JP2013211500A - Deposition method to silicon carbide substrate - Google Patents

Deposition method to silicon carbide substrate Download PDF

Info

Publication number
JP2013211500A
JP2013211500A JP2012082344A JP2012082344A JP2013211500A JP 2013211500 A JP2013211500 A JP 2013211500A JP 2012082344 A JP2012082344 A JP 2012082344A JP 2012082344 A JP2012082344 A JP 2012082344A JP 2013211500 A JP2013211500 A JP 2013211500A
Authority
JP
Japan
Prior art keywords
dopant
film
sic
epitaxial
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012082344A
Other languages
Japanese (ja)
Other versions
JP5943509B2 (en
Inventor
Takeshi Tawara
武志 俵
Shinsuke Harada
信介 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fuji Electric Co Ltd
Priority to JP2012082344A priority Critical patent/JP5943509B2/en
Publication of JP2013211500A publication Critical patent/JP2013211500A/en
Application granted granted Critical
Publication of JP5943509B2 publication Critical patent/JP5943509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of improving uniformity of a doping concentration distribution in a process of performing epitaxial growth of a SiC film on a SiC substrate.SOLUTION: In the method of performing epitaxial growth of a conductive SiC film on a SiC substrate, by doping in addition to a first dopant an appropriate amount of a second dopant whose incorporated atom position is different from that of the first dopant, a concentration distribution of a main first dopant is compensated by a concentration distribution of a second dopant so that a doping concentration is uniformed.

Description

本発明は、炭化珪素基板上への成膜方法に関し、特に、導電型の炭化珪素膜をエピタキシャル成長させる方法に関する。   The present invention relates to a film forming method on a silicon carbide substrate, and more particularly to a method of epitaxially growing a conductive silicon carbide film.

炭化珪素(以下、「SiC」という)を材料に用いた半導体は、シリコン(以下、「Si」という)の次世代の半導体素子として期待されている。SiC半導体は、従来のSiを材料に用いた半導体素子と比較して、オン状態における素子の抵抗を数百分の1に低減できること、及び、200℃以上のより高温の環境下で使用可能なこと等、様々な利点がある。これは、SiCのバンドギャップがSiに対して3倍程度大きく、絶縁破壊電界強度がSiより1桁近く大きいという材料自体の特性によるものである。   A semiconductor using silicon carbide (hereinafter referred to as “SiC”) as a material is expected as a next-generation semiconductor element of silicon (hereinafter referred to as “Si”). The SiC semiconductor can reduce the resistance of the device in the on state to several hundredth compared with a semiconductor device using conventional Si as a material, and can be used in a higher temperature environment of 200 ° C. or higher. There are various advantages. This is due to the characteristics of the material itself that the band gap of SiC is about three times as large as that of Si, and that the electric field strength of dielectric breakdown is nearly one digit larger than that of Si.

SiCを用いたデバイスとしては、現在までに、ショットキーバリアダイオード、プレーナー型縦型MOSFETが製品化されている。このようなSiCデバイスは、通常4H−SiC基板上に成膜されたエピタキシャルSiC膜から構成されており、半導体デバイスとしての機能を付与するために、前記エピタキシャルSiC膜に、さらに種々のデバイス構造が作りこまれるので、成膜されるエピタキシャルSiC膜の性質、特に膜面内のドーピング濃度の均一性は、最終的な半導体デバイスの特性および良品率を向上させるための重要な要件である。   As devices using SiC, a Schottky barrier diode and a planar vertical MOSFET have been commercialized so far. Such a SiC device is usually composed of an epitaxial SiC film formed on a 4H-SiC substrate, and various device structures are further added to the epitaxial SiC film in order to provide a function as a semiconductor device. Therefore, the properties of the epitaxial SiC film to be formed, particularly the uniformity of the doping concentration within the film surface, are important requirements for improving the characteristics of the final semiconductor device and the yield rate.

SiC基板へのエピタキシャル成長プロセスでは、キャリアガスである水素と、Si系原料ガス(例えばモノシランやジクロロシランなど)、C系原料ガス(例えばプロパンやメタンなど)、及びドーパント(n型の場合は窒素やリン、p型の場合はアルミニウムやボロンなど)の原料ガス(窒素、ホスフィン、トリメチルアルミニウム、ジボランなど)を、石英管と断熱材とグラファイト発熱体からなる反応炉内に流し、ドライポンプで6kPa〜12kPaの減圧雰気に制御し、反応炉外周に巻かれた高周波加熱コイルでグラファイト発熱体を1550〜1750℃に誘導加熱し、そこからの熱輻射および伝熱で、基板と基板を支持するサセプタを加熱し、熱CVD法によって基板上にエピタキシャル薄膜を成長させる。   In an epitaxial growth process on a SiC substrate, hydrogen as a carrier gas, Si-based source gas (for example, monosilane or dichlorosilane), C-based source gas (for example, propane or methane), and a dopant (for example, nitrogen or n-type) A source gas (such as nitrogen, phosphine, trimethylaluminum, diborane, etc.) of phosphorus, p-type, etc.) is flowed into a reaction furnace consisting of a quartz tube, a heat insulating material and a graphite heating element, and 6 kPa to A susceptor that supports a substrate by controlling the atmosphere under reduced pressure of 12 kPa, induction heating the graphite heating element to 1550-1750 ° C. with a high-frequency heating coil wound around the outer periphery of the reactor, and heat radiation and heat transfer from the graphite heating element And an epitaxial thin film is grown on the substrate by a thermal CVD method.

SiC基板へのエピタキシャル成長の場合、ドーピング濃度分布は炉内の温度分布に大きく影響されることが知られており(非特許献1)、また、ドーパント取り込み量の温度依存性は、成長面方位、ドーパントの種類および成長条件(C/Si比)により異なることも知られている(非特許文献2)が、こうしたエピタキシャル膜のドーピング濃度分布は、デバイスの逆方向耐圧、特性オン抵抗といった特性バラツキの原因になり、その均一性改善は常に求められている。   In the case of epitaxial growth on a SiC substrate, it is known that the doping concentration distribution is greatly influenced by the temperature distribution in the furnace (Non-Patent Document 1), and the temperature dependence of the dopant incorporation amount is the growth plane orientation, It is also known that it varies depending on the type of dopant and growth conditions (C / Si ratio) (Non-Patent Document 2). However, the doping concentration distribution of such an epitaxial film varies in characteristics such as reverse breakdown voltage and characteristic on-resistance of the device. The cause is always improved.

J. Nishio,M. Hasegawa, K Kojima, T. Ohno, Y. Ishida, T.Takahashi, T. Suzuki, T. Tanaka, K. Arai, Journal of Crystal Growth 258 (2003)113-122J. Nishio, M. Hasegawa, K Kojima, T. Ohno, Y. Ishida, T. Takahashi, T. Suzuki, T. Tanaka, K. Arai, Journal of Crystal Growth 258 (2003) 113-122 K. Kojima, S. Kuroda, H. Okumura,K. Arai. Microelectronic Engineering 83 (2006) 79-81K. Kojima, S. Kuroda, H. Okumura, K. Arai. Microelectronic Engineering 83 (2006) 79-81

そこでドーピング濃度分布の均一改善のために、炉内の温度分布を均一にすることが考えられるが、炉内の温度分布は装置固有であり、容易に変えることはできず、ウェハ面内にはドーパント取り込み量の温度依存性に対応したドーピング濃度分布ができていた。
これに対し、炉内の温度分布の与える影響を軽減するために、ウェハをトレーに乗せて炉内で回転させる方法が提案されている。しかしながら、この方式を用いても回転トレーの内部で温度分布が生じるため、ウェハが大口径化するに伴い、温度分布の影響が避けられなくなる。
また、成長条件(C/Si比)を調整して若干の改善はできるが、表面粗さ、表面欠陥密度や膜厚分布などの他の膜特性に影響を与えるために、実用困難なことが多い。
Therefore, it is conceivable to make the temperature distribution in the furnace uniform in order to improve the doping concentration distribution uniformly, but the temperature distribution in the furnace is unique to the apparatus and cannot be easily changed. A doping concentration distribution corresponding to the temperature dependence of the dopant uptake was obtained.
On the other hand, in order to reduce the influence of the temperature distribution in the furnace, a method has been proposed in which a wafer is placed on a tray and rotated in the furnace. However, even if this method is used, a temperature distribution is generated inside the rotating tray, so that the influence of the temperature distribution is unavoidable as the wafer diameter increases.
In addition, the growth conditions (C / Si ratio) can be adjusted to make some improvements, but it may be difficult to put into practical use because it affects other film properties such as surface roughness, surface defect density, and film thickness distribution. Many.

