion beam irradiation or laser irradiation, ion beam sputtering method, ion Examples thereof include a plating method and an electron beam epitaxial growth method.
In the present invention, it is necessary to irradiate a beam having a beam diameter larger than the particle size of the dispersion material nanoparticles, and the beam diameter may be about 100 to 500 nm, for example.

本発明における基板としては、本発明の方法によって得られる熱電材料薄膜の用途に応じて適宜選択し得て、例えば炭素(C)、ジルコニア、アルミナ、シリカ、炭化珪素、窒化アルミ、ムライト、チタニアなどのセラミック材料や、ポリイミド、ポリエーテルエーテルケトンなどの耐熱性樹脂材料が挙げられる。   The substrate in the present invention can be appropriately selected according to the use of the thermoelectric material thin film obtained by the method of the present invention. For example, carbon (C), zirconia, alumina, silica, silicon carbide, aluminum nitride, mullite, titania, etc. And heat-resistant resin materials such as polyimide and polyetheretherketone.

本発明において、ターゲットとして用いる熱電材料中に分散材ナノ粒子が分散した原料は、ナノオーダーの熱電材料と分散材とが複合化されたものであれば任意の方法、例えば液相還元法、ボールミルやビーズミルなどを用いる粉砕法等によって得ることができる。
本発明においては、ナノコンポジット熱電材料薄膜を構成する2種類の材料を予めナノオーダーで複合化したターゲットを用いることが必須の要件の1つであり、ターゲットは粒子であってもバルク体であってもよい。
また、前記のターゲットを構成する熱電材料と分散材ナノ粒子とは両成分が反応しないものを用いる必要がある。例えば、(Bi、Sb)2Te−Coの組み合わせはSbとCoとが反応するため不適当であり、(Bi、Sb)Te−SiOおよび(Bi、Sb、Te)−SiOは適当である。
In the present invention, the raw material in which the dispersing material nanoparticles are dispersed in the thermoelectric material used as the target may be any method as long as the nano-order thermoelectric material and the dispersing material are combined, for example, liquid phase reduction method, ball mill Or a pulverization method using a bead mill or the like.
In the present invention, it is one of the essential requirements to use a target in which two types of materials constituting the nanocomposite thermoelectric material thin film are combined in advance on the nano order. May be.
In addition, it is necessary to use a thermoelectric material and a dispersion nanoparticle constituting the target that do not react with each other. For example, (Bi, Sb) combination of 2Te 3 -Co is unsuitable for reaction with Sb and Co, (Bi, Sb) 2 Te 3 -SiO 2 and (Bi, Sb, Te) -SiO 2 is Is appropriate.

また、ターゲットの複合化サイズ(すなわち、分散材ナノ粒子径)は例えば電子線照射における電子線ビームサイズよりも小さいことが必要である。また、ターゲットのサイズがほぼそのまま基板に転写されるので、できるだけ目的の大きさに近い分散材ナノ粒子が分散した原料ターゲットを用いることが好ましい。
前記の方法によって、熱電材料中に分散材ナノ粒子が均一に分散した厚みが100〜500程度のナノコンポジット熱電材料薄膜を得ることができる。厚みが過度に小さいとナノコンポジット熱電材料薄膜の性能が低下し、厚みが過度に大きいとナノコンポジット熱電材料薄膜の熱伝導率が大きくなり好ましくない。
Further, the composite size of the target (that is, the dispersion material nanoparticle diameter) needs to be smaller than the electron beam size in, for example, electron beam irradiation. In addition, since the target size is transferred to the substrate as it is, it is preferable to use a raw material target in which dispersed nanoparticles as close to the target size as possible are dispersed.
By the above-described method, a nanocomposite thermoelectric material thin film having a thickness of about 100 to 500 in which the dispersing material nanoparticles are uniformly dispersed in the thermoelectric material can be obtained. When the thickness is excessively small, the performance of the nanocomposite thermoelectric material thin film is deteriorated, and when the thickness is excessively large, the thermal conductivity of the nanocomposite thermoelectric material thin film is increased, which is not preferable.

