JP3113750B2 - Hydrostatic gas bearing - Google Patents

Hydrostatic gas bearing

Info

Publication number
JP3113750B2
JP3113750B2 JP31787792A JP31787792A JP3113750B2 JP 3113750 B2 JP3113750 B2 JP 3113750B2 JP 31787792 A JP31787792 A JP 31787792A JP 31787792 A JP31787792 A JP 31787792A JP 3113750 B2 JP3113750 B2 JP 3113750B2
Authority
JP
Japan
Prior art keywords
bearing
rotating shaft
bearing housing
gap
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31787792A
Other languages
Japanese (ja)
Other versions
JPH06147225A (en
Inventor
政義 浅見
孝夫 横松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31787792A priority Critical patent/JP3113750B2/en
Publication of JPH06147225A publication Critical patent/JPH06147225A/en
Application granted granted Critical
Publication of JP3113750B2 publication Critical patent/JP3113750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0618Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0685Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0696Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for both radial and axial load

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は精密工作機械等に用いら
れる静圧気体軸受に関し、とくに高速回転に適した静圧
気体軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic gas bearing used for precision machine tools and the like, and more particularly to a hydrostatic gas bearing suitable for high-speed rotation.

【0002】[0002]

【従来の技術】一般に、静圧気体軸受は回転トルクが小
さく、また回転精度も高く、さらにメンテナンスがほと
んど不用であることから、精密工作機械の主軸等に広く
用いられている。従来の静圧気体軸受の構成には次のよ
うなものがある。
2. Description of the Related Art In general, a static pressure gas bearing is widely used for a main shaft of a precision machine tool or the like because it has a small rotational torque, a high rotational accuracy, and requires almost no maintenance. The configuration of a conventional hydrostatic gas bearing is as follows.

【0003】(1)回転軸の円筒面を軸受ハウジングの
ラジアル軸受パッドに対向させるとともに、回転軸の両
端にそれぞれスラストプレートを接合し、各スラストプ
レートの片面を軸受ハウジングのスラスト軸受パッドに
対向させるもの。
(1) A cylindrical surface of a rotating shaft is opposed to a radial bearing pad of a bearing housing, and thrust plates are joined to both ends of the rotating shaft, and one surface of each thrust plate is opposed to a thrust bearing pad of the bearing housing. thing.

【0004】(2)回転軸の円筒面を軸受ハウジングの
ラジアル軸受パッドに対向させるとともに、回転軸の一
端に接合されたスラストプレートの両面をそれぞれ軸受
ハウジングのスラスト軸受パッドに対向させるもの。
(2) The cylindrical surface of the rotating shaft faces the radial bearing pad of the bearing housing, and both surfaces of the thrust plate joined to one end of the rotating shaft face the thrust bearing pads of the bearing housing.

【0005】(3)回転軸の中央にスラストプレートを
接合し、その両面をそれぞれ軸受ハウジングのスラスト
軸受パッドに対向させるとともに、スラストプレートの
両側の円筒面にそれぞれ軸受ハウジングのラジアル軸受
パッドに対向させるもの。
(3) A thrust plate is joined to the center of the rotating shaft, both surfaces of which are opposed to the thrust bearing pads of the bearing housing, and the cylindrical surfaces on both sides of the thrust plate are respectively opposed to the radial bearing pads of the bearing housing. thing.

【0006】従来例(1)は、2つのスラストプレート
のそれぞれの片面を軸受ハウジングのスラスト軸受パッ
ドに対向させるものであるため、軸受間隙の気体の圧力
によって、各スラストプレートが外側あるいは遠心力に
より内側に変形するおそれがあり、また、従来例(2)
は、軸方向に非対称であるために回転軸が自重によって
傾くおそれがある。従来例(3)は、これらの欠点を除
くために開発されたものであり、スラストプレートが変
形するおそれがないうえに、回転軸とスラストプレート
からなる回転体が軸方向に対称であり、回転軸が傾くお
それがないため、とくに高速回転に適している。
In the prior art (1), since one side of each of the two thrust plates is opposed to the thrust bearing pad of the bearing housing, each thrust plate is caused to move outward or by centrifugal force due to the gas pressure in the bearing gap. It may be deformed inward, and the conventional example (2)
Since the rotating shaft is asymmetric in the axial direction, the rotating shaft may be inclined by its own weight. The conventional example (3) was developed to eliminate these drawbacks. In addition to the possibility that the thrust plate is deformed, the rotating body composed of the rotating shaft and the thrust plate is axially symmetric, Since there is no danger of the shaft being tilted, it is particularly suitable for high-speed rotation.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、高速回転時に様々な障害を発生する。
すなわち上記従来例のいずれも、回転軸が2部品または
3部品により構成され、回転軸の材料としてセラミック
を用いた場合には、各部品の接合部の埋金やタップのた
め強度が低下し、高速回転時に遠心力に基づく応力集中
によって破壊するおそれがある。
However, according to the above-mentioned prior art, various obstacles occur during high-speed rotation.
That is, in any of the above conventional examples, the rotating shaft is composed of two or three parts, and when ceramic is used as the material of the rotating shaft, the strength is reduced due to the filling or tapping of the joint of each part, During high-speed rotation, there is a possibility of breakage due to stress concentration based on centrifugal force.

