JPH10205537A - Rotary hydrostatic bearing device - Google Patents

Rotary hydrostatic bearing device

Info

Publication number
JPH10205537A
JPH10205537A JP2311897A JP2311897A JPH10205537A JP H10205537 A JPH10205537 A JP H10205537A JP 2311897 A JP2311897 A JP 2311897A JP 2311897 A JP2311897 A JP 2311897A JP H10205537 A JPH10205537 A JP H10205537A
Authority
JP
Japan
Prior art keywords
housing
temperature
bearing
rotating shaft
hydrostatic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2311897A
Other languages
Japanese (ja)
Other versions
JP3100916B2 (en
Inventor
Takao Yokomatsu
孝夫 横松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP09023118A priority Critical patent/JP3100916B2/en
Publication of JPH10205537A publication Critical patent/JPH10205537A/en
Application granted granted Critical
Publication of JP3100916B2 publication Critical patent/JP3100916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suitably control a change in a bearing gap even if the temperature of a housing is adjusted. SOLUTION: A rotary hydrostatic bearing device provided with a housing 2, a radial hydrostatic bearing 4 fixed to the housing 2 and a rotary shaft 1 supported by the bearing 4, wherein the material of the rotary shaft 1 is smaller in a coefficient of linear thermal expansion than the material of the housing 2, has temperature control means 16, 22 for controlling the temperature of the housing 2 such that the temperature of a contact part of the housing 2 with the other unit is not changed when the rotating shaft is stopped and when it is rotated. The housing 2 and the rotary shaft 1 are constituted by the materials whose coefficients of linear thermal expansion are made different from each other to make the bearing gap 8 nearly constant by a difference in the coefficients of the linear thermal expansion when the rotary shaft is stopped and when it is rotated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密工作機械の主
軸に使用される静圧軸受装置に関し、特に、精密工作機
械に装備した際、工作機械本体に熱変形等の悪影響を与
えることがなく、また、停止時と回転時に軸受け隙間が
変化しないため、軸受けと軸との接触事故や、剛性変動
による加工精度劣化を防止できるようにした回転型の静
圧軸受装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic bearing device used for a main shaft of a precision machine tool, and in particular, when mounted on a precision machine tool, does not adversely affect the machine tool body such as thermal deformation. Also, the present invention relates to a rotary type hydrostatic bearing device which can prevent a contact accident between a bearing and a shaft and a deterioration in machining accuracy due to a change in rigidity because a bearing gap does not change between a stop and a rotation.

【0002】[0002]

【従来の技術】従来、高い加工精度が要求される工作機
械の主軸には、摩擦がほとんどなく回転精度が高い静圧
軸受けが使用される。特に、軸受けに多孔質材を用いる
多孔質絞り方式の静圧軸受けは軸受け剛性が高く、ナノ
メータオーダの表面粗さを目指すような工作機械の主軸
に利用される。
2. Description of the Related Art Conventionally, a hydrostatic bearing having little friction and high rotation accuracy has been used for a main shaft of a machine tool requiring high processing accuracy. In particular, a porous drawing type hydrostatic bearing using a porous material for the bearing has a high bearing rigidity and is used for a main spindle of a machine tool aiming at a surface roughness on the order of nanometers.

【0003】しかしながら、多孔質軸受けにおいて高い
剛性をえるためには、軸受け隙間を数μmと狭くしなく
てはならない。このため、主軸回転時には狭い軸受け隙
間の加圧流体がセン断され、他の絞り方式の軸受けより
発熱が多くなる。これを冷却するため、主軸ハウジング
内には冷却流路を設けるが、回転軸には冷却手段がない
ため、回転軸が熱膨張して軸受け隙間が減少し、焼き付
きを起こす危険がある。
However, in order to obtain high rigidity in a porous bearing, the clearance between the bearings must be reduced to several μm. For this reason, the pressurized fluid in the narrow bearing gap is cut off during the rotation of the main shaft, and the amount of heat generated is greater than that of the other throttle type bearings. In order to cool this, a cooling channel is provided in the main shaft housing. However, since there is no cooling means in the rotating shaft, the rotating shaft thermally expands, the bearing gap is reduced, and there is a risk of burning.

【0004】これを回避するため、特願平3−2767
73号では、回転軸を窒化珪素または炭化珪素で製作す
ることを提案している。すなわちハウジングの材料とし
て一般的な炭素鋼を使用し、回転軸にはハウジングより
も線熱膨張係数の小さい材料を用いて、軸受け隙間の減
少を抑制しようとするものである。
[0004] In order to avoid this, Japanese Patent Application No. Hei 3-2767 has been proposed.
No. 73 proposes that the rotating shaft be made of silicon nitride or silicon carbide. That is, a general carbon steel is used as a material of the housing, and a material having a smaller linear thermal expansion coefficient than that of the housing is used for the rotating shaft to suppress the reduction of the bearing gap.