本発明によれば、得られるナノコンポジット熱電材料薄膜は、熱電材料中に分散材ナノ粒子が均一に分散していて熱電材料と分散材ナノ粒子との界面積が大きいため、従来のものに比べて熱伝導率が大幅に低下し得て、ターゲットを一旦作製してしまえば、あとは一回成膜するだけでよいため、従来のように交互に蒸着する必要もなく、工程が簡易化され得る。
これにより、従来技術によれば、例えば熱伝導率が極めて低い熱電材料を用いる熱電素子設計においては、一旦ナノコンポジット熱電材料バルク体を作製し、それを薄膜化、例えば1mm以下、例えば300μm程度にする必要があった薄膜化の工程を省略することを可能とし得るのである。
According to the present invention, the obtained nanocomposite thermoelectric material thin film has a larger interfacial area between the thermoelectric material and the dispersion nanoparticle because the dispersion nanoparticle is uniformly dispersed in the thermoelectric material, and thus compared with the conventional one. The thermal conductivity can be greatly reduced, and once the target is manufactured, it is only necessary to form a film once, so there is no need to alternately deposit as in the conventional case, and the process is simplified. obtain.
Thereby, according to the prior art, in the thermoelectric element design using, for example, a thermoelectric material with extremely low thermal conductivity, a nanocomposite thermoelectric material bulk body is once produced and thinned, for example, 1 mm or less, for example, about 300 μm. It may be possible to omit the thinning process that had to be performed.

本発明における分散材としては、無機の絶縁材料、例えばアルミナ、ジルコニア、チタニア、マグネシア、シリカおよびこれらを含む複合酸化物、炭化珪素、窒化アルミ、窒化ケイ素等を挙げることができる。これらの中でも、熱伝導率が低いことから、シリカ、ジルコニア、チタニアが好適である。また、用いる分散材は絶縁材料の1種であってもよくあるいは二種以上を併用してもよい。   Examples of the dispersing material in the present invention include inorganic insulating materials such as alumina, zirconia, titania, magnesia, silica and composite oxides containing these, silicon carbide, aluminum nitride, and silicon nitride. Among these, silica, zirconia, and titania are preferable because of their low thermal conductivity. Moreover, the dispersing material to be used may be one kind of insulating material, or two or more kinds may be used in combination.

本発明におけるターゲットとして用いる熱電材料中に分散材ナノ粒子が分散した原料は、例えば、熱電材料の前駆体物質の塩と、分散材ナノ粒子を含むスラリーに還元剤の溶媒溶液を滴下合成し、次いで、溶媒からの固形分の分離取得および熱電材料を得るための水熱処理による合金化、乾燥工程を続けて行うことによって得ることができる。   The raw material in which the dispersing agent nanoparticles are dispersed in the thermoelectric material used as a target in the present invention is, for example, a drop of a solvent solution of a reducing agent in a slurry containing a precursor substance of the thermoelectric material and the dispersing agent nanoparticles, Next, it can be obtained by continuously performing solidification separation and acquisition from a solvent, and alloying by hydrothermal treatment for obtaining a thermoelectric material and a drying step.

