JP2011096717A - Nano-composite thermoelectric conversion material, and method of manufacturing the same - Google Patents

Nano-composite thermoelectric conversion material, and method of manufacturing the same Download PDF

Info

Publication number
JP2011096717A
JP2011096717A JP2009246564A JP2009246564A JP2011096717A JP 2011096717 A JP2011096717 A JP 2011096717A JP 2009246564 A JP2009246564 A JP 2009246564A JP 2009246564 A JP2009246564 A JP 2009246564A JP 2011096717 A JP2011096717 A JP 2011096717A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
phonon scattering
product
scattering particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246564A
Other languages
Japanese (ja)
Inventor
Tateya Murai
盾哉 村井
Takushi Kita
拓志 木太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009246564A priority Critical patent/JP2011096717A/en
Publication of JP2011096717A publication Critical patent/JP2011096717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nano-composite thermoelectric conversion material which does not require material for phonon scattering particles separately and achieves uniform and fine dispersion of the phonon scattering particles. <P>SOLUTION: The nano-composite thermoelectric conversion material, in which nano-sized phonon scattering particles are dispersed in a matrix formed of thermoelectric conversion material, is characterized by that oxide as a by-product during reduction of the thermoelectric conversion material is contained as the phonon scattering particle. The manufacturing method includes: a process for depositing the thermoelectric conversion material and depositing the by-product derived from a reductant by reducing a precursor solution of the thermoelectric conversion material; and a process for alloying the thermoelectric conversion material and forming oxide of the by-product by heat treatment. Preferably, NaBH<SB>4</SB>is used as the reductant, and H<SB>3</SB>BO<SB>3</SB>is generated as the by-product in reduction, and B<SB>2</SB>O<SB>3</SB>, which is oxide of it, is dispersed as the phonon scattering particle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱電変換材料マトリクス中にナノサイズのフォノン散乱粒子が分散したナノコンポジット熱電変換材料の製造方法およびそれにより製造されたナノコンポジット熱電変換材料に関する。   The present invention relates to a method for producing a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a thermoelectric conversion material matrix, and a nanocomposite thermoelectric conversion material produced thereby.

熱電変換材料は、2つの基本的な熱電効果であるゼーベック(Seebeck)効果及びペルチェ(Peltier)効果に基づき、熱エネルギと電気エネルギとの直接変換を行なうエネルギ材料である。   The thermoelectric conversion material is an energy material that performs direct conversion between thermal energy and electric energy based on two basic thermoelectric effects, the Seebeck effect and the Peltier effect.

熱電変換材料を用いた熱電発電デバイスは、従来の発電技術に比べて、構造は簡単で、堅牢かつ耐久性が高く、可動部材は存在せず、マイクロ化が容易であり、メンテナンス不要で信頼性が高く、寿命が長く、騒音は発生せず、汚染も発生せず、低温の廃熱を利用可能であるといった多くの利点がある。   Thermoelectric power generation devices using thermoelectric conversion materials have a simple structure, robustness, high durability, no moving parts, easy microfabrication, no maintenance, and reliability compared to conventional power generation technology There are many advantages such as high life, long life, no noise, no pollution and low temperature waste heat can be used.

熱電変換材料を用いた熱電冷却デバイスも、従来の圧縮冷却技術に比べて、フロン不要で汚染は発生せず、小型化は容易で、可動部材は存在せず、騒音も発生しないなどの利点がある。   Compared to conventional compression cooling technology, thermoelectric cooling devices using thermoelectric conversion materials do not require chlorofluorocarbon, do not cause contamination, are easily downsized, have no moving parts, and do not generate noise. is there.

そのため、特に近年のエネルギ問題や環境問題の重大化に伴い、航空・宇宙、国防建設、地質及び気象観測、医療衛生、マイクロ電子などの領域や石油化工、冶金、電力工業における廃熱利用方面などの広範な用途への実用化が期待されている。   Therefore, especially in recent years, energy and environmental issues have become more serious, such as aviation / space, national defense construction, geological and meteorological observation, medical hygiene, microelectronics, etc. Is expected to be put to practical use for a wide range of applications.