【0008】従来、回転軸の高速回転駆動には高周波モ
ータやタービンが用いられているが、これらの場合は、
回転軸の端面にモータのロータやタービン翼列を取付け
るため、駆動系を含めた回転体の軸方向の長さが長くな
り、その結果、回転体の重量が大となり、共振周波数が
低いために振動を発生しやすい。
Conventionally, high-frequency motors and turbines have been used for high-speed rotation of the rotating shaft. In these cases,
Since the rotor of the motor and the turbine cascade are attached to the end face of the rotating shaft, the length of the rotating body including the drive system in the axial direction becomes longer, and as a result, the weight of the rotating body becomes larger and the resonance frequency is lower. Vibration easily occurs.

【0009】また、例えば円筒状の被削材を外径加工す
る工作機械の場合は、主軸の起動や停止時間によるタイ
ムロスを防ぐために、主軸の一端に工具を取付けるとと
もに主軸を中空とし、主軸を常時回転させながらその中
空部を通って被削材を送るのが望ましいが、主軸の軸受
部分の長さが長いと、被削材を保持して主軸の中空部を
通過させるチャックの長さも長くなるため、その剛性が
低下し、良好な真直度が得られない。
For example, in the case of a machine tool for machining a cylindrical workpiece with an outer diameter, a tool is mounted at one end of the spindle and the spindle is hollow to prevent time loss due to start and stop times of the spindle. It is desirable to feed the work material through the hollow part while constantly rotating, but if the length of the bearing part of the main shaft is long, the length of the chuck that holds the work material and passes through the hollow part of the main shaft is also long. Therefore, its rigidity is reduced, and good straightness cannot be obtained.

【0010】 さらに、近年、加工タクトの短縮を目指
して、工作機械の主軸には一層の高速化が求められてい
るが、従来の静圧気体軸受において高速回転を行うと、
遠心力および軸受間隙の空気膜の剪断による発熱のため
に回転軸が膨張し、その結果、軸受間隙が減少する。こ
のように、軸受間隙が減少すると、発熱量は一層増加
し、回転軸が軸受パッドに接触して円滑な回転ができな
くなるおそれがある。
Further, in recent years, in order to reduce the machining tact, the spindle of the machine tool has been required to have a higher speed. However, when the conventional hydrostatic gas bearing is rotated at a high speed,
The rotating shaft expands due to heat generated by centrifugal force and shearing of the air film in the bearing gap, and as a result, the bearing gap decreases. Thus, the bearing gap decreases, the heat generation amount is more increased, Ru danger that the rotary shaft can not be smoothly rotated in contact with the bearing pads.

【0011】本発明は、上記従来の技術の有する未解決
の課題に鑑みてなされたものであり、高速回転に適した
静圧気体軸受を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and has as its object to provide a hydrostatic gas bearing suitable for high-speed rotation.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の静圧気体軸受は、回転軸を非接触で回転自
在に支持する軸受ハウジングと、該軸受ハウジングを冷
却する冷却ジャケットを有し、前記軸受ハウジングが前
記回転軸より熱膨張係数の大きい材料によって作られて
いる静圧気体軸受であって、前記回転軸と前記軸受ハウ
ジングの間の軸受間隙の寸法の変化を検出する検出手段
と、該検出手段の出力に基づいて、前記冷却ジャケット
に供給される冷媒の温度および流量を制御する制御手段
が設けられていることを特徴とする。
In order to achieve the above-mentioned object, a hydrostatic gas bearing according to the present invention comprises a rotating shaft which rotates in a non-contact manner.
And a bearing housing for supporting the bearing housing.
Cooling jacket with the bearing housing
Made of material with a larger coefficient of thermal expansion than the rotating shaft
Static bearing gas bearing, wherein the rotating shaft and the bearing
Detecting means for detecting a change in the size of the bearing gap during jing
The cooling jacket based on the output of the detecting means.
Control means for controlling the temperature and the flow rate of the refrigerant supplied to the tank
Is provided .