本発明における熱電材料としては、特に制限はなく、例えばBi、Sb、Ag、Pb、Ge、Cu、Sn、As、Se、Te、Fe、Mn、Co、Siから選択される少なくとも2種以上の元素を含む材料、例えばBiTe系あるいはCoおよびSbを主成分とするCoSb化合物の結晶がCo、Sb以外の元素、例えば遷移金属を含むものが挙げられる。前記の遷移金属としては、Cr、Mn、Fe、Ru、Ni、Pt、Cuなどが挙げられる。これらの遷移金属のうちNiを含む熱電材料、特に化学組成がCo1−xNiSb(式中、0.03<X<0.09、2.7<X<3.4)であるものはN型熱電材料を与え、組成中にFe、Sn、Geを含む熱電材料、例えば化学組成がCoSbSn又はCoSbGe(式中、2.7<p<3.4、0<q<0.4、p+q>3)であるものはP型熱電材料を与え得る。 There is no restriction | limiting in particular as a thermoelectric material in this invention, For example, at least 2 or more types selected from Bi, Sb, Ag, Pb, Ge, Cu, Sn, As, Se, Te, Fe, Mn, Co, Si A material containing an element, for example, a BiTe-based material or a crystal of a CoSb 3 compound containing Co and Sb as a main component contains an element other than Co and Sb, for example, a transition metal. Examples of the transition metal include Cr, Mn, Fe, Ru, Ni, Pt, and Cu. Among these transition metals, a thermoelectric material containing Ni, particularly the chemical composition is Co 1-x Ni x Sb Y (wherein 0.03 <X <0.09, 2.7 <X <3.4). Provides an N-type thermoelectric material, the composition of which includes Fe, Sn, Ge, for example a chemical composition of CoSb p Sn q or CoSb p Ge q (where 2.7 <p <3.4, 0 <Q <0.4, p + q> 3) can give a P-type thermoelectric material.

前記熱電材料の前駆体物質の塩としては、例えば、Bi、Sb、Ag、Pb、Ge、Cu、Sn、As、Se、Te、Fe、Mn、Co、Siから選択される少なくとも1種以上の元素の塩、例えばBi、Co、Ni、Sn又はGeの塩、例えば前記元素のハロゲン化物、例えば塩化物、フッ化物、臭素化物、好適には塩化物や、硫酸塩、硝酸塩などが挙げられ、前記熱電材料の他の塩としては、前記元素以外の元素、例えばSbの塩、例えば前記元素のハロゲン化物、例えば塩化物、フッ化物、臭素化物、好適には塩化物や、硫酸塩、硝酸塩などが挙げられる。   Examples of the salt of the precursor material of the thermoelectric material include at least one selected from Bi, Sb, Ag, Pb, Ge, Cu, Sn, As, Se, Te, Fe, Mn, Co, and Si. Elemental salts such as Bi, Co, Ni, Sn or Ge salts, such as halides of the elements such as chlorides, fluorides, bromides, preferably chlorides, sulfates, nitrates, etc. Other salts of the thermoelectric material include elements other than the elements such as Sb salts, such as halides of the elements such as chlorides, fluorides, bromides, preferably chlorides, sulfates, nitrates, etc. Is mentioned.

また、前記のスラリーを与える溶媒としては、前記熱電材料を均一に分散し得るもの、特に溶解し得るものであれば特に制限はなく、例えばメタノール、エタノール、イソプロパノール、ジメチルアセトアミド、N−メチルピロリドン、好適にはメタノール、エタノールなどのアルコールが挙げられる。   Further, the solvent that gives the slurry is not particularly limited as long as it can uniformly disperse the thermoelectric material, and particularly can be dissolved. For example, methanol, ethanol, isopropanol, dimethylacetamide, N-methylpyrrolidone, Preferable examples include alcohols such as methanol and ethanol.

前記の還元剤としては、前記熱電材料の塩を還元し得るものであれば特に制限はなく、例えば第三級ホスフィン、第二級ホスフィンおよび第一級ホスフィン、ヒドラジン、ヒドロキシフェニル化合物、水素、水素化物、ボラン、アルデヒド、還元性ハロゲン化物、多官能性還元体などが挙げられ、その中でも水素化ホウ素アルカリ、例えば水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム等の物質の1種類以上が挙げられる。   The reducing agent is not particularly limited as long as it can reduce the salt of the thermoelectric material. For example, tertiary phosphine, secondary phosphine and primary phosphine, hydrazine, hydroxyphenyl compound, hydrogen, hydrogen One or more kinds of substances such as alkali borohydride, such as sodium borohydride, potassium borohydride, lithium borohydride, etc. Is mentioned.

