JP2013214667A - Ceramic wiring board manufacturing method - Google Patents

Ceramic wiring board manufacturing method Download PDF

Info

Publication number
JP2013214667A
JP2013214667A JP2012084987A JP2012084987A JP2013214667A JP 2013214667 A JP2013214667 A JP 2013214667A JP 2012084987 A JP2012084987 A JP 2012084987A JP 2012084987 A JP2012084987 A JP 2012084987A JP 2013214667 A JP2013214667 A JP 2013214667A
Authority
JP
Japan
Prior art keywords
conductor layer
laser
ceramic
wiring board
ceramic wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012084987A
Other languages
Japanese (ja)
Inventor
Satoshi Hirayama
聡 平山
Satoshi Ishikawa
智 石川
Naoki Kito
直樹 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012084987A priority Critical patent/JP2013214667A/en
Publication of JP2013214667A publication Critical patent/JP2013214667A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a ceramic wiring board for a multi-piece wiring board and the like which has a predetermined size and shape, and which has a plurality of unit ceramic wiring boards where a conductor layer of a predetermined width is formed on a surface which surrounds openings of cavities, and which includes split grooves among the unit ceramic wiring boards.SOLUTION: A manufacturing method of a ceramic wiring board 1 having split grooves 24 which split a conductor layer 12 formed on a surface 3 of a ceramic layer 16 and extend along the surface 3 comprises a process of irradiating YVOlaser beams 22 on the conductor layer 12 formed on the surface 3 of the ceramic green sheet 16 along a thickness direction of the conductor layer 12 and the green sheets 16, 17 lying under the conductor layer 12 to form the split grooves 24 along the surface 3 by continuous irradiation along the surface 3 of the green sheet 16.

Description

本発明は、例えば、複数の単位セラミック配線基板を併有する製品領域を含み、且つ各単位セラミック配線基板の間に分割溝が形成されたセラミック配線基板の製造方法に関する。   The present invention relates to a method for manufacturing a ceramic wiring board including, for example, a product region having a plurality of unit ceramic wiring boards, and in which divided grooves are formed between the unit ceramic wiring boards.

切り欠き溝の深底部に微少なクラックの発生がないセラミック基板を安定して効率良く製造するため、多数個取り用のセラミックグリーンシートに対し、YAGレーザーあるいは炭酸ガスレーザーを上記グリーンシートの表面に沿って照射して、複数のセラミック基板を個片化するためのスクライブプレイラインに沿った切り欠き溝(分割溝)を形成するセラミック基板の製造方法が提案されている(例えば、特許文献1参照)。   In order to stably and efficiently manufacture a ceramic substrate that does not generate micro cracks in the deep bottom of the notch groove, a YAG laser or carbon dioxide laser is applied to the surface of the green sheet for a multi-piece ceramic green sheet. A method of manufacturing a ceramic substrate has been proposed in which notched grooves (divided grooves) are formed along a scribe play line for dividing the plurality of ceramic substrates into individual pieces (see, for example, Patent Document 1). ).

特許文献1に記載された前記セラミック基板の製造方法によれば、隣接するセラミック基板の間に深底部にクラックのない分割溝を安定して形成できる。しかし、比較的エネルギーが高く且つパルス幅が大きいYAGレーザーや炭酸ガスレーザーを用いるため、セラミックグリーンシートに形成される分割溝の開口部の幅が過度に拡がったり、予め、セラミックグリーンシートの表面に形成された導体層のうち、分割溝に沿った側の辺部を過剰に除去してしまう場合があった。そのため、所定の外形寸法や形状を有するセラミック配線基板が得られなかったり、キャビティの開口部を囲う表面に、封止用の金属枠をロウ付けするべく所要幅の導体層を形成できなくなる、という問題があった。
更に、複数のセラミックグリーンシート間に形成された内部導体層についても、前記レーザーによってグリーンシートと共に分割溝を形成した際に、形成された分割溝の内壁面付近において、該分割溝に露出した内部導体層の端面側が部分的に除去されたり、剥離してしまう場合があった。そのため、上記内部導体層付近での電気的導通が不安定になり得る、という問題もあった。
According to the method for manufacturing a ceramic substrate described in Patent Document 1, it is possible to stably form a split groove having no crack in a deep bottom portion between adjacent ceramic substrates. However, since a YAG laser or carbon dioxide gas laser with relatively high energy and a large pulse width is used, the width of the opening of the dividing groove formed in the ceramic green sheet is excessively widened. Of the formed conductor layer, the side part along the dividing groove may be excessively removed. Therefore, a ceramic wiring board having a predetermined external dimension and shape cannot be obtained, or a conductor layer having a required width cannot be formed on the surface surrounding the cavity opening to braze a metal frame for sealing. There was a problem.
Further, for the internal conductor layer formed between the plurality of ceramic green sheets, when the divided grooves are formed together with the green sheet by the laser, the internal conductor exposed in the divided grooves is formed near the inner wall surface of the formed divided grooves. The end face side of the conductor layer may be partially removed or peeled off. For this reason, there is a problem that electrical conduction in the vicinity of the inner conductor layer may become unstable.

特開昭62−232187号公報(第1〜5頁、第1〜3図)JP 62-232187 (pages 1-5, FIGS. 1-3)