【0005】[0005]

【発明が解決しようとする課題】しかし、主軸回転によ
る発熱が工作機械の他の部分に伝導し熱変形を起こさな
いようにする場合、すなわち主軸ハウジングの他のユニ
ットとの接触部分の温度を主軸停止時と同じ温度にする
という条件でハウジングを冷却すると、上記のようにハ
ウジング材料より回転軸材料の線熱膨張係数を小さくす
るというだけの条件では、軸受け隙間変動をサブミクロ
ンレベルで厳密に制御することはできないという問題が
ある。例えば上記の従来例ではハウジングを炭素鋼、回
転軸を窒化珪素としているが、この構成では、回転時に
1〜2μm程度軸受け隙間が変化する。多孔質静圧軸受
けでは1μmの隙間変化で軸受け剛性と発熱量が約20
%も変動し、安定した表面粗さ、形状精度が得られな
い。
However, when heat generated by rotation of the spindle is conducted to other parts of the machine tool so as not to cause thermal deformation, that is, the temperature of the contact part of the spindle housing with other units is controlled by the temperature of the spindle. When the housing is cooled under the condition that the temperature is the same as that at the time of stop, the bearing gap fluctuation is strictly controlled at the submicron level under the condition that the linear thermal expansion coefficient of the rotating shaft material is smaller than that of the housing material as described above. There is a problem that you can not. For example, in the above conventional example, the housing is made of carbon steel and the rotating shaft is made of silicon nitride. In this configuration, the bearing gap changes by about 1 to 2 μm during rotation. In the case of a porous static pressure bearing, a change in the gap of 1 μm reduces the bearing rigidity and heat generation to about 20.
%, And stable surface roughness and shape accuracy cannot be obtained.

【0006】本発明の目的は、このような従来技術の問
題点に鑑み、回転型静圧軸受装置において、ハウジング
の温度調節を行う場合でも、軸受隙間の変動を適切に抑
制することができるようにすることにある。
An object of the present invention is to provide a rotary type hydrostatic bearing device which can appropriately suppress the fluctuation of the bearing gap even when the temperature of the housing is adjusted. It is to make.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明では、ハウジングと、このハウジングに固定され
たラジアル方向の静圧軸受と、この静圧軸受により支持
された回転軸とを備え、前記ハウジングの材料よりも前
記回転軸の材料の線熱膨張係数が小さい回転型静圧軸受
け装置において、前記ハウジングの他の装置への接触部
分の温度が、停止時と回転時とにおいて変化しないよう
に前記ハウジングの温度を制御する温度制御手段を備え
るとともに、前記ハウジングの材料と前記回転軸の材料
における線熱膨張係数の差が、停止時と回転時とにおい
て軸受隙間をほぼ一定とするような材料により前記ハウ
ジングと前記回転軸を構成したことを特徴とする。
According to the present invention, there is provided a housing comprising: a housing; a radial static pressure bearing fixed to the housing; and a rotating shaft supported by the static pressure bearing. In a rotary type hydrostatic bearing device in which the linear thermal expansion coefficient of the material of the rotating shaft is smaller than that of the material of the housing, the temperature of a contact portion of the housing with another device does not change between a stop and a rotation. Temperature control means for controlling the temperature of the housing, and the difference in linear thermal expansion coefficient between the material of the housing and the material of the rotary shaft is such that the bearing gap is substantially constant between when stopped and when rotated. The housing and the rotation shaft are made of a material.

【0008】この構成によれば、例えば回転型静圧軸受
装置を工作機械の主軸に適用した場合、主軸回転時の発
熱が工作機械の他の部分に伝導しないように、ハウジン
グのその部分への接触部分の温度を一定に制御するとと
もに、主軸ハウジングの材料と回転軸材料の線熱膨張係
数を上述のようにして適切に選定することによって、軸
受隙間の変動が抑制され、安定した加工精度が得られ
る。
According to this configuration, for example, when a rotary type hydrostatic bearing device is applied to a main shaft of a machine tool, heat generated during rotation of the main shaft is not transmitted to other portions of the machine tool so that the housing is not connected to that portion. By controlling the temperature of the contact part to be constant and appropriately selecting the linear thermal expansion coefficient of the material of the spindle housing and the material of the rotating shaft as described above, fluctuations in the bearing gap are suppressed, and stable machining accuracy is achieved. can get.

【0009】[0009]

【発明の実施の形態】より具体的な態様においては、例
えば、前記線熱膨張係数の差を3.7〜5.8×10-6
(1/℃)とすることにより、軸受隙間の変動を抑制す
ることができる。
In a more specific embodiment, for example, the difference in the coefficient of linear thermal expansion is 3.7 to 5.8 × 10 -6.
By setting (1 / ° C.), the fluctuation of the bearing gap can be suppressed.

【0010】このような線熱膨張係数の差は、例えば、
ハウジングの材料をアルミナセラミックスとし、回転軸
の材料を窒化珪素とすることにより得ることができる。
静圧軸受の材料としては多孔質材を用いることができ
る。
Such a difference in linear thermal expansion coefficient is, for example, as follows.
It can be obtained by using alumina ceramics for the material of the housing and silicon nitride for the material of the rotating shaft.
A porous material can be used as the material of the hydrostatic bearing.

【0011】温度制御手段としては、例えば、ハウジン
グの他の装置への接触部分の温度を検出するセンサと、
前記ハウジング内を冷却するための冷却液循環装置と、
その冷却液の温度あるいは流量を前記センサの出力に基
いて制御することにより前記ハウジングの温度制御を行
なう制御装置とを備えたものを用いることができる。こ
の場合、例えば、本発明の軸受装置が適用された多孔質
絞り方式の高剛性主軸において、他のユニットへの接触
部分の温度が回転時にも停止時と同じ温度になるよう
に、接触部の温度をセンサにより検出しながら、ハウジ
ング冷却用の冷却液の温度あるいは流量を制御する。さ
らに、ハウジングおよび回転軸の材料として、上述のよ
うに、アルミナセラミックスおよび窒化珪素を使用する
ことにより、軸受隙間の変動をサブミクロンレベルにす
ることができる。このため、主軸そのものの剛性変化と
発熱量変化を抑制できるとともに、主軸の発熱による工
作機械の他の部分の熱変形も防止でき、工作機械全体と
して、高い加工精度を安定的に得ることができる。
As the temperature control means, for example, a sensor for detecting a temperature of a contact portion of the housing with another device;
A coolant circulation device for cooling the inside of the housing,
A control device for controlling the temperature of the housing by controlling the temperature or flow rate of the coolant based on the output of the sensor can be used. In this case, for example, in a high-rigidity spindle of a porous drawing system to which the bearing device of the present invention is applied, the temperature of the contact portion to another unit is the same as that at the time of rotation even at the time of rotation, so that the contact portion is The temperature or the flow rate of the coolant for housing cooling is controlled while detecting the temperature with the sensor. Further, by using alumina ceramics and silicon nitride as materials for the housing and the rotating shaft as described above, the fluctuation of the bearing gap can be reduced to a submicron level. For this reason, it is possible to suppress a change in the rigidity of the main spindle itself and a change in the amount of generated heat, and also prevent the other parts of the machine tool from being thermally deformed due to the heat generated by the main spindle, so that high machining accuracy can be stably obtained as a whole machine tool. .

【0012】[0012]

【実施例】図1は本発明の一実施例に係る、工作機械の
主軸に用いられている回転型静圧軸受装置の構成を示
す。軸受装置部分は断面図で示してある。図中、1は円
盤状の回転軸であり、線熱膨張係数が2.6×10
-6(1/℃)程度の窒化珪素で作られている。2および
3は線熱膨張係数7.1×10-6(1/℃)前後のアル
ミナセラミックスからなるラジアルハウジングおよびス
ラストハウジングである。4と5はカーボン系の自己潤
滑性の多孔質材料からなるラジアル軸受けとスラスト軸
受けであり、それぞれラジアルハウジング2およびスラ
ストハウジング3に固定され、給気孔6と7から供給さ
れる圧縮空気を多孔質内で絞って、軸受け表面から空気
を噴出している。これにより、回転軸1とラジアルハウ
ジング2およびスラストハウジング3との間の約5μm
の軸受け隙間8と9に高い剛性をもつ圧縮空気層が形成
され、回転軸1を非接触で浮上支持することができる。
FIG. 1 shows the configuration of a rotary hydrostatic bearing device used for a main shaft of a machine tool according to an embodiment of the present invention. The bearing device part is shown in cross section. In the figure, reference numeral 1 denotes a disk-shaped rotating shaft having a coefficient of linear thermal expansion of 2.6 × 10
It is made of silicon nitride of about -6 (1 / ° C.). Reference numerals 2 and 3 denote a radial housing and a thrust housing made of alumina ceramics having a coefficient of linear thermal expansion of about 7.1 × 10 −6 (1 / ° C.). Numerals 4 and 5 denote a radial bearing and a thrust bearing made of a carbon-based self-lubricating porous material, which are fixed to the radial housing 2 and the thrust housing 3, respectively, and make the compressed air supplied from the air supply holes 6 and 7 porous. Air is squeezed out from the bearing surface. As a result, the distance between the rotating shaft 1 and the radial housing 2 and the thrust housing 3 is about 5 μm.
A compressed air layer having high rigidity is formed in the bearing gaps 8 and 9 of the rotary shaft 1 so that the rotating shaft 1 can be levitated and supported without contact.

【0013】10は回転軸1に固定されたリング状の炭
素鋼であり、スラストハウジング3に対向して固定され
たリング状の磁石11により、軸方向に吸引されてい
る。この吸引力と、スラスト軸受け5との反発力とが釣
り合ってスラスト隙間9が一定に保たれている。
Reference numeral 10 denotes a ring-shaped carbon steel fixed to the rotating shaft 1, and is attracted in the axial direction by a ring-shaped magnet 11 fixed opposite to the thrust housing 3. The suction force and the repulsive force with the thrust bearing 5 are balanced, so that the thrust gap 9 is kept constant.

【0014】12はスラストハウジング3に固定された
モータコイル、13は回転軸1と一体になったモータマ
グネットであり、両者によりダイレクトドライブモータ
を形成している。このモータは、接触部がないため、高
い回転精度と耐久性が得られる。14は主軸回転数(回
転軸1の回転数)を検出するためのエンコーダのエンコ
ーダディスクであり、15はエンコーダの信号検出部で
ある。主軸回転数の制御は図示しないモータドライバが
エンコーダの出力を受け取って、モータの出力を制御す
ることにより行なう。16は主にラジアル軸受け4の発
熱を抑えるためのラジアル冷却水路であり、17は主に
スラスト軸受け5の発熱とモータコイル12の発熱を吸
収するためのスラスト冷却水路である。
Reference numeral 12 denotes a motor coil fixed to the thrust housing 3, and reference numeral 13 denotes a motor magnet integrated with the rotary shaft 1, and both form a direct drive motor. Since this motor has no contact portion, high rotational accuracy and durability can be obtained. Reference numeral 14 denotes an encoder disk of an encoder for detecting the spindle rotation speed (the rotation speed of the rotary shaft 1), and reference numeral 15 denotes a signal detection unit of the encoder. The spindle speed is controlled by a motor driver (not shown) receiving the output of the encoder and controlling the output of the motor. Reference numeral 16 denotes a radial cooling water passage mainly for suppressing heat generation of the radial bearing 4, and reference numeral 17 denotes a thrust cooling water passage mainly for absorbing heat generation of the thrust bearing 5 and heat of the motor coil 12.

【0015】以上のような主軸が工作機械に搭載される
場合、18のようなスライダに固定される。高精度な工
作機械ではスライダ18も、19のような多孔質静圧軸
受けを使用しているため、多孔質静圧軸受け19とその
ガイド20との軸受け隙間も5μm程度と微小である。
このため、主軸が発熱しその熱が僅かでもスライダ18
に伝わると、スライダ18の軸受け隙間が変化し、剛性
低下あるいは真直度劣化等が起き、加工精度が損なわれ
る。
When the above-described spindle is mounted on a machine tool, it is fixed to a slider such as 18. In a high-precision machine tool, since the slider 18 also uses a porous static pressure bearing like 19, the bearing gap between the porous static pressure bearing 19 and its guide 20 is as small as about 5 μm.
For this reason, the main shaft generates heat, and even if the heat is slight, the slider 18
In this case, the bearing gap of the slider 18 changes, causing a decrease in rigidity or a decrease in straightness, thereby impairing machining accuracy.

【0016】そこで、主軸のスライダ18との接触部2
1の温度を一定に保つ必要がある。この部分に温度検出
用センサとして、分解能0.01℃レベルのサーミスタ
22を埋め込み接着する。23はサーミスタ22に接続
された温度計、24は温度計23の出力に基づいて温度
制御を行う温度制御装置、25はラジアル冷却水路16
およびスラスト冷却水路17に恒温水を循環させるため
の恒温水循環装置、26と27はそれぞれ温度制御装置
24により前記恒温水の循環を制御するためのラジアル
ハウジング2およびスラストハウジング3冷却用の流量
制御バルブである。
Therefore, the contact portion 2 of the spindle with the slider 18 is provided.
It is necessary to keep the temperature of 1 constant. A thermistor 22 having a resolution of 0.01 ° C. is embedded and adhered to this portion as a temperature detection sensor. 23 is a thermometer connected to the thermistor 22, 24 is a temperature controller for controlling the temperature based on the output of the thermometer 23, 25 is a radial cooling water passage 16
And a constant-temperature water circulating device for circulating constant-temperature water in the thrust cooling water passage 17; flow control valves for cooling the radial housing 2 and the thrust housing 3 for controlling the circulation of the constant-temperature water by a temperature control device 24; It is.

【0017】例えば、回転軸の直径がφ240mm、ラ
ジアル軸受け4の幅が45mm、スラスト軸受けの幅が
35mmのとき、ラジアル剛性は800N/μm、スラ
スト剛性は1000N/μmと非常に大きな剛性が得ら
れる。しかし、軸受け隙間を5μmとし3000rpm
で回転した場合、ラジアル軸受け4部の発熱量は156
W、スラスト軸受け5部の発熱量は88W、さらにモー
タコイル12の発熱量は26Wであり、全く冷却しない
とハウジング部の温度上昇は10数℃になり、スライダ
18に大きな熱変形をもたらす。
For example, when the diameter of the rotating shaft is φ240 mm, the width of the radial bearing 4 is 45 mm, and the width of the thrust bearing is 35 mm, very large rigidities of 800 N / μm and 1000 N / μm are obtained. . However, when the bearing clearance is set to 5 μm and 3000 rpm
, The calorific value of the four radial bearings is 156.
W, the calorific value of the 5 thrust bearings is 88 W, and the calorific value of the motor coil 12 is 26 W. If not cooled at all, the temperature of the housing rises to about 10 ° C., causing large thermal deformation of the slider 18.

【0018】これを防止するため、主軸のスライダ18
との接触部温度を計測し、停止時の温度を初期値とし、
初期値と現在値の差が生じると温度制御装置24がこれ
を認識し、差をゼロにするよう流量制御バルブ26、2
7に指令し、流量を増減させる。ラジアルハウジング2
とスラストハウジング3に流す流量は常にそれらの発熱
量の比率、すなわち156:(88+26)とする。こ
の比率で冷却すると、ハウジング全体がほぼ均一に熱変
形する。この場合、恒温水循環装置24の設定温度は一
定とする。恒温水循環装置25で冷却水の温度制御をす
るよりも、流量制御バルブ26、27で流量を制御する
方が、時間遅れの少ない制御ができるためである。30
00rpm回転時に、主軸のスライダ18との接触部2
1の温度を初期温度に保つための冷却水は、初期温度を
23℃、冷却水の温度を21.5℃とすると、ラジアル
ハウジング2に約3[l/min]、スラストハウジン
グ3に約2.2[l/min]である。
In order to prevent this, the slider 18 of the spindle is used.
Measure the temperature of the contact area with the
When a difference between the initial value and the present value occurs, the temperature control device 24 recognizes the difference and sets the flow control valves 26, 2 so that the difference becomes zero.
7 to increase or decrease the flow rate. Radial housing 2
And the flow rate flowing through the thrust housing 3 is always the ratio of their calorific values, that is, 156: (88 + 26). When cooled at this ratio, the entire housing thermally deforms substantially uniformly. In this case, the set temperature of the constant temperature water circulation device 24 is constant. This is because controlling the flow rate with the flow rate control valves 26 and 27 can perform control with less time delay than controlling the temperature of the cooling water with the constant temperature water circulation device 25. 30
The contact portion 2 of the spindle with the slider 18 at the time of rotation at 00 rpm
Assuming that the initial temperature is 23 ° C. and the temperature of the cooling water is 21.5 ° C., about 3 [l / min] of the radial housing 2 and about 2 0.2 [l / min].

【0019】以上の冷却法により、主軸回転による発熱
がスライダ18に悪影響を与えることはない。しかし、
主軸の軸受け隙間は構成材料により変化する。図2に、
3000rpm回転時に上記の冷却をした場合、ラジア
ル軸受け隙間8が回転軸1の材料により変化する様子を
示す。横軸は、ラジアル軸受け4の軸方向の位置、縦軸
は設定隙間5μmからの変化量である。また、ハウジン
グ2、3の材料は比剛性が高く、比較的加工性のよい、
線熱膨張係数α=7.1×10-6(1/℃)のアルミナ
セラミックスである。図2において、aは線熱膨張係数
α=10.7×10-6(1/℃)の炭素鋼、bはアルミ
ナセラミックス、cは線熱膨張係数α=4.0×10-6
(1/℃)の炭化珪素:、dは線熱膨張係数α=2.6
×10-6(1/℃)の窒化珪素を回転軸1の材料とした
場合の計算値である。
By the cooling method described above, heat generated by the rotation of the spindle does not adversely affect the slider 18. But,
The bearing clearance of the main shaft varies depending on the constituent materials. In FIG.
In the case where the above cooling is performed at 3000 rpm, the radial bearing gap 8 changes depending on the material of the rotating shaft 1. The horizontal axis indicates the axial position of the radial bearing 4 and the vertical axis indicates the amount of change from the set gap of 5 μm. Further, the material of the housings 2 and 3 has high specific rigidity and is relatively workable.
It is an alumina ceramic having a linear thermal expansion coefficient α = 7.1 × 10 −6 (1 / ° C.). In FIG. 2, a is a carbon steel having a linear thermal expansion coefficient α = 10.7 × 10 −6 (1 / ° C.), b is an alumina ceramic, and c is a linear thermal expansion coefficient α = 4.0 × 10 −6.
(1 / ° C.) silicon carbide: d = linear thermal expansion coefficient α = 2.6
It is a calculated value when silicon nitride of × 10 −6 (1 / ° C.) is used as the material of the rotating shaft 1.

【0020】線熱膨張係数が大きいと、回転軸1の熱膨
張も当然大きく、軸受け隙間8が減少することがわか
る。線熱膨張係数と軸受け隙間8の減少量が完全に比例
しないのは、材料の熱伝導率の影響が多少でているため
である。窒化珪素以外の材料では、隙間が1μm以上も
減少し、軸受け剛性は増加するが、空気膜のセン断熱に
よる発熱が大きくなる。軸受け隙間8と発熱量は比例関
係にあるため、軸受け隙間8が1μm減少すると、発熱
量が20%増加する。このため、主軸ハウジングのスラ
イダとの接触部21が一定温度となるように冷却してい
ると、回転軸1が主に膨張し、最終的には隙間8がなく
なり、焼き付いてしまう。
It is understood that when the coefficient of linear thermal expansion is large, the thermal expansion of the rotating shaft 1 is naturally large, and the bearing gap 8 is reduced. The reason why the linear thermal expansion coefficient and the reduction amount of the bearing gap 8 are not completely proportional is that the influence of the thermal conductivity of the material is small. In a material other than silicon nitride, the gap is reduced by 1 μm or more and the bearing rigidity is increased, but the heat generated by the heat insulation of the air film is increased. Since the bearing gap 8 and the calorific value are in a proportional relationship, if the bearing gap 8 decreases by 1 μm, the calorific value increases by 20%. For this reason, if the contact portion 21 of the spindle housing with the slider is cooled so as to have a constant temperature, the rotating shaft 1 mainly expands, and finally the gap 8 disappears, resulting in seizure.

【0021】回転軸1の材料が窒化珪素の場合は、軸受
け位置により多少の増減はあるが、トータルでは軸受け
隙間8の変動はない。したがって、剛性変化や焼き付き
の危険もなく、主軸の発熱が工作機械の他の部分に熱変
形をおよぼすこともない。
When the material of the rotary shaft 1 is silicon nitride, there is a slight increase or decrease depending on the bearing position, but there is no change in the bearing gap 8 in total. Therefore, there is no danger of a change in rigidity or seizure, and the heat generated by the spindle does not thermally deform other parts of the machine tool.

【0022】構造体として使用できる緻密質のアルミナ
セラミックスおよび窒化珪素の線熱膨張係数は純度によ
り多少異なるが、それぞれα=6.5〜7.7×10-6
(1/℃)、α=1.9〜2.8×10-6(1/℃)で
あり、この範囲の材料であれば上記の冷却条件において
軸受け隙間変動をサブミクロン以下に抑えることができ
る。すなわちハウジングの材料より回転軸1の材料の線
熱膨張係数が小さく、その差が3.7〜5.8×10-6
(1/℃)であるような材料の組み合わせならば、上記
の効果が期待できる。ただし、回転軸1の材料の熱伝導
係数がハウジング2の材料の2倍以上もある場合はこの
限りではない。例えば、ハウジング2の材料として炭素
鋼を使用する場合は、回転軸1の材料として線熱膨張係
数α=7×10-6(1/℃)程度の低熱膨張鋳鉄あるい
はアルミナセラミックス等が使用できる。
The linear thermal expansion coefficients of dense alumina ceramics and silicon nitride that can be used as a structure slightly differ depending on the purity, but α = 6.5 to 7.7 × 10 −6 , respectively.
(1 / ° C.), α = 1.9 to 2.8 × 10 −6 (1 / ° C.), and if the material is in this range, the fluctuation of the bearing gap can be suppressed to submicron or less under the above cooling conditions. it can. That is, the material of the rotating shaft 1 has a smaller linear thermal expansion coefficient than the material of the housing, and the difference is 3.7 to 5.8 × 10 −6.
If the material combination is (1 / ° C.), the above effects can be expected. However, this does not apply when the thermal conductivity coefficient of the material of the rotating shaft 1 is twice or more that of the material of the housing 2. For example, when carbon steel is used as the material of the housing 2, low thermal expansion cast iron having a linear thermal expansion coefficient α of about 7 × 10 −6 (1 / ° C.) or alumina ceramics can be used as the material of the rotating shaft 1.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、ハ
ウジングの他の装置への接触部分の温度が、停止時と回
転時とにおいて変化しないようにハウジングの温度を制
御するとともに、ハウジングの材料と回転軸の材料にお
ける線熱膨張係数の差が、停止時と回転時とにおいて軸
受隙間をほぼ一定とするような材料によりハウジングと
回転軸を構成するようにしたため、軸受隙間を減少を抑
制することができる。したがって、本発明が適用される
工作機械の主軸の発熱が工作機械の他の部分を熱変形さ
せるのを防止すると同時に、主軸の軸受隙間の変動を抑
制することができるため、軸受の剛性変化や焼き付きを
防止し、工作機械全体として安定した加工精度を得るこ
とができる。
As described above, according to the present invention, the temperature of the housing is controlled so that the temperature of the contact portion of the housing with the other device does not change between the time of stop and the time of rotation. The difference between the linear thermal expansion coefficient of the material and the material of the rotating shaft is such that the bearing and the rotating shaft are made of a material that makes the bearing clearance almost constant between when stopped and when rotating. can do. Therefore, it is possible to prevent the heat generation of the main shaft of the machine tool to which the present invention is applied from thermally deforming other parts of the machine tool, and at the same time, to suppress the fluctuation of the bearing clearance of the main shaft. Seizure can be prevented, and stable machining accuracy can be obtained for the entire machine tool.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る、工作機械の主軸に
用いられている回転型静圧軸受装置の構成を示す図であ
る。
FIG. 1 is a view showing a configuration of a rotary hydrostatic bearing device used for a main shaft of a machine tool according to an embodiment of the present invention.