前記の方法によって、熱電材料/分散材の複合ナノ粒子が溶媒、例えばエタノールのスラリーとして得られるので、通常は複合ナノ粒子を溶媒、例えばエタノール又は多量の水と少量の溶媒との混合溶媒(例えば、容積比で水:溶媒=100:25〜75の割合)でろ過、洗浄し、密閉の加圧容器中、例えば密閉のオートクレーブ中で200〜400℃の温度、10時間以上、例えば10〜100時間、その中でも24〜100時間程度水熱処理を行って、合金化させ得る。次いで、通常は非酸化雰囲気下、例えば不活性雰囲気下に、乾燥させて粉末状のナノオーダーで複合化されたターゲットを得ることができる。   Since the composite nanoparticle of thermoelectric material / dispersant is obtained as a slurry of a solvent such as ethanol by the above-described method, the composite nanoparticle is usually mixed with a solvent such as ethanol or a mixed solvent of a large amount of water and a small amount of solvent (for example, And a volume ratio of water: solvent = 100: 25 to 75), and washed at a temperature of 200 to 400 ° C. in a sealed autoclave, for example, a sealed autoclave, for 10 hours or more, for example, 10 to 100. It can be alloyed by performing hydrothermal treatment for about 24 to 100 hours. Next, it is usually dried under a non-oxidizing atmosphere, for example, an inert atmosphere, to obtain a powdery nano-order composite target.

また、ターゲットとしてバルク体を用いる必要がある場合は、前記の粉末状の熱電材料原料を300〜600℃の温度でSPS焼結(放電プラズマ焼結:Spark Plasma Sintering)することによって、バルク体を得ることができる。
前記のSPS焼結は、パンチ(上部、下部)、電極(上部、下部)、ダイおよび加圧装置を備えたSPS焼結機を用いて行うことができる。
また、焼結の際に、焼結機の焼結チャンバのみを外気から隔離して不活性の焼結雰囲気にしてもよくあるいはシステム全体をハウジングで囲んで不活性雰囲気にしてもよい。
前記の方法によって、熱電材料の母相中に分散材のナノ粒子が分散した粉末状又はバルク状のナノコンポジット熱電材料原料を得ることができる。
In addition, when it is necessary to use a bulk body as a target, the bulk body is obtained by performing SPS sintering (discharge plasma sintering) at a temperature of 300 to 600 ° C. Obtainable.
The SPS sintering can be performed using an SPS sintering machine equipped with a punch (upper part, lower part), an electrode (upper part, lower part), a die and a pressure device.
Further, at the time of sintering, only the sintering chamber of the sintering machine may be isolated from the outside air to be an inert sintering atmosphere, or the entire system may be surrounded by a housing to be an inert atmosphere.
By the above-described method, a powdery or bulk nanocomposite thermoelectric material raw material in which nanoparticles of the dispersion material are dispersed in the matrix of the thermoelectric material can be obtained.

前記のようにして得られる熱電材料原料をターゲットとして用いて、本発明におけるスパッタリング照射法を適用することによって、N型ナノコンポジット熱電材料薄膜、P型ナノコンポジット熱電材料薄膜を得ることができる。   An N-type nanocomposite thermoelectric material thin film and a P-type nanocomposite thermoelectric material thin film can be obtained by using the thermoelectric material raw material obtained as described above as a target and applying the sputtering irradiation method in the present invention.

本明細書では、実施態様として特定の熱電材料と分散材との組合せに基いて具体的に説明しているが、本発明は前記特定の化学組成の熱電材料と分散材との組合せに限定されず、本発明における特徴を満足するものであれば任意の熱電材料の母相と分散材ナノ粒子との組合せに対して適用することが可能である。   In the present specification, the embodiment is specifically described based on a combination of a specific thermoelectric material and a dispersion material, but the present invention is limited to the combination of the thermoelectric material and the dispersion material having the specific chemical composition. However, as long as the characteristics of the present invention are satisfied, the present invention can be applied to a combination of a matrix of a thermoelectric material and a dispersion nanoparticle.

以下、本発明の実施例を示す。
以下の各例において、得られた熱電材料薄膜についての測定は以下に示す方法によって行った。なお、以下の測定法は例示であって同等の測定法を用いて同様に測定し得る。
Examples of the present invention will be described below.
In each of the following examples, the obtained thermoelectric material thin film was measured by the following method. In addition, the following measuring methods are illustrations, and can be similarly measured using an equivalent measuring method.