本発明は、背景技術において説明した問題点を解決し、例えば、所定の寸法や形状を有し、あるいはキャビティの開口部を囲う表面に所定幅の導体層が形成された複数の単位セラミック配線基板を併有し、且つ該配線基板の間に分割溝が形成された多数個取り用などのセラミック配線基板の製造方法を提供する、ことを課題とする。   The present invention solves the problems described in the background art, for example, a plurality of unit ceramic wiring boards having a predetermined size and shape, or a conductor layer having a predetermined width formed on a surface surrounding an opening of a cavity. It is another object of the present invention to provide a method for manufacturing a ceramic wiring board, such as for multi-piece manufacturing, in which a plurality of grooves are formed between the wiring boards.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、少なくとも表面に導体層が形成されたセラミックグリーンシートに対し、その表面に沿ってYVO4レーザーを照射する、ことに着想して成されたものである。
即ち、本発明によるセラミック配線基板の製造方法(請求項1)は、少なくともセラミック層の表面に形成された導体層を分割し且つ前記表面に沿った分割溝を有するセラミック配線基板の製造方法であって、セラミックグリーンシートの表面に形成された導体層に対し、かかる導体層および該導体層の下側に位置する上記グリーンシートの厚み方向に沿ってYVO4レーザーを照射し、且つ上記グリーンシートの表面に沿って連続して照射することによって、該表面に沿った分割溝を形成する工程を含む、ことを特徴とする。
In order to solve the above-described problems, the present invention has been conceived by irradiating a ceramic green sheet having a conductor layer formed on at least the surface thereof with a YVO 4 laser along the surface.
That is, the method for manufacturing a ceramic wiring board according to the present invention (Claim 1) is a method for manufacturing a ceramic wiring board that divides at least a conductor layer formed on the surface of the ceramic layer and has dividing grooves along the surface. And irradiating the conductor layer formed on the surface of the ceramic green sheet with a YVO 4 laser along the thickness direction of the conductor layer and the green sheet positioned below the conductor layer, The method includes the step of forming a dividing groove along the surface by continuously irradiating along the surface.

これによれば、セラミックグリーンシートの表面に形成された導体層に対し、グリーンシートの厚み方向に沿って、例えば、YAGレーザーや炭酸ガスレーザーに比べてエネルギーが低く且つパルス幅が小さいYVO4レーザーを照射し、且つ該グリーンシートの表面に沿って連続して照射される。そのため、上記グリーンシートの表面に沿って形成される分割溝は、幅が狭く且つ最底部が深い断面が縦に細長いV字形状となり、予めグリーンシートの表面に形成された未焼成の導体層を過度に除去することがなくなる。従って、所定の寸法や形状を有し、あるいはキャビティの開口部を囲む表面に所要幅の導体層や内部導体層が形成された複数の単位セラミック配線基板を併有し、且つこれら配線基板の間に分割溝が形成された多数個取り用などのセラミック配線基板や、分割溝を要するセラミック配線基板の製造方法を確実に提供することが可能となる。
更に、セラミック配線基板に内部導体層が形成され、該内部導体層が分割溝によって分割された場合には、該分割溝に露出した上記内部導体層の端部付近が、過度に除去されず、且つ剥離を生じにくくなる。
According to this, a YVO 4 laser having a lower energy and a smaller pulse width than the YAG laser or carbon dioxide laser, for example, along the thickness direction of the green sheet with respect to the conductor layer formed on the surface of the ceramic green sheet. And continuously irradiated along the surface of the green sheet. Therefore, the dividing grooves formed along the surface of the green sheet have a narrow and narrow V-shaped section with a deep bottom at the bottom, and an unfired conductor layer previously formed on the surface of the green sheet. It will not be removed excessively. Therefore, it has a plurality of unit ceramic wiring boards having a predetermined size and shape, or having a conductor layer and an inner conductor layer of the required width formed on the surface surrounding the cavity opening, and between these wiring boards. Thus, it is possible to reliably provide a method for manufacturing a ceramic wiring board for taking a large number of pieces in which divided grooves are formed, and a ceramic wiring board that requires divided grooves.
Furthermore, when the internal conductor layer is formed on the ceramic wiring board and the internal conductor layer is divided by the dividing groove, the vicinity of the end portion of the internal conductor layer exposed in the dividing groove is not excessively removed, And it becomes difficult to produce peeling.

尚、前記セラミック配線基板は、主に多数個取り用であるが、周辺側の耳部と中央側に位置する単一の配線基板とを有する形態も含まれ得る。
また、前記セラミックグリーンシートは、アルミナなどの高温焼成セラミック用のほか、ガラス−セラミックのような低温焼成セラミック用も含まれる。
更に、前記導体層は、前記グリーンシートが高温焼成セラミック用であれば、WあるいはMoなどが用いられ、低温焼成セラミック用であれば、CuあるいはAgなどが用いられる。
また、前記グリーンシートの表面に形成された導体層は、封止用の金属枠をロウ付けするための枠形状の導体層や、あるいは、単層のグリーンシートを焼成した単層のセラミック基板における表面の周囲に設けた接地配線層などが含まれる。
更に、前記表面の導体層のほか、複数のグリーンシート間に位置する内部導体層も含まれ得る。例えば、セラミック基板のコーナに設けた凹型導体層に接続し且つ内部の回路などと接続するための配線層となる導体層が例示される。
また、前記YVO4レーザーは、イットリウム・バナデート(YVO4)を媒質に用いるレーザーであり、その波長は、1,064nmである。
In addition, although the said ceramic wiring board is mainly for picking up many pieces, the form which has the ear | edge part of the peripheral side and the single wiring board located in the center side may also be included.
The ceramic green sheet includes not only high-temperature fired ceramics such as alumina but also low-temperature fired ceramics such as glass-ceramics.
Furthermore, W or Mo is used for the conductor layer if the green sheet is for high-temperature fired ceramics, and Cu or Ag is used for low-temperature fired ceramics.
The conductor layer formed on the surface of the green sheet is a frame-shaped conductor layer for brazing a metal frame for sealing, or a single-layer ceramic substrate obtained by firing a single-layer green sheet. A ground wiring layer provided around the surface is included.
Furthermore, in addition to the conductor layer on the surface, an inner conductor layer positioned between the plurality of green sheets may be included. For example, a conductor layer serving as a wiring layer for connecting to a concave conductor layer provided at a corner of a ceramic substrate and connecting to an internal circuit or the like is exemplified.
The YVO 4 laser is a laser using yttrium vanadate (YVO 4 ) as a medium, and its wavelength is 1,064 nm.