【0013】[0013]

【0014】[0014]

【0015】[0015]

【作用】 受間隙の寸法の変化を検出して冷却ジャケッ
トの温度および流量を調節し、これによって軸受ハウジ
ングの熱膨張量を制御することにより、軸受間隙の寸法
を所定の値に維持することができる。
[Action] by detecting a change in dimension of the shaft受間gap to adjust the temperature and flow rate of the cooling jacket, whereby by controlling the thermal expansion amount of the bearing housing, to maintain the size of the bearing gap to a predetermined value Can be.

【0016】[0016]

【実施例】本発明の実施例を図面に基づいて説明する。An embodiment of the present invention will be described with reference to the drawings.

【0017】図1は第1実施例を示す模式断面図であっ
て、本実施例の静圧気体軸受E1 は、工作機械の主軸等
と一体的に設けられる回転軸1と、これを回転自在に支
持する軸受ハウジング2からなり、回転軸1はその中心
軸に沿って貫通孔1aを有する中空体であり、該中空体
は、一対の円筒部分1b,1cと、両者の間に配設され
たスラストプレート部分1dからなり、これらはセラミ
ック材料によって一体的に形成されている。軸受ハウジ
ング2は、回転軸1の各円筒部分1b,1cにそれぞれ
対向するラジアル軸受パッド3a,3bを有し、また、
回転軸1のスラストプレート部分1dの各面D1 に対向
するスラスト軸受パッド4a,4bを有する。各ラジア
ル軸受パッド3a,3bを保持する軸受ハウジング2の
筒状部分2a,2bは、それぞれ冷却ジャケット2c,
2dによって包囲されている。
[0017] Figure 1 is a schematic sectional view showing a first embodiment, the externally pressurized gas bearing E 1 of the present embodiment includes a rotary shaft 1 which is provided such integrally with the main shaft of the machine tool, rotating it The rotating shaft 1 is a hollow body having a through hole 1a along the center axis thereof, and the hollow body is disposed between the pair of cylindrical portions 1b and 1c. Thrust plate portions 1d, which are integrally formed of a ceramic material. The bearing housing 2 has radial bearing pads 3a, 3b opposed to the cylindrical portions 1b, 1c of the rotating shaft 1, respectively.
Thrust bearing pads 4a opposed to each side D 1 of the thrust plate portion 1d of the rotary shaft 1, having 4b. The cylindrical portions 2a and 2b of the bearing housing 2 holding the radial bearing pads 3a and 3b are respectively provided with cooling jackets 2c and 2c.
It is surrounded by 2d.

【0018】各ラジアル軸受パッド3a,3bに加圧気
体を供給する給気孔5a,5bは、それぞれ軸受ハウジ
ング2の中央部分2eに開口する。各スラスト軸受パッ
ド4a,4bに加圧気体を供給する給気孔6a,6bは
軸受ハウジング2の中央部分2eの外周面に開口する。
また、軸受ハウジング2の中央部分2eは、回転軸1の
各円筒部分1b,1cと軸受ハウジング2の間の軸受間
隙A1 ,B1 にそれぞれ開口する排気孔5c,5dと、
回転軸1のスラストプレート部分1dの外周面と軸受ハ
ウジング2の間のタービン間隙C1 に開口する排気孔6
cを有する。
The air supply holes 5a and 5b for supplying pressurized gas to the radial bearing pads 3a and 3b are respectively opened in the central portion 2e of the bearing housing 2. Air supply holes 6a and 6b for supplying pressurized gas to the thrust bearing pads 4a and 4b are opened on the outer peripheral surface of the central portion 2e of the bearing housing 2.
The central portion 2e of the bearing housing 2 is provided with exhaust holes 5c and 5d respectively opening in bearing gaps A 1 and B 1 between the cylindrical portions 1b and 1c of the rotating shaft 1 and the bearing housing 2,
Exhaust hole 6 opening in turbine gap C 1 between the outer peripheral surface of thrust plate portion 1 d of rotating shaft 1 and bearing housing 2
c.

【0019】さらに、回転軸1のスラストプレート部分
1dの外周面にはタービン翼列1eが形成され、軸受ハ
ウジング2の中央部分2eは、回転軸1のスラストプレ
ート部分1dのタービン翼列1eに向って加圧気体を噴
出するタービンノズル7を有する。
Further, a turbine blade row 1e is formed on the outer peripheral surface of the thrust plate portion 1d of the rotary shaft 1, and a central portion 2e of the bearing housing 2 faces the turbine blade row 1e of the thrust plate portion 1d of the rotary shaft 1. And a turbine nozzle 7 for ejecting pressurized gas.

【0020】図示しない加圧気体供給源から各給気孔5
a,5b,6a,6bに加圧空気を供給すると、回転軸
1は、各ラジアル軸受パッド3a,3bおよび各スラス
ト軸受パッド4a,4bからそれぞれ回転軸1の各円筒
部分1b,1cおよびスラストプレート部分1dの両面
1 に向って噴出される加圧気体によって軸受ハウジン
グ2に接触することなく回転自在に支持される。また、
上記と同じ加圧気体供給源あるいはこれとは別の加圧空
気供給源から加圧気体がタービンノズル7に供給され、
タービン翼列1eに向って噴出されると、これによって
回転軸1が高速度で回転する。
Each supply hole 5 is supplied from a pressurized gas supply source (not shown).
When the pressurized air is supplied to a, 5b, 6a, 6b, the rotating shaft 1 separates the cylindrical portions 1b, 1c of the rotating shaft 1 and the thrust plate from the radial bearing pads 3a, 3b and the thrust bearing pads 4a, 4b, respectively. is rotatably supported without the pressurized gas ejected toward both sides D 1 of the portion 1d in contact with the bearing housing 2. Also,
Pressurized gas is supplied to the turbine nozzle 7 from the same pressurized gas supply source as described above or another pressurized air supply source,
When jetted toward the turbine cascade 1e, this causes the rotating shaft 1 to rotate at a high speed.

【0021】なお、軸受ハウジング2は回転軸1のセラ
ミック材料より熱膨張係数の大きい材料で作られてお
り、両ラジアル軸受パッド3a,3bおよび両スラスト
軸受パッド4a,4bは、前記セラミック材料と同じか
それ以上の熱膨張係数をもつ材料によって作られてい
る。従って、回転軸1の高速回転時に、各軸受間隙A
1 ,B1 の気体の粘性摩擦等によって回転軸1および軸
受ハウジング2の温度が上昇すると、回転軸1より軸受
ハウジング2の熱膨張量の方が大であるために各軸受間
隙A1 ,B1 の寸法が増大するが、各冷却ジャケット2
c,2dの冷媒流路2f,2gに供給する冷媒の温度を
調節することによって回転軸1と軸受ハウジング2の間
に温度差を設けることで前記軸受間隙A1 ,B1 の寸法
を所定の値に維持する。
The bearing housing 2 is made of a material having a larger thermal expansion coefficient than the ceramic material of the rotating shaft 1. Both radial bearing pads 3a, 3b and both thrust bearing pads 4a, 4b are the same as the ceramic material. It is made of a material having a coefficient of thermal expansion of or higher. Therefore, when the rotating shaft 1 rotates at high speed, each bearing gap A
1, the temperature of the rotary shaft 1 and the bearing housing 2 by the viscous friction of the B 1 of the gas is increased, the bearing gap A 1, for better thermal expansion amount of the bearing housing 2 from the rotation shaft 1 is larger B Although the size of 1 increases, each cooling jacket 2
By providing a temperature difference between the rotating shaft 1 and the bearing housing 2 by adjusting the temperature of the refrigerant supplied to the refrigerant flow paths 2f and 2g of c and 2d, the dimensions of the bearing gaps A 1 and B 1 are set to predetermined values. Keep at the value.

【0022】本実施例の静圧気体軸受は、軸方向のほぼ
中央にスラストプレートを有する中空の回転軸をセラミ
ックによって一体的に製作するものであるため、極めて
軽量であるうえに、スラストプレートと回転軸を接合す
るボルト穴やタップまたは埋金等による強度低下のおそ
れもなく、従って回転軸を高速回転させても振動を発生
したり応力集中によって破損するおそれがない。加えて
セラミックで作られた回転軸は、金属製の回転軸に比べ
てヤング率が大きいために、高速回転時に遠心力による
変形や膨張も極めて少ない。
The hydrostatic gas bearing according to the present embodiment is made of ceramic and integrally formed with a hollow rotary shaft having a thrust plate substantially at the center in the axial direction. There is no danger that the strength will decrease due to bolt holes, taps, burial, etc. that join the rotating shaft. Therefore, even if the rotating shaft is rotated at a high speed, there is no risk of generating vibrations or breaking due to stress concentration. In addition, a rotating shaft made of ceramic has a higher Young's modulus than a rotating shaft made of metal, and therefore, there is very little deformation or expansion due to centrifugal force during high-speed rotation.