1.TEM(Transmission Electron Microscope:透過型電子顕微鏡)観察
装置:TECNAI(FEI社製)
2.EELS(Electron Energy Loss Spectroscopy:電子エネルギー損失分光法)観察
装置:TECNAI(FEI社製)
3.熱電材料薄膜の厚み測定
装置:TECNAI(FEI社製)
TEMにて測定
1. TEM (Transmission Electron Microscope) observation device: TECNAI (manufactured by FEI)
2. EELS (Electron Energy Loss Spectroscopy) observation device: TECNAI (manufactured by FEI)
3. Thermoelectric material thin film thickness measurement device: TECNAI (manufactured by FEI)
Measured with TEM

実施例1
以下に示す工程で液相合成を行った。
原料スラリーの調製
エタノール100mLに、下記原料を混合してスラリーを調製した。
母相原料 塩化ビスマス(BiCl) 0.5g
塩化アンチモン(SbCl)1.67g
母相原料兼分散粒子原料
塩化テルル(TeCl) 3.2g
シリカ 0.35g
(アドマテック社製、エタノールスラリーとして使用、平均粒径:5nm)
Example 1
Liquid phase synthesis was performed in the following steps.
Preparation of raw material slurry The following raw material was mixed with 100 mL of ethanol to prepare a slurry.
Mother phase raw material Bismuth chloride (BiCl 3 ) 0.5 g
1.67 g of antimony chloride (SbCl 3 )
Matrix raw material and dispersed particle raw material
Tellurium chloride (TeCl 4 ) 3.2 g
Silica 0.35g
(Manufactured by Admatech, used as ethanol slurry, average particle size: 5 nm)

還元
エタノール100mLに還元剤としてNaBH2.5gを溶解した溶液を上記原料スラリーに滴下した。
還元により析出したナノスシリカを含んだエタノールスラリーを、水500ml+エタノール300mlの溶液でろ過・洗浄し、更にエタノール300mLでろ過・洗浄した。
Reduction A solution obtained by dissolving 2.5 g of NaBH 4 as a reducing agent in 100 mL of ethanol was added dropwise to the raw material slurry.
The ethanol slurry containing nanos silica precipitated by reduction was filtered and washed with a solution of 500 ml of water and 300 ml of ethanol, and further filtered and washed with 300 ml of ethanol.

熱処理
その後、密閉式のオートクレーブに装入し、240℃×48hrの水熱処理を行なって母材を合金化させた。
次いで、Nガスフロー雰囲気で乾燥させ、粉末を回収した。このとき、約2.1gの合金粉末が回収された。
焼結
回収した粉末を360℃で放電プラズマ焼結(SPS)し、熱電材料(Bi,Sb)Teから成る母材中に、分散材として粒径5nm(平均)のシリカが分散した焼結体を得た。
Heat treatment After that, it was placed in a closed autoclave and hydrothermally treated at 240 ° C. for 48 hours to alloy the base material.
Subsequently, it was dried in an N 2 gas flow atmosphere, and the powder was recovered. At this time, about 2.1 g of alloy powder was recovered.
Sintering The recovered powder was subjected to spark plasma sintering (SPS) at 360 ° C., and a sintered material in which silica having a particle size of 5 nm (average) was dispersed as a dispersion material in a base material made of thermoelectric material (Bi, Sb) 2 Te 3. A ligature was obtained.

