JP2013211251A - Light source unit - Google Patents

Light source unit Download PDF

Info

Publication number
JP2013211251A
JP2013211251A JP2012225614A JP2012225614A JP2013211251A JP 2013211251 A JP2013211251 A JP 2013211251A JP 2012225614 A JP2012225614 A JP 2012225614A JP 2012225614 A JP2012225614 A JP 2012225614A JP 2013211251 A JP2013211251 A JP 2013211251A
Authority
JP
Japan
Prior art keywords
light source
light
light emitting
source unit
optical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012225614A
Other languages
Japanese (ja)
Other versions
JP6171301B2 (en
Inventor
Miyuki Hatanaka
三幸 畠中
Takashi Sato
敬 佐藤
Nozomi Kajiwara
望 梶原
Kitetsu Komiya
敬哲 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2012225614A priority Critical patent/JP6171301B2/en
Publication of JP2013211251A publication Critical patent/JP2013211251A/en
Application granted granted Critical
Publication of JP6171301B2 publication Critical patent/JP6171301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light source unit capable of restraining deflection of optical components.SOLUTION: A light source unit 1 is provided with: a light source substrate 20 with a plurality of ultraviolet LEDs 30 arrayed on a surface; and an irregular-shaped rod lens 6 as an optical component covering the ultraviolet LEDs 30 for controlling light. A pair of support pieces 44 are provided extending at either side of the irregular-shaped rod lens 6 along edges, and a lens holder 24 for supporting the pair of support pieces 44 of the irregular-shaped rod lens 6 and arranged at a position covering the ultraviolet LEDs 30 are provided at the light source substrate 20.

Description

本発明は、例えばLED等の発光素子を光源に備えた光源ユニットに係り、特に、光硬化型材料を硬化させる光の光源に用いて好適な光源ユニットに関する。   The present invention relates to a light source unit including a light source such as an LED as a light source, and more particularly to a light source unit suitable for use as a light source for curing a photocurable material.

従来、紫外線などの光の照射によって硬化するインクを、インクジェットヘッドを用いて記録媒体上に吐出し、光照射によりインクを硬化して画像形成を行なうインクジェット記録装置が知られている。係るインクジェット記録装置は、環境に優しく、種々の記録媒体に高速で記録でき、滲みにくく高精細画像が得られる、などの特徴を有している。このようなインクジェット記録装置では、インクが記録媒体に着弾後、これを速やかに光硬化させることで画像品質が高められているが、このためには、高出力で比較的大型の光照射装置を備えることが必要とされている。そこで、複数の紫外線LEDを基板上に列状に配列して、高出力に広い範囲に紫外線を照射可能に構成したLEDユニットを光源に備えた光照射装置が提案されている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, an ink jet recording apparatus that forms an image by ejecting ink that is cured by irradiation with light such as ultraviolet rays onto a recording medium using an ink jet head and curing the ink by light irradiation is known. Such an ink jet recording apparatus is characterized by being friendly to the environment, capable of recording on various recording media at high speed, and obtaining a high-definition image that is difficult to bleed. In such an ink jet recording apparatus, after the ink has landed on the recording medium, the image quality is improved by quickly photocuring the ink. For this purpose, a high output and relatively large light irradiation apparatus is used. It is necessary to prepare. In view of this, a light irradiation device has been proposed in which a plurality of ultraviolet LEDs are arranged in a row on a substrate and an LED unit configured to irradiate ultraviolet rays over a wide range with a high output is provided as a light source (for example, Patent Literature 1).

特開2010−110938号公報JP 2010-110938 A

ところで、印刷面が大面積化するに伴い、LEDの配列も長くなる。LEDの配列長が長くなると、例えばロッドレンズ等の透過型の光学部品で各LEDの光を制御する場合には、ロッドレンズの全長も長くなってしまうため、ロッドレンズに自重による撓みが生じ、均一な照射ができない、といった問題がある。
本発明は、上述した事情に鑑みてなされたものであり、光学部品の撓みが抑えられる光源ユニットを提供することを目的とする。
By the way, as the printing surface becomes larger, the arrangement of the LEDs becomes longer. When the array length of the LEDs becomes long, for example, when the light of each LED is controlled by a transmissive optical component such as a rod lens, the total length of the rod lens also becomes long. There is a problem that uniform irradiation cannot be performed.
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a light source unit in which bending of an optical component can be suppressed.

上記目的を達成するために、本発明は、複数の発光素子を表面に配列した発光素子基板と、前記発光素子の各々を覆って光を制御する光学部品と、を備え、前記光学部品の両側に縁部に沿って延びる一対の支持片を設け、前記光学部品の一対の支持片を支持して前記発光素子の各々を覆う位置に配置する光学部品ホルダを前記発光素子基板に備えることを特徴とする光源ユニットを提供する。   In order to achieve the above object, the present invention includes a light emitting element substrate having a plurality of light emitting elements arranged on the surface, and an optical component that covers each of the light emitting elements and controls light, and is provided on both sides of the optical component. A pair of support pieces extending along the edge portion is provided on the light emitting element substrate, and the light emitting element substrate is provided with an optical component holder that is disposed at a position that supports the pair of support pieces of the optical component and covers each of the light emitting elements. A light source unit is provided.

また本発明は、上記光源ユニットにおいて前記光学部品は、前記発光素子の放射光が入射し、入射した光を制御する第1光制御部と、前記第1光制御部から出射した光を制御する第2光制御部と、表面、及び裏面のそれぞれに前記第1光制御部、及び前記第2光制御部を有し、前記第1光制御部からの光を透過して前記第2光制御部に伝達する支持板と、前記支持板は、前記第1光制御部、及び前記第2光制御部を挟む各端部に前記一対の支持片を有することを特徴とする。   According to the present invention, in the light source unit, the optical component controls the light emitted from the first light control unit and the first light control unit that controls the incident light that is emitted from the light emitting element. The second light control unit has the first light control unit and the second light control unit on each of the front surface and the back surface, and transmits the light from the first light control unit to control the second light control. The support plate that transmits to the part, and the support plate have the pair of support pieces at each end that sandwich the first light control unit and the second light control unit.

また本発明は、上記光源ユニットにおいて、前記光学部品ホルダには、前記発光素子の周囲を囲み、かつ前記光学部品を収める収納開口が設けられ、前記光学部品によって前記収納開口を閉じて前記発光素子の各々を封じたことを特徴とする。   According to the present invention, in the light source unit, the optical component holder is provided with a storage opening that surrounds the light emitting element and accommodates the optical component, and the light emitting element is closed by the optical component. Each of which is sealed.

また本発明は、上記光源ユニットにおいて、前記発光素子基板の裏面に前記発光素子の各々を冷却する冷却手段を備えることを特徴とする。   According to the present invention, in the light source unit, a cooling means for cooling each of the light emitting elements is provided on the back surface of the light emitting element substrate.

また本発明は、上記光源ユニットにおいて、前記冷却手段は、前記発光素子基板の裏面との間に冷媒の流路を形成する流路溝が設けられ、前記流路に流れる前記冷媒により前記発光素子基板を通じて前記発光素子の各々を冷却することを特徴とする。   According to the present invention, in the light source unit, the cooling means is provided with a flow path groove that forms a flow path of a refrigerant between the light emitting element substrate and a back surface of the light emitting element substrate. Each of the light emitting elements is cooled through a substrate.

また本発明は、上記光源ユニットにおいて、前記冷却手段は、冷媒の流路を形成する流路溝が設けられ、前記流路に流れる前記冷媒により前記発光素子基板を通じて前記発光素子の各々を冷却することを特徴とする。   According to the present invention, in the light source unit, the cooling means is provided with a flow channel groove that forms a flow channel for a coolant, and the light source is cooled through the light emitting device substrate by the coolant flowing in the flow channel. It is characterized by that.

また本発明は、上記光源ユニットにおいて、前記冷却手段は、前記流路溝が表面に形成され、他の部材を前記表面に接触させるようにネジ止めされ、前記他の部材と前記流路溝とにより前記流路を構成する冷却ベース体を備え、前記冷却ベース体の表面には、対向する縁部に互いに違いにネジ止め用のネジ孔の形成スペースを設け、残りのスペースに前記流路溝を設けたことを特徴とする。   Further, in the light source unit according to the present invention, the cooling unit includes the flow channel groove formed on a surface, and is screwed so that another member is in contact with the surface. The other member and the flow channel groove Provided with a cooling base body that constitutes the flow path, the surface of the cooling base body is provided with a space for forming screw holes for screwing at opposite edges, and the flow path groove is formed in the remaining space. Is provided.

本発明によれば、光学部品の両側に縁部に沿って延びる一対の支持片を設け、この光学部品の一対の支持片を支持して発光素子の各々を覆う位置に配置する光学部品ホルダを発光素子基板に備える構成とした。この構成により、一対の支持片が光学部品ホルダに支持されることから自重による光学部品の撓みが抑えられる。また、この光学部品ホルダを発光素子基板に備える構成としたため、光源ユニットの取扱が容易となる。   According to the present invention, there is provided an optical component holder that is provided with a pair of support pieces extending along the edge on both sides of the optical component, and is disposed at a position that covers each of the light emitting elements by supporting the pair of support pieces of the optical component. It was set as the structure equipped with a light emitting element substrate. With this configuration, since the pair of support pieces are supported by the optical component holder, bending of the optical component due to its own weight is suppressed. Further, since the optical component holder is provided on the light emitting element substrate, the light source unit can be handled easily.