本発明は、こうした現状を鑑みてなされたものであって、前述のSiCエピタキシャル成長プロセスにおいて、ドーピング濃度分布の均一性を改善する方法を提供することを目的とするものである。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a method for improving the uniformity of the doping concentration distribution in the above-described SiC epitaxial growth process.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、主たるドーパント(以下、「第1ドーパント」という。)のほかに、これとは取り込まれる原子位置が異なるドーパント(以下、「第2ドーパント」という。)を適量ドープすることにより、第1ドーパントの濃度分布を第2ドーパントの濃度分布で補償して、ドーピング濃度を均一化することができるという知見を得た。   As a result of intensive studies to achieve the above-mentioned object, the present inventors, as a result, in addition to the main dopant (hereinafter referred to as “first dopant”), a dopant (hereinafter referred to as “the first dopant”) having a different atomic position. It was found that by doping an appropriate amount of "second dopant"), the concentration distribution of the first dopant can be compensated by the concentration distribution of the second dopant, and the doping concentration can be made uniform.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]SiC基板上に導電型のSiC膜をエピタキシャル成長させる方法において、
主たるドーパントである第1のドーパントを含む反応ガスを流しつつ、該第1のドーパントとは取込まれる原子位置が異なる第2のドーパントを、そのエピタキシャル膜中への取込量が、第1のドーパントの膜中への取込量と同量未満になるように流すことにより、ドーピング濃度分布を均一化することを特徴とするエピタキシャルSiC膜の成膜方法。
[2]前記第1のドーパントと前記第2のドーパントの組み合わせが、窒素とアルミニウム、窒素とリン、ボロンとアルミニウム、或いはボロンとリン、の組み合わせから選択されることを特徴とする[1]に記載のエピタキシャルSiC膜の成膜方法。
[3]前記第1ドーパントの取込量が、2.0×1015cm-3以上、5.0×1016cm-3未満である[1]又は[2]に記載のエピタキシャルSiC膜の成膜方法。
方法。
[4][1]〜[3]のいずれかに記載の方法を用いて作成した炭化珪素半導体装置。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] In a method of epitaxially growing a conductive SiC film on a SiC substrate,
While flowing a reaction gas containing the first dopant which is the main dopant, the second dopant having a different atomic position from the first dopant is incorporated into the epitaxial film so that the amount of incorporation into the first dopant is A method for forming an epitaxial SiC film, characterized in that a doping concentration distribution is made uniform by flowing the dopant so as to be less than the same amount as that taken into the film.
[2] The combination of the first dopant and the second dopant is selected from a combination of nitrogen and aluminum, nitrogen and phosphorus, boron and aluminum, or boron and phosphorus. A method for forming the epitaxial SiC film as described.
[3] The epitaxial SiC film according to [1] or [2], wherein the amount of the first dopant taken up is 2.0 × 10 15 cm −3 or more and less than 5.0 × 10 16 cm −3 . Film forming method.
Method.
[4] A silicon carbide semiconductor device produced using the method according to any one of [1] to [3].

本発明によれば、エピタキシャルSiC膜中のドーピング濃度を均一にし、それを用いて作成したデバイスの特性オン抵抗や逆方向耐圧等の特性ばらつきを抑え、歩留まりを向上させることができる。   According to the present invention, it is possible to make the doping concentration in the epitaxial SiC film uniform, suppress characteristic variations such as characteristic on-resistance and reverse breakdown voltage of a device formed using the same, and improve the yield.

第1ドーパントと第2ドーパントが異なる導電型の場合の、濃度分布とドーピング濃度分布を表す図。The figure showing density | concentration distribution and doping concentration distribution in case the 1st dopant and 2nd dopant are different conductivity types. 第1ドーパントと第2ドーパントが同じ導電型の場合の、濃度分布とドーピング濃度分布を表す図。The figure showing concentration distribution and doping concentration distribution in case the 1st dopant and the 2nd dopant are the same conductivity types. 横型ホットウォール成膜装置の加熱部の概略構成を示す断面図Sectional drawing which shows schematic structure of the heating part of a horizontal type hot wall film-forming apparatus

本発明では、主たる第1ドーパントのほかに、これとは取り込まれる原子位置が異なる第2ドーパントを適量ドープすることにより、第1ドーパントの濃度分布を第2ドーパントの濃度分布で補償して、ドーピング濃度を均一化することを特徴とするものである。   In the present invention, in addition to the main first dopant, an appropriate amount of a second dopant having a different atomic position to be incorporated is doped to compensate the concentration distribution of the first dopant with the concentration distribution of the second dopant. It is characterized by making the density uniform.

従来の成膜では、主たる導電型のドーパント(上記の場合は第1ドーパント)以外のドーパント(上記の場合は第2ドーパント)は、濃度制御する上での外乱要因とみなされ、できる限り減らす取り組みがなされてきた。
しかし本発明では、第2ドーパントも制御して、一定量ドープすることで、濃度分布の均一性を向上させることが特徴である。
In conventional film formation, dopants other than the main conductivity type dopant (first dopant in the above case) (second dopant in the above case) are regarded as disturbance factors in controlling the concentration, and efforts to reduce as much as possible Has been made.
However, the present invention is characterized in that the uniformity of the concentration distribution is improved by controlling the second dopant and doping a certain amount.