成膜工程
真空蒸着装置を用いて、焼結体をターゲットとして、下記条件で真空蒸着法(電子線蒸着)によってビーム照射によってスパッタリングして基板上に熱電材料の母相中に分散材のナノ粒子が分散された厚みが100nmの熱電材料薄膜を形成した。
ビーム照射条件
真空蒸着装置
基板:任意であり、カーボン
加速電圧:300kV
真空度:1×10−5Pa
ビーム径:100〜200nm
薄膜の観察
得られた熱電材料薄膜をTEM観察およびEELS観察した。図3にTEM像を、図4にEELSマッピング像を示す。
図3から、ナノサイズ(40nm)の熱電材料(Bi,Sb)Te中にナノサイズ(5nm)のSiOが均一に分散していることがわかる。
Film formation process Using a vacuum evaporation system, using a sintered body as a target, sputtering is performed by beam irradiation using the vacuum evaporation method (electron beam evaporation) under the following conditions, and nanoparticles of the dispersion material in the matrix of the thermoelectric material on the substrate A thermoelectric material thin film having a thickness of 100 nm in which was dispersed was formed.
Beam irradiation conditions Vacuum deposition equipment Substrate: Arbitrary, carbon Acceleration voltage: 300 kV
Degree of vacuum: 1 × 10 −5 Pa
Beam diameter: 100 to 200 nm
Observation of Thin Film The obtained thermoelectric material thin film was observed by TEM and EELS. FIG. 3 shows a TEM image, and FIG. 4 shows an EELS mapping image.
FIG. 3 shows that nano-sized (5 nm) SiO 2 is uniformly dispersed in the nano-sized (40 nm) thermoelectric material (Bi, Sb) 2 Te 3 .

実施例2
焼結体に代えて合金粉末をターゲットとして用いた他は実施例1と同様に実施して、基板上に熱電材料の母相中に分散材のナノ粒子が分散された熱電材料薄膜を形成した。
前記と同様にして構成相を観察したところ、実施例1と同様の結果が得られた。
Example 2
The thermoelectric material thin film in which the nanoparticles of the dispersing material were dispersed in the matrix of the thermoelectric material was formed on the substrate except that the alloy powder was used as a target instead of the sintered body. .
When the constituent phases were observed in the same manner as described above, the same results as in Example 1 were obtained.

本発明によれば、熱電材料の母相(マトリックス)に分散材のナノ粒子が分散された熱電材料薄膜であって、低い熱伝導率κを可能とする熱電材料の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the thermoelectric material which is the thermoelectric material thin film by which the nanoparticle of the dispersing material was disperse | distributed to the parent phase (matrix) of the thermoelectric material, and enables low thermal conductivity (kappa) is provided.

Claims (2)

熱電材料中に分散材ナノ粒子が分散した原料をターゲットとして用いて、該分散材ナノ粒子の粒子サイズより大きいビーム径を有するビーム照射によってスパッタリングして基板上に熱電材料の母相中に分散材のナノ粒子が分散されたナノコンポジット熱電材料薄膜を形成することを特徴とする熱電材料薄膜の製造方法。   Using a raw material in which dispersion nano particles are dispersed in a thermoelectric material as a target, the dispersion material is sputtered by beam irradiation having a beam diameter larger than the particle size of the dispersion nano particles and is dispersed in the matrix of the thermoelectric material on the substrate. A method for producing a thermoelectric material thin film, comprising forming a nanocomposite thermoelectric material thin film in which the nanoparticles are dispersed. 前記原料が、熱電材料のナノ粒子と分散材ナノ粒子との混合物を放電プラズマ焼結(SPS)法により、熱電材料のナノ粒子の形状を維持し得る条件で焼結して複合化したものである請求項1に記載の製造方法。   The raw material is a composite of a mixture of thermoelectric material nanoparticles and dispersion material nanoparticles, sintered by a discharge plasma sintering (SPS) method under conditions that can maintain the shape of the thermoelectric material nanoparticles. The manufacturing method according to claim 1.
JP2010021419A 2010-02-02 2010-02-02 Method of forming nanocomposite thermoelectric material thin film Pending JP2011159871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021419A JP2011159871A (en) 2010-02-02 2010-02-02 Method of forming nanocomposite thermoelectric material thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021419A JP2011159871A (en) 2010-02-02 2010-02-02 Method of forming nanocomposite thermoelectric material thin film

Publications (1)

Publication Number Publication Date
JP2011159871A true JP2011159871A (en) 2011-08-18

