JP2013213585A - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP2013213585A
JP2013213585A JP2013117473A JP2013117473A JP2013213585A JP 2013213585 A JP2013213585 A JP 2013213585A JP 2013117473 A JP2013117473 A JP 2013117473A JP 2013117473 A JP2013117473 A JP 2013117473A JP 2013213585 A JP2013213585 A JP 2013213585A
Authority
JP
Japan
Prior art keywords
lubricating oil
bearing
rolling bearing
temperature
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013117473A
Other languages
Japanese (ja)
Other versions
JP5626708B2 (en
Inventor
Keisuke Yokoyama
景介 横山
Koichi Morita
公一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2013117473A priority Critical patent/JP5626708B2/en
Publication of JP2013213585A publication Critical patent/JP2013213585A/en
Application granted granted Critical
Publication of JP5626708B2 publication Critical patent/JP5626708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/525Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to temperature and heat, e.g. insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bearing device having further improved reliability by supplying a required amount of lubricating oil.SOLUTION: A lubricating unit 22 supplies to a rolling bearing 16 lubricating oil the amount of which depends on a temperature detected by a temperature detecting sensor TS. With direct and accurate measurement of a temperature inside the rolling bearing 16, a moderate amount of lubricating oil is, therefore, properly supplied to the rolling bearing 16. Thus, a bearing device can be provided which can secure a sufficiently long life even under the conditions of high-speed rotation.

Description

本発明は、例えば旋盤、ボール盤、中ぐり盤、フライス盤、研削盤、ホーニング盤、超仕上盤、ラップ盤等で代表される、高速で摺動、回転する工作機械の主軸支持部等に組み込まれる工作機械主軸に用られると好適な軸受装置に関する。   The present invention is incorporated in a spindle support portion of a machine tool that slides and rotates at a high speed such as a lathe, drilling machine, boring machine, milling machine, grinding machine, honing machine, super finishing machine, and lapping machine. The present invention relates to a bearing device suitable for use in a machine tool spindle.

上記に挙げたような工作機械のスピンドルには、主軸支持用に通常転がり軸受が組み込まれており、一般にアンギュラ玉軸受や円筒ころ軸受等が組み合わされて使用されている。ここで、工作機械の加工精度や生産性は、主軸の回転速度に依存するところが大きく、生産性を高めるためには主軸の回転速度の高速化を図らなければならない。しかし、転がり軸受を高速回転下で使用すると、軸受の発熱が顕著に増大したり、遠心力により転動体と内外輪との間の接触面圧が増大したりするため、スピンドルの使用条件は著しく悪化し、結果として、摩耗や焼付き等に代表される軸受損傷の可能性が高まる。また、高速回転により発熱も大きくなることから、工作機械の熱変形が起こる可能性もあり、加工精度ヘの影響もある。   A spindle of a machine tool such as that described above usually incorporates a rolling bearing for supporting the spindle, and is generally used in combination with an angular ball bearing or a cylindrical roller bearing. Here, the machining accuracy and productivity of the machine tool largely depend on the rotation speed of the spindle, and in order to increase the productivity, it is necessary to increase the rotation speed of the spindle. However, when rolling bearings are used under high-speed rotation, the heat generation of the bearings increases remarkably, and the contact surface pressure between the rolling elements and the inner and outer rings increases due to centrifugal force. As a result, the possibility of bearing damage represented by wear and seizure increases. In addition, since heat generation increases due to high-speed rotation, there is a possibility that the machine tool is thermally deformed, which also affects the processing accuracy.

このような致命的な不具合を軸受に発生させないため、また工作機械全体の熱変形による加工精度の低下をさけるためにも、高速回転下においては適切な潤滑方式を選択して主軸支持用転がり軸受における発熱を極力抑えなければならない。これに対し、高速回転する工作機械の主軸支持用転がり軸受の潤滑には、潤滑油供給に伴う冷却効果が得られることから、オイルエア潤滑法、ノズルジェット潤滑法、アンダーレース潤滑法が採用されている(特許文献1参照)。   Roller bearings for spindle support by selecting an appropriate lubrication method under high-speed rotation in order to prevent such a fatal problem from occurring in the bearing and to prevent a reduction in machining accuracy due to thermal deformation of the entire machine tool. It is necessary to suppress the heat generation in the as much as possible. On the other hand, the lubrication of rolling bearings for spindle support of machine tools that rotate at high speeds provides the cooling effect associated with the supply of lubricating oil. (See Patent Document 1).