【0023】また、回転軸のスラストプレート部分の外
周面にタービン翼列を形成することによって、回転軸と
これを回転駆動する駆動系を含む回転体の全長を短縮す
ることができるため、回転体の軽量化が一層容易である
うえに、回転軸の貫通孔を通って被削材等を送る場合
に、被削材を保持するチャックの長さを短縮し、その剛
性の低下を防ぐことができる。
Further, since the turbine blade cascade is formed on the outer peripheral surface of the thrust plate portion of the rotating shaft, the entire length of the rotating body including the rotating shaft and the drive system for rotating the rotating shaft can be shortened. In addition to making it easier to reduce the weight, it is also possible to shorten the length of the chuck that holds the work material when feeding the work material through the through hole of the rotating shaft, and to prevent the rigidity from lowering. it can.

【0024】図2は第2実施例を説明する説明図であっ
て、本実施例の静圧気体軸受E2 は、工作機械の主軸等
と一体的に設けられる回転軸11と、これを回転自在に
支持する軸受ハウジング12からなり、軸受ハウジング
12は、回転軸11の円筒面に対向するラジアル軸受パ
ッド13aを保持し、軸受ハウジング12の外周面は冷
却ジャケット12dによって包囲されている。また、軸
受ハウジング12は、ラジアル軸受パッド13aに加圧
気体を供給する給気孔15aを有し、給気孔15aは、
給気ライン15bによって図示しない加圧気体供給源に
接続される。該加圧気体供給源から給気ライン15bを
経てラジアル軸受パッド13aに供給された加圧気体
は、回転軸11の円筒面に向って噴出され、これによっ
て回転軸11はラジアル軸受パッド13aに非接触で支
持され、図示しない駆動手段によって回転される。冷却
ジャケット12dの冷媒流路12fは、冷媒供給ライン
12gおよび冷媒排出ライン12hに接続され、冷媒供
給ライン12gは循環器20の吐出側、冷媒排出ライン
12hは吸入側に接続される。
FIG. 2 is an explanatory view for explaining a second embodiment. In this embodiment, a hydrostatic gas bearing E 2 includes a rotating shaft 11 provided integrally with a main shaft of a machine tool and a rotating shaft 11. The bearing housing 12 includes a bearing housing 12 that supports the radial bearing pad 13a facing the cylindrical surface of the rotating shaft 11, and the outer peripheral surface of the bearing housing 12 is surrounded by a cooling jacket 12d. The bearing housing 12 has an air supply hole 15a for supplying a pressurized gas to the radial bearing pad 13a.
The air supply line 15b is connected to a pressurized gas supply source (not shown). The pressurized gas supplied from the pressurized gas supply source to the radial bearing pad 13a via the air supply line 15b is jetted toward the cylindrical surface of the rotating shaft 11, whereby the rotating shaft 11 is disengaged from the radial bearing pad 13a. It is supported by contact and rotated by drive means (not shown). The refrigerant passage 12f of the cooling jacket 12d is connected to a refrigerant supply line 12g and a refrigerant discharge line 12h, the refrigerant supply line 12g is connected to the discharge side of the circulator 20, and the refrigerant discharge line 12h is connected to a suction side.

【0025】また、軸受ハウジング12は、回転軸11
とラジアル軸受パッド13aの間の軸受間隙A1 の寸法
1 の変化を検出する検出手段である非接触静電容量型
の変位センサ18を有し、該変位センサ18は、増幅器
18aを介して循環器20を制御する制御手段であるコ
ントローラ19に接続される。
The bearing housing 12 is provided with a rotating shaft 11.
Has a non-contact capacitive displacement sensor 18 which is a detecting means for detecting a change in the dimension T 1 of the bearing gap A 1 between the radial bearing pad 13a and, the displacement sensor 18 via the amplifier 18a It is connected to a controller 19 which is a control means for controlling the circulator 20.

【0026】さらに、軸受ハウジング12は回転軸11
の材料より熱膨張係数の大きい材料で作られており、回
転軸11の高速回転時に軸受間隙A1 の気体の粘性摩擦
等によって回転軸11および軸受ハウジング12の温度
が上昇すると、回転軸11より軸受ハウジング12の熱
膨張量の方が大であるために軸受間隙A1 の寸法T1
増大する。
Further, the bearing housing 12 includes the rotating shaft 11
Of are made of a material having a large coefficient of thermal expansion than the material, the temperature of the rotary shaft 11 and the bearing housing 12 during high speed rotation by the gas viscosity friction of the bearing gap A 1 of the rotary shaft 11 increases, the rotation shaft 11 Since the thermal expansion of the bearing housing 12 is larger, the dimension T 1 of the bearing gap A 1 increases.