Family

ID=44591563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021419A Pending JP2011159871A (en) 2010-02-02 2010-02-02 Method of forming nanocomposite thermoelectric material thin film

Country Status (1)

Country Link
JP (1) JP2011159871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959496A (en) * 2012-05-31 2014-07-30 独立行政法人科学技术振兴机构 Thermoelectric material, method for producing same, and thermoelectric conversion module using same
KR20180058881A (en) * 2016-11-24 2018-06-04 한국기술교육대학교 산학협력단 The fabrication method of thermoelectric thin film dispersed nano particles and the thermoelectric thin film using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959496A (en) * 2012-05-31 2014-07-30 独立行政法人科学技术振兴机构 Thermoelectric material, method for producing same, and thermoelectric conversion module using same
CN103959496B (en) * 2012-05-31 2015-05-13 独立行政法人科学技术振兴机构 Thermoelectric material, method for producing same, and thermoelectric conversion module using same
KR20180058881A (en) * 2016-11-24 2018-06-04 한국기술교육대학교 산학협력단 The fabrication method of thermoelectric thin film dispersed nano particles and the thermoelectric thin film using the same
KR101944160B1 (en) * 2016-11-24 2019-04-18 한국기술교육대학교 산학협력단 The fabrication method of thermoelectric thin film dispersed nano particles and the thermoelectric thin film using the same

Similar Documents

Publication Publication Date Title
EP2331457B1 (en) Nanocomposite thermoelectric conversion material, thermoelectric conversion element including the same, and method of producing nanocomposite thermoelectric conversion material
Saberi et al. A comprehensive review on the effects of doping process on the thermoelectric properties of Bi2Te3 based alloys
Tarachand et al. A catalyst-free new polyol method synthesized hot-pressed Cu-doped Bi 2 S 3 nanorods and their thermoelectric properties
CN101969095B (en) Quasi one-dimensional nano structural thermoelectric material, device and preparation method thereof
US9461227B2 (en) Thermoelectric material including nano-inclusions, thermoelectric module and thermoelectric apparatus including the same
KR101409505B1 (en) Synthesis of silver, antimony, and tin doped bismuth telluride nanoparticles and bulk bismuth telluride to form bismuth telluride composites
US20140230868A1 (en) Graphene-containing composite laminate, thermoelectric material, and thermoelectric device including the thermoelectric material
KR101902925B1 (en) Thermoelectric material, thermoelectric element, and thermoelectric module
JP2012104560A (en) Nano-composite thermoelectric conversion material, method for manufacturing the same, and thermoelectric conversion element
KR20140103765A (en) Heterogeneous laminate comprising graphene, preparing method thereof, thermoelectric material, thermoelectric module and thermoelectric apparatus comprising same
JP2011146644A (en) Nanocomposite thermoelectric conversion material and method of manufacturing the same
JP2010027895A (en) Thermoelectric conversion element
Manzi et al. Plasma-jet printing of colloidal thermoelectric Bi 2 Te 3 nanoflakes for flexible energy harvesting
JP5149761B2 (en) BiTe / Ceramics / Nanocomposite Thermoelectric Material Manufacturing Method
KR101776899B1 (en) Thermoelectric powder and thermoelectric materials manufactured using the same
Truong Thermoelectric properties of higher manganese silicides
JP2011159871A (en) Method of forming nanocomposite thermoelectric material thin film
KR20170074013A (en) Bi-Te-Se based thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
KR102046142B1 (en) Thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
JP2011129635A (en) Nano-composite thermoelectric conversion material and method of manufacturing the same
KR102021109B1 (en) Thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
JP6333204B2 (en) Thermoelectric conversion material, method for producing the same, and thermoelectric conversion element using the same
García Preparation and characterisation of nanostructured bulk Bi 2 Te 3 thermoelectric materials using ultrasound milling
JP2012023201A (en) Manufacturing method of thermoelectric conversion material
Nabeela et al. Realizing the thermoelectric performance in cobalt doped p-CuO semiconductor by valance band flattening and effective phonon scattering approach