特開2003−278773号公報JP 2003-278773 A

しかるに、特許文献1に見られるように、潤滑油量に着目している従来技術はあるものの、実際の軸受の温度に着目し、適宜適量の潤滑油を供給することを目的としているものはない。上述したような従来技術では、運転中の軸受の温度を直接測定して潤滑油を適宜適量の供給することは難しい。   However, as seen in Patent Document 1, although there is a conventional technique that focuses on the amount of lubricating oil, there is no one that aims at supplying an appropriate amount of lubricating oil by focusing on the actual bearing temperature. . In the conventional technology as described above, it is difficult to directly measure the temperature of a bearing during operation and supply an appropriate amount of lubricating oil.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、必要な量の潤滑油を供給することにより信頼性を向上させた軸受装置を提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a bearing device having improved reliability by supplying a necessary amount of lubricating oil.

本発明の軸受装置は、外輪と、内輪と、両輪間に配置された転動体とを有する転がり軸受と、前記転がり軸受の内部の温度を測定する温度センサと、潤滑ユニットとを有する軸受装置において、
前記潤滑ユニットは、前記温度センサが検出した温度に応じた量の潤滑油を前記転がり軸受に供給することを特徴とする。
The bearing device of the present invention is a bearing device having a rolling bearing having an outer ring, an inner ring, and rolling elements disposed between the two rings, a temperature sensor for measuring the temperature inside the rolling bearing, and a lubrication unit. ,
The lubricating unit supplies lubricating oil in an amount corresponding to the temperature detected by the temperature sensor to the rolling bearing.

本発明によれば、前記潤滑ユニットは、前記温度センサが検出した温度に応じた量の潤滑油を前記転がり軸受に供給するので、前記転がり軸受の内部の温度を直接且つ精度良く測定することにより、転がり軸受に適宜適量の潤滑油を供給し、これにより高速回転条件下においても十分に長寿命を確保できる軸受装置を提供することができる。   According to the present invention, since the lubrication unit supplies the rolling bearing with an amount of lubricating oil corresponding to the temperature detected by the temperature sensor, by directly and accurately measuring the temperature inside the rolling bearing. An appropriate amount of lubricating oil is appropriately supplied to the rolling bearing, thereby providing a bearing device that can ensure a sufficiently long life even under high-speed rotation conditions.

前記温度センサは、基板の表面に塗布したレジストに、マスクを用いて微細パターンを露光現像し、更にスパッタリングにより金属被膜を微細パターン上に付着させた後に、残留レジストを除去することで形成されていると好ましい。このような温度センサであると、極めて薄く製作できるため大きな取り付けスペースを必要としないので、前記軸受装置の内部において、任意の場所に取り付けることができ、本来測定したい部位の温度を精度良く測定することができる。   The temperature sensor is formed by exposing and developing a fine pattern on a resist applied to the surface of a substrate using a mask, and further depositing a metal film on the fine pattern by sputtering and then removing the residual resist. It is preferable. Since such a temperature sensor can be manufactured extremely thin and does not require a large mounting space, it can be mounted in any location within the bearing device, and accurately measures the temperature of the part that is originally desired to be measured. be able to.

前記軸受装置は、工作機械用主軸に用いられると好ましい。   The bearing device is preferably used for a machine tool spindle.

本実施の形態にかかる転がり装置の軸線方向断面図である。It is an axial sectional view of the rolling device according to the present embodiment. 温度センサTSを拡大して示す斜視図である。It is a perspective view which expands and shows temperature sensor TS. 図1に示す転がり軸受を組み込んだ工作機械用主軸装置の断面図である。It is sectional drawing of the spindle apparatus for machine tools incorporating the rolling bearing shown in FIG. 潤滑ユニット22の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a lubrication unit 22. 工作機械用主軸装置を動作させたときの転がり軸受の温度上昇をシミュレーションした結果を示す図である。It is a figure which shows the result of having simulated the temperature rise of the rolling bearing when operating the spindle apparatus for machine tools.

次に、本発明の実施の形態を図面を参照して説明する。図1は、本実施の形態に用いる転がり軸受の軸線方向断面図である。転がり軸受(アンギュラ玉軸受)16は外輪16aと、内輪16bと、両輪16a,16b間に配置された転動体としての玉16cと、玉16cを周方向に等間隔に保持する保持器16dとを有する。外輪16aは、その内周において、軌道面16eを有する。内輪16bは、その外周において、軌道面16fを有する。玉16cは、窒化珪素や炭化珪素等のセラミック製とすることもできる。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an axial sectional view of a rolling bearing used in the present embodiment. The rolling bearing (angular ball bearing) 16 includes an outer ring 16a, an inner ring 16b, a ball 16c as a rolling element disposed between both the wheels 16a and 16b, and a cage 16d that holds the balls 16c at equal intervals in the circumferential direction. Have. The outer ring 16a has a raceway surface 16e on its inner periphery. The inner ring 16b has a raceway surface 16f on the outer periphery thereof. The ball 16c can be made of ceramic such as silicon nitride or silicon carbide.

外輪16aの軌道面16e以外の内周面に、温度センサTSが接着剤で取り付けられている。温度センサTSからの配線は、外輪16aの内周面から端面を介して外部に引き出されるようになっている。なお図1において、温度センサTSの厚さは誇張して示されている。   A temperature sensor TS is attached to the inner peripheral surface other than the raceway surface 16e of the outer ring 16a with an adhesive. The wiring from the temperature sensor TS is drawn out from the inner peripheral surface of the outer ring 16a to the outside through the end surface. In FIG. 1, the thickness of the temperature sensor TS is exaggerated.

図2は、温度センサTSを拡大して示す斜視図である。図2において、温度センサTSは、基板TSaと、基板TSa上に形成された微細な抵抗パターンTSbとを有する。抵抗パターンTSbは、線幅が狭い白金製の一本の線からなっており、温度に応じて基板TSaに膨張又は収縮が生じることに応じて全長が変わり抵抗値が変化するため、抵抗パターンTSbに電流を流すことで温度を測定することができる。   FIG. 2 is an enlarged perspective view showing the temperature sensor TS. In FIG. 2, the temperature sensor TS has a substrate TSa and a fine resistance pattern TSb formed on the substrate TSa. The resistance pattern TSb is composed of a single platinum line having a narrow line width. The resistance pattern TSb changes in overall length and changes in resistance value when the substrate TSa expands or contracts according to temperature. The temperature can be measured by passing a current through.

温度センサTSの製造方法について説明する。絶縁膜として酸化膜付きのシリコーン基板(厚さ:200μm)表面上に、厚さ約2μmのフォトレジスト(東京応化(株)製OFPR800LB)をスピンコートにより塗布し、90℃で8分間プレべーク処理を行った。その後、抵抗パターンTSbに対応するマスクを用いて露光(ユニオン光学(株)製 EMA−400)し、現像液(東京応化(株)製 MND3)を用いて現像した。これを、最後に超純水で60秒間リンスした。   A method for manufacturing the temperature sensor TS will be described. On the surface of a silicon substrate with an oxide film (thickness: 200 μm) as an insulating film, a photoresist of about 2 μm thickness (OFPR800LB manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied by spin coating and pre-coated at 90 ° C. for 8 minutes Processed. Thereafter, exposure was performed using a mask corresponding to the resistance pattern TSb (EMA-400 manufactured by Union Optical Co., Ltd.), and development was performed using a developer (MND3 manufactured by Tokyo Ohka Co., Ltd.). This was finally rinsed with ultrapure water for 60 seconds.

その後、フォトレジスト上に、スパッタリング法にて厚さ約250nmの白金の被膜を付着させ、アセトンによりリフトオフ法を用いて、基板上の残留フォトレジストを除去した。その後、ダイシング装置にて所定のチップサイズに切断した後、チップ上の白金抵抗パターンTSbに配線を行った。温度センサTSの作成は、以上の方法に限定されないが、半導体微細加工技術を用いることで、量産性、小型化、及び小型化に伴うセンサの反応性に優れる。   Thereafter, a platinum film having a thickness of about 250 nm was deposited on the photoresist by a sputtering method, and residual photoresist on the substrate was removed using a lift-off method with acetone. Then, after cutting | disconnecting to the predetermined chip size with the dicing apparatus, wiring was performed to platinum resistance pattern TSb on a chip | tip. The production of the temperature sensor TS is not limited to the above method, but by using a semiconductor microfabrication technique, it is excellent in mass productivity, miniaturization, and sensor responsiveness associated with miniaturization.

図3は、図1に示す転がり軸受を組み込んだ工作機械用主軸装置の断面図である。主軸装置100は、外側ハウジングに冷却油を流すジャケット構造を採用した工作機械用の主軸装置であって、曲げに対して柔軟性のあるφ1〜φ3.2mm(ここでは一例として外径φ1.6mm、内径φ1.0mm)のステンレス製の耐圧チューブ10を主軸装置100内に取り回し、耐圧チューブ10をノズルこま12に接続する構造としている。このステンレス製の耐圧チューブ10は光輝焼鈍処理を施しており、柔軟であるため、手で容易に曲げることができ、また、圧力による配管膨張が少なく、微量の潤滑油供給に適した配管である。   FIG. 3 is a cross-sectional view of the spindle device for machine tools incorporating the rolling bearing shown in FIG. The spindle device 100 is a spindle device for a machine tool that employs a jacket structure that allows cooling oil to flow through an outer housing, and has a bending flexibility of φ1 to φ3.2 mm (here, an outer diameter of φ1.6 mm as an example). The pressure tube 10 made of stainless steel having an inner diameter φ of 1.0 mm is routed in the spindle device 100 and the pressure tube 10 is connected to the nozzle top 12. This pressure-resistant tube 10 made of stainless steel has been subjected to bright annealing treatment and is flexible, so it can be easily bent by hand, and it is a pipe suitable for supplying a small amount of lubricating oil with little pipe expansion due to pressure. .

主軸装置100は、スピンドル軸14と、このスピンドル軸を回転自在に支承する複数個(図示例では4個)の転がり軸受16と、転がり軸受16の外側を覆う内側ハウジング18と、主軸装置100の外側を覆う外側ハウジング20とを備え、潤滑油の供給源である潤滑ユニット22から外側ハウジング20に軸方向に沿って形成された潤滑油供給用の連通孔24や、内側ハウジング18に形成された開口部86を通じて、内側ハウジング18内に配置されたノズルこま12まで耐圧チューブ10により接続されている。即ち、ノズルこま12は、転がり軸受16に微量の潤滑油を間欠的に直接噴射供給するノズルである。そして、耐圧チューブ10は、潤滑ユニット22の吐出する潤滑油をノズルこま12まで導く配管である。   The spindle device 100 includes a spindle shaft 14, a plurality of (four in the illustrated example) rolling bearings 16 that rotatably support the spindle shaft, an inner housing 18 that covers the outside of the rolling bearing 16, and the spindle device 100. An outer housing 20 that covers the outer side, and is formed in a communication hole 24 for supplying lubricating oil formed in the outer housing 20 along the axial direction from the lubricating unit 22 that is a supply source of the lubricating oil, or in the inner housing 18. The pressure-resistant tube 10 connects to the nozzle top 12 disposed in the inner housing 18 through the opening 86. That is, the nozzle top 12 is a nozzle that intermittently and directly injects a small amount of lubricating oil to the rolling bearing 16. The pressure tube 10 is a pipe that guides the lubricating oil discharged from the lubricating unit 22 to the nozzle top 12.

外側ハウジング20は、内側ハウジング18の外周を包囲する外筒28、29と、外筒29の端面に固着された後蓋32とから構成されている。転がり軸受16は、2個づつ組となってスピンドル軸14の前側と後側とをそれぞれに分担して支承するように、軸方向に所定間隔をおいて配置されており、各転がり軸受16の外輪外径面は内側ハウジング18の内周面に緊密嵌合して固定され、最前部の転がり軸受16の外輪は外輪押さえ34に当接して回転不可に係止され、最後部の転がり軸受16の外輪は外輪押さえ36を介して外筒28にバネ38により軸方向に弾性付勢されつつ、回転不可に係止されている。また、各転がり軸受16の内輪内径面は、スピンドル軸14の外周面に嵌合により固定され、前側・後側のぞれぞれで、各転がり軸受16の間に、転がり軸受16を軸方向に固定するための間座40が設けられている。   The outer housing 20 includes outer cylinders 28 and 29 that surround the outer periphery of the inner housing 18, and a rear lid 32 that is fixed to the end surface of the outer cylinder 29. The rolling bearings 16 are arranged at a predetermined interval in the axial direction so that the rolling bearings 16 are paired and supported by the front side and the rear side of the spindle shaft 14. The outer ring outer diameter surface is tightly fitted and fixed to the inner peripheral surface of the inner housing 18, the outer ring of the foremost rolling bearing 16 abuts against the outer ring retainer 34 and is non-rotatably locked, and the last rolling bearing 16 The outer ring is locked to the outer cylinder 28 via the outer ring retainer 36 so as not to rotate while being elastically biased in the axial direction by a spring 38. Further, the inner ring inner surface of each rolling bearing 16 is fixed to the outer peripheral surface of the spindle shaft 14 by fitting, and the rolling bearing 16 is axially disposed between the rolling bearings 16 on the front side and the rear side, respectively. A spacer 40 is provided for fixing to the door.