本発明の方法において、上記の第1ドーパントと第2ドーパントとは、SiCに取りこまれる原子位置が異なることが重要である。すなわち、SiCにおいては、例えば、n型のドーパントである窒素とp型のドーパントであるアルミニウムでは、原子半径の違いから、窒素が炭素サイトを置換し、アルミニウムがシリコンサイトを置換するが、n型のドーパントである窒素とp型のドーパントであるボロンとでは、いずれも炭素原子を置換することが知られている。本発明において、同じ原子位置を置換するドーパント同士の場合、原子位置の取り合いを起こし、独立に制御することができなくなってしまう。
本発明において、第1ドーパントと第2ドーパントの具体的な組み合わせは、「窒素とアルミニウム」、「窒素とリン」、「ボロンとアルミニウム」、または「ボロンとリン」である。
In the method of the present invention, it is important that the first dopant and the second dopant have different atomic positions taken into SiC. That is, in SiC, for example, in nitrogen, which is an n-type dopant, and aluminum, which is a p-type dopant, nitrogen replaces a carbon site and aluminum replaces a silicon site due to a difference in atomic radius. It is known that both nitrogen, which is a dopant, and boron, which is a p-type dopant, substitute a carbon atom. In the present invention, in the case of dopants substituting the same atomic position, the atomic positions are brought together and cannot be controlled independently.
In the present invention, a specific combination of the first dopant and the second dopant is “nitrogen and aluminum”, “nitrogen and phosphorus”, “boron and aluminum”, or “boron and phosphorus”.

本発明において、第1ドーパントと第2ドーパントの選択には、両ドーパントの取り込み量の温度依存性を調べて決める必要がある。
すなわち、第1ドーパント1と第2ドーパント2が異なる導電型の場合は、図1に示すように、両者の温度依存性が同じ傾向で、かつ第2ドーパントの温度依存性が、第1ドーパントよりも大きいことが必要である。また、第1ドーパントと第2ドーパントが同じ導電型の場合は、図2に示すように、第1ドーパントと第2ドーパントの取り込み量の温度依存性が逆の傾向であることが必要である。
なお、図1、2において、横軸は、後述する図3の装置において、回転する円形トレー上に均等間隔で配置した4枚のうちの1つの基板(ウェハ)の中心(0)からの位置(mm)を表しており、+は、円形トレーの外周側の位置であることを意味し、−は、円形トレーの中心側の位置であることを意味している。
In the present invention, the selection of the first dopant and the second dopant needs to be determined by examining the temperature dependence of the amount of both dopants taken up.
That is, when the first dopant 1 and the second dopant 2 are of different conductivity types, as shown in FIG. 1, the temperature dependency of both is the same and the temperature dependency of the second dopant is higher than that of the first dopant. Must also be large. Further, when the first dopant and the second dopant have the same conductivity type, as shown in FIG. 2, it is necessary that the temperature dependence of the amounts of the first dopant and the second dopant taken in has a reverse tendency.
1 and 2, the horizontal axis indicates the position from the center (0) of one of the four substrates (wafers) arranged at equal intervals on the rotating circular tray in the apparatus of FIG. 3 to be described later. (Mm), + means a position on the outer peripheral side of the circular tray, and-means a position on the center side of the circular tray.