本発明の実施形態に係る光源ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of the light source unit which concerns on embodiment of this invention. 光源ユニットの構成を示す図であり、(A)は正面図、(B)は底面図、(C)は側面図である。It is a figure which shows the structure of a light source unit, (A) is a front view, (B) is a bottom view, (C) is a side view. 光源ユニットの断面を説明するための図であり、(A)は光源ユニットの断面図、(B)は1個のLEDに対応する照射野の模式図である。It is a figure for demonstrating the cross section of a light source unit, (A) is sectional drawing of a light source unit, (B) is a schematic diagram of the irradiation field corresponding to one LED. 光源ユニットの分解斜視図である。It is a disassembled perspective view of a light source unit. 冷却ユニットの流路溝の構成を示す図であり、(A)は平面図、(B)は(A)のI−I線における断面図である。It is a figure which shows the structure of the flow-path groove | channel of a cooling unit, (A) is a top view, (B) is sectional drawing in the II line | wire of (A). 異形ロッドレンズの説明図であり、(A)は異形ロッドレンズの側面をラインLED光源とともに示す模式図、(B)は異形ロッドレンズをLEDの配列とともに示す平面模式図、(C)は異形ロッドレンズの光の制御によって作られる照射パターンの模式図である。It is explanatory drawing of a deformed rod lens, (A) is a schematic diagram which shows the side surface of a deformed rod lens with a line LED light source, (B) is a plane schematic diagram which shows a deformed rod lens with the arrangement | sequence of LED, (C) is a deformed rod It is a schematic diagram of the irradiation pattern made by control of the light of a lens. 光学部品たる異形ロッドレンズの変形例の説明図である。It is explanatory drawing of the modification of the deformed rod lens which is an optical component. 本発明の変形例に係る光源ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of the light source unit which concerns on the modification of this invention. 同変形例に係る光源ユニットの分解斜視図である。It is a disassembled perspective view of the light source unit which concerns on the modification. 同変形例に係る光制御板の説明図であり、(A)は光制御板の側面をラインLED光源とともに示す模式図、(B)は光制御板をLEDの配列とともに示す平面模式図、(C)は光制御板の光の制御によって作られる照射パターンの模式図である。It is explanatory drawing of the light control board which concerns on the modification, (A) is a schematic diagram which shows the side of a light control board with a line LED light source, (B) is a plane schematic diagram which shows a light control board with the arrangement | sequence of LED, C) is a schematic diagram of an irradiation pattern created by controlling the light of the light control plate. 他の変形例に係る光源ユニットの構成を示す斜視図であり、(A)は上方斜視図、(B)は下方斜視図である。It is a perspective view which shows the structure of the light source unit which concerns on another modification, (A) is an upper perspective view, (B) is a lower perspective view. 同変形例に係る光源ユニットの分解斜視図である。It is a disassembled perspective view of the light source unit which concerns on the modification. 同変形例に係る冷却ベース体の構成を示す図であり、(A)は平面図、(B)は(A)のII−II線における断面図である。It is a figure which shows the structure of the cooling base body which concerns on the modification, (A) is a top view, (B) is sectional drawing in the II-II line of (A).

以下、図面を参照して本発明の実施形態について説明する。
図1は本実施形態に係る光源ユニット1の構成を示す斜視図である。図2は光源ユニット1の構成を示す図であり、図2(A)は正面図、図2(B)は底面図、図2(C)は側面図である。また図3は光源ユニット1の断面を説明するための図であり、図3(A)は光源ユニット1の断面図、図3(B)は1個の紫外線LED30に対応する照射パターンの模式図である。
この光源ユニット1は、紫外線の照射によって硬化する紫外線硬化性インクを、インクジェットヘッドを用いて印刷紙面に吐出して画像を形成する印刷装置に組み込まれて実施されるものである。具体的には、光源ユニット1は、印刷装置の印刷紙搬送経路において、インクジェットヘッドよりも下流側に印刷紙の搬送面に面して配設され、紫外線硬化性インクが塗布された印刷紙面にライン状の紫外線を照射することで、紫外線硬化性インクを速やかに光硬化させて印刷紙面に定着させる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a configuration of a light source unit 1 according to the present embodiment. 2A and 2B are diagrams showing a configuration of the light source unit 1, in which FIG. 2A is a front view, FIG. 2B is a bottom view, and FIG. 2C is a side view. 3 is a diagram for explaining a cross section of the light source unit 1, FIG. 3A is a cross sectional view of the light source unit 1, and FIG. 3B is a schematic diagram of an irradiation pattern corresponding to one ultraviolet LED 30. It is.
The light source unit 1 is implemented by being incorporated in a printing apparatus that forms an image by ejecting ultraviolet curable ink that is cured by irradiation of ultraviolet rays onto a printing paper surface using an inkjet head. Specifically, the light source unit 1 is disposed on the printing paper conveyance path of the printing apparatus, facing the printing paper conveyance surface on the downstream side of the inkjet head, and coated with ultraviolet curable ink. By irradiating the line-shaped ultraviolet rays, the ultraviolet curable ink is quickly photocured and fixed on the printing paper surface.

光源ユニット1は、図1、及び図2に示すように、少なくとも印刷紙の幅(搬送方向に直交する方向の長さ)よりも全長Lが長い四角柱状に形成されている。光源ユニット1の底面2には、印刷紙の幅よりも長く延びる略矩形の照射口4が開口し、この照射口4からライン状の紫外線が照射される。この照射口4には、紫外線を制御する光学部品としての異形ロッドレンズ6が設けられており、この異形ロッドレンズ6の制御によって搬送面の位置に所定強度の紫外線が照射される。照射口4は、この異形ロッドレンズ6によって閉塞されるが、これについては後述する。   As shown in FIGS. 1 and 2, the light source unit 1 is formed in a quadrangular prism shape having an overall length L that is at least longer than the width of the printing paper (the length in the direction orthogonal to the transport direction). A substantially rectangular irradiation port 4 extending longer than the width of the printing paper is opened on the bottom surface 2 of the light source unit 1, and linear ultraviolet rays are irradiated from the irradiation port 4. The irradiation port 4 is provided with a deformed rod lens 6 as an optical component for controlling ultraviolet rays, and the control of the deformed rod lens 6 irradiates the position of the conveying surface with ultraviolet rays having a predetermined intensity. The irradiation port 4 is closed by the deformed rod lens 6, which will be described later.

また光源ユニット1は、上側に冷却ユニット8を備える。冷却ユニット8は、冷媒として冷却水を内部に循環させて光源ユニット1(より正確には、後述する紫外線LED30)を冷却するものである。冷却ユニット8の上面10には、冷却水の導入、及び排出用の一対の継ぎ手12が配設されており、それぞれの継ぎ手12に冷却水を流すチューブが接続される。なお、冷却ユニット8の詳細については後述する。また冷却ユニット8の上面10には、この光源ユニット1を印刷装置の内部に取り付けるための取付金具14が設けられている。   The light source unit 1 includes a cooling unit 8 on the upper side. The cooling unit 8 cools the light source unit 1 (more precisely, an ultraviolet LED 30 described later) by circulating cooling water as a refrigerant. A pair of joints 12 for introducing and discharging cooling water is disposed on the upper surface 10 of the cooling unit 8, and a tube through which the cooling water flows is connected to each joint 12. Details of the cooling unit 8 will be described later. On the upper surface 10 of the cooling unit 8, a mounting bracket 14 for mounting the light source unit 1 inside the printing apparatus is provided.

図4は、光源ユニット1の分解斜視図である。
光源ユニット1は、同図に示すように、光源基板20と、ラインLED光源22と、レンズホルダ24と、レンズ押さえ板26とを備え、更に、上述した冷却ユニット8と、異形ロッドレンズ6とを備えている。
光源基板20は、全長Lの長さを有する矩形板状の基板であり、ラインLED光源22は、光源基板20に紫外線LED30を一方向に連続して実装して構成されている。この光源基板20は、例えばアルミニウム材等の高熱伝導率材を基材とし、この基材の実装面側の表面に絶縁膜や回路パターンを形成して構成されており、一端部に電気配線28が接続されている。
ラインLED光源22は、略矩形箱形の複数個の上記紫外線LED30を備え、上述の通り、これらの紫外線LED30が光源基板20の実装面上に長手方向に沿って直線上に一定のピッチで配置されることで、ライン状の光を放射する。紫外線LED30は、図3に示すように、発光素子たるLEDチップ60や反射面61等を備え、紫外線硬化性インクの硬化に必要な所定光量の紫外線(ピーク波長385nm)を放射するものである。
FIG. 4 is an exploded perspective view of the light source unit 1.
As shown in the figure, the light source unit 1 includes a light source substrate 20, a line LED light source 22, a lens holder 24, and a lens pressing plate 26, and further includes the cooling unit 8 and the deformed rod lens 6 described above. It has.
The light source substrate 20 is a rectangular plate-shaped substrate having a total length L, and the line LED light source 22 is configured by continuously mounting ultraviolet LEDs 30 on the light source substrate 20 in one direction. The light source substrate 20 is formed by using, for example, a high thermal conductivity material such as an aluminum material as a base material, and an insulating film or a circuit pattern is formed on the surface on the mounting surface side of the base material. Is connected.
The line LED light source 22 includes a plurality of the above-described ultraviolet LEDs 30 in a substantially rectangular box shape, and as described above, these ultraviolet LEDs 30 are arranged on the mounting surface of the light source substrate 20 at a constant pitch on a straight line along the longitudinal direction. As a result, line-shaped light is emitted. As shown in FIG. 3, the ultraviolet LED 30 includes an LED chip 60 as a light emitting element, a reflecting surface 61, and the like, and emits a predetermined amount of ultraviolet rays (peak wavelength 385 nm) necessary for curing the ultraviolet curable ink.

冷却ユニット8は、光源基板20の実装面の裏側に密接し、光源基板20を通じてラインLED光源22の各紫外線LED30を冷却する。具体的には、冷却ユニット8は、図3、及び図4に示すように、冷却ベース体32と、上記継ぎ手12とを有する。冷却ベース体32は、光源基板20の裏面と略同一寸法の表面34を有する金属製の板材である。この冷却ベース体32の表面34には、繋ぎ手12から導入/排出される冷却水が流れる流路溝36が形成されており、冷却ベース体32の表面34が光源基板20の裏面に密着することで流路溝36が閉じられる。この流路溝36は、光源基板20の一端部から他端部にかけて延び、流路溝36に冷却水が流れることで光源基板20が全体的に均一に冷却される。   The cooling unit 8 is in close contact with the back side of the mounting surface of the light source substrate 20 and cools each ultraviolet LED 30 of the line LED light source 22 through the light source substrate 20. Specifically, as shown in FIGS. 3 and 4, the cooling unit 8 includes a cooling base body 32 and the joint 12. The cooling base body 32 is a metal plate material having a surface 34 having substantially the same dimensions as the back surface of the light source substrate 20. A flow path groove 36 through which cooling water introduced / extracted from the joint 12 flows is formed on the surface 34 of the cooling base body 32, and the surface 34 of the cooling base body 32 is in close contact with the back surface of the light source substrate 20. Thus, the flow channel 36 is closed. The flow path groove 36 extends from one end portion to the other end portion of the light source substrate 20, and the cooling water flows through the flow path groove 36, whereby the light source substrate 20 is cooled uniformly.

図5は冷却ユニット8の流路溝36の構成を示す図であり、図5(A)は流路溝36の平面図、図5(B)は断面図である。
本実施形態では、流路溝36は、複数の横長楕円形凹部36Aと、これら横長楕円形凹部36Aを連通する連通部36Bとを有する。横長楕円形凹部36Aは、底部が平坦に形成され、冷却ユニット8の長手方向F1に長い平面視楕円形状に形成された凹部である。これらの横長楕円形凹部36Aは、冷却ユニット8の長手方向F1に沿って配設され、各横長楕円形凹部36Aの端部36A1同士が上記連通部36Bで連通される。連通部36Bは、図5(B)に示すように、横長楕円形凹部36Aよりも幅狭で断面矩形状の凹溝である。両端部の横長楕円形凹部36Aには、上記継ぎ手12が接続される貫通孔36Cが形成されており、一方の貫通孔36Cから導入された冷却水が長手方向に沿って各横長楕円形凹部36A、及び連通部36Bを通って他方の貫通孔36Cから排出される。
また各横長楕円形凹部36Aには、その中央部、すなわちラインLED光源22に対応する位置に、島部37が形成されている。これにより、ラインLED光源22の発熱が光源基板20を通じて島部37にスムーズに伝熱され、この島部37の周囲を流れる冷却水に効率良く伝えられることから、高い冷却性能が得られる。
FIG. 5 is a diagram showing the configuration of the flow channel 36 of the cooling unit 8, FIG. 5A is a plan view of the flow channel 36, and FIG. 5B is a cross-sectional view.
In the present embodiment, the flow channel 36 has a plurality of horizontally long elliptical recesses 36A and a communication portion 36B that communicates these horizontally long elliptical recesses 36A. The horizontally long elliptical concave portion 36 </ b> A is a concave portion having a flat bottom and is formed in an elliptical shape in plan view that is long in the longitudinal direction F <b> 1 of the cooling unit 8. These horizontally long elliptical recesses 36A are arranged along the longitudinal direction F1 of the cooling unit 8, and the end portions 36A1 of each horizontally long elliptical recess 36A are communicated with each other by the communication portion 36B. As shown in FIG. 5B, the communication portion 36B is a concave groove having a narrower width and a rectangular cross section than the horizontally long elliptical concave portion 36A. Through holes 36C to which the joints 12 are connected are formed in the horizontally long elliptical recesses 36A at both ends, and the cooling water introduced from one through hole 36C extends along the longitudinal direction to each horizontally long elliptical recess 36A. , And through the communication part 36B, it is discharged from the other through hole 36C.
In addition, an island 37 is formed in each horizontally long elliptical recess 36 </ b> A at the center thereof, that is, at a position corresponding to the line LED light source 22. Thereby, the heat generated by the line LED light source 22 is smoothly transferred to the island portion 37 through the light source substrate 20 and is efficiently transmitted to the cooling water flowing around the island portion 37, so that high cooling performance is obtained.

この冷却ベース体32の表面34には、図4、及び図5に示すように、その縁部に複数のネジ孔36Dが設けられ、このネジ孔36Dに光源基板20がネジ止めされる。また、冷却ベース体32の表面34には、流路溝36を包囲するパッキン溝38が設けられている。このパッキン溝38にはシール材が嵌め込まれ、光源基板20と冷却ベース体32の隙間からの冷却水の漏れを防止する。   As shown in FIGS. 4 and 5, the surface 34 of the cooling base body 32 is provided with a plurality of screw holes 36D at the edge thereof, and the light source substrate 20 is screwed to the screw holes 36D. Further, a packing groove 38 surrounding the flow path groove 36 is provided on the surface 34 of the cooling base body 32. A sealing material is fitted in the packing groove 38 to prevent leakage of cooling water from the gap between the light source substrate 20 and the cooling base body 32.

冷却ユニット8の冷却能力は、流路溝36を流れる冷媒量に応じて高まることから、両端の貫通孔36Cの間を、冷却ベース体32の短手方向F2にできる限りに広げた一本の溝でつなげれば、可能な限りの大きな冷却能力が得られる。しかしながら、流路溝36の上を覆って閉じるために冷却ベース体32を光源基板20にネジ止めする必要があるから、上記のネジ孔36Dを設けるスペースを冷却ベース体32の表面34に割く必要がある。
そこで、この流路溝36では、上記横長楕円形凹部36Aを冷却ベース体32の短手方向F2に上記パッキン溝38を設けるスペースを残して可能な限りに広げつつ、各々の横長楕円形凹部36Aの間を、両側にネジ孔36D、及びパッキン溝38を設けるスペースを残す程度に幅狭の連通部36Bで連通している。これにより、ネジ孔36Dの配置スペースを確保しつつ、高い冷却能力を維持する流路溝36が得られる。
Since the cooling capacity of the cooling unit 8 increases in accordance with the amount of refrigerant flowing through the flow channel groove 36, a single piece in which the space between the through holes 36 </ b> C at both ends is expanded in the short direction F <b> 2 of the cooling base body 32 as much as possible. If it connects with a groove | channel, the cooling capacity as large as possible is obtained. However, since it is necessary to screw the cooling base body 32 to the light source substrate 20 in order to cover and close the channel groove 36, it is necessary to divide the space for providing the screw hole 36D on the surface 34 of the cooling base body 32. There is.
Therefore, in this flow channel groove 36, each of the horizontally long elliptical concave portions 36A is expanded as much as possible leaving a space for providing the packing groove 38 in the short direction F2 of the cooling base body 32. Are communicated with each other by a communication portion 36B that is narrow enough to leave a space for providing screw holes 36D and packing grooves 38 on both sides. Thereby, the flow path groove | channel 36 which maintains high cooling capability, ensuring the arrangement space of the screw hole 36D is obtained.

また冷却ベース体32は、長手方向F1の各地点の短手方向F2の断面で流路溝36が占める面積が等しくならないと、長手方向F1で流路抵抗が生じてしまい冷却性能にムラが生じる。
そこで、連通部36Bの深さG(図5(B))を横長楕円形凹部36Aよりも深く形成することで、連通部36Bの断面積を横長楕円形凹部36Aの断面積と等しくなるようにしている。
なお、それぞれの横長楕円形凹部36Aの中の島部37も、長手方向F1の各地点の短手方向F2の断面で流路溝36が占める面積を等しくする形状となっている。
Further, in the cooling base body 32, if the area occupied by the channel groove 36 is not equal in the cross section in the short direction F2 at each point in the longitudinal direction F1, the channel resistance is generated in the longitudinal direction F1 and the cooling performance is uneven. .
Therefore, by forming the depth G (FIG. 5B) of the communication portion 36B deeper than the horizontally-long elliptical recess 36A, the cross-sectional area of the communication portion 36B is made equal to the cross-sectional area of the horizontally-long elliptical recess 36A. ing.
In addition, the island part 37 in each horizontally long elliptical recessed part 36A also has a shape that equalizes the area occupied by the channel groove 36 in the cross section in the short direction F2 of each point in the longitudinal direction F1.

図6は異形ロッドレンズ6の説明図であり、図6(A)は異形ロッドレンズ6の側面をラインLED光源22とともに示す模式図、図6(B)は異形ロッドレンズ6を紫外線LED30の配列とともに示す平面模式図、図6(C)は異形ロッドレンズ6の光の制御によって作られる照射パターンの模式図である。
異形ロッドレンズ6は、同図に示すように、ラインLED光源22に沿って延在し、ラインLED光源22から放射されて透過する光を制御する透過型の光学部品である。上述の通り、光源ユニット1は、印刷装置の搬送面で集光する紫外線を照射することから、異形ロッドレンズ6には、集光光学系が用いられる。本実施形態では、光源ユニット1の取り付け誤差等により、照射口4から搬送面Hまでの距離が多少変化しても搬送面Hでの光量変化が一定になるようにすべく、前掲図3(A)に示すように、異形ロッドレンズ6は、ラインLED光源22の光を平行光化する。具体的には、異形ロッドレンズ6は、曲率が異なる2つの断面平凸状ロッドレンズ41、42を透明板状の支持板40を挟んで背中合わせに貼り合わせて構成される。この構成により、断面平凸状ロッドレンズ42から所定の照射距離Mに亘って平行になる平行光が得られることとなり、この照射距離Mの範囲で、光源ユニット1から搬送面Hまでの距離が変わったとしても、搬送面Hでの光量が一定に維持される。
また図3(B)に示すように、1個の紫外線LED30、及び異形ロッドレンズ6によって、搬送面Hには、略円形であって略均一な光量分布の照射パターンP1が形成される。そして、光源ユニット1では、ライン状に配列した紫外線LED30に沿って異形ロッドレンズ6が配置されることで、図6(C)に示すように、隣り合う照射パターンP1同士がオーバーラップしながらライン状に繋がった照射パターンP2が得られる。
6A and 6B are explanatory views of the deformed rod lens 6. FIG. 6A is a schematic diagram showing the side surface of the deformed rod lens 6 together with the line LED light source 22, and FIG. 6B is an array of the deformed rod lens 6 with the ultraviolet LEDs 30. FIG. 6C is a schematic diagram of an irradiation pattern created by controlling the light of the deformed rod lens 6.
As shown in the drawing, the deformed rod lens 6 is a transmissive optical component that extends along the line LED light source 22 and controls light emitted from the line LED light source 22 and transmitted therethrough. As described above, the light source unit 1 irradiates ultraviolet rays that are condensed on the conveyance surface of the printing apparatus, and therefore, the condensing optical system is used for the deformed rod lens 6. In the present embodiment, even if the distance from the irradiation port 4 to the transport surface H slightly changes due to an attachment error of the light source unit 1 or the like, the above-described FIG. As shown in A), the deformed rod lens 6 collimates the light from the line LED light source 22. Specifically, the deformed rod lens 6 is configured by bonding two cross-sectional plano-convex rod lenses 41 and 42 having different curvatures back to back with a transparent plate-like support plate 40 interposed therebetween. With this configuration, parallel light that is parallel over a predetermined irradiation distance M is obtained from the plano-convex rod lens 42 in cross section, and the distance from the light source unit 1 to the transport surface H is within this irradiation distance M range. Even if it changes, the light quantity on the conveyance surface H is kept constant.
As shown in FIG. 3B, an irradiation pattern P1 having a substantially circular light amount distribution is formed on the transport surface H by the single ultraviolet LED 30 and the deformed rod lens 6. Then, in the light source unit 1, by arranging the deformed rod lens 6 along the ultraviolet LEDs 30 arranged in a line, as shown in FIG. 6C, the irradiation patterns P1 adjacent to each other overlap each other. An irradiation pattern P2 connected in a shape is obtained.

レンズホルダ24、及びレンズ押さえ板26は、異形ロッドレンズ6をラインLED光源22に沿って覆う位置に配置する支持部材である。具体的には、レンズホルダ24は、図3及び図4に示すように、上記光源基板20の実装面を覆う大きさの矩形状に形成され、光源基板20の実装面に密着して設けられる。レンズホルダ24の面内にはレンズ収納開口46が設けられており、レンズ収納開口46は、図4に示すように、ラインLED光源22よりも長く延在し、図3に示すように、内側にラインLED光源22を収納する大きさに形成されている。そして、このレンズ収納開口46には、図4に示すように、異形ロッドレンズ6が収められ、この異形ロッドレンズ6によって、レンズ収納開口46の中にラインLED光源22が封じられる。   The lens holder 24 and the lens pressing plate 26 are support members that are arranged at positions that cover the deformed rod lens 6 along the line LED light source 22. Specifically, as shown in FIGS. 3 and 4, the lens holder 24 is formed in a rectangular shape with a size covering the mounting surface of the light source substrate 20, and is provided in close contact with the mounting surface of the light source substrate 20. . A lens storage opening 46 is provided in the surface of the lens holder 24. The lens storage opening 46 extends longer than the line LED light source 22 as shown in FIG. The line LED light source 22 is formed in a size to be accommodated. Then, as shown in FIG. 4, the deformed rod lens 6 is housed in the lens housing opening 46, and the line LED light source 22 is sealed in the lens housing opening 46 by the deformed rod lens 6.

具体的には、異形ロッドレンズ6には、図3、図6(B)に示すように、両側から支持板40の縁部を突出させて、異形ロッドレンズ6の両側に長手方向の全長に亘って延びる支持片44が形成されている。一方、レンズホルダ24には、図3(A)に示すように、レンズ収納開口46の先端側の縁部47には、異形ロッドレンズ6の両側の支持片44に対応して、各支持片44を受ける段部48が形成されており、この段部48で支持片44を受けて異形ロッドレンズ6がレンズ収納開口46に収められる。レンズ押さえ板26は、面内に上記照射口4が形成され、照射口4の縁部49がレンズ収納開口46に収められた異形ロッドレンズ6の支持片44をレンズホルダ24の間で挟み込むことで、当該異形ロッドレンズ6を落下不能に保持する。   Specifically, as shown in FIGS. 3 and 6 (B), the edge of the support plate 40 protrudes from both sides of the deformed rod lens 6 so as to extend to the entire length in the longitudinal direction on both sides of the deformed rod lens 6. A support piece 44 is formed to extend over. On the other hand, as shown in FIG. 3 (A), the lens holder 24 has an edge 47 on the tip side of the lens housing opening 46 corresponding to the support pieces 44 on both sides of the deformed rod lens 6. A step portion 48 is formed to receive the support rod 44, and the deformed rod lens 6 is received in the lens storage opening 46 by receiving the support piece 44. The lens pressing plate 26 has the irradiation port 4 formed in the surface thereof, and the support piece 44 of the deformed rod lens 6 in which the edge 49 of the irradiation port 4 is stored in the lens storage opening 46 is sandwiched between the lens holders 24. Thus, the deformed rod lens 6 is held so as not to drop.

これらレンズホルダ24、及びレンズ押さえ板26、光源基板20、及び冷却ユニット8は、図4に示すように、それぞれが重ねられて複数のネジ50(図1)で締結されることで1つの光源ユニット1として構成される。   As shown in FIG. 4, the lens holder 24, the lens holding plate 26, the light source substrate 20, and the cooling unit 8 are overlapped and fastened with a plurality of screws 50 (FIG. 1) to form one light source. Configured as unit 1.

そして、このような構成の光源ユニット1によれば次のような効果を奏する。
すなわち、光学部品たる異形ロッドレンズ6の両側に縁部に沿って延びる一対の支持片44を設け、この一対の支持片44を支持してラインLED光源22(すなわち、紫外線LED30の各々)を覆う位置に配置するレンズホルダ24を光源基板20の実装面に備える構成とした。
この構成により、支持片44がレンズホルダ24に支持されることから自重による異形ロッドレンズ6の撓みが抑えられる。これに加え、レンズホルダ24を光源基板20に設けたため、1つの光源ユニット1としての取扱が容易となる。またレンズホルダ24を光源基板20に密着させているため、当該光源基板20の撓みも防止することができる。
And according to the light source unit 1 of such a structure, there exist the following effects.
That is, a pair of support pieces 44 extending along the edge are provided on both sides of the deformed rod lens 6 as an optical component, and the pair of support pieces 44 are supported to cover the line LED light source 22 (that is, each of the ultraviolet LEDs 30). The lens holder 24 disposed at the position is provided on the mounting surface of the light source substrate 20.
With this configuration, since the support piece 44 is supported by the lens holder 24, the deformation of the deformed rod lens 6 due to its own weight is suppressed. In addition, since the lens holder 24 is provided on the light source substrate 20, handling as one light source unit 1 is facilitated. Further, since the lens holder 24 is in close contact with the light source substrate 20, it is possible to prevent the light source substrate 20 from being bent.

また本実施形態の光源ユニット1においては、レンズホルダ24には、ラインLED光源22の周囲を囲み、かつ異形ロッドレンズ6を収めるレンズ収納開口46を設け、異形ロッドレンズ6によってレンズ収納開口46を閉じて、ラインLED光源22をレンズ収納開口46に封じる構成とした。
これにより、印刷紙のインク滴や紙埃等がラインLED光源22(特にLEDチップ60)に付着することが防止され、照度ムラの発生が抑えられる。
Further, in the light source unit 1 of the present embodiment, the lens holder 24 is provided with a lens housing opening 46 that surrounds the line LED light source 22 and accommodates the deformed rod lens 6, and the lens housing opening 46 is formed by the deformed rod lens 6. The line LED light source 22 is closed, and the lens housing opening 46 is sealed.
As a result, ink droplets, paper dust, and the like on the printing paper are prevented from adhering to the line LED light source 22 (particularly the LED chip 60), and the occurrence of illuminance unevenness is suppressed.

これに加え、本実施形態では、光源基板20の裏面にラインLED光源22の各紫外線LED30を冷却する冷却ユニット8を備える構成としたため、レンズ収納開口46に籠もるラインLED光源22の熱を高熱伝導性の光源基板20を通じて冷却ユニット8で冷却し、ラインLED光源22を熱から保護することができる。   In addition to this, in the present embodiment, since the cooling unit 8 that cools each ultraviolet LED 30 of the line LED light source 22 is provided on the back surface of the light source substrate 20, the heat of the line LED light source 22 over the lens housing opening 46 is increased. The line LED light source 22 can be protected from heat by being cooled by the cooling unit 8 through the light source substrate 20 having high thermal conductivity.

特に本実施形態によれば、冷却ユニット8は、光源基板20の裏面の間で冷却水が流れる流路を形成する流路溝36を有し、この流路溝36に流れる冷却水により光源基板20を通じてラインLED光源22を冷却する構成とした。
これにより、冷却水が光源基板20に直接的に接触して冷却するため、大きな冷却効果が得られる。
In particular, according to the present embodiment, the cooling unit 8 has the flow channel groove 36 that forms a flow channel through which the cooling water flows between the back surfaces of the light source substrate 20, and the light source substrate is cooled by the cooling water that flows in the flow channel groove 36. The line LED light source 22 is cooled through 20.
Thereby, since a cooling water contacts the light source board | substrate 20 and cools, a big cooling effect is acquired.

なお、上述した実施形態は、あくまでも本発明の一態様を例示したものであって、本発明の趣旨を逸脱しない範囲で任意に変形、及び応用が可能である。   The above-described embodiment is merely an example of one aspect of the present invention, and can be arbitrarily modified and applied without departing from the spirit of the present invention.

上述した実施形態では、異形ロッドレンズ6について、断面平凸状ロッドレンズ41、42、及び支持板40の各々を別部材で構成したが、これに限らず、図7(A)に示すように、断面平凸状ロッドレンズ141、及び支持板140を一体に形成し、この支持板140に他の断面平凸状ロッドレンズ142を貼り合わせて異形ロッドレンズ106を構成しても良い。また同様に、図7(B)に示すように、断面平凸状ロッドレンズ242、及び支持板240を一体に形成し、この支持板240に他の断面平凸状ロッドレンズ241を貼り合わせて異形ロッドレンズ206を構成しても良い。さらに、図7(C)に示すように、断面平凸状ロッドレンズ341、342、及び支持板340を一体に形成して異形ロッドレンズ306を構成しても良い。
また支持板40の縁部に支持片44を一体に形成する構成に限らず、図7(D)に示すように、支持板440の両縁に別部材で構成した支持片444を接続して異形ロッドレンズ406を構成しても良い。なお、この異形ロッドレンズ6では、断面平凸状ロッドレンズ441に一体に支持板440を設け、この支持板440に断面平凸状ロッドレンズ442を貼り合わせている。
In the above-described embodiment, each of the deformed rod lens 6 is configured such that each of the plano-convex rod lenses 41 and 42 and the support plate 40 are separate members, but the present invention is not limited thereto, as shown in FIG. Alternatively, the deformed rod lens 106 may be configured by integrally forming the cross-sectional plano-convex rod lens 141 and the support plate 140 and bonding another cross-section plano-convex rod lens 142 to the support plate 140. Similarly, as shown in FIG. 7B, a cross-sectional plano-convex rod lens 242 and a support plate 240 are integrally formed, and another cross-section plano-convex rod lens 241 is bonded to the support plate 240. The deformed rod lens 206 may be configured. Further, as shown in FIG. 7C, the deformed rod lens 306 may be formed by integrally forming the cross-sectional plano-convex rod lenses 341 and 342 and the support plate 340.
In addition to the configuration in which the support piece 44 is integrally formed on the edge portion of the support plate 40, as shown in FIG. 7D, support pieces 444 made of different members are connected to both edges of the support plate 440. The deformed rod lens 406 may be configured. In the deformed rod lens 6, a support plate 440 is provided integrally with the cross-sectional plano-convex rod lens 441, and the cross-section plano-convex rod lens 442 is bonded to the support plate 440.

上述した実施形態では、紫外線LED30を直線状に並べてライン光源を形成する光源ユニット1について例示したが、これに限らず、複数の紫外線LED30を平面内に適宜に分散配置して平面的な光を照射する構成としても良い。
図8は本変形例に係る光源ユニット500の構成を示す斜視図であり、図9は光源ユニット500の分解斜視図である。なお、これらの図において、上述の実施形態で説明した部材については、同一の符号を付して説明を省略する。
In the embodiment described above, the light source unit 1 that forms the line light source by arranging the ultraviolet LEDs 30 in a straight line is illustrated, but the present invention is not limited thereto, and a plurality of ultraviolet LEDs 30 are appropriately distributed and arranged in a plane to emit planar light. It is good also as a structure to irradiate.
FIG. 8 is a perspective view showing a configuration of a light source unit 500 according to this modification, and FIG. 9 is an exploded perspective view of the light source unit 500. In these drawings, the members described in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

これらの図に示すように、光源ユニット500は、光源基板20の実装面に複数の紫外線LED30を縦横に所定のピッチで配列して構成した面状LED光源ユニット522を備えている。また光源ユニット500は、面状LED光源ユニット522の各紫外線LED30の光を制御する光学部品としての光制御板506が面状LED光源ユニット522を覆う位置に光学部品ホルダ524によって支持されている。   As shown in these drawings, the light source unit 500 includes a planar LED light source unit 522 configured by arranging a plurality of ultraviolet LEDs 30 vertically and horizontally at a predetermined pitch on the mounting surface of the light source substrate 20. The light source unit 500 is supported by an optical component holder 524 at a position where a light control plate 506 as an optical component for controlling the light of each ultraviolet LED 30 of the planar LED light source unit 522 covers the planar LED light source unit 522.

図10は光制御板506の説明図であり、図10(A)は光制御板506の側面をラインLED光源22とともに示す模式図、図10(B)は光制御板506を紫外線LED30の配列とともに示す平面模式図、図10(C)は光制御板506の光の制御によって作られる照射パターンの模式図である。
これらの図に示すように、光制御板506は、透明な矩形板状の支持板540の表面、及び裏面の各々に紫外線LED30ごとに平凸レンズ543、547を設けて構成した板状の光学部品であり、1個の紫外線LED30について上述した実施形態と同様に略円形の照射パターンP2を形成し、上下左右に隣合う照射パターンP1がオーバーラップして照射パターンP3を形成する。
光制御板506の支持板540の両端部の縁部は、支持片544として構成されている。光学部品ホルダ524は、支持片544を受ける段部48を有した断面L字状の部材であり、面状LED光源ユニット522を挟んだ光源基板20の両側に各々固定される。そして、これら一対の光学部品ホルダ524に光制御板506の支持板540の両端の支持片544をネジ等で固定することで、光制御板506が面状LED光源ユニット522を覆う位置に配置される。
光学部品ホルダ524の段部48は、面状LED光源ユニット522の縁部に沿って延びており、この段部48に支持片544が支持されることで、光制御板506の撓みが抑えられる。
また、光制御板506の支持板540にあっては、支持片544を設けていない側の縁548と、直近の平凸レンズ543、544との間の距離δを非常に小さくすることで、これら平凸レンズ543、544が縁548に近接した位置まで配置されている。
これにより、複数個の光源ユニット500を縁548同士が繋がるようにライン状に並べ、各光源ユニット500の間での照度ムラを抑えつつ、照射範囲を拡大した光源装置を構成することもできる。
FIG. 10 is an explanatory diagram of the light control plate 506. FIG. 10A is a schematic diagram showing the side surface of the light control plate 506 together with the line LED light source 22, and FIG. 10B is an arrangement of the light control plate 506 with the ultraviolet LED 30. FIG. 10C is a schematic diagram of an irradiation pattern created by controlling the light of the light control plate 506. FIG.
As shown in these drawings, the light control plate 506 is a plate-like optical component configured by providing plano-convex lenses 543 and 547 for each ultraviolet LED 30 on the front and back surfaces of a transparent rectangular plate-like support plate 540. In the same manner as in the above-described embodiment, one ultraviolet LED 30 forms a substantially circular irradiation pattern P2, and the irradiation patterns P1 adjacent in the vertical and horizontal directions overlap to form an irradiation pattern P3.
Edges at both ends of the support plate 540 of the light control plate 506 are configured as support pieces 544. The optical component holder 524 is an L-shaped member having a stepped portion 48 that receives the support piece 544, and is fixed to both sides of the light source substrate 20 with the planar LED light source unit 522 interposed therebetween. Then, by fixing the support pieces 544 at both ends of the support plate 540 of the light control plate 506 to the pair of optical component holders 524 with screws or the like, the light control plate 506 is disposed at a position covering the planar LED light source unit 522. The
The step portion 48 of the optical component holder 524 extends along the edge of the planar LED light source unit 522, and the support piece 544 is supported by the step portion 48, so that the deflection of the light control plate 506 is suppressed. .
Further, in the support plate 540 of the light control plate 506, by reducing the distance δ between the edge 548 on the side where the support piece 544 is not provided and the nearest plano-convex lenses 543 and 544, these are reduced. Plano-convex lenses 543 and 544 are disposed up to a position close to the edge 548.
Thereby, a plurality of light source units 500 can be arranged in a line so that the edges 548 are connected to each other, and a light source device that expands the irradiation range while suppressing uneven illuminance between the light source units 500 can also be configured.

上述した実施形態において、支持片44を有する支持板40の表裏面の各々には、断面平凸状ロッドレンズ41、42や平凸レンズ543、547に限らず、任意の光制御部を設けることができる。
このように、支持片44を有する支持板40の表裏面の各々に光制御部を設ける構成としているため、光制御部を変更することで、任意の照射パターンを実現できる。
In the above-described embodiment, the front and back surfaces of the support plate 40 having the support piece 44 are not limited to the plano-convex rod lenses 41 and 42 and the plano-convex lenses 543 and 547, and an arbitrary light control unit may be provided. it can.
Thus, since it is set as the structure which provides a light control part in each of the front and back of the support plate 40 which has the support piece 44, arbitrary irradiation patterns are realizable by changing a light control part.

また、上述した実施形態では、紫外線LED30を冷却する冷却ユニット8が光源基板20との間に冷媒の流路を形成する構成を例示したが、これに限らない。すなわち、前掲図9に示した光源ユニット500のように、冷却ベース体32を天地反転させた姿勢で光源基板20の裏面に密着させるとともに、この冷却ベース体32の表面の流路溝36(図9には図示せず)との間で流路を作る蓋板555で冷却ベース体32を覆って冷却ユニット508を構成しても良い。   In the above-described embodiment, the configuration in which the cooling unit 8 that cools the ultraviolet LED 30 forms the flow path of the coolant between the light source substrate 20 is illustrated, but the present invention is not limited thereto. That is, as in the light source unit 500 shown in FIG. 9, the cooling base body 32 is brought into close contact with the back surface of the light source substrate 20 in an upside down posture, and the flow channel groove 36 (see FIG. The cooling base body 32 may be covered with a cover plate 555 that forms a flow path between the cooling unit body 508 and the cooling unit 508.

また、上述した実施形態では、光源ユニット1が1枚の光源基板20を備えた場合を例示したが、これに限らず、複数枚の光源基板20を長手方向に連接してライン状の光の全長を延長しても良い。
以下、係る構成の光源ユニット600について説明する。
In the above-described embodiment, the case where the light source unit 1 includes one light source substrate 20 is illustrated. However, the present invention is not limited to this, and a plurality of light source substrates 20 are connected in the longitudinal direction to generate linear light. The total length may be extended.
Hereinafter, the light source unit 600 having such a configuration will be described.

図11は本変形例に係る光源ユニット600の構成を示す斜視図であり、図11(A)は上方斜視図、図11(B)は下方斜視図である。図12は、光源ユニット600の分解斜視図である。なお、同図において、上述した実施形態で説明した部材については同一の符号を付し、その説明を省略する。
この光源ユニット600は、図11(A)に示すように、ユニット本体603と、冷却ユニット608と、取付金具614とを備えている。
ユニット本体603は、少なくとも記録シートの幅(搬送方向に直交する方向の長さ)よりも長い概略四角柱状に形成され、図12に示すように、上述した光源基板20、紫外線LED30、レンズホルダ624、レンズ押さえ板26、及び異形ロッドレンズ6を備え、更に、ブスバー623を備えている。
そしてユニット本体603には、2枚の光源基板20が備えられ、これらの光源基板20を長さ方向に一列に連接配置して構成することで、その全長が上記実施形態で説明した光源ユニット1よりも延長されている。
FIG. 11 is a perspective view illustrating a configuration of a light source unit 600 according to the present modification, in which FIG. 11A is an upper perspective view and FIG. 11B is a lower perspective view. FIG. 12 is an exploded perspective view of the light source unit 600. In addition, in the same figure, the same code | symbol is attached | subjected about the member demonstrated by embodiment mentioned above, and the description is abbreviate | omitted.
As shown in FIG. 11A, the light source unit 600 includes a unit main body 603, a cooling unit 608, and a mounting bracket 614.
The unit main body 603 is formed in a substantially quadrangular prism shape that is at least longer than the width of the recording sheet (the length in the direction orthogonal to the conveying direction). As shown in FIG. 12, the light source substrate 20, the ultraviolet LED 30, and the lens holder 624 described above. , A lens holding plate 26, a deformed rod lens 6, and a bus bar 623.
The unit body 603 is provided with two light source substrates 20, and these light source substrates 20 are connected and arranged in a line in the length direction so that the total length of the light source unit 1 described in the above embodiment is provided. Has been extended.

ブスバー623は、光源基板20の各々に大電流を与える例えば銅ブスバーであり、光源基板20の各々を電気的に直列に接続する電気配線部材(導電部材)である。ブスバー623は、図12に示すように、紫外線LED30の両側に、これら紫外線LED30の配列に沿って延在し、これらブスバー623の間に各紫外線LED30が電気的に並列接続されている。
このようにブスバー623を通じて各光源基板20に大電流を供給できるから、複数の光源基板20を直列に連結した場合であっても、各光源基板20の紫外線LED30の各々に安定的に電流が供給される。
またブスバー623は、紫外線LED30の配列に沿って延びる矩形板状を成し、その表裏面を光源基板20の実装面に垂直に立てて設けているため、光源基板20の実装面内に配線を設ける場合に比べて省スペース化される。
The bus bar 623 is, for example, a copper bus bar that applies a large current to each of the light source substrates 20, and is an electrical wiring member (conductive member) that electrically connects each of the light source substrates 20 in series. As shown in FIG. 12, the bus bars 623 extend on both sides of the ultraviolet LEDs 30 along the arrangement of the ultraviolet LEDs 30, and the ultraviolet LEDs 30 are electrically connected in parallel between the bus bars 623.
Since a large current can be supplied to each light source substrate 20 through the bus bar 623 in this way, even when a plurality of light source substrates 20 are connected in series, a current is stably supplied to each of the ultraviolet LEDs 30 of each light source substrate 20. Is done.
The bus bar 623 has a rectangular plate shape extending along the arrangement of the ultraviolet LEDs 30, and the front and back surfaces thereof are provided so as to be perpendicular to the mounting surface of the light source substrate 20. Space is saved compared with the case of providing.

レンズホルダ624は、上述した実施形態のレンズホルダ24と同様に、異形ロッドレンズ6を収めるホルダである。異形ロッドレンズ6は、各光源基板20ごとに設けられ、これらの異形ロッドレンズ6が直線状に連結してレンズ収納開口646に収められる。また、このレンズ収納開口646には、その内側壁と紫外線LED30の間に上記ブスバー623が収められ、紫外線LED30から内側壁に向かう紫外線を遮蔽する。   The lens holder 624 is a holder that accommodates the deformed rod lens 6 in the same manner as the lens holder 24 of the above-described embodiment. The deformed rod lens 6 is provided for each light source substrate 20, and these deformed rod lenses 6 are linearly connected and stored in the lens storage opening 646. Further, the bus housing 623 is housed in the lens housing opening 646 between the inner wall and the ultraviolet LED 30 to shield the ultraviolet light from the ultraviolet LED 30 toward the inner wall.

冷却ユニット608は、光源基板20ごとに設けられて、当該光源基板20を冷却するものであり、光源基板20の全長と略同じ長さの板状に形成され、その底面を、光源基板20の実装面の裏側の面の全面に高熱伝導性の取付金具614を間に挟んで密接させて取り付けられている。
この冷却ユニット608は、図12に示すように、冷却ユニット608は、冷却ベース体632と、蓋板633と、継ぎ手12とを有し、冷却ベース体632、及び蓋板633によって冷却ユニット608の板状の本体が構成されている。
The cooling unit 608 is provided for each light source substrate 20 and cools the light source substrate 20. The cooling unit 608 is formed in a plate shape having a length substantially the same as the entire length of the light source substrate 20. A mounting plate 614 with high thermal conductivity is sandwiched between the mounting surface and the entire surface on the back side of the mounting surface.
As shown in FIG. 12, the cooling unit 608 includes a cooling base body 632, a lid plate 633, and a joint 12, and the cooling base body 632 and the lid plate 633 form the cooling unit 608. A plate-shaped main body is configured.