また、本発明には、前記YVO4レーザーは、第2高調波乃至第4高調波のYVO4レーザーである、セラミック配線基板の製造方法(請求項2)も含まれる。
これによれば、通常のYVO4レーザーの周波数に対し、2倍の周波数(2分の1の波長)、3倍の周波数(3分の1の波長)、あるいは4倍の周波数(4分の1の波長)を持つ第2高調波乃至第4高調波のYVO4レーザーを、前記セラミックグリーンシートの表面に形成された導体層に照射し、且つ該表面に沿って照射するため、かかる表面の狭い領域に対して一層高い密度でレーザーが直線状などに照射される。従って、通常のYVO4レーザーによる場合に比べて、溝幅が一層狭く且つ更に深い分割溝を形成することが可能となる。
尚、第2、第3、第4高調波とは、元の基本波の2倍、3倍、4倍の周波数(2分の1の波長、3分の1の波長、4分の1の波長)を持つ周波数成分であり、例えば、YVO4レーザーの第2高調波とは、波長が532nmのYVO4レーザーである。
The present invention also includes a method for manufacturing a ceramic wiring board (claim 2), wherein the YVO 4 laser is a second to fourth harmonic YVO 4 laser.
According to this, the frequency of a normal YVO 4 laser is doubled (a half wavelength), tripled (a third wavelength), or quadrupled (a quarter). The second to fourth harmonic YVO 4 laser having a wavelength of 1) is irradiated onto the conductor layer formed on the surface of the ceramic green sheet and irradiated along the surface. A narrow area is irradiated with a laser beam at a higher density in a straight line or the like. Accordingly, it is possible to form a division groove having a narrower groove width and a deeper depth than in the case of using a normal YVO 4 laser.
The second, third, and fourth harmonics are twice, three times, and four times the frequency of the original fundamental wave (half wavelength, one third wavelength, one quarter wavelength). a frequency component having a wavelength), for example, the second harmonic of the YVO 4 laser, wavelength of YVO 4 laser of 532 nm.

更に、本発明には、前記YVO4レーザーの繰り返し周波数は、20〜250KHzである、セラミック配線基板の製造方法(請求項3)も含まれる。
これによれば、例えば、繰り返し周波数のピークが約10KHzのYAGレーザーを用いた場合に比べ、同じ出力によって半分以下のエネルギーによるYVO4レーザーによる溝加工が行えるので、狭い溝幅で且つ深い分割溝を形成できる。
尚、YVO4レーザーの好ましい繰り返し周波数帯は、50〜100KHzである。
Furthermore, the present invention includes a method for manufacturing a ceramic wiring board (Claim 3), wherein the repetition frequency of the YVO 4 laser is 20 to 250 KHz.
According to this, for example, as compared with the case where a YAG laser having a repetition frequency peak of about 10 KHz is used, groove processing with a YVO 4 laser with less than half energy can be performed with the same output, so that a narrow groove with a narrow groove width and a deep groove. Can be formed.
A preferable repetition frequency band of the YVO 4 laser is 50 to 100 KHz.

本発明の対象となる多数個取り用のセラミック配線基板を示す平面図。The top view which shows the ceramic wiring board for multi-piece picking used as the object of this invention. (a)は図1中のX−X線に沿った部分垂直断面図、(b)は図1中のY−Y線に沿った部分垂直断面図。(A) is the partial vertical sectional view along the XX line in FIG. 1, (b) is the partial vertical sectional view along the YY line in FIG. YVO4レーザーとYAGレーザーの特性を示す模式的なグラフ。YVO 4 schematic graph showing the characteristics of the laser and YAG laser. 前記セラミック配線基板に上記レーザーを照射する工程を示す概略図。Schematic which shows the process of irradiating the said ceramic wiring board with the said laser. 本発明によるYVO4レーザーを照射した後の前記同様の部分垂直断面図。FIG. 3 is a partial vertical sectional view similar to the above after irradiation with a YVO 4 laser according to the present invention. 比較例のYAGレーザーを照射した後の前記同様の部分垂直断面図。The same partial vertical sectional view as described above after irradiation with the YAG laser of the comparative example.

以下において、本発明を実施するための形態について説明する。
予め、アルミナなどのセラミック粉末、バインダ樹脂、および溶剤などを所要量ずつ秤量して配合し、得られたセラミックスラリーをドクターブレード法によってシート形状に整形することにより、4枚のセラミックグリーンシート(以下、単にグリーンシートと称する)を得た。各グリーンシートに対して打ち抜き加工を施して形成されたビアホール内にWまたはMo粉末を含む導電性ペーストを充填して、各グリーンシートの表面と裏面との間を貫通するビア導体を形成した。
次に、各グリーンシートの表面および裏面の少なくとも一方に所定パターンによるスクリーン印刷を施して、前記同様の導電性ペーストからなる所定パターンの導体層を形成した。更に、追って上層側となる2層のグリーンシートに対し、角形断面のパンチを含む打ち抜き装置を用いて、平面視が矩形(長方形または正方形)状である複数の貫通孔を縦横に隣接して形成した。かかる上層側となる2層のグリーンシートと、下層側となる残り2層のグリーンシートとを積層した。
Hereinafter, modes for carrying out the present invention will be described.
In advance, ceramic powder such as alumina, binder resin, and solvent are weighed and blended in a required amount, and the resulting ceramic slurry is shaped into a sheet shape by the doctor blade method, so that four ceramic green sheets (hereinafter referred to as “ceramic green sheets”) Simply referred to as a green sheet). A via hole formed by punching each green sheet was filled with a conductive paste containing W or Mo powder to form a via conductor penetrating between the front and back surfaces of each green sheet.
Next, at least one of the front and back surfaces of each green sheet was screen-printed with a predetermined pattern to form a conductor layer with a predetermined pattern made of the same conductive paste as described above. Furthermore, a plurality of through-holes having a rectangular (rectangular or square) shape in plan view are formed adjacent to each other vertically and horizontally by using a punching device including a punch having a square cross section on the two-layer green sheet that will be the upper layer later. did. The two green sheets on the upper layer side and the remaining two green sheets on the lower layer side were laminated.