【図2】 主軸の軸受け隙間が回転軸の構成材料により
変化する様子を示すグラフである。
FIG. 2 is a graph showing how a bearing gap of a main shaft changes depending on a constituent material of a rotating shaft.

【符号の説明】[Explanation of symbols]

1:回転軸、2:ラジアルハウジング、3:スラストハ
ウジング、4:ラジアル軸受け、5:スラスト軸受け、
16:ラジアル冷却水路、17:スラスト冷却水路、2
2:温度センサ、23:温度計、24:温度制御装置、
25:恒温水循環装置、26:ラジアル流量制御バル
ブ、27:スラスト流量制御バルブ。
1: rotating shaft, 2: radial housing, 3: thrust housing, 4: radial bearing, 5: thrust bearing,
16: radial cooling channel, 17: thrust cooling channel, 2
2: temperature sensor, 23: thermometer, 24: temperature controller,
25: constant temperature water circulation device, 26: radial flow control valve, 27: thrust flow control valve.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ハウジングと、このハウジングに固定さ
れたラジアル方向の静圧軸受と、この静圧軸受により支
持された回転軸とを備え、前記ハウジングの材料よりも
前記回転軸の材料の線熱膨張係数が小さい回転型静圧軸
受け装置において、前記ハウジングの他の装置への接触
部分の温度が、停止時と回転時とにおいて変化しないよ
うに前記ハウジングの温度を制御する温度制御手段を備
えるとともに、前記ハウジングの材料と前記回転軸の材
料における線熱膨張係数の差が、停止時と回転時とにお
いて軸受隙間をほぼ一定とするような材料により前記ハ
ウジングと前記回転軸を構成したことを特徴とする回転
型静圧軸受装置。
1. A housing comprising: a housing; a radial static pressure bearing fixed to the housing; and a rotating shaft supported by the static pressure bearing, wherein the linear heat of the material of the rotating shaft is more than the material of the housing. In a rotary type hydrostatic bearing device having a small expansion coefficient, a temperature control means for controlling a temperature of the housing so that a temperature of a contact portion of the housing with another device does not change between a stop time and a rotation time, The housing and the rotating shaft are made of a material such that a difference in linear thermal expansion coefficient between the material of the housing and the material of the rotating shaft makes the bearing gap substantially constant between a stop and a rotation. Rotary type hydrostatic bearing device.
【請求項2】 前記線熱膨張係数の差が、3.7〜5.
8×10-6(1/℃)であることを特徴とする請求項1
記載の回転型静圧軸受装置。
2. The difference in linear thermal expansion coefficient between 3.7 and 5.
2. The method according to claim 1, wherein the temperature is 8.times.10.sup.- 6 (1 / .degree. C.).
A rotary type hydrostatic bearing device as described in the above.
【請求項3】 前記ハウジング材料がアルミナセラミッ
クスであり、前記回転軸の材料が窒化珪素であり、前記
静圧軸受の材料が多孔質材であることを特徴とする請求
項1または2に記載の回転型静圧軸受装置。
3. The material according to claim 1, wherein the housing material is alumina ceramics, the material of the rotating shaft is silicon nitride, and the material of the hydrostatic bearing is a porous material. Rotary hydrostatic bearing device.
【請求項4】 前記温度制御手段は、前記ハウジングの
他の装置への接触部分の温度を検出するセンサと、前記
ハウジング内を冷却するための冷却液循環装置と、その
冷却液の温度あるいは流量を前記センサの出力に基いて
制御することにより前記ハウジングの温度制御を行なう
制御装置とを備えたことを特徴とする請求項1〜3のい
ずれかに記載の回転型静圧軸受装置。
4. The temperature control means includes: a sensor for detecting a temperature of a portion of the housing in contact with another device; a coolant circulating device for cooling the inside of the housing; and a temperature or flow rate of the coolant. The rotary hydrostatic bearing device according to any one of claims 1 to 3, further comprising a control device that controls the temperature of the housing by controlling the temperature of the housing based on an output of the sensor.
JP09023118A 1997-01-23 1997-01-23 Rotary type hydrostatic bearing device Expired - Fee Related JP3100916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09023118A JP3100916B2 (en) 1997-01-23 1997-01-23 Rotary type hydrostatic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09023118A JP3100916B2 (en) 1997-01-23 1997-01-23 Rotary type hydrostatic bearing device

Publications (2)

Publication Number Publication Date
JPH10205537A true JPH10205537A (en) 1998-08-04
JP3100916B2 JP3100916B2 (en) 2000-10-23

Family

ID=12101591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09023118A Expired - Fee Related JP3100916B2 (en) 1997-01-23 1997-01-23 Rotary type hydrostatic bearing device

Country Status (1)

Country Link
JP (1) JP3100916B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263375A (en) * 1999-03-17 2000-09-26 Ntn Corp Spindle device
JP2004188546A (en) * 2002-12-12 2004-07-08 Hamai Co Ltd Parallel surface polishing device
JP2006339188A (en) * 2005-05-31 2006-12-14 Kokusai Electric Semiconductor Service Inc Heat treatment apparatus and heat treatment method
CN100336628C (en) * 2004-06-09 2007-09-12 潘旭华 Assembling method for static pressure guide
JP2010199604A (en) * 2010-04-23 2010-09-09 Kokusai Electric Semiconductor Service Inc Heat treatment apparatus and heat treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046496B2 (en) * 2013-01-07 2016-12-14 株式会社シマノ Spinning reel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263375A (en) * 1999-03-17 2000-09-26 Ntn Corp Spindle device
JP2004188546A (en) * 2002-12-12 2004-07-08 Hamai Co Ltd Parallel surface polishing device
CN100336628C (en) * 2004-06-09 2007-09-12 潘旭华 Assembling method for static pressure guide
JP2006339188A (en) * 2005-05-31 2006-12-14 Kokusai Electric Semiconductor Service Inc Heat treatment apparatus and heat treatment method
JP4611118B2 (en) * 2005-05-31 2011-01-12 株式会社国際電気セミコンダクターサービス Heat treatment apparatus and heat treatment method
JP2010199604A (en) * 2010-04-23 2010-09-09 Kokusai Electric Semiconductor Service Inc Heat treatment apparatus and heat treatment method

Also Published As

Publication number Publication date
JP3100916B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
JP3949801B2 (en) Bearing device for machine tool spindle
JP5121047B2 (en) Spindle device using hydrodynamic bearing and radial hydrodynamic bearing
JP2008106891A (en) Pre-load adjustment method of rolling bearing and its device
JPH0668439A (en) Drum motor for vtr
JP3100916B2 (en) Rotary type hydrostatic bearing device
WO2002021004A2 (en) Bearing with adjustable setting
KR960015256B1 (en) Rotatable table using fluid bearing
CN112024912A (en) High-frequency oscillating air-float main shaft
JP3113750B2 (en) Hydrostatic gas bearing
JPS62251063A (en) Groove roller temperature control method for wire saw
JP2001254738A (en) Hydrostatic gas bearing spindle
JP4553422B2 (en) Cooling control device for rotating shaft
JPS63154891A (en) Theread groove type vacuum pump
JP2005240967A (en) Magnetic bearing device and turbo-type vacuum pump
JPH10288220A (en) Tilting pad bearing
JP2001054803A (en) Preload control type spindle unit
JPH05138408A (en) High speed main shaft device
JP2759232B2 (en) Bearing device
JPH11210747A (en) Journal bearing
JPH0571535A (en) Static pressure fluid bearing
JPH05253791A (en) Thermal displacement hysteresis improvement method of static pressure main spindle for precision working machine
JP2001227543A (en) Static pressure gas bearing spindle
JP2006333601A (en) Linear motor, machine tool, and measuring instrument
JPH07113471A (en) Sealing device
JP2905154B2 (en) Dynamic pressure spindle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees