JP2013214734A - Method of manufacturing multiconductor cable equipped with substrate - Google Patents

Method of manufacturing multiconductor cable equipped with substrate Download PDF

Info

Publication number
JP2013214734A
JP2013214734A JP2013044397A JP2013044397A JP2013214734A JP 2013214734 A JP2013214734 A JP 2013214734A JP 2013044397 A JP2013044397 A JP 2013044397A JP 2013044397 A JP2013044397 A JP 2013044397A JP 2013214734 A JP2013214734 A JP 2013214734A
Authority
JP
Japan
Prior art keywords
solder
substrate
manufacturing
electrode pads
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013044397A
Other languages
Japanese (ja)
Inventor
Masato Tanaka
正人 田中
Toyokazu Muraoka
十四一 村岡
Kyoichiro Nakatsugi
恭一郎 中次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013044397A priority Critical patent/JP2013214734A/en
Priority to PCT/JP2013/056446 priority patent/WO2013133409A1/en
Priority to CN201380012939.3A priority patent/CN104160557A/en
Publication of JP2013214734A publication Critical patent/JP2013214734A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/59Fixed connections for flexible printed circuits, flat or ribbon cables or like structures
    • H01R12/62Fixed connections for flexible printed circuits, flat or ribbon cables or like structures connecting to rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0235Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections for applying solder

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a multiconductor cable equipped with a substrate in which very thin electric wires are effectively soldered to electrode pads on an insulation substrate which are arranged densely, requiring no skill.SOLUTION: A method of manufacturing a multiconductor cable equipped with a substrate, in which a plurality of very thin electric wires 10 are soldered to a plurality of electrode pads 22 arrayed densely on a wiring board 20, includes a step in which solder powder of a predetermined volume is supplied to the plurality of electrode pads 22 on the wiring board for reflowing, to form a solder pre-coat 24. Then, central conductors 11 of the plurality of very thin electric wires are arranged on the plurality of electrode pads 22 in which the solder pre-coat 24 is formed, so that the central conductors 11 of the very thin electric wires are soldered to the electrode pads 22. Further, there may be provided a step for forming a solder pre-coat 15 at a connection end of the central conductor 11 of the plurality of very thin electric wires.

Description

本発明は、極細の絶縁電線や同軸電線の端部を、絶縁基板の電極パッドに電気的に接続した基板付き多心ケーブルの製造方法に関する。   The present invention relates to a method for manufacturing a multicore cable with a substrate in which ends of extremely fine insulated wires and coaxial wires are electrically connected to electrode pads of an insulated substrate.

小型電子情報機器や、超音波診断装置や内視鏡などの医療電子機器では、機器の小型化と共に高機能化を実現するために、機器内配線に使用する導体の細径化と導体本数が増加している。使用する導体本数も数百本で、これらの電線は、通常、多心のフラットケーブルの端部の導体が絶縁基板上の電極パッドに半田で接続されて、基板付きの多心ケーブルとされる。   In small electronic information devices and medical electronic devices such as ultrasonic diagnostic equipment and endoscopes, in order to realize high functionality as well as downsizing of devices, the diameter of the conductor used for wiring in the device and the number of conductors are reduced. It has increased. The number of conductors used is several hundred, and these wires are usually multi-core cables with a substrate, with the conductor at the end of the multi-core flat cable connected to the electrode pads on the insulating substrate by soldering. .

特許文献1には、プリント基板の電極部の接続部位に半田等の接続部材を予め形成した後、同軸ケーブルの中心導体(信号線)を重ね合わせ、レーザ光照射により加熱して上記の接続部材を溶融し、電気的接続を行うことが開示されている。
また、特許文献2には、同軸線の中心導体(信号線)の端部にペースト半田の所定量を予め付与して、パルスヒートによりコネクタの端子に半田接続することが開示されている。
In Patent Document 1, a connection member such as solder is formed in advance on a connection portion of an electrode portion of a printed circuit board, and then a central conductor (signal line) of a coaxial cable is overlapped and heated by laser light irradiation to connect the above connection member. It is disclosed that an electrical connection is made.
Patent Document 2 discloses that a predetermined amount of paste solder is applied in advance to the end portion of the central conductor (signal line) of the coaxial line, and solder connection is made to the connector terminal by pulse heat.