その結果、図1の平面図で示すように、本発明の対象となる多数個取り用のセラミック配線基板1が得られた。尚、図2(a)は図1中のX−X線に沿った部分垂直断面図、図2(b)は図1中のY−Y線に沿った部分垂直断面図である。
多数個取り用のセラミック配線基板1は、図1に示すように、平面視が長方形である表面3の中央側において、該表面3に開口するキャビティ6を有する複数の単位セラミック配線基板(セラミックパッケージ)6を縦横に隣接して配置した製品領域2と、該製品領域2の周囲に位置し且つ平面視が矩形枠状の耳部20とを備えている。
図1,図2(a),(b)に示すように、セラミック配線基板1は、複数のグリーンシート16〜19を積層し、且つ表面3および裏面4を有すると共に、該表面3に設けた導体層12、裏面4に設けた導体層14、グリーンシート16〜19間に設けた所定パターンの導体層13,15を有する積層体である。尚、上記導体層12〜15は、前記導電性ペーストからなる未焼成の導体である。また、図1,図2(a),(b)中で破線の符号5は、架空の切断予定面である。
As a result, as shown in the plan view of FIG. 1, a multi-piece ceramic wiring board 1 which is an object of the present invention was obtained. 2A is a partial vertical sectional view taken along line XX in FIG. 1, and FIG. 2B is a partial vertical sectional view taken along line YY in FIG.
As shown in FIG. 1, a multi-piece ceramic wiring board 1 has a plurality of unit ceramic wiring boards (ceramic packages) having a cavity 6 opened in the surface 3 on the center side of the surface 3 that is rectangular in plan view. ) 6 is disposed adjacent to the product region 2 in the vertical and horizontal directions, and the ear 20 is located around the product region 2 and has a rectangular frame shape in plan view.
As shown in FIGS. 1, 2 (a) and 2 (b), the ceramic wiring substrate 1 is formed by laminating a plurality of green sheets 16 to 19 and having a front surface 3 and a back surface 4. It is a laminate having a conductor layer 12, a conductor layer 14 provided on the back surface 4, and conductor layers 13 and 15 having a predetermined pattern provided between green sheets 16-19. The conductor layers 12 to 15 are unfired conductors made of the conductive paste. 1 and 2 (a) and 2 (b), reference numeral 5 shown by a broken line is an imaginary planned cutting surface.

図1に示すように、表面3側の導体層12は、単位セラミック配線基板6ごとの表面3全体と、耳部20の製品領域2側とに沿って形成されている。
また、図1,図2(b)に示すように、隣接する単位セラミック配線基板6,6を区分する切断予定面5同士の交差部と、上記配線基板6,6を区分する切断予定面5と配線基板6と耳部20との間を区分する切断予定面5との交差部には、表面3と裏面4との間を貫通する断面が円形状の貫通孔10が形成され、該貫通孔10の内壁面に沿って前記導電性ペーストからなる未焼成の導体からなる円筒状のスルーホール導体11が形成されている。該スルーホール導体11は、表面3側で導体層12と、裏面4側で導体層14と、中間で導体層13と接続されている。尚、導体層12,13,15間には、前記導電性ペーストからなる未焼成のビア導体(図示せず)が形成されている。このうち、導体層13は、追って分割された際に、断面が約4分の1の円弧形とされたスルーホール導体11と、配線層となる導体層15との間を接続するための接続用の配線層である。
更に、単位セラミック配線基板6ごとに形成されたキャビティ7は、平面視が長方形の底面8と、該底面8の周辺から立設する四辺の側面9とを有し、該底面8には、水晶振動子などの実装すべき電子部品における一対の電極と個別に導通するための一対の電極(図示せず)が形成されている。
As shown in FIG. 1, the conductor layer 12 on the surface 3 side is formed along the entire surface 3 for each unit ceramic wiring substrate 6 and the product region 2 side of the ear portion 20.
Moreover, as shown in FIGS. 1 and 2B, the intersection of the scheduled cutting surfaces 5 that divide the adjacent unit ceramic wiring boards 6, 6, and the planned cutting surface 5 that divides the wiring boards 6, 6. A through-hole 10 having a circular cross section that passes through between the front surface 3 and the back surface 4 is formed at the intersection of the cutting plane 5 that divides the wiring board 6 and the ear portion 20. A cylindrical through-hole conductor 11 made of an unfired conductor made of the conductive paste is formed along the inner wall surface of the hole 10. The through-hole conductor 11 is connected to the conductor layer 12 on the front surface 3 side, the conductor layer 14 on the back surface 4 side, and the conductor layer 13 in the middle. An unfired via conductor (not shown) made of the conductive paste is formed between the conductor layers 12, 13 and 15. Of these, when the conductor layer 13 is divided later, the conductor layer 13 connects the through-hole conductor 11 having an arc shape having a cross section of about 1/4 and the conductor layer 15 serving as a wiring layer. It is a wiring layer for connection.
Further, the cavity 7 formed for each unit ceramic wiring substrate 6 has a bottom surface 8 that is rectangular in plan view and four side surfaces 9 that stand up from the periphery of the bottom surface 8. A pair of electrodes (not shown) for individually conducting with a pair of electrodes in an electronic component to be mounted such as a vibrator are formed.

次に、前記多数個取り用のセラミック基板1を切断予定面5ごとに沿ってレーザーを照射することで、単位セラミック配線基板6,6間、および該配線基板6と耳部20との間に個片化用の分割溝(24)を形成する工程を行った。
図3のグラフにおいて、本発明に用いるYVO4レーザーの特性と、比較例のYAGレーザーの特性とを、模式的に示した。図3に示すように、YVO4レーザーとYAGレーザーとのパワー曲線は、それぞれ山頂部を有するカーブを描き、YVO4レーザーは、山頂部が約50KHzの高い繰り返し周波数のところにあるのに対し、YAGレーザーは、山頂部が約10KHzの低い繰り返し周波数のところにある。そのため、かかる2種類のレーザーのレーザー出力(W)が同じ場合でも、YVO4レーザーでは、高い繰り返し周波数で且つ高い出力を得るのでエネルギーが低くなるのに対し、YAGレーザーでは、低い繰り返し周波数で且つ高い出力を得るのでエネルギーが高くなる(数式1参照)。
Next, the ceramic substrate 1 for multi-cavity is irradiated with a laser along each scheduled cutting surface 5, so that the unit ceramic wiring substrates 6, 6 and between the wiring substrate 6 and the ear 20 are formed. The process of forming the division | segmentation groove | channel (24) for individualization was performed.
In the graph of FIG. 3, the characteristics of the YVO 4 laser used in the present invention, the properties of YAG laser of the comparative example, shown schematically. As shown in FIG. 3, the power curves of the YVO 4 laser and the YAG laser each draw a curve having a peak, and the YVO 4 laser has a peak at a high repetition frequency of about 50 KHz, The YAG laser is at a low repetition frequency of about 10 KHz at the peak. Therefore, even when the laser power (W) of the two types of lasers is the same, the YVO 4 laser obtains a high repetition frequency and a high output so that the energy is low, whereas the YAG laser has a low repetition frequency and Since a high output is obtained, energy is increased (see Formula 1).

(数1)
エネルギー(J)=出力(W)/繰り返し周波数(Hz)
(Equation 1)
Energy (J) = Output (W) / Repetition frequency (Hz)

例えば、レーザー出力を10Wとすると、YVO4レーザーの場合、約50KHzの高い繰り返し周波数領域において10Wを出力するため、得られるエネルギーは、0.2mJと低くなる。これに対し、YAGレーザーの場合、約10KHzの低い繰り返し周波数領域において10Wを出力するため、得られるエネルギーは、1mJとYVO4レーザーに比べて高くなる。
即ち、前記導体層12を含む表面3側からグリーンシート16〜19の厚み方向に沿って照射し、且つ当該表面3に沿って連続して照射して、切断予定面5に沿った分割溝(24)を形成する際に、YVO4レーザーを用いた場合、YAGレーザーに比べて比較的少ないエネルギーで済むので、照射される導体層12やグリーンシート16などに対する熱的な影響を抑制できる。しかも、高い繰り返し周波数が取れるため、高速度による溝切り加工も可能となる。従って、溝幅が比較的狭く且つ断面が縦に深く細長いV字形状となり、しかも内壁面が比較的平滑な分割溝を高速度で効率良く形成することが可能となる。
尚、図3のグラフで示すように、YVO4レーザーのパルス幅は、YAGレーザーのパルス幅に比べて、全般において小さいところにある。
For example, assuming that the laser output is 10 W, in the case of a YVO 4 laser, 10 W is output in a high repetition frequency region of about 50 KHz, and thus the obtained energy is as low as 0.2 mJ. On the other hand, in the case of a YAG laser, since 10 W is output in a low repetition frequency region of about 10 KHz, the obtained energy is higher than that of a 1 mJ and YVO 4 laser.
That is, irradiation is performed from the surface 3 side including the conductor layer 12 along the thickness direction of the green sheets 16 to 19, and irradiation is continuously performed along the surface 3. When a YVO 4 laser is used in forming 24), relatively little energy is required compared to a YAG laser, and therefore, thermal influence on the irradiated conductor layer 12 and the green sheet 16 can be suppressed. In addition, since a high repetition frequency can be obtained, grooving can be performed at a high speed. Therefore, it is possible to efficiently form a dividing groove having a relatively narrow groove width, a long and deep cross section, and a relatively smooth inner wall surface at a high speed.
As shown in the graph of FIG. 3, the pulse width of the YVO 4 laser is generally smaller than the pulse width of the YAG laser.

図4は、前記多数個取り用のセラミック配線基板1を、導体層12を含む表面3側からグリーンシート16〜の厚み方向に沿った切断予定面5に沿って、本発明によるYVO4レーザー22、あるいは比較例のYAGレーザー23を照射して分割溝を形成する工程を示す概略図である。
イットリウム・バナデート(YVO4)からなるレーザー媒質を含む図示しないレーザー発振機によって、誘導放出され且つ増幅されたYVO4レーザー22は、図4に示すように、集光レンズ21によって導体層12が形成されたグリーンシート16の表面3付近に焦点を合わせて、該グリーンシート16などの厚み方向に沿って照射されると共に、上記レーザー発振機の移動に伴って、切断予定面5に沿って図4の奥行き方向に沿って照射された。尚、具体的に照射したYVO4レーザー22は、繰り返し周波数が50KHzの基本波の2倍の周波数(2分の1の波長)を持つ第2高調波のYVO4レーザー22を用いた。
一方、比較例のYAGレーザー23の場合も、専用のレーザー発振機を用いて、YVO4レーザー22と同じ出力によって前記同様に照射され、且つYVO4レーザー22の場合よりも比較的遅い移動速度により切断予定面5に沿って照射された。
FIG. 4 shows the YVO 4 laser 22 according to the present invention, in which the multi-piece ceramic wiring board 1 is cut along the planned cutting surface 5 along the thickness direction of the green sheets 16 to from the surface 3 side including the conductor layer 12. Or it is the schematic which shows the process of irradiating the YAG laser 23 of a comparative example, and forming a division | segmentation groove | channel.
As shown in FIG. 4, the YVO 4 laser 22 stimulated and amplified by a laser oscillator (not shown) including a laser medium made of yttrium vanadate (YVO 4 ) is formed with a conductive layer 12 by a condenser lens 21 as shown in FIG. Focusing on the vicinity of the surface 3 of the green sheet 16 that has been irradiated, irradiation is performed along the thickness direction of the green sheet 16 and the like, and as the laser oscillator moves, along the planned cutting plane 5 as shown in FIG. Irradiated along the depth direction. The YVO 4 laser 22 that was specifically irradiated was a second harmonic YVO 4 laser 22 having a frequency (half wavelength) that is twice that of the fundamental wave with a repetition frequency of 50 KHz.
On the other hand, the YAG laser 23 of the comparative example is also irradiated with the same output as that of the YVO 4 laser 22 using a dedicated laser oscillator, and has a relatively slower moving speed than that of the YVO 4 laser 22. Irradiation was made along the planned cutting surface 5.

図5に示すように、本発明によるYVO4レーザー22の照射によって、切断予定面5に沿って比較的狭い溝幅で且つ縦に細長い断面V字形状の分割溝24が形成された。即ち、表面3上の導体層12は、切断予定面5付近でほぼ左右対称に分割され、その真下に位置するグリーンシート16,17や導体層13も、上記分割溝24によってほぼ左右対称に分割されると共に、当該分割溝24における一対の内壁面25は、比較的滑らかであった。
一方、図6に示すように、比較例のYAGレーザー23の照射によって、切断予定面5に沿って比較的広い溝幅で且つ縦に短い断面V字形状の分割溝26が形成された。即ち、表面3上の導体層12は、切断予定面5付近で所定幅の喪失部27を置いて左右に分割され、その真下に位置するグリーンシート16,17や導体層13も、上記分割溝26によって左右方向に幅広く分割されると共に、該分割溝26における一対の内壁面28の中間に露出した導体層13の端部付近には、該導体層13の部分的な剥離29が生じていた。
As shown in FIG. 5, by the irradiation with the YVO 4 laser 22 according to the present invention, the dividing groove 24 having a relatively narrow groove width and a vertically elongated cross-section V-shape is formed along the planned cutting surface 5. That is, the conductor layer 12 on the surface 3 is divided substantially symmetrically in the vicinity of the planned cutting surface 5, and the green sheets 16 and 17 and the conductor layer 13 located immediately below the conductor layer 12 are also divided substantially symmetrically by the dividing grooves 24. In addition, the pair of inner wall surfaces 25 in the dividing groove 24 was relatively smooth.
On the other hand, as shown in FIG. 6, by the irradiation with the YAG laser 23 of the comparative example, a split groove 26 having a relatively wide groove width and a vertically short cross section was formed along the planned cutting surface 5. That is, the conductor layer 12 on the surface 3 is divided into left and right with a loss portion 27 having a predetermined width in the vicinity of the planned cutting surface 5, and the green sheets 16 and 17 and the conductor layer 13 positioned immediately below are also divided into the divided grooves. 26, and a partial separation 29 of the conductor layer 13 occurred near the end of the conductor layer 13 exposed in the middle of the pair of inner wall surfaces 28 in the dividing groove 26. .

本発明のように、YVO4レーザー22を照射して溝切り加工した場合、開口部の幅が狭く且つ縦に細長く深い前記分割溝24が形成できた。その結果、前記グリーンシート16〜19や導体層12〜15を焼成し、更に外部に露出する導体層12,15の表面にNiメッキとAuメッキを施した後、分割溝24に沿って単位セラミック配線基板6ごとに個片化した。その結果、所要の形状および寸法を有する上記配線基板6を得ることができた。また、前記分割溝24によれば、単位セラミック配線基板6において、キャビティ7の開口部を囲む表面3に所定幅の導体層12が矩形枠状に残るため、該導体層12の上にロウ材を介して金属枠を確実にロウ付けできる。従って、該金属枠の上に電子部品が実装されたキャビティ7を封止する金属蓋をシーム溶接することで、該キャビティ7を封止することも確実になった。更に、前記分割溝24の内壁面25付近には、内部の導体層13の端部が剥離することなく位置するため、分割後の前記スルーホール導体11と、内部の導体層15との安定した導通を保証することも可能となった。 When grooving was performed by irradiating the YVO 4 laser 22 as in the present invention, the divided grooves 24 having a narrow opening and a long and deep vertical shape could be formed. As a result, the green sheets 16 to 19 and the conductor layers 12 to 15 are fired, and the surfaces of the conductor layers 12 and 15 exposed to the outside are subjected to Ni plating and Au plating. Each wiring board 6 was separated into individual pieces. As a result, the wiring board 6 having a required shape and dimensions could be obtained. Further, according to the dividing groove 24, in the unit ceramic wiring substrate 6, the conductor layer 12 having a predetermined width remains in the shape of a rectangular frame on the surface 3 surrounding the opening of the cavity 7. The metal frame can be securely brazed via Therefore, the cavity 7 can be reliably sealed by seam welding a metal lid for sealing the cavity 7 on which the electronic component is mounted on the metal frame. Further, since the end portion of the inner conductor layer 13 is positioned near the inner wall surface 25 of the dividing groove 24 without peeling, the divided through-hole conductor 11 and the inner conductor layer 15 are stable. It was also possible to guarantee continuity.

一方、比較例のYAGレーザー23を照射して溝切り加工した場合、開口部の幅が広く且つ縦に短く浅い前記分割溝26が形成された。その結果、前記グリーンシート16〜19や導体層12〜15を焼成し、且つ前記同様のメッキを施した後、分割溝26に沿って個々の単位セラミック配線基板6に個片化した。
その結果、所要の形状および寸法にならない単位セラミック配線基板6が含まれていた。また、前記分割溝26によれば、個々の単位セラミック配線基板6において、キャビティ7の開口部を囲む表面3に、外周側の喪失部27を置いて幅の狭い導体層12が残るため、該導体層12の上にロウ材を介して金属枠を強固にロウ付けしにくくなっていた。従って、該金属枠の上に電子部品が実装されたキャビティ7を封止する金属蓋をシーム溶接しても、該キャビティ7の封止が不安定となる場合があった。しかも、分割溝26の内壁面28には、内部の導体層13の端部付近に剥離29が生じていたため、分割後の前記スルーホール導体11と、内部の導体層15との導通が不安定になる場合もあった。
On the other hand, when the groove was cut by irradiating with the YAG laser 23 of the comparative example, the dividing groove 26 having a wide opening and a short length was formed. As a result, the green sheets 16 to 19 and the conductor layers 12 to 15 were fired and subjected to the same plating, and then separated into individual unit ceramic wiring boards 6 along the dividing grooves 26.
As a result, the unit ceramic wiring board 6 that does not have the required shape and dimensions was included. Further, according to the dividing groove 26, in each unit ceramic wiring board 6, the narrow conductor layer 12 is left on the surface 3 surrounding the opening of the cavity 7 with the lost portion 27 on the outer peripheral side left, It has been difficult to firmly braze the metal frame onto the conductor layer 12 via a brazing material. Therefore, even if the metal lid for sealing the cavity 7 on which the electronic component is mounted on the metal frame is seam welded, the sealing of the cavity 7 may become unstable. In addition, the inner wall 28 of the dividing groove 26 has a separation 29 in the vicinity of the end of the inner conductor layer 13, so that the conduction between the divided through-hole conductor 11 and the inner conductor layer 15 is unstable. There was a case.

以上のように、多数個取りのセラミック配線基板1を、複数の単位セラミック配線基板6ごとに個片化するための分割溝を形成する工程において、溝切り加工に、YVO4レーザー22を照射する本発明の方法によれば、比較例のYAGレーザー23を照射した場合に比べ、比較的高い繰り返し周波数が取れ且つ少ないエネルギーによって縦に細長い断面V字形状の分割溝24を高速度で形成することができた。その結果、かかる分割溝24に沿って個片化された箱状の単位セラミック配線基板6は、形状および寸法の精度が高く、表面3に所要幅の導体層12が残留し、且つ分割後のスルーホール導体11と内部の導体層13,15との安定した導通も容易に保証することができた。
従って、本発明によるセラミック配線基板1の製造方法は、比較例の方法に比べて、優位性を有することが判明した。
As described above, the YVO 4 laser 22 is irradiated to the grooving process in the step of forming the divided grooves for separating the multi-piece ceramic wiring board 1 into a plurality of unit ceramic wiring boards 6. According to the method of the present invention, as compared with the case of irradiating the YAG laser 23 of the comparative example, a relatively high repetition frequency can be obtained, and the vertically elongated section V-shaped dividing groove 24 can be formed at a high speed with less energy. I was able to. As a result, the box-shaped unit ceramic wiring board 6 singulated along the dividing grooves 24 has high accuracy in shape and size, the conductor layer 12 having a required width remains on the surface 3, and Stable conduction between the through-hole conductor 11 and the inner conductor layers 13 and 15 could be easily ensured.
Therefore, it was found that the method for manufacturing the ceramic wiring board 1 according to the present invention has an advantage over the method of the comparative example.

本発明は、以上において説明した形態に限定されるものではない。
例えば、本発明の対象となるセラミック配線基板は、単層のグリーンシートと、該グリーンシートの表面に導体層を形成したものであって、且つ焼成後に単層のセラミック層と該セラミック層の表面に形成された導体層とになるものでも良い。
また、本発明の対象となるセラミック配線基板には、平面視で単一の製品となる(単位)セラミック配線基板と、その周囲を囲む耳部とを有し、両者の境界に沿って分割溝を形成する形態も含まれる。
更に、前記グリーンシートは、所定温度による焼成後において、低温焼成セラミックの一種であるガラス−セラミックなどになるものであっても良い。
また、前記YVO4レーザーには、第3高調波あるいは第4高調波のYVO4レーザーを用いても良い。
更に、前記YVO4レーザーの繰り返し周波数は、20〜250KHzの間において適宜選定される。
加えて、前記YVO4レーザーの照射は、前記単層のグリーンシート、あるいは複数のグリーンシートを積層したグリーンシート積層体の表面に形成された導体層側からだけに限らず、上記グリーンシートの裏面あるいは上記グリーンシート積層体の裏面側からも上下対称にレーザー照射を行うようにしても良い。
The present invention is not limited to the embodiment described above.
For example, a ceramic wiring board that is an object of the present invention includes a single-layer green sheet and a conductor layer formed on the surface of the green sheet, and the single-layer ceramic layer and the surface of the ceramic layer after firing. It may be a conductor layer formed in the above.
In addition, the ceramic wiring board that is the subject of the present invention has a (unit) ceramic wiring board that is a single product in a plan view, and an ear portion that surrounds the ceramic wiring board, and is divided along the boundary between the two. The form which forms is also included.
Furthermore, the green sheet may be a glass-ceramic that is a kind of low-temperature fired ceramic after firing at a predetermined temperature.
The YVO 4 laser may be a third harmonic or fourth harmonic YVO 4 laser.
Furthermore, the repetition frequency of the YVO 4 laser is appropriately selected between 20 and 250 KHz.
In addition, the irradiation of the YVO 4 laser is not limited to the conductive layer formed on the surface of the single-layer green sheet or the green sheet laminate in which a plurality of green sheets are laminated, but the back surface of the green sheet. Alternatively, laser irradiation may be performed symmetrically from the back side of the green sheet laminate.

本発明によれば、所定の寸法や形状を有し、あるいはキャビティの開口部を囲う表面に所定幅の導体層が形成された複数のセラミック配線基板を併有し、且つこれら配線基板の間に分割溝が形成された多数個取り用のセラミック配線基板などの製造方法を安定して確実に提供することが可能となった。   According to the present invention, a plurality of ceramic wiring boards having a predetermined size and shape, or having a conductor layer having a predetermined width formed on the surface surrounding the opening of the cavity are also provided, and between these wiring boards. It has become possible to stably and reliably provide a method for manufacturing a multi-piece ceramic wiring board in which divided grooves are formed.

1……………多数個取り用のセラミック配線基板(セラミック配線基板)
3……………表面
12…………導体層
16〜19…グリーンシート
22…………YVO4レーザー
24…………分割溝
1 …………… Ceramic wiring board (ceramic wiring board)
3 …………… Surface 12 ………… Conductive layer 16-19… Green sheet 22 ………… YVO 4 laser 24 ………… Dividing groove

Claims (3)

少なくともセラミック層の表面に形成された導体層を分割し且つ前記表面に沿った分割溝を有するセラミック配線基板の製造方法であって、
セラミックグリーンシートの表面に形成された導体層に対し、かかる導体層および該導体層の下側に位置する上記グリーンシートの厚み方向に沿ってYVO4レーザーを照射し、且つ上記グリーンシートの表面に沿って連続して照射することによって、該表面に沿った分割溝を形成する工程を含む、
ことを特徴とするセラミック配線基板の製造方法。
A method for producing a ceramic wiring board, comprising dividing a conductor layer formed at least on the surface of a ceramic layer and having a dividing groove along the surface,
The conductor layer formed on the surface of the ceramic green sheet is irradiated with a YVO 4 laser along the thickness direction of the conductor layer and the green sheet located below the conductor layer, and the surface of the green sheet is irradiated Forming a dividing groove along the surface by continuously irradiating along the surface,
A method of manufacturing a ceramic wiring board.
前記YVO4レーザーは、第2高調波乃至第4高調波のYVO4レーザーである、
ことを特徴とする請求項1に記載のセラミック配線基板の製造方法。
The YVO 4 laser is a second to fourth harmonic YVO 4 laser,
The method for manufacturing a ceramic wiring board according to claim 1.
前記YVO4レーザーの繰り返し周波数は、20〜250KHzである、
ことを特徴とする請求項1または2に記載のセラミック配線基板の製造方法。
The repetition frequency of the YVO 4 laser is 20 to 250 KHz.
The method of manufacturing a ceramic wiring board according to claim 1 or 2, wherein
JP2012084987A 2012-04-03 2012-04-03 Ceramic wiring board manufacturing method Pending JP2013214667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084987A JP2013214667A (en) 2012-04-03 2012-04-03 Ceramic wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084987A JP2013214667A (en) 2012-04-03 2012-04-03 Ceramic wiring board manufacturing method

Publications (1)

Publication Number Publication Date
JP2013214667A true JP2013214667A (en) 2013-10-17

Family

ID=49587804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084987A Pending JP2013214667A (en) 2012-04-03 2012-04-03 Ceramic wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP2013214667A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075877A (en) * 2001-09-06 2003-03-12 Sumitomo Heavy Ind Ltd Laser light source and temperature control method for nonlinear optical element
JP2004088027A (en) * 2002-08-29 2004-03-18 Murata Mfg Co Ltd Electronic component assembly and ceramic electronic component, and mthod for manufacturing ceramic electronic component
JP2006186231A (en) * 2004-12-28 2006-07-13 Kamaya Denki Kk Chip resistor and its manufacturing method
JP2007531640A (en) * 2003-07-11 2007-11-08 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method for forming a scribe line on a passive electronic device substrate
JP2009010103A (en) * 2007-06-27 2009-01-15 Ngk Spark Plug Co Ltd Multiple patterning ceramic substrate
JP2010232516A (en) * 2009-03-27 2010-10-14 Kyocera Corp Wiring board and method for manufacturing the same
JP2011088191A (en) * 2009-10-23 2011-05-06 Tdk Corp Method for manufacturing electronic component
JP2012009767A (en) * 2009-11-27 2012-01-12 Kyocera Corp Multi-piece wiring board, method of manufacturing same, wiring board, and method of manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075877A (en) * 2001-09-06 2003-03-12 Sumitomo Heavy Ind Ltd Laser light source and temperature control method for nonlinear optical element
JP2004088027A (en) * 2002-08-29 2004-03-18 Murata Mfg Co Ltd Electronic component assembly and ceramic electronic component, and mthod for manufacturing ceramic electronic component
JP2007531640A (en) * 2003-07-11 2007-11-08 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Method for forming a scribe line on a passive electronic device substrate
JP2006186231A (en) * 2004-12-28 2006-07-13 Kamaya Denki Kk Chip resistor and its manufacturing method
JP2009010103A (en) * 2007-06-27 2009-01-15 Ngk Spark Plug Co Ltd Multiple patterning ceramic substrate
JP2010232516A (en) * 2009-03-27 2010-10-14 Kyocera Corp Wiring board and method for manufacturing the same
JP2011088191A (en) * 2009-10-23 2011-05-06 Tdk Corp Method for manufacturing electronic component
JP2012009767A (en) * 2009-11-27 2012-01-12 Kyocera Corp Multi-piece wiring board, method of manufacturing same, wiring board, and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP6006474B2 (en) Wiring board, multi-cavity wiring board, and manufacturing method thereof
TWI449473B (en) Multi-piece wiring substrate and method for manufacturing the same
WO2012144115A1 (en) Ceramic wiring board, multi-pattern ceramic wiring board, and method for producing same
TWI495403B (en) Wiring substrate, multi-piece wiring substrate and method for manufacturing the same
JP2015138812A (en) Manufacturing method of package for mounting component
JP2014027219A (en) Multi-piece wiring board, wiring board and multi-piece wiring board manufacturing method
JP6317115B2 (en) Multi-cavity wiring board, wiring board, and manufacturing method of multi-cavity wiring board
WO2018216693A1 (en) Multi-piece wiring substrate, electronic component housing package, and electronic device
JP5235627B2 (en) Multiple wiring board
JP3765729B2 (en) Manufacturing method of electronic component package
JP2013214667A (en) Ceramic wiring board manufacturing method
JP5661733B2 (en) Constituent member having overlapping laser grooves and method of manufacturing such constituent member
JP6193622B2 (en) Wiring board unit and method for manufacturing wiring board with leads
CN110651535A (en) Method for producing ceramic-metal layer joined body, method for producing ceramic circuit board, and ceramic base plate for joining metal plates
TWI488550B (en) Wiring substrate, multi-piece wiring substrate and method for manufacturing the same
JP6889269B2 (en) Multi-cavity wiring boards, electronic component storage packages, electronic devices, and electronic modules
JP5635634B2 (en) Wiring board manufacturing method
JP2014007235A (en) Ceramic substrate manufacturing method
JP2017092289A (en) Multi-piece package and ceramic package and manufacturing method therefor
JP2013243232A (en) Metal frame for ceramic package and ceramic package
JP2016149419A (en) Multi-piece wiring board manufacturing method
JP5946249B2 (en) Manufacturing method of multi-cavity wiring board
JP6163354B2 (en) Wiring board unit and method for manufacturing wiring board with leads
JP5383545B2 (en) Multi-cavity wiring board and wiring board
JP2013182989A (en) Method of manufacturing metal-ceramic junction circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170203