この冷却ユニット608は、図9で説明した冷却ユニット508と同様に、図12に示すように、冷却ベース体632の上面632Aに凹部から成る流路溝636を設け、この上面632Aを蓋板655で覆って冷却水の流路を形成し、冷却ベース体632の底面608Aを光源基板20に裏面に密着させて取り付けられる。
冷却ベース体632の流路溝636の両端部には、蓋板655を貫通して継ぎ手12が接続され、一端の継ぎ手12から冷却水を導入し、流路溝636を流れて他端の継ぎ手12から排出可能に構成されている。流路溝636に冷却水が流れることで底面8Aが冷却状態に維持され、これに密着した光源基板20が長手方向に亘って全体的に冷却されることとなる。
As in the cooling unit 508 described with reference to FIG. 9, the cooling unit 608 is provided with a channel groove 636 formed of a concave portion on the upper surface 632A of the cooling base body 632, and this upper surface 632A is formed on the cover plate 655. The cooling water passage is formed by covering the bottom surface 608A with the bottom surface 608A of the cooling base body 632 in close contact with the back surface of the light source substrate 20.
The joint 12 is connected to both ends of the flow path groove 636 of the cooling base body 632 through the cover plate 655, cooling water is introduced from the joint 12 at one end, flows through the flow path groove 636, and the joint at the other end. 12 can be discharged. When the cooling water flows through the flow channel groove 636, the bottom surface 8 </ b> A is maintained in a cooled state, and the light source substrate 20 in close contact with the bottom surface 8 </ b> A is entirely cooled in the longitudinal direction.

取付金具614は、図11、及び図12に示すように、冷却ユニット608の上側で、光源ユニット600の長手方向に沿って延在する取付片614Aを有する。この取付片614Aには、長手方向に複数(図示例では2個)の取付孔615が形成されており、この取付孔615にねじ等を通して印刷装置に固定される。固定時には、光源ユニット600は記録シートの印刷面に対して略平行に延在するように固定され、記録シートへの照射ムラを防止している。   As shown in FIGS. 11 and 12, the mounting bracket 614 includes a mounting piece 614 </ b> A that extends along the longitudinal direction of the light source unit 600 on the upper side of the cooling unit 608. A plurality of (two in the illustrated example) attachment holes 615 are formed in the attachment piece 614A in the longitudinal direction, and the attachment holes 615 are fixed to the printing apparatus through screws or the like. At the time of fixing, the light source unit 600 is fixed so as to extend substantially parallel to the printing surface of the recording sheet, thereby preventing uneven irradiation on the recording sheet.

この取付金具614は、図11に示すように、光源ユニット600の全長に亘る長さの板材を断面L字状に折り曲げて形成されることで剛性が高められ、その一側面が上記取付片614Aに用いられることで、光源ユニット600の自重による撓みが防止されている。さらに、この光源ユニット600では、取付金具614のL字状の他側面が、その表裏に複数の光源基板20、及び複数の冷却ユニット608を取付固定する取付ベース614Bに用いられている。   As shown in FIG. 11, the mounting bracket 614 is formed by bending a plate material having a length over the entire length of the light source unit 600 into an L-shaped cross section, so that rigidity is increased, and one side surface of the mounting bracket 614 is the mounting piece 614A. Therefore, the light source unit 600 is prevented from being bent by its own weight. Furthermore, in this light source unit 600, the L-shaped other side surface of the mounting bracket 614 is used for the mounting base 614B for mounting and fixing the plurality of light source substrates 20 and the plurality of cooling units 608 on the front and back.

すなわち、複数の光源基板20を長手方向に連接して全長が長いライン状の光を照射可能にしつつ、断面L字状の形状により剛性を高めた取付金具614に、複数の光源基板20、及び複数の冷却ユニット608を取り付けて光源ユニット600を構成することで、長手方向での撓みが生じ難い光源ユニット600が簡単に構成される。なお、光源基板20と冷却ユニット608の間に取付ベース614Bが介在することから、この取付ベース614Bが冷却ユニット608による光源基板20の冷却を妨げることがないように、取付金具614は高熱伝導性の材料で形成される。   That is, the plurality of light source substrates 20 are connected to the mounting bracket 614 that has a plurality of light source substrates 20 connected to each other in the longitudinal direction and can irradiate light having a long overall length, and has an L-shaped cross section to increase rigidity. By constructing the light source unit 600 by attaching a plurality of cooling units 608, the light source unit 600 that is less likely to bend in the longitudinal direction is easily configured. Since the mounting base 614B is interposed between the light source substrate 20 and the cooling unit 608, the mounting bracket 614 has a high thermal conductivity so that the mounting base 614B does not hinder the cooling of the light source substrate 20 by the cooling unit 608. Formed of the material.

ここで、上述した実施形態の冷却ユニット8では、図5に示したように、横長楕円形凹部36Aを冷却ベース体32の短手方向F2に可能な限りに広げつつ、各々の横長楕円形凹部36Aの間を、両側にネジ孔36Dを設けるスペースを残す程度に幅狭の連通部36Bで連通することで、ネジ孔36Dの配置スペースを確保しつつ、高い冷却能力を維持する流路溝36を得る構成とした。
また、この構成においては、深さG(図5(B))を横長楕円形凹部36Aよりも深すすることで、連通部36Bの断面積を横長楕円形凹部36Aの断面積と等しくなるようにしている。
しかしながら、連通部36Bを深さGを深くすると、冷却ベース体32が厚くなり重量が増すばかりか、冷却水の熱回収効率も低下するという問題がある。
特に、本変形例の図11に示した光源ユニット600では、全長が長いことから重量増加の影響は大きく、また、冷却ユニット608とユニット本体603の間に取付金具614が介在するため、熱回収効率低下の影響も大きい。
そこで本変形例の冷却ユニット608では、冷却ベース体632の表面634に、次のようにを形成している。
Here, in the cooling unit 8 of the above-described embodiment, as shown in FIG. 5, each of the horizontally long elliptical concave portions 36 </ b> A is widened as much as possible in the short direction F <b> 2 of the cooling base body 32. The flow path groove 36 that maintains a high cooling capacity while securing the space for arranging the screw holes 36D by communicating between the 36A through the communication portions 36B that are narrow enough to leave spaces for providing the screw holes 36D on both sides. It was set as the structure which obtains.
Further, in this configuration, by making the depth G (FIG. 5B) deeper than the horizontally-long elliptical concave portion 36A, the cross-sectional area of the communicating portion 36B is made equal to the cross-sectional area of the horizontally-long elliptical concave portion 36A. I have to.
However, if the depth G of the communication part 36B is increased, the cooling base body 32 becomes thicker and the weight increases, and the heat recovery efficiency of the cooling water also decreases.
In particular, in the light source unit 600 shown in FIG. 11 of the present modification, the influence of the weight increase is large because the total length is long, and the mounting bracket 614 is interposed between the cooling unit 608 and the unit main body 603, so that the heat recovery is performed. The effect of efficiency reduction is also great.
Therefore, in the cooling unit 608 of this modification, the following is formed on the surface 634 of the cooling base body 632.

図13は冷却ベース体632の構成を示す図であり、図13(A)は平面図、図1(B)は図13(A)のII−II線における断面図である。なお、この図では、パッキン溝38の図示を省略している。
同図に示すように、この冷却ベース体632では、その表面634に、長手方向F1に沿って対向する一対の縁部631に互いに違いに(いわゆる千鳥状に)ネジ止め用のネジ孔636Dの形成スペース636Eを設けている。そして、この一対の縁部631の間の残りのスペースに流路溝636を構成し長手方向F1に延びる凹部636Aを設けている。この凹部636Aは、その底部が平坦面を成しており、その両端部には上記継ぎ手12が接続される貫通孔636Cが形成されている。
かかる構成にあっては、この凹部636Aは、一対の縁部631のネジ孔636Dの形成スペース636Eの間を曲折して長手方向F1に延び、長手方向F1の各地点で短手方向F2の幅が略一定となるから、深さGを変えることなく各地点の断面積を等しくできる。
これにより、冷却ベース体632の厚みを薄くでき軽量化、並びに、冷却水の熱回収効率の向上を図ることができる。
13A and 13B are diagrams showing the configuration of the cooling base body 632, FIG. 13A is a plan view, and FIG. 1B is a cross-sectional view taken along line II-II in FIG. In addition, illustration of the packing groove | channel 38 is abbreviate | omitted in this figure.
As shown in the figure, in the cooling base body 632, a pair of edge portions 631 opposed to each other along the longitudinal direction F1 are formed on the surface 634 differently (in a so-called staggered manner) with screw holes 636D for screwing. A formation space 636E is provided. The remaining space between the pair of edge portions 631 is provided with a channel groove 636 and a recess 636A extending in the longitudinal direction F1. The bottom of the recess 636A has a flat surface, and through holes 636C to which the joint 12 is connected are formed at both ends.
In such a configuration, the recess 636A is bent between the formation space 636E of the screw hole 636D of the pair of edges 631 and extends in the longitudinal direction F1, and the width in the short direction F2 at each point in the longitudinal direction F1. Is substantially constant, the cross-sectional area of each point can be made equal without changing the depth G.
Thereby, the thickness of the cooling base body 632 can be reduced, the weight can be reduced, and the heat recovery efficiency of the cooling water can be improved.

なお、以上説明した実施形態、及び変形例において、冷却ユニット8、508、608に流す冷媒は、冷却水に限らず、任意の冷媒を用いることができる。
また上述した実施形態において、発光素子の一例たるLEDとして紫外線LEDを例示したが、これに限らず、他の波長の光を照射するLEDでも良い。さらに、LEDに限らず有機EL等の任意の発光素子を用いることもできる。
また本発明に係る光源ユニットは、紫外線硬化インクの硬化用光源の他にも、広く応用が可能であることは勿論である。
In the embodiment and the modification described above, the refrigerant flowing through the cooling units 8, 508, and 608 is not limited to cooling water, and any refrigerant can be used.
In the above-described embodiment, an ultraviolet LED is exemplified as an LED that is an example of a light emitting element. However, the present invention is not limited to this, and an LED that emits light of another wavelength may be used. Furthermore, not only LED but arbitrary light emitting elements, such as organic EL, can also be used.
Further, the light source unit according to the present invention can be widely applied besides the light source for curing ultraviolet curable ink.

1、100、600 光源ユニット
4 照射口
6、106、206、306、406 異形ロッドレンズ(光学部品)
8、508、608 冷却ユニット(冷却手段)
20 光源基板(発光素子基板、他の部材)
22 ラインLED光源
24、624 レンズホルダ(光学部品ホルダ)
26 レンズ押さえ板
30 紫外線LED(発光素子)
32、632 冷却ベース体
36、636 流路溝
36A 横長楕円形凹部
36C、636C 貫通孔
36D、636D ネジ孔
37 連通部
41、42 断面平凸状ロッドレンズ(第1光制御部、第2光制御部)
44、544 支持片
46 レンズ収納開口(収納開口)
60 LEDチップ
522 面状LED光源ユニット
524 光学部品ホルダ
506 光制御板(光学部品)
543、547 平凸レンズ(第1光制御部、第2光制御部)
555、655 蓋板(他の部材)
636A 凹部
1, 100, 600 Light source unit 4 Irradiation port 6, 106, 206, 306, 406 Deformed rod lens (optical component)
8,508,608 Cooling unit (cooling means)
20 Light source substrate (light emitting element substrate, other members)
22 Line LED light source 24, 624 Lens holder (optical component holder)
26 Lens holding plate 30 UV LED (light emitting element)
32, 632 Cooling base body 36, 636 Channel groove 36A Horizontal oblong recess 36C, 636C Through hole 36D, 636D Screw hole 37 Communication portion 41, 42 Plano-convex rod lens (first light control portion, second light control) Part)
44, 544 Supporting piece 46 Lens storage opening (storage opening)
60 LED chip 522 Planar LED light source unit 524 Optical component holder 506 Light control plate (optical component)
543, 547 Plano-convex lens (first light control unit, second light control unit)
555, 655 Cover plate (other members)
636A Concave

Claims (6)

複数の発光素子を表面に配列した発光素子基板と、
前記発光素子の各々を覆って光を制御する光学部品と、を備え、
前記光学部品の両側に縁部に沿って延びる一対の支持片を設け、
前記光学部品の一対の支持片を支持して前記発光素子の各々を覆う位置に配置する光学部品ホルダを前記発光素子基板に備える
ことを特徴とする光源ユニット。
A light emitting element substrate having a plurality of light emitting elements arranged on the surface;
An optical component that covers each of the light emitting elements to control light, and
Provide a pair of support pieces extending along the edge on both sides of the optical component,
A light source unit comprising: an optical component holder disposed on a position where the pair of support pieces of the optical component are supported to cover each of the light emitting elements.
前記光学部品は、
前記発光素子の放射光が入射し、入射した光を制御する光制御部と、
前記光制御部を表面に備え当該光制御部から出射する光を透過するとともに、前記光制御部を挟んだ各端部に前記一対の支持片を有する支持板とを備える
ことを特徴とする請求項1に記載の光源ユニット。
The optical component is
A light control unit that controls the incident light that is emitted from the light emitting element; and
The light control unit is provided on a surface, and transmits a light emitted from the light control unit, and a support plate having the pair of support pieces at each end sandwiching the light control unit. Item 2. The light source unit according to Item 1.
前記光学部品ホルダには、前記発光素子の周囲を囲み、かつ前記光学部品を収める収納開口が設けられ、前記光学部品によって前記収納開口を閉じて前記発光素子の各々を封じたことを特徴とする請求項1又は2に記載の光源ユニット。   The optical component holder is provided with a housing opening that surrounds the light emitting element and accommodates the optical component, and the light emitting element is closed by the optical component to seal each of the light emitting elements. The light source unit according to claim 1 or 2. 前記発光素子基板の裏面に前記発光素子の各々を冷却する冷却手段を備えることを特徴とする請求項1乃至3のいずれかに記載の光源ユニット。   The light source unit according to any one of claims 1 to 3, further comprising a cooling unit that cools each of the light emitting elements on a back surface of the light emitting element substrate. 前記冷却手段は、冷媒の流路を形成する流路溝が設けられ、前記流路に流れる前記冷媒により前記発光素子基板を通じて前記発光素子の各々を冷却することを特徴とする請求項4に記載の光源ユニット。   5. The cooling device according to claim 4, wherein the cooling means is provided with a flow channel groove that forms a flow channel for a coolant, and each of the light emitting elements is cooled through the light emitting device substrate by the coolant flowing in the flow channel. Light source unit. 前記冷却手段は、前記流路溝が表面に形成され、他の部材を前記表面に接触させるようにネジ止めされ、前記他の部材と前記流路溝とにより前記流路を構成する冷却ベース体を備え、
前記冷却ベース体の表面には、対向する縁部に互いに違いにネジ止め用のネジ孔の形成スペースを設け、残りのスペースに前記流路溝を設けたことを特徴とする請求項5に記載の光源ユニット。
The cooling means is a cooling base body in which the flow channel is formed on the surface and is screwed so that another member contacts the surface, and the flow channel is constituted by the other member and the flow channel. With
6. The surface of the cooling base body is provided with a space for forming screw holes for screwing at opposite edges, and the flow path groove is formed in the remaining space. Light source unit.
JP2012225614A 2012-02-27 2012-10-11 Light source unit Active JP6171301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012225614A JP6171301B2 (en) 2012-02-27 2012-10-11 Light source unit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012040642 2012-02-27
JP2012040642 2012-02-27
JP2012225614A JP6171301B2 (en) 2012-02-27 2012-10-11 Light source unit

Publications (2)

Publication Number Publication Date
JP2013211251A true JP2013211251A (en) 2013-10-10
JP6171301B2 JP6171301B2 (en) 2017-08-02

Family

ID=49528901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012225614A Active JP6171301B2 (en) 2012-02-27 2012-10-11 Light source unit

Country Status (1)

Country Link
JP (1) JP6171301B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606531A (en) * 2017-09-21 2018-01-19 武汉优炜星科技有限公司 A kind of parallel spot light of UV LED

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034085A1 (en) * 2004-08-11 2006-02-16 Harvatek Corporation Water-cooling heat dissipation device adopted for modulized LEDs
JP2008276999A (en) * 2007-04-26 2008-11-13 Kuo-Chun Lin Heat radiator of led lamp
JP2010108844A (en) * 2008-10-31 2010-05-13 Ledtech Electronics Corp Assembly type light-emitting module
JP2011070940A (en) * 2009-09-25 2011-04-07 Toshiba Lighting & Technology Corp Lighting fixture
US20110103051A1 (en) * 2009-10-30 2011-05-05 Ruud Lighting, Inc. Led apparatus and method for accurate lens alignment
JP2012014948A (en) * 2010-06-30 2012-01-19 Sharp Corp Lighting system and image display device equipped with it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060034085A1 (en) * 2004-08-11 2006-02-16 Harvatek Corporation Water-cooling heat dissipation device adopted for modulized LEDs
JP2008276999A (en) * 2007-04-26 2008-11-13 Kuo-Chun Lin Heat radiator of led lamp
JP2010108844A (en) * 2008-10-31 2010-05-13 Ledtech Electronics Corp Assembly type light-emitting module
JP2011070940A (en) * 2009-09-25 2011-04-07 Toshiba Lighting & Technology Corp Lighting fixture
US20110103051A1 (en) * 2009-10-30 2011-05-05 Ruud Lighting, Inc. Led apparatus and method for accurate lens alignment
JP2012014948A (en) * 2010-06-30 2012-01-19 Sharp Corp Lighting system and image display device equipped with it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606531A (en) * 2017-09-21 2018-01-19 武汉优炜星科技有限公司 A kind of parallel spot light of UV LED

Also Published As

Publication number Publication date
JP6171301B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
CN109973840B (en) Luminous body with LED and cylindrical lens
JP5555084B2 (en) Light source device
JP6517721B2 (en) Light irradiation device
US20160290608A1 (en) Light source device
US9755126B2 (en) Light source unit
JP2015065057A (en) Light-emitting element unit, light source device, and irradiator
JP6171301B2 (en) Light source unit
KR200491878Y1 (en) Light illuminating module
KR101748016B1 (en) Lighting unit with reflector
JP6634848B2 (en) Irradiation device and heat radiation unit
JP6020007B2 (en) Light source unit
JP2016025165A (en) Light irradiation device
JP2014207209A (en) Light source unit
JP2015018948A (en) Light source unit
CN107521227B (en) Irradiation device and image forming apparatus
JP2016062677A (en) Light irradiation device
JP6915652B2 (en) Light emitting element light source module
JP2011046040A (en) Led irradiation device
JP6364953B2 (en) Cooling structure and light source unit
JP5056292B2 (en) Surface light source device and liquid crystal display device
JP6295455B2 (en) Light irradiation device
JP6131804B2 (en) Light source device and irradiator
WO2022019282A1 (en) Light irradiation device
KR20150116780A (en) Light irradiation apparatus
WO2017086097A1 (en) Light-emitting element light source module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6171301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350