熱電変換材料の性能を評価する指数として、パワーファクターP=S2σおよび無次元性能指数ZT=(S2σ/κ)Tが用いられている。ここで、S:ゼーベック係数、σ:導電率、κ:熱伝導率、T:絶対温度である。すなわち、良好な熱電特性を得るには、ゼーベック係数Sおよび導電率σが高く、熱伝導率κが低いことが必要である。 As an index for evaluating the performance of the thermoelectric conversion material, a power factor P = S 2 σ and a dimensionless performance index ZT = (S 2 σ / κ) T are used. Here, S: Seebeck coefficient, σ: conductivity, κ: thermal conductivity, T: absolute temperature. That is, in order to obtain good thermoelectric properties, it is necessary that the Seebeck coefficient S and the electrical conductivity σ are high and the thermal conductivity κ is low.

熱伝導率κを低減するためには、熱伝導の担い手の一つであるフォノンを散乱させることが有効であり、熱電変換材料マトリクス中にフォノン散乱用の粒子が分散したコンポジット熱電変換材料が提唱されている。   In order to reduce the thermal conductivity κ, it is effective to scatter phonons, one of the players in heat conduction, and a composite thermoelectric conversion material in which phonon scattering particles are dispersed in a thermoelectric conversion material matrix is proposed. Has been.

特に、フォノン散乱粒子の形態によってフォノン散乱能を高めることが提案されている。   In particular, it has been proposed to increase the phonon scattering ability by the form of phonon scattering particles.

特許文献1には、コア部を形成した後、ホットソープ法によりシェル部を形成してコア/シェル構造のナノ粒子を形成し、シェル部に付着する有機物を除去してから圧縮成形するナノコンポジット熱電変換材料の製造方法が開示されている。製造されるナノ構造部熱電変換材料は、コア/シェル構造の複数個の粒子がシェル部同士で連続した形態を持ち、連続相すなわちマトリクスを構成するシェル部が電子伝導性を持ち、コア部がフォノン散乱能を持つ。   Patent Document 1 discloses a nanocomposite in which a core part is formed, then a shell part is formed by a hot soap method to form core / shell structure nanoparticles, and organic substances adhering to the shell part are removed, followed by compression molding. A method for producing a thermoelectric conversion material is disclosed. The manufactured nanostructure thermoelectric conversion material has a form in which a plurality of particles of a core / shell structure are continuous between shell portions, the continuous phase, that is, the shell portion constituting the matrix has electronic conductivity, and the core portion is Has phonon scattering ability.

しかし、マトリクスを構成するシェル部の材料の他に、フォノン散乱粒子を構成するコア部の材料が必要となり、その分だけ材料コストが高くなるという問題があった。   However, in addition to the material of the shell part that constitutes the matrix, the material of the core part that constitutes the phonon scattering particles is required, and there is a problem that the material cost increases accordingly.

また、ナノコンポジット熱電変換材料には、フォノン散乱粒子を均一微細化が困難であった。例えば、特許文献2には、セラミック粒子と熱電変換材料粒子(BiSbTe系)を混合し、ホットプレス焼結することにより、ナノコンポジット熱電変換材料を作製することが開示されているが、混合の際にナノ粒子同士がファンデルワールス力等により凝集してミクロサイズに粗大化してしまうため、高いフォノン散乱能が発揮できない。   Further, it has been difficult to make uniform phonon scattering particles in the nanocomposite thermoelectric conversion material. For example, Patent Document 2 discloses that a nanocomposite thermoelectric conversion material is prepared by mixing ceramic particles and thermoelectric conversion material particles (BiSbTe series) and performing hot press sintering. In addition, the nanoparticles aggregate together due to van der Waals force and coarsen to a micro size, so that high phonon scattering ability cannot be exhibited.

特開2007−21670号公報JP 2007-21670 A 特開平3−148879号公報JP-A-3-148879

本発明は、フォノン散乱粒子のための材料を別途に必要とせず、かつ、フォノン散乱粒子の均一微細な分散を達成したナノコンポジット熱電変換材料およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a nanocomposite thermoelectric conversion material that does not require a separate material for phonon scattering particles and achieves uniform and fine dispersion of phonon scattering particles, and a method for producing the same.