上記の各ドーパントの温度依存性は、用いる装置、成膜条件など種々の条件下でそれぞれ異なるので、所望の導電型を有すSiC膜をエピタキシャル成長させるにあたっては、事前に種々の条件下における各ドーパントの温度依存性を調べておくことが必要である。
本発明者らが調べた結果、C面基板上へのエピタキシャル成長を1600〜1700℃、6〜10kPa、C/Si比(Si系原料ガスとC系原料ガスの流量比)1.0〜1.5の範囲においては、アルミニウムの温度依存性が小さく、窒素の温度依存性が大きいことが分かった。
そこで、成長中にアルミニウムをドープする際に、窒素を同時にドープした結果、後述する実施例に示すとおり、p型のドーピング濃度の均一性が大幅に改善した。なお、図3は用いた装置の概略構成を示す断面図であるが、該装置については実施例に記載する。
この際、窒素の取込量は、アルミニウムの取込量未満でなければならない。またC面は元来、窒素を取込易いため、制御できる窒素取込量としては2.0×1015cm-3以上が望ましい。さらにまた、窒素取込量5.0×1016cm-3以上になると、不純物散乱による移動度の低下が懸念されるため、望ましくない。
The temperature dependence of each of the above dopants varies under various conditions such as the apparatus used and the film formation conditions. Therefore, when epitaxially growing a SiC film having a desired conductivity type, each dopant under the various conditions is preliminarily grown. It is necessary to investigate the temperature dependence of.
As a result of investigation by the present inventors, the epitaxial growth on the C-plane substrate is 1600 to 1700 ° C., 6 to 10 kPa, and the C / Si ratio (the flow rate ratio of the Si-based source gas to the C-based source gas) is 1.0 to 1. In the range of 5, it was found that the temperature dependency of aluminum is small and the temperature dependency of nitrogen is large.
Therefore, as a result of simultaneously doping nitrogen when doping aluminum during growth, the uniformity of the p-type doping concentration was greatly improved as shown in the examples described later. FIG. 3 is a cross-sectional view showing a schematic configuration of the apparatus used. The apparatus will be described in Examples.
At this time, the nitrogen uptake must be less than the aluminum uptake. In addition, since the C surface is naturally easy to take in nitrogen, the controllable nitrogen uptake is preferably 2.0 × 10 15 cm −3 or more. Furthermore, when the nitrogen uptake amount is 5.0 × 10 16 cm −3 or more, there is a concern about a decrease in mobility due to impurity scattering, which is not desirable.

また今回調べたアルミニウム取り込みの温度依存性は、窒素よりも小さかったが、上記非特許文献1にはC/Si比を0.6まで下げるとアルミニウムの方が取り込みの温度依存性が大きくなることが記載されている。そのような成膜条件の場合は、窒素をドーパント1、アルミニウムをドーパント2とすれば、本発明の方法を用いて、n型のドーピング濃度分布を改善できる。
その場合もアルミニウムの取込量は、窒素の取込量未満でなければならない。また、アルミニウムの取込量としては、制御性の観点から、2.0×1015cm-3以上が望ましい。さらにまた、アルミニウム取込量5.0×1016cm-3以上になると、不純物散乱による移動度の低下が懸念されるため、望ましくない。
In addition, the temperature dependence of aluminum incorporation investigated this time was smaller than that of nitrogen. However, according to Non-Patent Document 1, when the C / Si ratio is lowered to 0.6, the temperature dependence of aluminum incorporation becomes larger. Is described. In the case of such film formation conditions, if nitrogen is used as dopant 1 and aluminum is used as dopant 2, the n-type doping concentration distribution can be improved by using the method of the present invention.
Again, the aluminum uptake must be less than the uptake of nitrogen. Further, the amount of aluminum taken in is preferably 2.0 × 10 15 cm −3 or more from the viewpoint of controllability. Furthermore, when the aluminum uptake amount is 5.0 × 10 16 cm −3 or more, there is a concern about a decrease in mobility due to impurity scattering, which is not desirable.

なお、本発明の方法に用いる基板は、SiC基板であれば、特に限定されず、例えば、4H−SiC基板、6H−SiC基板等が用いられる。また。エピタキシャル膜を成膜する面も、特に限定されず、C面(000−1)であっても、Si面(0001)であっても良いことはいうまでもない。   In addition, if the board | substrate used for the method of this invention is a SiC substrate, it will not specifically limit, For example, a 4H-SiC board | substrate, a 6H-SiC board | substrate, etc. are used. Also. It is needless to say that the surface on which the epitaxial film is formed is not particularly limited and may be the C plane (000-1) or the Si plane (0001).

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
本実施例では図3に示す装置を用いて実験をおこなった。
図3に示す装置は、SiCのエピタキシャル膜の成膜装置として一般的な横型ホットウォール成膜装置の加熱部の概略構成を示す断面図である。加熱部は、石英管と、その内側に断熱材(図示せず)を介して配置されたホットウォールからなる反応室、該反応室内に設置されたサセプタ、該サセプタに支持された基板(ウェハ)、及び石英管に巻かれた高周波加熱コイルから構成されている。本実施例に用いた装置では、ウェハを、円形トレー上に均等間隔で4枚配置して炉内で回転させている。
基板(ウェハ)上にSiCエピタキシャル膜を成膜するための反応ガス(矢印)が、図示しない流入口から導入され加熱部に達すると、高周波加熱コイルにより誘導加熱されたホットウォールによって加熱され、反応室空間に置かれたサセプタに取り付けられるウェハ上で、熱CVD法によってエピタキシャルSiC膜が成膜される。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.
In this example, an experiment was performed using the apparatus shown in FIG.
The apparatus shown in FIG. 3 is a cross-sectional view showing a schematic configuration of a heating unit of a general horizontal hot wall film forming apparatus as a SiC epitaxial film forming apparatus. The heating unit includes a reaction chamber composed of a quartz tube and a hot wall disposed inside through a heat insulating material (not shown), a susceptor installed in the reaction chamber, and a substrate (wafer) supported by the susceptor And a high-frequency heating coil wound around a quartz tube. In the apparatus used in the present embodiment, four wafers are arranged at equal intervals on a circular tray and rotated in a furnace.
When a reaction gas (arrow) for forming a SiC epitaxial film on a substrate (wafer) is introduced from an inflow port (not shown) and reaches a heating unit, the reaction gas is heated by a hot wall induction-heated by a high-frequency heating coil and reacted. An epitaxial SiC film is formed by a thermal CVD method on a wafer attached to a susceptor placed in the chamber space.

この装置を用いて、Φ3インチの4H−SiC基板のC面(000−1)上に、成膜温度1700℃、成膜圧力10kPa、C/Si比1.2(モノシランガス流量50sccm、プロパンガス流量20sccm)、水素ガス流量100slmの条件で、n型のドーパントである窒素を単独でドープしたところ、トレーの中心から端部の方向に単調増加する濃度分布が得られ、σ/meanで6.4%であることが分かった。
また同様に、TMA(トリメチルアルミニウム)を用いてp型のドーパントであるアルミニウムを単独でドープしたところ、こちらもトレーの中心から端部の方向に単調増加する濃度分布が得られ、σ/meanで12.6%であることが分かった。
Using this apparatus, a film formation temperature of 1700 ° C., a film formation pressure of 10 kPa, a C / Si ratio of 1.2 (monosilane gas flow rate of 50 sccm, propane gas flow rate on the C surface (000-1) of a 4H—SiC substrate of Φ3 inch 20 sccm) and hydrogen gas flow rate of 100 slm, doping with nitrogen as an n-type dopant alone yielded a concentration distribution that monotonously increased from the center of the tray to the end, and a σ / mean of 6.4. %.
Similarly, when TMA (trimethylaluminum) is used to dope the p-type dopant alone, a concentration distribution that monotonously increases from the center of the tray to the edge is obtained, and σ / mean It was found to be 12.6%.

そこで、同様の条件下で、p型エピタキシャル膜を成長させる際、p型の第1ドーパントとしてアルミニウムを取り込ませるため、TMA(トリメチルアルミニウム)を0.05sccm流した。この際、同時にn型の第2ドーパントとして窒素を取りませるため、窒素ガスを0.02sccm流した。
トレーの中心から端部の方向のp型ドーピング濃度(Na−Nd)を調べたところ、σ/mean(標準偏差/平均)で3.4%となり、アルミニウム単体の取込量分布よりも大幅に改善していることが分かった。
Therefore, when growing the p-type epitaxial film under the same conditions, 0.05 sccm of TMA (trimethylaluminum) was flowed in order to incorporate aluminum as the p-type first dopant. At this time, nitrogen gas was supplied at 0.02 sccm in order to simultaneously remove nitrogen as an n-type second dopant.
When the p-type doping concentration (Na-Nd) in the direction from the center to the edge of the tray was examined, it was 3.4% in terms of σ / mean (standard deviation / average), much larger than the distribution of the uptake of aluminum alone. It turns out that it is improving.

Claims (4)

SiC基板上に導電型のSiC膜をエピタキシャル成長させる方法において、
主たるドーパントである第1のドーパントを含む反応ガスを流しつつ、該第1のドーパントとは取込まれる原子位置が異なる第2のドーパントを、そのエピタキシャル膜中への取込量が、第1のドーパントの膜中への取込量と同量未満になるように流すことにより、ドーピング濃度分布を均一化することを特徴とするエピタキシャルSiC膜の成膜方法。
In a method of epitaxially growing a conductive SiC film on a SiC substrate,
While flowing a reaction gas containing the first dopant which is the main dopant, the second dopant having a different atomic position from the first dopant is incorporated into the epitaxial film so that the amount of incorporation into the first dopant is A method for forming an epitaxial SiC film, characterized in that a doping concentration distribution is made uniform by flowing the dopant so as to be less than the same amount as that taken into the film.
前記第1のドーパントと前記第2のドーパントの組み合わせが、窒素とアルミニウム、窒素とリン、ボロンとアルミニウム、或いはボロンとリン、の組み合わせから選択されることを特徴とする請求項1に記載のエピタキシャルSiC膜の成膜方法。   2. The epitaxial according to claim 1, wherein a combination of the first dopant and the second dopant is selected from a combination of nitrogen and aluminum, nitrogen and phosphorus, boron and aluminum, or boron and phosphorus. A method of forming a SiC film. 前記第1ドーパントの取込量が、2.0×1015cm-3以上、5.0×1016cm-3未満である請求項1又は2に記載のエピタキシャルSiC膜の成膜方法。
方法。
3. The method of forming an epitaxial SiC film according to claim 1, wherein the amount of the first dopant taken up is 2.0 × 10 15 cm −3 or more and less than 5.0 × 10 16 cm −3 .
Method.
請求項1〜3のいずれか1項に記載の方法を用いて作成した炭化珪素半導体装置。   The silicon carbide semiconductor device created using the method of any one of Claims 1-3.
JP2012082344A 2012-03-30 2012-03-30 Method for forming film on silicon carbide substrate Active JP5943509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012082344A JP5943509B2 (en) 2012-03-30 2012-03-30 Method for forming film on silicon carbide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082344A JP5943509B2 (en) 2012-03-30 2012-03-30 Method for forming film on silicon carbide substrate

Publications (2)

Publication Number Publication Date
JP2013211500A true JP2013211500A (en) 2013-10-10
JP5943509B2 JP5943509B2 (en) 2016-07-05

Family

ID=49529067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082344A Active JP5943509B2 (en) 2012-03-30 2012-03-30 Method for forming film on silicon carbide substrate

Country Status (1)

Country Link
JP (1) JP5943509B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127201A (en) * 2015-01-07 2016-07-11 三菱電機株式会社 Method for manufacturing silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
EP3109349A1 (en) 2015-06-22 2016-12-28 Toyota Jidosha Kabushiki Kaisha Production method of sic crystal
JP2018142682A (en) * 2017-02-28 2018-09-13 国立研究開発法人産業技術総合研究所 Silicon carbide semiconductor device and manufacturing method of the silicon carbide semiconductor device
JP7185088B1 (en) 2022-06-02 2022-12-06 昭和電工株式会社 SiC substrate and SiC ingot
JP7185089B1 (en) 2022-06-02 2022-12-06 昭和電工株式会社 SiC substrate and SiC ingot
JP7214034B1 (en) 2022-06-02 2023-01-27 昭和電工株式会社 SiC device manufacturing method
JP7214032B1 (en) 2022-06-02 2023-01-27 昭和電工株式会社 SiC device manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334214A (en) * 1993-05-24 1994-12-02 Sharp Corp Pn junction light emission diode
JPH07131067A (en) * 1993-11-08 1995-05-19 Sanyo Electric Co Ltd Method for manufacturing silicon carbide wafer and method for manufacturing silicon carbide light emitting diode element
JPH0963968A (en) * 1995-08-28 1997-03-07 Denso Corp P-type silicon carbide semiconductor layer and manufacture thereof
WO2001018286A1 (en) * 1999-09-06 2001-03-15 Sixon Inc. Sic SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
JP2005507360A (en) * 2001-10-29 2005-03-17 オクメティック オーワイジェー High resistivity silicon carbide single crystal
JP2007320790A (en) * 2006-05-30 2007-12-13 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP2008505833A (en) * 2004-07-07 2008-02-28 トゥー‐シックス・インコーポレイテッド Low doping semi-insulating SiC crystal and method
JP2011205059A (en) * 2010-03-01 2011-10-13 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, method of manufacturing substrate and substrate processing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334214A (en) * 1993-05-24 1994-12-02 Sharp Corp Pn junction light emission diode
JPH07131067A (en) * 1993-11-08 1995-05-19 Sanyo Electric Co Ltd Method for manufacturing silicon carbide wafer and method for manufacturing silicon carbide light emitting diode element
JPH0963968A (en) * 1995-08-28 1997-03-07 Denso Corp P-type silicon carbide semiconductor layer and manufacture thereof
WO2001018286A1 (en) * 1999-09-06 2001-03-15 Sixon Inc. Sic SINGLE CRYSTAL AND METHOD FOR GROWING THE SAME
JP2005507360A (en) * 2001-10-29 2005-03-17 オクメティック オーワイジェー High resistivity silicon carbide single crystal
JP2008505833A (en) * 2004-07-07 2008-02-28 トゥー‐シックス・インコーポレイテッド Low doping semi-insulating SiC crystal and method
JP2007320790A (en) * 2006-05-30 2007-12-13 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP2011205059A (en) * 2010-03-01 2011-10-13 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, method of manufacturing substrate and substrate processing apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENGHUANG LIN, 外11名: "Observation of polytype stability in different-impurities-doped 6H-SiC crystals", DIAMOND & RELATED MATERIALS, vol. 20, JPN6015044825, 15 February 2011 (2011-02-15), pages 516 - 519, XP028191889, ISSN: 0003192476, DOI: 10.1016/j.diamond.2011.02.011 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127201A (en) * 2015-01-07 2016-07-11 三菱電機株式会社 Method for manufacturing silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
EP3109349A1 (en) 2015-06-22 2016-12-28 Toyota Jidosha Kabushiki Kaisha Production method of sic crystal
KR20160150595A (en) 2015-06-22 2016-12-30 도요타 지도샤(주) Production method of sic crystal
US9903047B2 (en) 2015-06-22 2018-02-27 Toyota Jidosha Kabushiki Kaisha Production method of SiC crystal
JP2018142682A (en) * 2017-02-28 2018-09-13 国立研究開発法人産業技術総合研究所 Silicon carbide semiconductor device and manufacturing method of the silicon carbide semiconductor device
JP7185088B1 (en) 2022-06-02 2022-12-06 昭和電工株式会社 SiC substrate and SiC ingot
JP7185089B1 (en) 2022-06-02 2022-12-06 昭和電工株式会社 SiC substrate and SiC ingot
JP7214034B1 (en) 2022-06-02 2023-01-27 昭和電工株式会社 SiC device manufacturing method
JP7214032B1 (en) 2022-06-02 2023-01-27 昭和電工株式会社 SiC device manufacturing method
JP2023178180A (en) * 2022-06-02 2023-12-14 株式会社レゾナック・ホールディングス METHOD OF MANUFACTURING SiC DEVICE
JP2023177666A (en) * 2022-06-02 2023-12-14 株式会社レゾナック・ホールディングス SiC substrate and SiC ingot
JP2023177668A (en) * 2022-06-02 2023-12-14 株式会社レゾナック・ホールディングス SiC substrate and SiC ingot
JP2023178178A (en) * 2022-06-02 2023-12-14 株式会社レゾナック・ホールディングス PRODUCTION METHOD OF SiC DEVICE

Also Published As

Publication number Publication date
JP5943509B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5943509B2 (en) Method for forming film on silicon carbide substrate
WO2015114961A1 (en) Silicon carbide epitaxial substrate, and method for producing silicon carbide epitaxial substrate
CN107924823B (en) Method for manufacturing silicon carbide epitaxial substrate, method for manufacturing silicon carbide semiconductor device, and apparatus for manufacturing silicon carbide epitaxial substrate
JP6748572B2 (en) P-type SiC epitaxial wafer and manufacturing method thereof
JP2015051895A (en) Silicon carbide epitaxial substrate, method of manufacturing silicon carbide epitaxial substrate, method of manufacturing silicon carbide semiconductor device, silicon carbide growth apparatus and member for silicon carbide growth apparatus
CN104885197B (en) Method for manufacturing silicon carbide semiconductor substrate and method for manufacturing silicon carbide semiconductor device
US20150214049A1 (en) Silicon carbide semiconductor device manufacturing method
WO2017057581A1 (en) P-type 4h-sic single crystal and method for producing p-type 4h-sic single crystal
JP2018108916A (en) Method for manufacturing silicon carbide epitaxial substrate
JP2017019679A (en) Silicon carbide epitaxial substrate
JP6915627B2 (en) Method for manufacturing silicon carbide epitaxial substrate
JP2016154223A (en) Cvd device and method of manufacturing compound semiconductor epitaxial substrate
JP2014232799A (en) Method of manufacturing silicon carbide semiconductor substrate
JP2018168052A (en) Method of manufacturing silicon carbide single crystal ingot
JP2015119083A (en) Silicon carbide semiconductor substrate, silicon carbide semiconductor device and manufacturing methods thereof
JP2014123617A (en) Manufacturing method and manufacturing apparatus of silicon carbide substrate
CN110117814A (en) The preparation method of silicon carbide epitaxy with low-density C vacancy defect
JP2014103363A (en) Silicon carbide semiconductor substrate manufacturing method
JP7143638B2 (en) Method for manufacturing silicon carbide epitaxial substrate
JP2015042602A (en) Method of producing silicon carbide semiconductor substrate and method of producing silicon carbide semiconductor device
JP5648442B2 (en) Silicon carbide semiconductor
JP2014166957A5 (en)
JP6090552B1 (en) Method for manufacturing silicon carbide epitaxial substrate, method for manufacturing silicon carbide semiconductor device, and device for manufacturing silicon carbide epitaxial substrate
JP5896346B2 (en) Silicon carbide semiconductor
JP2014166957A (en) Silicon carbide semiconductor, and method and device for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5943509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250