特開2010−118318号公報JP 2010-118318 A 特開2010−146939号公報JP 2010-146939 A

例えば、超音波技術を用いた内視鏡は、収納される信号線の本数(例えば、370芯)が多く、また人体内に挿入するという性質上、信号線の太さは極細で電気接続する回路基板の大きさも限られているので高密度実装が要求される。手作業による半田接続は、かなりのスキルを要し、現実的でない。したがって、極細の信号線を一括接続するには、特許文献2に開示のように回路基板の電極パッドに押えながら電流を流すパルスヒートによる半田接続が効果的であり、接続する導体太さに違いがあるような場合には、特許文献1に開示のようにレーザ光照射による半田接続が効果的である。   For example, an endoscope using ultrasonic technology has a large number of signal lines (for example, 370 cores) to be accommodated and is inserted into the human body, so that the thickness of the signal lines is extremely thin and is electrically connected. Since the size of the circuit board is also limited, high-density mounting is required. Manual soldering requires considerable skill and is not practical. Therefore, in order to connect extremely fine signal lines at once, solder connection by pulse heat that allows current to flow while being pressed against an electrode pad of a circuit board as disclosed in Patent Document 2 is effective, and the thickness of the conductor to be connected differs. In such a case, solder connection by laser light irradiation is effective as disclosed in Patent Document 1.

しかしながら、信号線の数が多く、絶縁基板の電極に接続される隣合う導体間のピッチが小さくなる。例えば、導体間のピッチが0.16mm位(AWG49の同軸電線に相当)になると、隣接する電極パッド間の絶縁間隙は0.07mm以下となる。このため、電極パッド上に予め付与する半田(半田プリコート)の付与量により、電極間を電気的に短絡する半田ブリッジが生じやすくなるので、電極上に付与する半田プリコートを精度よく形成する必要がある。   However, the number of signal lines is large, and the pitch between adjacent conductors connected to the electrodes of the insulating substrate is reduced. For example, when the pitch between conductors is about 0.16 mm (corresponding to the coaxial wire of AWG49), the insulation gap between adjacent electrode pads is 0.07 mm or less. For this reason, the amount of solder (solder precoat) applied in advance on the electrode pad tends to cause a solder bridge that electrically shorts the electrodes, so it is necessary to accurately form the solder precoat applied on the electrodes. is there.

本発明は、上述した実状に鑑みてなされてもので、高密度に配設された絶縁基板上の電極パッドに、極細電線がスキルを要することなく効果的に半田接続された基板付き多心ケーブルの製造方法を提供することを目的とする。   Although the present invention has been made in view of the above-described actual situation, a multi-core cable with a substrate in which extra fine wires are effectively solder-connected to electrode pads on an insulating substrate arranged at high density without requiring skills. It aims at providing the manufacturing method of.

本発明による基板付き多心ケーブルの製造方法は、複数本の極細電線を、配線基板上の高密度に配列された複数の電極パッドに半田接続した基板付き多心ケーブルの製造方法で、配線基板上の複数の電極パッド上に所定量の半田粉末を付与しリフローすることで半田プリコートを形成する工程を備える。そして、上記の複数本の極細電線の中心導体を、半田プリコートが形成された複数の電極パッド上に配置して、極細電線の中心導体を電極パッドに半田接続する。また、複数本の極細電線の中心導体の接続端に半田プリコートを形成する工程を備えるようにしてもよい。   A method of manufacturing a multicore cable with a substrate according to the present invention is a method of manufacturing a multicore cable with a substrate in which a plurality of ultrafine wires are solder-connected to a plurality of electrode pads arranged at high density on the wiring substrate. A step of forming a solder precoat by applying a predetermined amount of solder powder on the plurality of upper electrode pads and performing reflow is provided. Then, the center conductors of the plurality of extra fine wires are arranged on the electrode pads on which the solder precoat is formed, and the center conductors of the extra fine wires are soldered to the electrode pads. Moreover, you may make it provide the process of forming a solder precoat in the connection end of the center conductor of a several extra fine wire.