上記の目的を達成するために、本発明のナノコンポジット熱電変換材料は、熱電変換材料から成るマトリクス中に、ナノサイズのフォノン散乱粒子が分散しているナノコンポジット熱電変換材料において、
上記熱電変換材料の還元生成時の副生成物の酸化物を上記フォノン散乱粒子として含むことを特徴とする。
In order to achieve the above object, the nanocomposite thermoelectric conversion material of the present invention is a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a matrix composed of a thermoelectric conversion material.
The by-product oxide at the time of reduction production of the thermoelectric conversion material is included as the phonon scattering particles.

上記の目的を達成するために、本発明のナノコンポジット熱電変換材料の製造方法は、熱電変換材料から成るマトリクス中に、ナノサイズのフォノン散乱粒子が分散しているナノコンポジット熱電変換材料を製造する方法において、
上記熱電変換材料の前躯体溶液を還元することにより、該熱電変換材料を析出させると共に還元剤由来の副生成物を析出させる工程、および
熱処理により、上記熱電変換材料を合金化させると共に上記副生成物の酸化物を形成する工程
を含むことを特徴とするナノコンポジット熱電変換材料の製造方法。
In order to achieve the above object, the method for producing a nanocomposite thermoelectric conversion material of the present invention produces a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a matrix composed of the thermoelectric conversion material. In the method
Reducing the precursor solution of the thermoelectric conversion material to precipitate the thermoelectric conversion material and depositing a by-product derived from a reducing agent; and heat treatment to alloy the thermoelectric conversion material and to form the by-product. The manufacturing method of the nanocomposite thermoelectric conversion material characterized by including the process of forming the oxide of a thing.

熱電変換材料前躯体を還元して熱電変換材料粒子を生成させる際に、還元剤と熱電変換材料前躯体のイオンが反応したところに熱電変換材料粒子が生成するため、副生成物は熱電変換材料粒子の必ず近傍に析出する。そのため、副生成物は均一微細に分散し、この複生成物の酸化物も均一微細に分散する。したがって、副生成物の酸化物をフォノン散乱粒子として利用することで、分散性の良好なナノコンポジット熱電変換材料が得られ、効果的に熱伝導率を低下させることができる。更に、フォノン散乱粒子のための材料を別途に必要としないため、材料コストを低減できる。   When the thermoelectric conversion material precursor is reduced to produce thermoelectric conversion material particles, thermoelectric conversion material particles are generated when the reducing agent reacts with ions of the thermoelectric conversion material precursor, and the by-product is the thermoelectric conversion material. Precipitates near the particles. Therefore, the by-product is uniformly and finely dispersed, and the oxide of the double product is also uniformly and finely dispersed. Therefore, by using the by-product oxide as phonon scattering particles, a nanocomposite thermoelectric conversion material with good dispersibility can be obtained, and the thermal conductivity can be effectively reduced. Furthermore, since a material for phonon scattering particles is not required separately, the material cost can be reduced.

図1は、本発明のフォノン散乱粒子を構成する還元反応の副生成物の(1)還元析出時および(2)焼結によりバルク化した状態を示す模式図である。FIG. 1 is a schematic diagram showing a state of (1) during reductive precipitation and (2) bulking by sintering of a by-product of a reduction reaction constituting the phonon scattering particles of the present invention. 図2は、熱処理後の本発明のナノコンポジット熱電変換材料のEDXチャートの一例である。マトリクスを構成する熱電変換材料(Bi,Sb)TeのBi、Sb、Teのピークと、副生成物HB0(ホウ酸)の酸化物B(酸化ホウ素)のB、Oのピークが明瞭に認められる。なお、CuのピークはCu製の試料ホルダによる。FIG. 2 is an example of an EDX chart of the nanocomposite thermoelectric conversion material of the present invention after heat treatment. Bi, Sb, Te peaks of thermoelectric conversion materials (Bi, Sb) 2 Te 3 constituting the matrix, and oxide B 2 O 3 (boron oxide) B of by-product H 3 B 0 3 (boric acid), A peak of O is clearly recognized. Note that the peak of Cu is due to the sample holder made of Cu. 図3は、焼結後の本発明のナノコンポジット熱電変換材料のTEM像であり、図中(1),(2)は同じ試料の同倍率の写真で、異なる視野を撮影したものである。いずれも、B粒子は白色の斑点として観察され、粒径は5nm以下である。FIG. 3 is a TEM image of the nanocomposite thermoelectric conversion material of the present invention after sintering. In the figure, (1) and (2) are photographs of the same sample with the same magnification, taken from different fields of view. In any case, the B 2 O 3 particles are observed as white spots, and the particle size is 5 nm or less. 図4は、実施例で製造したナノコンポジット熱電変換材料の特性値を従来値と比較して示すグラフである。FIG. 4 is a graph showing the characteristic values of the nanocomposite thermoelectric conversion material produced in the example in comparison with the conventional values.