また、図示のように、内側ハウジング18の外径に冷却溝42があり、この冷却溝には図示しない冷却ユニットからの冷却油が循環することで外側ハウジング20の冷却を行っている。即ち、この主軸装置100は外筒冷却方式による冷却機能を有する構成となっている。なお、本実施形態におけるスピンドル軸14は水平に支承されているが、例えばマシニングセンタに用いる場合では、垂直或いは傾斜して使用されることもある。   As shown in the figure, a cooling groove 42 is provided on the outer diameter of the inner housing 18, and cooling oil from a cooling unit (not shown) circulates in the cooling groove to cool the outer housing 20. That is, the spindle device 100 is configured to have a cooling function by an outer cylinder cooling system. Although the spindle shaft 14 in this embodiment is supported horizontally, for example, when used in a machining center, it may be used vertically or inclined.

次に、潤滑ユニット22を説明する。図4は、潤滑ユニット22の構成を示す図である。この図に示すように、潤滑ユニット22は、正特性の超磁歪素子からなる棒体46が、該棒体46の軸線方向一端部46aを予圧調整機構48を介してケース50に固定されている。この棒体46は、磁界が印加されると磁気歪現象(ジュール効果)によって軸線方向に伸長する。   Next, the lubrication unit 22 will be described. FIG. 4 is a diagram illustrating the configuration of the lubrication unit 22. As shown in this figure, in the lubrication unit 22, a rod body 46 made of a super-magnetostrictive element having a positive characteristic is fixed to the case 50 via a preload adjusting mechanism 48 at one end 46 a in the axial direction of the rod body 46. . When a magnetic field is applied, the rod 46 extends in the axial direction due to a magnetostriction phenomenon (Joule effect).

予圧調整機構48は、例えば回転により棒体46の軸線方向に突出し、棒体46の一端部46aを押圧可能にしたネジ機構を用いることができる。棒体46の軸線方向他端部46bには、棒体46を予圧調整機構48側に付勢して棒体46の軸方向に対する隙間(遊び)を生じさせずに圧力伝達する圧力伝達部材52が配設され、この圧力伝達部材52を介して棒体46がピストン54に接続されている。ピストン54は、シリンダ56の内部に摺動自在に配設され、シリンダ56とピストン54によりポンプ室を形成している。   As the preload adjusting mechanism 48, for example, a screw mechanism that protrudes in the axial direction of the rod body 46 by rotation and can press the one end portion 46a of the rod body 46 can be used. The other end 46b in the axial direction of the rod 46 is a pressure transmission member 52 that urges the rod 46 toward the preload adjusting mechanism 48 to transmit pressure without causing a gap (play) in the axial direction of the rod 46. The rod body 46 is connected to the piston 54 through the pressure transmission member 52. The piston 54 is slidably disposed inside the cylinder 56, and the cylinder 56 and the piston 54 form a pump chamber.

このシリンダ56にはポンプ室に潤滑油を供給するための吸入流路58が設けられ、吸入流路58の吸入口59までの流路の途中には、ポンプ室から潤滑油の流出を阻止する逆止バルブからなる吸入側チェック弁60が設けられている。また、シリンダ56にはポンプ室から吐出される潤滑油を排出するための排出流路62が設けられ、排出流路62の排出口63までの流路の途中には、ポンプ室への潤滑油の導入を阻止する逆止バルブからなる排出側チェック弁64が設けられている。   The cylinder 56 is provided with a suction flow path 58 for supplying lubricating oil to the pump chamber, and the lubricating oil is prevented from flowing out from the pump chamber in the middle of the flow path to the suction port 59 of the suction flow path 58. A suction side check valve 60 comprising a check valve is provided. Further, the cylinder 56 is provided with a discharge flow path 62 for discharging the lubricating oil discharged from the pump chamber, and in the middle of the flow path to the discharge port 63 of the discharge flow path 62, the lubricating oil for the pump chamber is provided. A discharge side check valve 64 comprising a check valve for preventing the introduction of the gas is provided.

棒体46の外周には、同軸状にコイル66が設けられ、さらにコイル66の外側には、棒体46とで磁気回路を形成する磁性材料からなるヨーク68が設けられている。また、コイル66には、駆動回路70が電気的に接続されている。駆動回路70は、温度センサTSから測定した温度に対応した信号を受信して、それに応じて磁界発生のための電流を出力する。この電流がコイル66に印加されることにより、棒体46がコイル66から発生する磁界を受けて伸長することで、吸入流路58を通じて供給されたポンプ室内の潤滑油が、排出流路62を通じて排出口63から排出される。排出された潤滑油は耐圧チューブ10を通じてノズルこま12から吐出される。このときの1ショットあたりの吐出量は、0.5〜10mm3と微量であり、また、その吐出圧力は1MPa以上で、間欠的に吐出される。 A coil 66 is coaxially provided on the outer periphery of the rod 46, and a yoke 68 made of a magnetic material that forms a magnetic circuit with the rod 46 is provided outside the coil 66. The drive circuit 70 is electrically connected to the coil 66. The drive circuit 70 receives a signal corresponding to the temperature measured from the temperature sensor TS, and outputs a current for generating a magnetic field accordingly. When this current is applied to the coil 66, the rod body 46 receives and expands the magnetic field generated from the coil 66, so that the lubricating oil in the pump chamber supplied through the suction passage 58 passes through the discharge passage 62. It is discharged from the discharge port 63. The discharged lubricating oil is discharged from the nozzle top 12 through the pressure tube 10. At this time, the discharge amount per shot is as small as 0.5 to 10 mm 3, and the discharge pressure is 1 MPa or more, and the discharge is intermittently performed.

本発明者らは、上記方法により作製された温度センサTSを、外輪16aの軌道面16eに取り付けた転がり軸受16を、図3に示す主軸装置に組み付けて、温度センサTSの温度測定結果に基づいて潤滑ユニット22の潤滑油量を調整して供給した場合(フィードバック制御有り)と、温度に関わらず潤滑ユニット22の潤滑油を間欠的に供給した場合(フィードバック制御無し)とで、転がり軸受16の温度変化をシミュレーションした。雰囲気温度25℃、20,000rpm、1時間回転させた状態における温度変化のシミュレーション結果を図5に示す。潤滑ユニット22の潤滑油を間欠的に供給した場合は、一定時間ごとにー定量の潤滑油が供給されるため、軸受温度が安定しにくいという問題がある。これに対し、温度センサTSにより温度情報をリアルタイムで測定し、その情報を基に潤滑油の供給タイミング・供給量をコントロールして潤滑ユニット22から供給した場合は、軸受温度が非常に安定していることがわかる。   The present inventors assembled the rolling bearing 16 in which the temperature sensor TS manufactured by the above method is attached to the raceway surface 16e of the outer ring 16a to the spindle device shown in FIG. 3, and based on the temperature measurement result of the temperature sensor TS. The rolling bearing 16 is supplied when the lubricating oil amount of the lubricating unit 22 is adjusted and supplied (with feedback control) and when the lubricating oil of the lubricating unit 22 is supplied intermittently (without feedback control) regardless of the temperature. The temperature change of was simulated. FIG. 5 shows the simulation result of the temperature change in the state where the atmospheric temperature is 25 ° C., 20,000 rpm, and the rotation time is one hour. When the lubricating oil of the lubricating unit 22 is intermittently supplied, since a certain amount of lubricating oil is supplied every certain time, there is a problem that the bearing temperature is difficult to stabilize. On the other hand, when the temperature information is measured in real time by the temperature sensor TS and the supply timing and supply amount of the lubricating oil is controlled based on the information and supplied from the lubrication unit 22, the bearing temperature is very stable. I understand that.

以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。例えば、温度センサTSは、点線で示すように外輪16aの軌道面16e(箇所A)や、保持器16d(箇所B)や、内輪16b(箇所C)に配置しても良い。組み込む場所はこれらに限定することはなく、転がり軸受16のいかなる場所にでも組み込むことができる。温度センサTSからの情報は、有線に限らず無線(ICタグ等)で駆動回路70に受け渡し、その情報を解析し潤滑ユニット22から適量の潤滑油が供給することもできる。   The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be modified or improved as appropriate. For example, the temperature sensor TS may be disposed on the raceway surface 16e (location A), the cage 16d (location B), or the inner ring 16b (location C) of the outer ring 16a as indicated by a dotted line. The place to be incorporated is not limited to these, and any place of the rolling bearing 16 can be incorporated. Information from the temperature sensor TS is not limited to wired communication, but can be transmitted wirelessly (IC tag or the like) to the drive circuit 70, and the information can be analyzed to supply an appropriate amount of lubricating oil from the lubrication unit 22.

10 耐圧チューブ
14 スピンドル軸
16 軸受
16a 外輪
16b 内輪
16c 玉
16d 保持器
16e 軌道面
16f 軌道面
18 内側ハウジング
20 外側ハウジング
22 潤滑ユニット
24 連通孔
25 雰囲気温度
28 外筒
29 外筒
32 後蓋
38 バネ
40 間座
42 冷却溝
46 棒体
46a 軸線方向一端部
46b 軸線方向他端部
48 予圧調整機構
50 ケース
52 圧力伝達部材
54 ピストン
56 シリンダ
58 吸入流路
59 吸入口
60 吸入側チェック弁
62 排出流路
63 排出口
64 排出側チェック弁
66 コイル
68 ヨーク
70 駆動回路
86 開口部
TS 温度センサ
TSa 基板
TSb 抵抗パターン
10 pressure-resistant tube 14 spindle shaft 16 bearing 16a outer ring 16b inner ring 16c ball 16d cage 16e raceway surface 16f raceway surface 18 inner housing 20 outer housing 22 lubrication unit 24 communication hole 25 ambient temperature 28 outer cylinder 29 outer cylinder 32 rear cover 38 spring 40 Spacer 42 Cooling groove 46 Rod 46a Axial end 46b Axial other end 48 Preload adjusting mechanism 50 Case 52 Pressure transmission member 54 Piston 56 Cylinder 58 Suction channel 59 Suction port 60 Suction side check valve 62 Drain channel 63 Discharge port 64 Discharge side check valve 66 Coil 68 Yoke 70 Drive circuit 86 Opening portion TS Temperature sensor TSa Substrate TSb Resistance pattern

本発明の軸受装置は、外輪と、内輪と、両輪間に配置された転動体とを有する転がり軸受と、前記転がり軸受の内部の温度を測定する温度センサと、潤滑ユニットとを有する軸受装置において、
前記潤滑ユニットは、前記温度センサが検出した温度に応じた量の潤滑油を前記転がり軸受に供給するようになっており、
前記温度センサは、絶縁膜付きのシリコン基板と、その上に形成された白金薄膜の抵抗パターンのみからなり、基板の表面に塗布したレジストに、マスクを用いて線幅の細い一本の線からなるジグザグ形状の微細パターンを露光現像し、更にスパッタリングにより白金被膜を微細パターン上に付着させた後に、残留レジストを除去することで前記外輪の起動輪に形成されていることを特徴とする。

The bearing device of the present invention is a bearing device having a rolling bearing having an outer ring, an inner ring, and rolling elements disposed between the two rings, a temperature sensor for measuring the temperature inside the rolling bearing, and a lubrication unit. ,
The lubrication unit is adapted to supply an amount of lubricating oil corresponding to the temperature detected by the temperature sensor to the rolling bearing ,
The temperature sensor consists only of a silicon substrate with an insulating film and a resistance pattern of a platinum thin film formed on the silicon substrate. From a single thin line using a mask on a resist applied on the surface of the substrate. A zigzag fine pattern to be formed is exposed and developed, and a platinum film is deposited on the fine pattern by sputtering, and then the residual resist is removed to form the outer ring as a starting ring .

Claims (3)

外輪と、内輪と、両輪間に配置された転動体とを有する転がり軸受と、前記転がり軸受の内部の温度を測定する温度センサと、潤滑ユニットとを有する軸受装置において、
前記潤滑ユニットは、前記温度センサが検出した温度に応じた量の潤滑油を前記転がり軸受に供給することを特徴とする軸受装置。
In a bearing device having an outer ring, an inner ring, a rolling bearing having a rolling element disposed between the two wheels, a temperature sensor for measuring the temperature inside the rolling bearing, and a lubrication unit,
The lubricating unit supplies the rolling bearing with an amount of lubricating oil corresponding to the temperature detected by the temperature sensor.
前記温度センサは、基板の表面に塗布したレジストに、マスクを用いて微細パターンを露光現像し、更にスパッタリングにより金属被膜を微細パターン上に付着させた後に、残留レジストを除去することで形成されていることを特徴とする請求項1に記載の軸受装置。   The temperature sensor is formed by exposing and developing a fine pattern on a resist applied to the surface of a substrate using a mask, and further depositing a metal film on the fine pattern by sputtering and then removing the residual resist. The bearing device according to claim 1, wherein: 前記軸受装置は、工作機械用主軸に用いられることを特徴とする請求項1又は2に記載の軸受装置。   The bearing device according to claim 1, wherein the bearing device is used for a spindle for a machine tool.
JP2013117473A 2013-06-04 2013-06-04 Bearing device Active JP5626708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013117473A JP5626708B2 (en) 2013-06-04 2013-06-04 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013117473A JP5626708B2 (en) 2013-06-04 2013-06-04 Bearing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006173272A Division JP5607285B2 (en) 2006-06-23 2006-06-23 Bearing device

Publications (2)

Publication Number Publication Date
JP2013213585A true JP2013213585A (en) 2013-10-17
JP5626708B2 JP5626708B2 (en) 2014-11-19

Family

ID=49587032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013117473A Active JP5626708B2 (en) 2013-06-04 2013-06-04 Bearing device

Country Status (1)

Country Link
JP (1) JP5626708B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943221A4 (en) * 2019-03-19 2022-11-30 NTN Corporation Lubricating oil supply unit and bearing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263702A (en) * 1987-04-22 1988-10-31 松下電器産業株式会社 Manufacture of platinum thin film temperature sensor
JPH034098A (en) * 1989-05-22 1991-01-10 Alcatel Cit Device for feeding grease to rotary machine
JPH11260609A (en) * 1998-02-12 1999-09-24 Guanglei Science Technol Co Ltd Manufacture of detecting element for platinum resistance thermometer and detection element manufactured thereby
JP2003097582A (en) * 2001-09-27 2003-04-03 Nsk Ltd Bearing device with sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263702A (en) * 1987-04-22 1988-10-31 松下電器産業株式会社 Manufacture of platinum thin film temperature sensor
JPH034098A (en) * 1989-05-22 1991-01-10 Alcatel Cit Device for feeding grease to rotary machine
JPH11260609A (en) * 1998-02-12 1999-09-24 Guanglei Science Technol Co Ltd Manufacture of detecting element for platinum resistance thermometer and detection element manufactured thereby
JP2003097582A (en) * 2001-09-27 2003-04-03 Nsk Ltd Bearing device with sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943221A4 (en) * 2019-03-19 2022-11-30 NTN Corporation Lubricating oil supply unit and bearing device

Also Published As

Publication number Publication date
JP5626708B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5607285B2 (en) Bearing device
JP6601034B2 (en) Bearing device
TW201734329A (en) Bearing device
JP2009068533A (en) Bearing device
US20060185450A1 (en) Sheath type measuring instrument, bearing and rotary machine
JP5626708B2 (en) Bearing device
JP2016165781A (en) Spindle device
JP5830793B2 (en) Bearing for machine tool spindle device, machine tool spindle device, and machine tool
TW201716709A (en) Magnetic fluid seal
JP2010194684A (en) Bearing for main spindle device of machine tool, main spindle device of machine tool, and machine tool
JP5702121B2 (en) Spacers for rolling bearings with adjustable position
JP2011117599A5 (en)
JP6881133B2 (en) Vibration measuring device for vacuum bearings
JPS61121802A (en) Antifriction bearing for machine tool spindle
WO2007122922A1 (en) Bearing device and method of producing the same
JP2020133889A (en) Bearing device and spindle device
WO2021131662A1 (en) Bearing device, spindle device, bearing and spacer
JP2020037963A (en) Bearing device
US20180087566A1 (en) Non-contact bearing
JP2019030192A (en) Electric motor and heat sink device using the same
JP2022049111A (en) Bearing device
JP4529129B2 (en) Hydrostatic air bearing spindle
JPH10205537A (en) Rotary hydrostatic bearing device
JPH03163214A (en) Bearing device
JP2003278771A (en) Rolling bearing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140921

R150 Certificate of patent or registration of utility model

Ref document number: 5626708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150