なお、上記の半田接続には、パルスヒートを用いて中心導体を一括接続するか、または、レーザ光照射を用いて接続することができる。
また、上記のレーザ光照射を用いて半田接続するに際しては、メタルマスクを用いて半田接続の領域以外を覆って、レーザ光を照射し、配線基板に対するレーザ照射のダメージを小さくする。なお、前記のレーザ光を照射する領域を、電極パッドの幅の50〜90%とするのが好ましい。
The solder connection can be performed by connecting the central conductors in a batch using pulse heat or by using laser light irradiation.
Further, when solder connection is performed using the laser beam irradiation described above, a metal mask is used to cover a region other than the solder connection region and laser beam irradiation is performed to reduce damage to the wiring substrate due to laser irradiation. In addition, it is preferable that the region irradiated with the laser light is 50 to 90% of the width of the electrode pad.

本発明によれば、高密度に配置された電極パッド(配列ピッチ0.2mm以下、電極パッド間の絶縁間隙が0.1mm以下)に、極細の電線を確実に且つ容易に半田接続することができる。   According to the present invention, it is possible to reliably and easily solder and connect an extremely thin electric wire to electrode pads (arrangement pitch of 0.2 mm or less and an insulation gap between electrode pads of 0.1 mm or less) arranged at high density. it can.

本発明により半田接続された基板付き多心ケーブルの一例を示す図である。It is a figure which shows an example of the multicore cable with a board | substrate solder-connected by this invention. 本発明による半田接続される基板付き多心ケーブルの製造方法の一例を説明する図である。It is a figure explaining an example of the manufacturing method of the multicore cable with a board | substrate connected by solder by this invention. レーザ光照射による半田接続の例を説明する図である。It is a figure explaining the example of the solder connection by laser beam irradiation.

図により本発明の実施の形態を説明する。図において、10は同軸電線、11は中心導体、12は絶縁体、13は外部導体、14は外被、15は電線側の半田プリコート、16は共通被覆、17はグランドバー、20は配線基板、21は絶縁基板、22は電極パッド、23は半田レジスト層、24は電極側の半田プリコート、25は半田接続部、29はパルスヒート装置、30はレーザ照射装置、31はレーザ光、32はメタルマスク、33はマスク開口を示す。   Embodiments of the present invention will be described with reference to the drawings. In the figure, 10 is a coaxial wire, 11 is a central conductor, 12 is an insulator, 13 is an external conductor, 14 is a jacket, 15 is a solder precoat on the wire side, 16 is a common coating, 17 is a ground bar, and 20 is a wiring board. , 21 is an insulating substrate, 22 is an electrode pad, 23 is a solder resist layer, 24 is a solder precoat on the electrode side, 25 is a solder connection part, 29 is a pulse heat device, 30 is a laser irradiation device, 31 is a laser beam, and 32 is a laser beam. A metal mask 33 indicates a mask opening.

本発明は、図1に示すように、複数本の絶縁電線または同軸電線10を、配線基板20に半田接続部25で電気的に接続した基板付きの多心ケーブルの製造方法である。配線基板20に半田接続する電線は、絶縁電線または同軸電線、若しくは、これらが混在する複合ケーブルであってもよいが、説明を簡略にするために、同軸電線10を使用する例で説明する。なお、絶縁電線は導体に絶縁体が被覆されたものであるが、以下の説明で中心導体と呼ぶ箇所は絶縁電線での導体に相当する。   As shown in FIG. 1, the present invention is a method of manufacturing a multi-core cable with a substrate in which a plurality of insulated wires or coaxial wires 10 are electrically connected to a wiring substrate 20 by a solder connection portion 25. The electric wire to be solder-connected to the wiring board 20 may be an insulated electric wire, a coaxial electric wire, or a composite cable in which these are mixed, but in order to simplify the description, an example using the coaxial electric wire 10 will be described. In addition, although the insulated wire has a conductor covered with an insulator, a portion called a central conductor in the following description corresponds to a conductor in the insulated wire.

同軸電線10は、信号線となる中心導体11、絶縁体12、外部導体13を同軸状に配し、その外周を外被14で覆ったものである。
中心導体11には、銅または銀もしくは錫メッキ銅合金線からなる単心線または撚線が用いられ、AWG40(導体直径0.079mm)〜AWG49(導体直径0.028mm)位の太さのものが使用される。なお、中心導体11は、例えば、前記の範囲で異なる太さのものが混在する形態であってもよい。
The coaxial electric wire 10 includes a central conductor 11 serving as a signal line, an insulator 12 and an outer conductor 13 arranged coaxially, and the outer periphery thereof is covered with a jacket 14.
The central conductor 11 is a single core wire or stranded wire made of copper, silver, or tin-plated copper alloy wire, and has a thickness of about AWG 40 (conductor diameter 0.079 mm) to AWG 49 (conductor diameter 0.028 mm). Is used. The central conductor 11 may have a form in which different thicknesses are mixed in the above range, for example.

複数本の同軸電線10は、その端部分で中心導体11、絶縁体12、外部導体13がそれぞれ所定の範囲で段階的に露出するように、端部処理が行われる。なお、複数本の同軸電線10は、共通被覆16で一括して、フラットケーブル状にしてもよい。また、外部導体13はグランドバー17等で共通接地すると共に、同軸電線の配列の保持が行われるようにしてもよい。   The plurality of coaxial cables 10 are subjected to end processing so that the center conductor 11, the insulator 12, and the outer conductor 13 are exposed stepwise within a predetermined range at the end portions thereof. The plurality of coaxial electric wires 10 may be collectively formed into a flat cable shape with the common coating 16. Further, the outer conductor 13 may be commonly grounded by the ground bar 17 or the like, and the arrangement of the coaxial wires may be held.

配線基板20は、可撓性または硬質の絶縁体からなる絶縁基板21に、多数の電極パッド22を狭小のピッチで高密度に形成してなる。例えば、絶縁基板21を4mm角として、これに20〜25芯の同軸電線を接続するには、電極パッド22の中心間隔(ピッチ)Pは0.2mm以下とする必要がある。この場合、電極パッド22の絶縁間隙Sは、電極パッドの幅にもよるが、0.07mm以下程度とする必要がある。このような、狭小のピッチで配された電極パッド22のそれぞれに、同軸電線10を精度よく確実に半田接続するのは容易ではない。   The wiring board 20 is formed by forming a large number of electrode pads 22 with a small pitch at a high density on an insulating board 21 made of a flexible or hard insulator. For example, when the insulating substrate 21 is 4 mm square and a 20-25 core coaxial cable is connected to the insulating substrate 21, the center interval (pitch) P of the electrode pads 22 needs to be 0.2 mm or less. In this case, the insulating gap S of the electrode pad 22 needs to be about 0.07 mm or less, although it depends on the width of the electrode pad. It is not easy to solder the coaxial wire 10 accurately and reliably to each of the electrode pads 22 arranged at such a narrow pitch.

図2は、本発明による半田接続の一例を説明する図である。まず、同軸電線10の端部の外被14を除去して、外部導体13を所定長さ露出させ、次いで露出された外部導体13を所定長さ除去して絶縁体12を露出させる。そして、露出された絶縁体12の先端部を所定長さ除去して中心導体11の接続端を露出させる。   FIG. 2 is a diagram illustrating an example of solder connection according to the present invention. First, the outer sheath 14 at the end of the coaxial cable 10 is removed to expose the outer conductor 13 for a predetermined length, and then the exposed outer conductor 13 is removed for a predetermined length to expose the insulator 12. Then, the exposed end of the insulator 12 is removed by a predetermined length to expose the connection end of the center conductor 11.

次いで、図2(B)に示すように、露出された中心導体11の接続端に、フラックスを塗布して予め半田を付着した半田層(以下、半田プリコート15という)を形成しておくのが好ましい。中心導体11は、半田プリコート15を付与しなくても良いが、中心導体に撚線が用いられる場合は、半田プリコート15を付与しておくことにより撚線がバラけるのを防止することができる。なお、中心導体11に対する半田プリコートの形成には、例えば、後述する半田粉末を用いる方法を用いることで、付与量を適切にすることができる。   Next, as shown in FIG. 2B, a solder layer (hereinafter referred to as a solder precoat 15) in which solder is applied in advance by applying flux is formed on the exposed end of the central conductor 11. preferable. The center conductor 11 does not need to be provided with the solder precoat 15, but when a twisted wire is used for the center conductor, it is possible to prevent the twisted wire from being broken by providing the solder precoat 15. . In addition, for formation of the solder precoat with respect to the center conductor 11, for example, the application amount can be made appropriate by using a method using a solder powder described later.

上記の同軸電線10の端部処理と平行して、配線基板20の電極パッド22に予め半田粉末を付着し、リフローする処理(プリコート)を行う。配線基板20は、図2(C)に示すような、絶縁基板21上にプリント回路技術により、電極パッド22と配線導体(図示省略)並びに半田レジスト層23が形成されているものが用いられる。
配線基板20の電極パッド22の表面には、図2(D)に示すように、予め所定量の半田粉末を付与し、リフローさせた半田層(以下、半田プリコート24という)が形成される。
In parallel with the end processing of the coaxial cable 10 described above, a solder powder is previously attached to the electrode pads 22 of the wiring board 20 and reflow processing (pre-coating) is performed. As the wiring substrate 20, as shown in FIG. 2C, a substrate in which an electrode pad 22, a wiring conductor (not shown), and a solder resist layer 23 are formed on an insulating substrate 21 by a printed circuit technique is used.
On the surface of the electrode pad 22 of the wiring board 20, as shown in FIG. 2D, a predetermined amount of solder powder is applied in advance and reflowed solder layer (hereinafter referred to as solder precoat 24) is formed.

数十μm(例えば、70μm以下)オーダの狭小な絶縁間隙で配列された電極パッド22に、半田プリコート24を形成するには、種々の方法が考えられるが、本発明においては、例えば、以下のような、電極パッド上に所定量の半田粉末を付与し、これをリフローして半田プリコートとする方法を用いる。
(1)スーパージャフィット(SJ)法「電極パッド面に粘着剤塗布→表面に半田粉末を付着→基板全面にフラックス塗布→リフロー後洗浄」
(2)Precoat by Powder Sheet(PPS)法「配線基板上に粘着性フラックス塗布→半田粉末を粘着保持したPPSシートを電極パッド上に重ねプレス加熱→PPSシートを剥離→フラックス塗布→リフロー後洗浄」
Various methods are conceivable for forming the solder precoat 24 on the electrode pads 22 arranged with a narrow insulating gap on the order of several tens of μm (for example, 70 μm or less). A method of applying a predetermined amount of solder powder on the electrode pad and reflowing it to form a solder precoat is used.
(1) Super Just (SJ) method “Applying adhesive to electrode pad surface → Attaching solder powder to surface → Applying flux to entire surface of substrate → Cleaning after reflow”
(2) Precoat by Powder Sheet (PPS) method “Applying adhesive flux on wiring board → PPS sheet with solder powder adhered and held on electrode pad, press heating → PPS sheet peeling → Flux application → Washing after reflow”

上記の方法によれば、電極パッド上には、所定量の半田粉末を均一に精度よく付与することができる。この結果、電極パッドの表面に形成される半田プリコートの半田量を適切にすることができ、接続導体との接続不良や、隣接する電極パッドとの間の絶縁間隙を短絡する半田ブリッジの発生を低減することができる。
また、半田接続前に極細電線の導体が電極パッド上で位置ズレを起こすと、狭ピッチの接続の場合、半田ブリッジが生じやすい。このようなことがないように導体を電極パッド上に精度よく配置するためには、電極パッド上の半田を平面状とすることが有効であり、半田厚さは5〜40μmが適している。
According to the above method, a predetermined amount of solder powder can be uniformly and accurately applied on the electrode pad. As a result, the solder amount of the solder precoat formed on the surface of the electrode pad can be made appropriate, resulting in poor connection with the connection conductor and generation of a solder bridge that short-circuits the insulation gap between adjacent electrode pads. Can be reduced.
Further, if the conductor of the ultrafine wire is displaced on the electrode pad before the solder connection, a solder bridge is likely to occur in the case of a narrow pitch connection. In order to accurately arrange the conductor on the electrode pad so as not to cause such a situation, it is effective to make the solder on the electrode pad flat, and the solder thickness is suitably 5 to 40 μm.

配線基板20、もしくは、同軸電線10と配線基板20の双方に、半田プリコートが形成された後、図2(E)に示すように、配線基板20の半田プリコート24上に、半田プリコート15が施された中心導体11を位置決めして載置する。
次いで、接続する複数の中心導体11の外径が揃っている場合は、図2(F)に示すように、パルスヒート装置29を用いて、複数の中心導体11を一括して半田接続することができる。
After the solder precoat is formed on the wiring board 20 or both the coaxial cable 10 and the wiring board 20, the solder precoat 15 is applied on the solder precoat 24 of the wiring board 20, as shown in FIG. The center conductor 11 thus formed is positioned and placed.
Next, when the outer diameters of the plurality of central conductors 11 to be connected are the same, as shown in FIG. 2F, the plurality of central conductors 11 are collectively soldered using the pulse heat device 29. Can do.

この場合、パルスヒート装置29の電極部を中心導体11に押し当てて加熱し、半田接続する。例えば、第1ステップとして、接続部の温度を1秒で230℃に昇温させた後、この温度を1秒間保持する。次いで、第2ステップとして1秒で300℃に昇温させた後、この温度を1.5秒間保持する。なお、接続する極細電線の本数が、例えば64本以下である場合、パルスヒート装置29の電極部を押し当てる押圧力は、4.5N以下である。   In this case, the electrode portion of the pulse heat device 29 is pressed against the central conductor 11 and heated to be soldered. For example, as a first step, after the temperature of the connecting portion is raised to 230 ° C. in 1 second, this temperature is held for 1 second. Next, as a second step, the temperature is raised to 300 ° C. in 1 second, and this temperature is maintained for 1.5 seconds. When the number of extra fine wires to be connected is 64 or less, for example, the pressing force that presses the electrode portion of the pulse heat device 29 is 4.5 N or less.

また、図3(A)に示すように、上記のパルスヒート装置に変えてレーザ照射装置30を用いて複数の中心導体11を半田接続することができる。この場合、レーザ光31よる照射で半田プリコート15,24を加熱溶融し、これによる半田接続部25で、同軸電線10の中心導体11を電極パッド22に半田接続する。   As shown in FIG. 3A, a plurality of center conductors 11 can be soldered using a laser irradiation apparatus 30 instead of the pulse heat apparatus. In this case, the solder precoats 15 and 24 are heated and melted by irradiation with the laser beam 31, and the central conductor 11 of the coaxial cable 10 is solder-connected to the electrode pad 22 by the solder connection portion 25.

図3(B)は、レーザ光を照射する他の例を示す方法である。この方法は、メタルマスク32に所定の大きさのマスク開口33を設けて、所定の領域のみをレーザ光31で照射するようにした例である。メタルマスク32を用いることにより、加熱領域を特定することができ、電極パッド以外の電気的に絶縁される領域の損傷を少なくすることができる。
上記のレーザ光31の照射範囲は、電極パッド22の横幅(配列方向)の50〜90%程度とするのが好ましい。なお、レーザ光の照射範囲が50%未満では、半田溶融の範囲が少なく、中心導体との接続が不十分となる虞がある。また、レーザ光の照射範囲が90%を超えると、わずかのずれで基板の絶縁面を照射して損傷する虞がある。
FIG. 3B is a method illustrating another example of laser light irradiation. This method is an example in which a mask opening 33 having a predetermined size is provided in the metal mask 32 and only a predetermined region is irradiated with the laser light 31. By using the metal mask 32, a heating region can be specified, and damage to an electrically insulated region other than the electrode pad can be reduced.
The irradiation range of the laser beam 31 is preferably about 50 to 90% of the lateral width (arrangement direction) of the electrode pads 22. If the laser light irradiation range is less than 50%, the solder melting range is small, and the connection with the central conductor may be insufficient. Further, when the laser light irradiation range exceeds 90%, there is a possibility that the insulating surface of the substrate is irradiated with a slight deviation and damaged.

10…同軸電線、11…中心導体、12…絶縁体、13…外部導体、14…外被、15…半田プリコート、16…共通被覆、17…グランドバー、20…配線基板、21…絶縁基板、22…電極パッド、23…半田レジスト層、24…半田プリコート、25…半田接続部、29…パルスヒート装置、30…レーザ照射装置、31…レーザ光、32…メタルマスク、33…マスク開口。 DESCRIPTION OF SYMBOLS 10 ... Coaxial electric wire, 11 ... Center conductor, 12 ... Insulator, 13 ... Outer conductor, 14 ... Outer coat, 15 ... Solder precoat, 16 ... Common coating | cover, 17 ... Ground bar, 20 ... Wiring board, 21 ... Insulation board, DESCRIPTION OF SYMBOLS 22 ... Electrode pad, 23 ... Solder resist layer, 24 ... Solder precoat, 25 ... Solder connection part, 29 ... Pulse heat apparatus, 30 ... Laser irradiation apparatus, 31 ... Laser beam, 32 ... Metal mask, 33 ... Mask opening.

Claims (6)

複数本の極細電線を、配線基板上の高密度に配列された複数の電極パッドに半田接続した基板付き多心ケーブルの製造方法であって、
前記配線基板上の複数の電極パッド上に所定量の半田粉末を付与しリフローすることで半田プリコートを形成する工程を備え、
前記複数本の極細電線の中心導体を、前記半田プリコートが形成された前記複数の電極パッド上に配置して、前記極細電線の中心導体を前記電極パッドに半田接続する基板付き多心ケーブルの製造方法。
A method of manufacturing a multi-core cable with a substrate in which a plurality of extra fine wires are soldered to a plurality of electrode pads arranged at high density on a wiring substrate,
Including a step of forming a solder precoat by applying a predetermined amount of solder powder on a plurality of electrode pads on the wiring board and reflowing,
Manufacture of a multi-core cable with a substrate in which center conductors of the plurality of extra fine wires are disposed on the plurality of electrode pads on which the solder precoat is formed, and the center conductors of the extra fine wires are soldered to the electrode pads. Method.
前記複数本の極細電線の中心導体の接続端に、半田プリコートを形成する工程を備えている請求項1に記載の基板付き多心ケーブルの製造方法。   The manufacturing method of the multicore cable with a board | substrate of Claim 1 provided with the process of forming a solder precoat in the connection end of the center conductor of the said several ultrafine electric wire. パルスヒートを用いて前記複数本の極細電線の中心導体を一括して半田接続する請求項1または2に記載の基板付き多心ケーブルの製造方法。   The manufacturing method of the multicore cable with a board | substrate of Claim 1 or 2 which solder-connects the center conductor of the said several extra-fine electric wire collectively using pulse heat. レーザ光照射を用いて半田接続する請求項1または2に記載の基板付き多心ケーブルの製造方法。   The manufacturing method of the multicore cable with a board | substrate of Claim 1 or 2 which carries out solder connection using laser beam irradiation. メタルマスクを用いて前記半田接続の領域以外を覆って、前記レーザ光照射する請求項4に記載の基板付き多心ケーブルの製造方法。   The manufacturing method of the multi-core cable with a board | substrate of Claim 4 which covers the area | regions other than the said soldering connection area | region using a metal mask, and irradiates the said laser beam. 前記レーザ光照射する領域を、前記電極パッドの幅の50〜90%とする請求項5に記載の基板付き多心ケーブルの製造方法。   The manufacturing method of the multi-core cable with a board | substrate of Claim 5 which makes the area | region to which the said laser beam irradiation is 50 to 90% of the width | variety of the said electrode pad.
JP2013044397A 2012-03-08 2013-03-06 Method of manufacturing multiconductor cable equipped with substrate Pending JP2013214734A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013044397A JP2013214734A (en) 2012-03-08 2013-03-06 Method of manufacturing multiconductor cable equipped with substrate
PCT/JP2013/056446 WO2013133409A1 (en) 2012-03-08 2013-03-08 Method for manufacturing coaxial cable having attached substrate
CN201380012939.3A CN104160557A (en) 2012-03-08 2013-03-08 Method for manufacturing coaxial cable having attached substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012051431 2012-03-08
JP2012051431 2012-03-08
JP2013044397A JP2013214734A (en) 2012-03-08 2013-03-06 Method of manufacturing multiconductor cable equipped with substrate

Publications (1)

Publication Number Publication Date
JP2013214734A true JP2013214734A (en) 2013-10-17

Family

ID=49116877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044397A Pending JP2013214734A (en) 2012-03-08 2013-03-06 Method of manufacturing multiconductor cable equipped with substrate

Country Status (3)

Country Link
JP (1) JP2013214734A (en)
CN (1) CN104160557A (en)
WO (1) WO2013133409A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932049A (en) * 2019-11-15 2020-03-27 东莞市输变电工程公司 Combustion connection method for cable
CN110932050A (en) * 2019-11-15 2020-03-27 东莞市输变电工程公司 Investment pattern device and using method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136969B2 (en) 2014-02-13 2017-05-31 住友電装株式会社 Terminal fitting
JP6463300B2 (en) 2016-05-20 2019-01-30 矢崎総業株式会社 Terminalized wire manufacturing method
CN107196113A (en) * 2017-04-28 2017-09-22 番禺得意精密电子工业有限公司 Electric connector
CN107835585A (en) * 2017-10-31 2018-03-23 湖北兆元科技有限公司 For connector and the carrier device and method of pcb board reflow soldering

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518751U (en) * 1991-08-05 1993-03-09 日本電気株式会社 Laser heating device
JPH0685448A (en) * 1992-08-24 1994-03-25 Hitachi Ltd Laser soldering method and device thereof
JP2592757B2 (en) * 1992-10-30 1997-03-19 昭和電工株式会社 Solder circuit board and method for forming the same
JP3362079B2 (en) * 1993-05-12 2003-01-07 昭和電工株式会社 Solder powder fixing method
JP3537871B2 (en) * 1993-07-05 2004-06-14 昭和電工株式会社 Solder coat and method for forming the same
WO2008105397A1 (en) * 2007-02-26 2008-09-04 Senju Metal Industry Co., Ltd. Circuit board for soldering having adhesion property and wetting property
JP4343236B2 (en) * 2007-03-30 2009-10-14 シャープ株式会社 Circuit board and method for forming circuit board
JP2010118318A (en) * 2008-11-14 2010-05-27 Hitachi Cable Ltd Connecting part, and connecting method of coaxial cable
JP2010146939A (en) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd Solder connecting method for flat cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932049A (en) * 2019-11-15 2020-03-27 东莞市输变电工程公司 Combustion connection method for cable
CN110932050A (en) * 2019-11-15 2020-03-27 东莞市输变电工程公司 Investment pattern device and using method

Also Published As

Publication number Publication date
WO2013133409A1 (en) 2013-09-12
CN104160557A (en) 2014-11-19

Similar Documents

Publication Publication Date Title
TWI383553B (en) Connection structure and connection method of coaxial cable harness
JP2013214734A (en) Method of manufacturing multiconductor cable equipped with substrate
CN107112082B (en) Installation cable and the installation manufacturing method of cable
JP2010146939A (en) Solder connecting method for flat cable
JP2007280772A (en) Multicore cable, multicore cable with connector, and manufacturing method thereof
WO2009139041A1 (en) Cable harness, cable harness with connector, and connection structure of cable harness
CN100440645C (en) Wire cable connector assembly parts and its manufacturing method
JP2014132588A (en) Cable connection structure and cable connection method
US7770290B2 (en) Electrical connection method for plural coaxial wires
JP6941731B2 (en) Manufacturing method of stranded wire connector and stranded wire connector for electric devices
JP2010118318A (en) Connecting part, and connecting method of coaxial cable
US10206289B2 (en) Printed circuit board, method for manufacturing printed circuit board, and method for joining conductive member
JP2010272400A (en) Structure and method for connection of coaxial cable
JP4281271B2 (en) Electric wire terminal connection structure and connection method
JP2011044406A (en) Small-diameter coaxial cable, multilayer wiring board, and manufacturing method of multilayer wiring board
JP2006185741A (en) Terminal processing coaxial cable and its manufacturing method
US11955740B2 (en) Electric wire connection structure, electric wire connection method, medical device, and method for manufacturing the same
TW446963B (en) Method for increasing rigidity of braiding layer of a coaxial cable
JP6266545B2 (en) Heating coil for induction heating, and induction heating cooker using the same
JP2003168500A (en) Extra-fine coaxial cable assembly and connecting method of extra-fine coaxial cable
JP3885644B2 (en) Super fine cable connection board and connection method
JP6638735B2 (en) Multi-core cable with connector and method of manufacturing the same
US20240032993A1 (en) Electric wire connection structure, electric wire connection method, medical device, and method of manufacturing medical device
JP2013254701A (en) Coaxial cable and coaxial cable unit
JP4325136B2 (en) Multi-core cable terminal connection method and terminal connection part thereof