図1に、本発明のフォノン散乱粒子を構成する還元反応の副生成物の(1)還元析出時および(2)焼結によりバルク化した状態を模式的に示す。   FIG. 1 schematically shows a state of (1) during reduction precipitation and (2) bulkization by sintering of the by-products of the reduction reaction constituting the phonon scattering particles of the present invention.

本発明においては、還元によって熱電変換材料を生成する際に必ず生成する複生成物を、フォノン散乱粒子の前躯体として利用する。   In the present invention, a double product that is inevitably generated when a thermoelectric conversion material is generated by reduction is used as a precursor of phonon scattering particles.

図1(1)に示すように、熱電変換材料の前躯体(熱電変換材料の構成元素の塩)を還元した状態では、主生成物としての熱電変換材料構成元素のナノ粒子12’と、これに近接して均一に析出した還元剤由来の副生成物のナノ粒子14’とが凝集したスラリー10’の状態である。このスラリーを精製処理においてろ過・洗浄して不要物質を除去する。次いで、熱処理により熱電変換材料構成元素のナノ粒子12’の凝集体を合金化してマトリクス12を形成し、同時に、副生成物のナノ粒子14’の酸化物粒子14を形成する。これを焼結してナノコンポジット熱電変換材料のバルク体10を形成する。これが図1(2)に示した状態である。   As shown in FIG. 1 (1), in the state where the precursor of the thermoelectric conversion material (salt of the constituent element of the thermoelectric conversion material) is reduced, the nanoparticle 12 ′ of the thermoelectric conversion material constituent element as the main product, It is the state of the slurry 10 ′ in which the by-product nanoparticles 14 ′ derived from the reducing agent uniformly deposited in the vicinity of the flocculated material. This slurry is filtered and washed in a purification process to remove unnecessary substances. Next, the aggregate of the thermoelectric conversion material constituting element nanoparticles 12 ′ is alloyed by heat treatment to form the matrix 12, and at the same time, the oxide particles 14 of the by-product nanoparticles 14 ′ are formed. This is sintered to form a bulk body 10 of the nanocomposite thermoelectric conversion material. This is the state shown in FIG.

熱電変換材料前躯体を還元して熱電変換材料粒子を生成させる際に、還元剤と熱電変換材料前躯体のイオンが反応したところに熱電変換材料粒子が生成するため、副生成物は熱電変換材料粒子の必ず近傍に析出する。そのため、副生成物は均一微細に分散し、この複生成物の酸化物も均一微細に分散する。したがって、副生成物の酸化物をフォノン散乱粒子として利用することで、分散性の良好なナノコンポジット熱電変換材料が得られ、効果的に熱伝導率を低下させることができる。更に、フォノン散乱粒子のための材料を別途に必要としないため、材料コストを低減できる。   When the thermoelectric conversion material precursor is reduced to produce thermoelectric conversion material particles, thermoelectric conversion material particles are generated when the reducing agent reacts with ions of the thermoelectric conversion material precursor, and the by-product is the thermoelectric conversion material. Precipitates near the particles. Therefore, the by-product is uniformly and finely dispersed, and the oxide of the double product is also uniformly and finely dispersed. Therefore, by using the by-product oxide as phonon scattering particles, a nanocomposite thermoelectric conversion material with good dispersibility can be obtained, and the thermal conductivity can be effectively reduced. Furthermore, since a material for phonon scattering particles is not required separately, the material cost can be reduced.

従来の技術では、副生成物は還元反応後に洗浄により除去されるが、本発明においては、洗浄工程で副生成物のうち特定の物質を除去せずに残す。そのため、洗浄媒体(通常は水)の量は、残すべき副生成物の洗浄媒体中への溶解度を考慮して調整する。副生成物のうち特定の物質とは、次の熱処理によりフォノン散乱粒子として適した酸化物となるものである。   In the conventional technique, the by-product is removed by washing after the reduction reaction, but in the present invention, a specific substance of the by-product is left without being removed in the washing step. Therefore, the amount of the cleaning medium (usually water) is adjusted in consideration of the solubility of the by-product to be left in the cleaning medium. The specific substance among the by-products is an oxide suitable as phonon scattering particles by the following heat treatment.

熱処理においては、還元反応で析出した熱電変換材料の構成元素の混合物が合金化して所定組成の熱電変換材料粒子を形成し、同時に、上記洗浄時に残した副生成物が酸化してフォノン散乱粒子を形成する。すなわち、この状態では、熱電変換材料のマトリクス粒子と副生成物の酸化物から成るフォノン散乱粒子とのナノコンポジット粒子であり、材料の状態としては粉末である。   In the heat treatment, a mixture of the constituent elements of the thermoelectric conversion material deposited by the reduction reaction is alloyed to form thermoelectric conversion material particles having a predetermined composition, and at the same time, the by-product left during the cleaning is oxidized to phonon scattering particles. Form. That is, in this state, it is nanocomposite particles of matrix particles of thermoelectric conversion material and phonon scattering particles made of by-product oxide, and the state of the material is powder.

最後に、ナノコンポジット粒子の粉末を成形・焼結して、本発明のナノコンポジット熱電変換材料のバルク体を得る。   Finally, the nanocomposite particle powder is molded and sintered to obtain a bulk body of the nanocomposite thermoelectric conversion material of the present invention.

本発明を適用するマトリクス熱電変換材料としては、典型的には下記を用いることができる。   As a matrix thermoelectric conversion material to which the present invention is applied, the following can be typically used.

(Bi,Sb)(Te,Se).(Bi,Sn)Te.PbTe系、SiGe系、CoSb系、ZnSb系。
ただし、上記に限定する必要はない。
(Bi, Sb) 2 (Te, Se) 3 . (Bi, Sn) 2 Te 3 . PbTe system, SiGe system, CoSb system, Zn 4 Sb 3 system.
However, it is not necessary to limit to the above.

本発明の還元剤としては、典型的には下記を用いることができる。   Typically, the following can be used as the reducing agent of the present invention.

NaBH,LiAlH、LiBH,Ni(BH,Zn(BH
ただし、上記に限定する必要はない。
NaBH 4 , LiAlH 4 , LiBH 4 , Ni (BH 4 ) 2 , Zn (BH 4 ) 2 .
However, it is not necessary to limit to the above.

上記還元剤の酸化物は、典型的には下記が挙げられる。   Typical examples of the oxide of the reducing agent include the following.

,Al,NiあるいはNiOx,ZnあるいはZnOx。
ただし、上記に限定する必要はない。
B 2 O 3, Al 2 O 3, Ni or NiOx, Zn or ZnOx.
However, it is not necessary to limit to the above.

以下に、実施例により、本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

本発明にしたがって、下記の手順および条件でナノコンポジット熱電変換材料を作製した。このナノコンポジット熱電変換材料は、(Bi,Sb)Te熱電変換材料のマトリクス中に、フォノン散乱粒子としてBのナノ粒子が均一に分散した構成である。 In accordance with the present invention, a nanocomposite thermoelectric conversion material was prepared according to the following procedure and conditions. This nanocomposite thermoelectric conversion material has a structure in which B 2 O 3 nanoparticles are uniformly dispersed as phonon scattering particles in a matrix of (Bi, Sb) 2 Te 3 thermoelectric conversion material.

<熱電変換材料の前躯体溶液の作成>
エタノール100mlに、マトリクスを構成する熱電変換材料(Bi,Sb)Teの構成元素Bi,Sb,Teの塩として、塩化ビスマスBiCl0.4g、塩化アンチモンSbCl1.2g、塩化テルルTeCl2.56gを加えて溶解し、前躯体溶液を作成した。
<Preparation of precursor solution of thermoelectric conversion material>
In 100 ml of ethanol, 0.4 g of bismuth chloride BiCl 3 , 1.2 g of antimony chloride SbCl 3, 1.2 g of tellurium TeCl chloride as a salt of the constituent elements Bi, Sb, Te of the thermoelectric conversion material (Bi, Sb) 2 Te 3 constituting the matrix 4 2.56 g was added and dissolved to prepare a precursor solution.

<還元処理>
エタノール100mlに、還元剤としてNaBH2.4を加えて溶解し、これを上記の前躯体溶液に滴下して還元処理を行なった。この還元反応は下記式で表される。
<Reduction treatment>
NaBH 4 2.4 as a reducing agent was added and dissolved in 100 ml of ethanol, and this was dropped into the precursor solution to perform a reduction treatment. This reduction reaction is represented by the following formula.

BiCl(SbCl,TeCl)+NaBH+H
→Bi(Sb,Te)+NaCl+HBO+H
主生成物:Bi(Sb,Te)
副生成物:NaCl、HBO,H
副生成物のうちHはガスとして抜け出て除去される。
BiCl 3 (SbCl 3 , TeCl 4 ) + NaBH 4 + H 2 0
→ Bi (Sb, Te) + NaCl + H 3 BO 3 + H 2
Main product: Bi (Sb, Te)
By-products: NaCl, H 3 BO 3 , H 2
Of the by-product, H 2 escapes as gas and is removed.

<ろ過洗浄工程>
還元で得られたナノ粒子を含むエタノールスラリーを、水50ml+エタノール100mlの溶液でろ過洗浄した。
<Filter washing process>
The ethanol slurry containing the nanoparticles obtained by the reduction was filtered and washed with a solution of 50 ml of water and 100 ml of ethanol.

還元性生物Bi(Sb,Te)+NaCl+HBOを水に入れることで、副生成物であるNaClとHBOの過剰分とが水に溶解した状態でろ過除去され、主生成物であるナノコンポジット粒子Bi(Sb,Te)と副生成物であるナノ粒子HBOの必要分とが回収される。 By putting the reducing organism Bi (Sb, Te) + NaCl + H 3 BO 3 into water, the by-product NaCl and the excess of H 3 BO 3 are removed by filtration in a state dissolved in water. A certain nanocomposite particle Bi (Sb, Te) and a necessary amount of the by-product nanoparticle H 3 BO 3 are recovered.

ここで、水の量はHBOの水への溶解度(5.7g/水100g)から見積もり、実際の洗浄条件に合わせて多少調整する必要がある。本実施例では上記のとおり50mlとした。 Here, the amount of water is estimated from the solubility of H 3 BO 3 in water (5.7 g / 100 g of water), and needs to be adjusted to some extent according to the actual cleaning conditions. In this example, the volume was 50 ml as described above.

<熱処理工程>
密閉のオートクレーブに入れて、240℃、48hrの水熱処理を行い、主生成物であるナノコンポジット粒子Bi(Sb,Te)を合金化して熱電変換材料(Bi,Sb)Teのマトリクスを形成し、併行して、副生成物であるナノ粒子HBOからBのフォノン散乱粒子を形成する。
<Heat treatment process>
Place in a sealed autoclave and hydrothermally heat at 240 ° C. for 48 hours to alloy main composite nanocomposite particles Bi (Sb, Te) to form a matrix of thermoelectric conversion material (Bi, Sb) 2 Te 3 In parallel, phonon scattering particles of B 2 O 3 are formed from nanoparticles H 3 BO 3 which are by-products.

<乾燥工程>
得られた混合粉末を、N2ガスフロー雰囲気で乾燥させて回収した。このとき、約2gの粉末が回収された。
<Drying process>
The obtained mixed powder was recovered by drying in an N 2 gas flow atmosphere. At this time, about 2 g of powder was recovered.

<焼結工程>
360℃でSPS焼結を行い、(Bi,Sb)Te/Bナノコンポジット熱電変換材料のバルク体を得た。
<Sintering process>
SPS sintering was performed at 360 ° C. to obtain a bulk body of (Bi, Sb) 2 Te 3 / B 2 O 3 nanocomposite thermoelectric conversion material.

図2に、得られたバルク体のEDXチャートを示す。マトリクスを構成する熱電変換材料(Bi,Sb)TeのBi、Sb、Teのピークと、副生成物HB0(ホウ酸)の酸化物B(酸化ホウ素)のB、Oのピークが明瞭に認められる。なお、CuのピークはCu製の試料ホルダによる。 FIG. 2 shows an EDX chart of the obtained bulk body. Bi, Sb, Te peaks of thermoelectric conversion materials (Bi, Sb) 2 Te 3 constituting the matrix, and oxide B 2 O 3 (boron oxide) B of by-product H 3 B 0 3 (boric acid), A peak of O is clearly recognized. Note that the peak of Cu is due to the sample holder made of Cu.

図3に、得られたバルク体のTEM像を示し、図中(1),(2)は同じ試料の同倍率の写真で、異なる視野を撮影したものである。いずれも、B粒子は白色の斑点として観察され、粒径5nm以下である。 FIG. 3 shows a TEM image of the obtained bulk body, in which (1) and (2) are photographs of the same sample with the same magnification, taken from different fields of view. In any case, the B 2 O 3 particles are observed as white spots and have a particle size of 5 nm or less.

<熱電変換特性の評価>
本発明のバルク体と、文献に記載されている従来材料との特性の比較を行った。結果を図4に示す。従来材料の出典は、Journal of Crystal Growth 277(2005)258−263である。
1.熱伝導率の測定
定常法熱伝導率評価法及びフラッシュ法(非定常法)(ネッチ社製フラッシュ法熱伝導率測定装置)により測定した。
2.出力因子
アルバック理工製ZEMを用いて、ゼーベック係数及び比抵抗を測定。ゼーベック係数は△V/△Tを3点フィッティングした。比抵抗は4端子法にて測定を行った。
特性評価の結果、本発明と従来技術を比べると、ゼーベック係数はほぼ同等、非抵抗は本発明の方が若干大きいが、本発明の熱伝導率は従来技術に比べ大幅に低下していることが分かる。
<Evaluation of thermoelectric conversion characteristics>
The characteristics of the bulk material of the present invention were compared with those of conventional materials described in the literature. The results are shown in FIG. The source of the conventional material is Journal of Crystal Growth 277 (2005) 258-263.
1. Measurement of thermal conductivity It was measured by a steady-state thermal conductivity evaluation method and a flash method (unsteady method) (flash method thermal conductivity measuring device manufactured by Netch Co., Ltd.).
2. Output factor Measure the Seebeck coefficient and specific resistance using ULVAC-RIKO ZE. The Seebeck coefficient was a three-point fitting of ΔV / ΔT. The specific resistance was measured by the 4-terminal method.
As a result of the characteristic evaluation, when comparing the present invention with the prior art, the Seebeck coefficient is almost the same, and the non-resistance is slightly larger in the present invention, but the thermal conductivity of the present invention is significantly lower than in the prior art I understand.

本発明によれば、フォノン散乱粒子のための材料を別途に必要とせず、かつ、フォノン散乱粒子の均一微細な分散を達成したナノコンポジット熱電変換材料およびその製造方法が提供される。   According to the present invention, there is provided a nanocomposite thermoelectric conversion material that does not require a separate material for phonon scattering particles and achieves uniform and fine dispersion of phonon scattering particles, and a method for producing the same.

10’ スラリー
12’ 主生成物としての熱電変換材料構成元素のナノ粒子
14’ 均一に析出した還元剤由来の副生成物のナノ粒子
10 ナノコンポジット熱電変換材料
12 熱電変換材料から成るマトリクス
14 副生成物酸化物から成るフォノン散乱粒子
10 'Slurry 12' Nanoparticles of constituent elements of thermoelectric conversion materials as main products 14 'Nanoparticles of by-products derived from the reducing agent uniformly deposited 10 Nanocomposite thermoelectric conversion materials 12 Matrix made of thermoelectric conversion materials 14 Byproducts Phonon scattering particles composed of oxides

Claims (3)

熱電変換材料から成るマトリクス中に、ナノサイズのフォノン散乱粒子が分散しているナノコンポジット熱電変換材料を製造する方法において、
上記熱電変換材料の前躯体溶液を還元することにより、該熱電変換材料を析出させると共に還元剤由来の副生成物を析出させる工程、および
熱処理により、上記熱電変換材料を合金化させると共に上記副生成物の酸化物を形成する工程
を含むことを特徴とするナノコンポジット熱電変換材料の製造方法。
In a method for producing a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a matrix made of a thermoelectric conversion material,
Reducing the precursor solution of the thermoelectric conversion material to precipitate the thermoelectric conversion material and depositing a by-product derived from a reducing agent; and heat treatment to alloy the thermoelectric conversion material and to form the by-product. The manufacturing method of the nanocomposite thermoelectric conversion material characterized by including the process of forming the oxide of a thing.
請求項1において、上記還元剤としてNaBHを用い、上記還元時の副生成物としてHBOを生成させ、その酸化物であるBを上記フォノン散乱粒子として分散させることを特徴とするナノコンポジット熱電変換材料の製造方法。 2. The method according to claim 1, wherein NaBH 4 is used as the reducing agent, H 3 BO 3 is generated as a by-product during the reduction, and B 2 O 3 as an oxide is dispersed as the phonon scattering particles. A method for producing a nanocomposite thermoelectric conversion material. 熱電変換材料から成るマトリクス中に、ナノサイズのフォノン散乱粒子が分散しているナノコンポジット熱電変換材料において、
上記熱電変換材料の還元生成時の副生成物の酸化物を上記フォノン散乱粒子として含むことを特徴とするナノコンポジット熱電変換材料。
In a nanocomposite thermoelectric conversion material in which nano-sized phonon scattering particles are dispersed in a matrix made of a thermoelectric conversion material,
A nanocomposite thermoelectric conversion material comprising, as the phonon scattering particles, an oxide of a by-product during reduction of the thermoelectric conversion material.
JP2009246564A 2009-10-27 2009-10-27 Nano-composite thermoelectric conversion material, and method of manufacturing the same Pending JP2011096717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246564A JP2011096717A (en) 2009-10-27 2009-10-27 Nano-composite thermoelectric conversion material, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246564A JP2011096717A (en) 2009-10-27 2009-10-27 Nano-composite thermoelectric conversion material, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011096717A true JP2011096717A (en) 2011-05-12

Family

ID=44113352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246564A Pending JP2011096717A (en) 2009-10-27 2009-10-27 Nano-composite thermoelectric conversion material, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011096717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118371A (en) * 2011-12-01 2013-06-13 Toyota Motor Engineering & Manufacturing North America Inc Binary thermoelectric material containing nanoparticles and method for manufacturing the same
JP2013118355A (en) * 2011-12-01 2013-06-13 Toyota Motor Engineering & Manufacturing North America Inc Ternary thermoelectric material containing nanoparticles and process for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118371A (en) * 2011-12-01 2013-06-13 Toyota Motor Engineering & Manufacturing North America Inc Binary thermoelectric material containing nanoparticles and method for manufacturing the same
JP2013118355A (en) * 2011-12-01 2013-06-13 Toyota Motor Engineering & Manufacturing North America Inc Ternary thermoelectric material containing nanoparticles and process for manufacturing the same
JP2018093220A (en) * 2011-12-01 2018-06-14 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Binary thermoelectric material containing nanoparticles and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP2331457B1 (en) Nanocomposite thermoelectric conversion material, thermoelectric conversion element including the same, and method of producing nanocomposite thermoelectric conversion material
EP2442930B1 (en) Nanocomposite thermoelectric conversion material and method of producing the same
Fiameni et al. Synthesis and characterization of Bi-doped Mg2Si thermoelectric materials
Xu et al. High thermoelectric figure of merit and nanostructuring in bulk AgSbTe2
JP5024393B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
US8217255B2 (en) Method of producing thermoelectric conversion element
JP2008305919A (en) Thermoelectric conversion element and manufacturing method therefor
WO2012063110A2 (en) Nanocomposite thermoelectric conversion material, method of producing same, and thermoelectric conversion element
US8721912B2 (en) Nanocomposite thermoelectric conversion material and method of producing the same
JP5149761B2 (en) BiTe / Ceramics / Nanocomposite Thermoelectric Material Manufacturing Method
JP6189582B2 (en) Method for producing nanocomposite thermoelectric conversion material
JP2013074051A (en) Method of manufacturing nano-composite thermoelectric conversion material, and nano-composite thermoelectric conversion material manufactured by the method
JP2011096717A (en) Nano-composite thermoelectric conversion material, and method of manufacturing the same
JP5853483B2 (en) Nanocomposite thermoelectric conversion material
JP5387215B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
JP2012146928A (en) Method for manufacturing nanocomposite thermoelectric conversion material
JP2011129635A (en) Nano-composite thermoelectric conversion material and method of manufacturing the same
JP5397500B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
Lin et al. Synthesis and Electronic Transport of n-Type Ag 2 Te 1− x Se x (x= 0, 0.01, and 0.02) via Aqueous Solution Method at Room Temperature
JP2013219116A (en) Nanocomposite thermoelectric conversion material