【0027】これと同時に、回転軸11に作用する遠心
力によって回転軸11が径方向に膨張するため、変位セ
ンサ18によって検出される軸受間隙A1 の寸法T1
変化量は、軸受ハウジング12と回転軸11の熱膨張の
差による軸受間隙A1 の寸法T1 の増大量から回転軸1
1の遠心力による径方向の膨張量を差引いたものであ
る。
At the same time, since the rotating shaft 11 expands in the radial direction due to the centrifugal force acting on the rotating shaft 11, the amount of change of the dimension T 1 of the bearing gap A 1 detected by the displacement sensor 18 is From the increase in the dimension T 1 of the bearing gap A 1 due to the difference between the thermal expansion of the rotating shaft 11 and the rotating shaft 1.
The radial expansion due to the centrifugal force of No. 1 is subtracted.

【0028】前述のように回転軸11が回転され、変位
センサ18によって軸受間隙A1 の寸法T1 の変化が検
出されると、検出された変化に基づいてコントローラ1
9が制御され、循環器20から冷却ジャケット12dの
冷媒流路12fに供給される冷媒の温度および流量が調
節される。これによって、軸受ハウジング12が適正な
温度に冷却され、軸受間隙A1 の寸法T1 の変化を防
ぐ。
As described above, when the rotation shaft 11 is rotated and the displacement sensor 18 detects a change in the dimension T 1 of the bearing gap A 1 , the controller 1 is operated based on the detected change.
9 is controlled, and the temperature and the flow rate of the refrigerant supplied from the circulator 20 to the refrigerant channel 12f of the cooling jacket 12d are adjusted. As a result, the bearing housing 12 is cooled to an appropriate temperature, and a change in the dimension T 1 of the bearing gap A 1 is prevented.

【0029】本実施例によれば、変位センサによって軸
受間隙の寸法の変化を検出し、これに基づいて冷却ジャ
ケットの冷媒の温度および流量を調節するものであるた
め、回転軸の回転数の変化によって焼き付きを起した
り、逆に軸受剛性が低下するおそれはない。また、始動
時から軸受ハウジングを適正な温度に維持することがで
きるため、ならし運転も不用である。なお、非接触静電
容量型の変位センサに替えて、光学式または渦電流式の
非接触型変位センサを用いることもできる。さらに、軸
受間隙の寸法の変化を直接測定する変位センサの替わり
に、予め軸受ハウジングの温度と軸受間隙の寸法の変化
の関係を測定しておき、軸受ハウジングの側面に取付け
られた温度センサによって測定された軸受ハウジングの
温度と比較することで軸受間隙の寸法の変化を推定して
もよい。
According to this embodiment, the change in the size of the bearing gap is detected by the displacement sensor, and the temperature and the flow rate of the refrigerant in the cooling jacket are adjusted based on the detected change. Therefore, there is no risk of seizure or conversely reducing bearing rigidity. In addition, since the bearing housing can be maintained at an appropriate temperature from the start, a running-in operation is unnecessary. Note that an optical or eddy current type non-contact type displacement sensor can be used instead of the non-contact capacitance type displacement sensor. Furthermore, instead of a displacement sensor that directly measures the change in the dimension of the bearing gap, the relationship between the temperature of the bearing housing and the change in the dimension of the bearing gap is measured in advance, and the measurement is performed by a temperature sensor attached to the side surface of the bearing housing. The change in the dimension of the bearing gap may be estimated by comparing the measured temperature of the bearing housing.

【0030】加えて、図3に示すように、ラジアル軸受
パッド13aと同様のラジアル軸受パッド23aの給気
孔25aに加圧気体を供給する給気ライン25bに流量
計28を設けて、その出力を増幅器28aを経てコント
ローラ29に送り、ラジアル軸受パッド23aに供給さ
れる加圧気体の流量変化から軸受間隙の寸法の変化を推
定し、循環器30を制御してもよい。なお、回転軸1
1,軸受ハウジング12,冷却ジャケット12dについ
ては図2の装置と同様であるので同一符号で表わし、説
明は省略する。
In addition, as shown in FIG. 3, a flow meter 28 is provided in an air supply line 25b for supplying a pressurized gas to an air supply hole 25a of a radial bearing pad 23a similar to the radial bearing pad 13a, and the output thereof is controlled. The circulator 30 may be controlled by estimating a change in the size of the bearing gap from a change in the flow rate of the pressurized gas supplied to the radial bearing pad 23a via the amplifier 28a to the controller 29. In addition, the rotating shaft 1
1, the bearing housing 12, and the cooling jacket 12d are the same as those in the apparatus shown in FIG.

【0031】[0031]

【発明の効果】本発明は上述のとおり構成されているの
で、以下に記載するような効果を奏する。高速回転に適
した静圧気体軸受を実現できる。
Since the present invention is configured as described above, the following effects can be obtained. A hydrostatic gas bearing suitable for high-speed rotation can be realized.

【0032】請求項1に記載された発明は、高速回転時
に遠心力の増大によって破壊したり、振動を発生するお
それのない静圧気体軸受を実現する。
The first aspect of the present invention realizes a hydrostatic gas bearing which does not break or generate vibration due to an increase in centrifugal force during high-speed rotation.

【0033】請求項3に記載された発明は、回転数等が
変化しても、軸受間隙の寸法の変化によって焼き付きを
起したり、軸受剛性が低下するおそれのない静圧気体軸
受を実現する。
The third aspect of the present invention realizes a hydrostatic gas bearing which does not cause seizure or decrease the bearing rigidity due to a change in the size of the bearing gap even when the rotational speed or the like changes. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例を示す模式断面図である。FIG. 1 is a schematic sectional view showing a first embodiment.

【図2】第2実施例を説明する説明図である。FIG. 2 is an explanatory diagram illustrating a second embodiment.

【図3】図2の装置の変形例を説明する説明図である。FIG. 3 is an explanatory diagram illustrating a modification of the device in FIG. 2;

【符号の説明】[Explanation of symbols]

1,11 回転軸 1b,1c 円筒部分 1d スラストプレート部分 1e タービン翼列 2,12 軸受ハウジング 2c,2d,12d 冷却ジャケット 3a,3b,13a,23a ラジアル軸受パッド 4a,4b スラスト軸受パッド 5a,5b,15a,25a 給気孔 15b,25b 給気ライン 18 変位センサ 19,29 コントローラ 20,30 循環器 28 流量計 1,11 Rotary shaft 1b, 1c Cylindrical part 1d Thrust plate part 1e Turbine cascade 2,12 Bearing housing 2c, 2d, 12d Cooling jacket 3a, 3b, 13a, 23a Radial bearing pad 4a, 4b Thrust bearing pad 5a, 5b, 15a, 25a Air supply hole 15b, 25b Air supply line 18 Displacement sensor 19, 29 Controller 20, 30 Circulator 28 Flow meter

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−148102(JP,A) 実開 平2−91219(JP,U) 実開 昭63−171726(JP,U) 実開 平3−11126(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16C 32/00 - 32/06 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-148102 (JP, A) JP-A 2-91219 (JP, U) JP-A 63-171726 (JP, U) JP-A 63-171726 11126 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F16C 32/00-32/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転軸を非接触で回転自在に支持する軸
受ハウジングと、該軸受ハウジングを冷却する冷却ジャ
ケットを有し、前記軸受ハウジングが前記回転軸より熱
膨張係数の大きい材料によって作られている静圧気体軸
受であって、前記回転軸と前記軸受ハウジングの間の軸
受間隙の寸法の変化を検出する検出手段と、該検出手段
の出力に基づいて、前記冷却ジャケットに供給される冷
媒の温度および流量を制御する制御手段が設けられてい
ることを特徴とする静圧気体軸受。
A shaft for rotatably supporting a rotating shaft in a non-contact manner.
A receiving housing and a cooling jar for cooling the bearing housing
A bearing housing, wherein the bearing housing is heated by the rotating shaft.
Hydrostatic gas axis made of a material with a high coefficient of expansion
A shaft between the rotating shaft and the bearing housing;
Detecting means for detecting a change in the size of the receiving gap, and the detecting means
Based on the output of the cooling
A hydrostatic gas bearing, wherein control means for controlling the temperature and flow rate of the medium is provided .
【請求項2】 検出手段が、光学式、静電容量式または
渦電流式の非接触変位センサであることを特徴とする請
求項1記載の静圧気体軸受。
2. The method according to claim 1, wherein the detecting means is an optical type, a capacitive type or
Hydrostatic gas bearing according to claim 1, wherein the non-contact displacement sensor der Rukoto eddy current.
【請求項3】 検出手段が、軸受ハウジングの温度変化
を検出し、該温度変化に基づいて軸受間隙の寸法の変化
を推定するものであることを特徴とする請求項1記載の
静圧気体軸受。
3. The method according to claim 2, wherein the detecting means detects a temperature change of the bearing housing.
And changes in the size of the bearing gap based on the temperature change
The hydrostatic gas bearing according to claim 1 , characterized in that:
【請求項4】 検出手段が、軸受ハウジングに供給され
る気体の流量変化を検出し、該流量変化に基づいて軸受
間隙の寸法の変化を推定するものであることを特徴とす
る請求項記載の静圧気体軸受。
4. A detecting means is provided on the bearing housing.
Changes in the flow rate of the flowing gas, and based on the
Externally pressurized gas bearing according to claim 1, characterized in that to estimate the change in the size of the gap.
JP31787792A 1992-11-02 1992-11-02 Hydrostatic gas bearing Expired - Fee Related JP3113750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31787792A JP3113750B2 (en) 1992-11-02 1992-11-02 Hydrostatic gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31787792A JP3113750B2 (en) 1992-11-02 1992-11-02 Hydrostatic gas bearing

Publications (2)

Publication Number Publication Date
JPH06147225A JPH06147225A (en) 1994-05-27
JP3113750B2 true JP3113750B2 (en) 2000-12-04

Family

ID=18093060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31787792A Expired - Fee Related JP3113750B2 (en) 1992-11-02 1992-11-02 Hydrostatic gas bearing

Country Status (1)

Country Link
JP (1) JP3113750B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE66858T1 (en) * 1987-06-12 1991-09-15 Ebauchesfabrik Eta Ag PROCESS FOR MANUFACTURE OF A THERMOPLASTIC OBJECT CONTAINING A DECORATION.
JP4629256B2 (en) * 2001-03-27 2011-02-09 学校法人東京理科大学 Variable throttle hydrostatic bearing
JP2008115460A (en) 2006-10-12 2008-05-22 Canon Inc Method for forming semiconductor device and method for forming photovoltaic device
JP5077877B2 (en) * 2007-08-03 2012-11-21 Ntn株式会社 Rotating device and CT scanner device
US8308366B2 (en) * 2009-06-18 2012-11-13 Eaton Industrial Corporation Self-aligning journal bearing
KR101383820B1 (en) * 2012-10-04 2014-04-08 한국에너지기술연구원 Complex bearing system, complex bearing system of rotation-axis of generator, power-generating device using them and method for distribution of axis load on thrust bearing
US9181978B2 (en) * 2013-04-10 2015-11-10 Seagate Technology Llc Grooved thrust bearing
DE102017210968A1 (en) * 2017-06-28 2019-01-03 Robert Bosch Gmbh Bearing device for a shaft
CN114934952B (en) * 2022-05-25 2024-08-06 青岛科技大学 Self-cooling hydrostatic bearing

Also Published As

Publication number Publication date
JPH06147225A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
JP6647357B2 (en) Assembly for providing electrical contact and apparatus including the assembly
Tlusty High-speed machining
JP3113750B2 (en) Hydrostatic gas bearing
US7388308B2 (en) Spindle device
JP4172957B2 (en) Spindle device using dynamic pressure bearing
JP3652187B2 (en) Fluid bearing
JPH0239644B2 (en) KUKIJIKUKE SOCHI
JP2001218425A (en) Electric motor having rotor cooling function
JP3100916B2 (en) Rotary type hydrostatic bearing device
JPH0571535A (en) Static pressure fluid bearing
JPH0751903A (en) Main spindle device of machine tool
JPH10288220A (en) Tilting pad bearing
JP2001054803A (en) Preload control type spindle unit
JP2002018675A (en) Feed screw device of machine tool
JP2857061B2 (en) Spindle device using hydrodynamic bearing
KR100414907B1 (en) High Speed Spindle System Used Hybrid Air Bearing
JPH1019043A (en) Static pressure bearing spindle
JP2001227543A (en) Static pressure gas bearing spindle
JP6829404B2 (en) Cutting device and cutting method
JPH0885005A (en) Variable air bearing device
JP2764444B2 (en) Side trimmer knife shaft temperature adjustment mechanism
JPH05253791A (en) Thermal displacement hysteresis improvement method of static pressure main spindle for precision working machine
JP2531837Y2 (en) High-speed hydrostatic gas bearing device
JP2905154B2 (en) Dynamic pressure spindle device
JP2004190741A (en) Non-contact bearing spindle device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees