WO2017086097A1 - Light-emitting element light source module - Google Patents

Light-emitting element light source module Download PDF

Info

Publication number
WO2017086097A1
WO2017086097A1 PCT/JP2016/081516 JP2016081516W WO2017086097A1 WO 2017086097 A1 WO2017086097 A1 WO 2017086097A1 JP 2016081516 W JP2016081516 W JP 2016081516W WO 2017086097 A1 WO2017086097 A1 WO 2017086097A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cooling medium
channel
light source
emitting element
Prior art date
Application number
PCT/JP2016/081516
Other languages
French (fr)
Japanese (ja)
Inventor
隆博 井上
松島 竹夫
中島 敏博
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to CN201680064470.1A priority Critical patent/CN108351092A/en
Publication of WO2017086097A1 publication Critical patent/WO2017086097A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/56Cooling arrangements using liquid coolants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes

Definitions

  • the present invention relates to a light emitting element light source module provided with a plurality of light emitting elements such as LED (light emitting diode) elements.
  • UV curing technology technologies for curing ultraviolet curable resins (UV curing technology) are used in various fields, specifically, for example, liquid crystal panel manufacturing processes (ODF method), printed circuit board manufacturing processes (exposure processing), and printing inks. It is used in the fixing process (drying process).
  • a light emitting element light source module using a light emitting element such as an LED element as a light source is used as a light source in an ultraviolet irradiation apparatus used in such a UV curing process (ultraviolet curing process).
  • a light-emitting element light source module that uses LED elements as a light-emitting source is usually configured by arranging a large number of LED elements at high density.
  • each of the large number of LED elements is likely to increase in temperature due to its own heat generation or heat received from the surroundings, resulting in the LED element itself.
  • the luminous efficiency is lowered.
  • a light-emitting element light source module having a large number of LED elements a plurality of substrates on which a plurality of LED elements are arranged are each arranged on a heat sink, and each of the plurality of heat sinks is arranged.
  • exchange is possible on the support stand which consists of metals through the spacer which consists of insulating materials is proposed (refer patent document 1).
  • a cooling flow path for circulating a cooling medium is formed inside each heat sink.
  • a cooling medium supply channel through which the cooling medium supplied to the cooling channels in the plurality of heat sinks flows, and a cooling medium discharge channel through which the cooling medium discharged from the cooling channels flows Is formed.
  • the spacer is formed with a cooling medium supply through-hole and a cooling medium discharge through-hole communicating with each of the cooling flow paths in the plurality of heat sinks, and the cooling medium supply flow path and the cooling medium discharge flow path in the support base.
  • the heat sink formed by bonding the substrate on which the LED element that needs to be replaced is bonded is removed from the support base, and a new heat sink (specifically, a heat sink formed by bonding the substrate) is attached.
  • a new heat sink specifically, a heat sink formed by bonding the substrate
  • the channel structure of the cooling channel has not been sufficiently studied, and therefore, a large number of LED elements cannot be efficiently and uniformly cooled. There is a problem.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a light emitting element light source module capable of cooling a plurality of light emitting elements efficiently and with high uniformity. is there.
  • the light emitting element light source module of the present invention includes a light source unit in which a plurality of light emitting elements are arranged on the surface of a heat sink made of a heat conductive material, and a cooling block arranged on the back surface of the heat sink.
  • a cooling channel for circulating a cooling medium is formed in the heat sink
  • the cooling flow path has a flat cross-sectional shape in which the flow path width is larger than the flow path height and extends along the surface of the heat sink, and the cooling medium supply port and the cooling medium discharge port in the cooling flow path are respectively Connected to the cooling medium supply channel and the cooling medium discharge channel formed in the cooling block,
  • the cooling flow path has a plurality of flow path portions that are continuous with each other and are adjacent to each other via a thermally conductive partition wall in a region immediately below the light emitting element arrangement region on the surface of the heat sink where a plurality of light emitting elements are arranged.
  • the thickness of the thermally conductive partition wall portion is smaller than the channel width of the cooling channel.
  • the cooling flow path is continuous with a first flow path portion extending along one edge of the light emitting element arrangement region and a cooling medium outlet of the first flow path portion. And it is preferable to have the 2nd flow-path part extended in the same direction as the said 1st flow-path part through the said heat conductive partition part. In the light emitting element light source module of the present invention having such a configuration, it is preferable that the cooling medium supply port and the cooling medium discharge port are respectively provided outside the region immediately below.
  • the cooling channel preferably has a ratio of the channel width to the channel height of 1.5 to 3.5.
  • the area of the area occupied by the cooling flow path in the light emitting element arrangement area is the light emitting element. It is preferably 80% or more with respect to the area of the arrangement region.
  • the cooling block is common to the plurality of light source units, It is preferable that the cooling medium supply port and the cooling medium discharge port of each of the cooling channels in the plurality of light source units are connected to a common cooling medium supply channel and a common cooling medium discharge channel in the cooling block.
  • the cooling flow path formed inside the heat sink has a plurality of flow path portions in a region immediately below the light emitting element arrangement area where the plurality of light emitting elements are arranged on the surface of the heat sink.
  • heat is exchanged between the cooling media flowing through the adjacent flow path portions, temperature uniformity in the plurality of flow path portions is achieved, so that a large temperature gradient does not occur in the cooling flow paths. .
  • the cooling block is formed on the back surface of the heat sink. Therefore, since the temperature of the cooling medium flowing through the cooling medium supply channel is suppressed from being increased by heat received from the light emitting element, a large temperature gradient is not generated in the cooling medium supply channel. Moreover, it can suppress that the cooling medium which distribute
  • FIG. 1 is a cross-sectional view for explaining an example of the configuration of the light-emitting element light source module of the present invention
  • FIG. 2 shows the surface of the assembly of the cooling block and the light source unit constituting the light-emitting element light source module of FIG.
  • FIG. 3 is an explanatory view showing a (light emitting surface) side
  • FIG. 3 is an explanatory view showing a cross section of an assembly of a cooling block and a light source unit constituting the light emitting element light source module of FIG. 1, and
  • the light-emitting element light source module 10 includes a plurality of (three in the illustrated example) light source units 20.
  • Each of the plurality of light source units 20 includes a rectangular flat plate-like substrate 22 having a plurality of light emitting elements 21 disposed on the surface (the lower surface in FIG. 1 and the upper surface in FIG. 3). It is located on the surface of 31 (the lower surface in FIG. 1 and the upper surface in FIG. 3). Further, in each of the plurality of light source units 20, a cooling flow path 35 for circulating a cooling medium such as water is formed inside the heat sink 31.
  • the plurality of light source units 20 are arranged on the surface of the substantially rectangular flat plate-like cooling block 40 (the lower surface in FIG. 1 and the upper surface in FIG.
  • the plurality of heat sinks 31 and the cooling block 40 constitute a water cooling structure for cooling a large number of light emitting elements 21 (a plurality of light emitting elements 21 constituting each of the plurality of light source units 20) with a cooling medium.
  • the plurality of light source units 20 and the cooling block 40 are covered with an aluminum cover member 12 having a substantially rectangular parallelepiped appearance.
  • the cover member 12 has a rectangular opening formed in a region facing the light emitting elements 21 on the bottom surface (the lower surface in FIG. 1) of the cover member 12, and this opening is a window made of borosilicate glass. It is closed by the member 13.
  • a power supply unit (not shown) connected to an external power source is provided on one side surface of the cover member 12, and a cooling medium supply opening (not shown) and a cooling medium discharge opening (not shown) are provided. Is formed.
  • a region 12 ⁇ / b> A surrounding a space in which an optical path from the light emitting elements 21 provided on each of the plurality of substrates 22 to the window member 13 is formed.
  • mirror processing may be performed from the viewpoint of emitting light from the light emitting elements 21 from the window member 13 with high efficiency.
  • the light emitting element light source module 10 may be configured to reflect or refract light from a large number of light emitting elements 21 by optical members such as mirrors and lenses in order to obtain desired illuminance and illuminance distribution. Good.
  • the large number of light emitting elements 21 and the window member 13 are such that most of the light emitted from the large number of light emitting elements 21 at a radiation angle (half angle) of about 60 ° is transmitted through the window member 13. Are arranged as close as possible.
  • Each of the plurality of light source units 20 is bonded to the surface of the heat sink 31 with the substrate 22 having the plurality of light emitting elements 21 disposed on the surface in a state where the back surface of the substrate 22 and the surface of the heat sink 31 face each other. It is a thing.
  • a bonding layer (not shown) made of a heat conductive bonding material is formed between the heat sink 31 and the substrate 22.
  • the heat conductive bonding material for example, a heat conductive adhesive and a heat conductive double-sided adhesive sheet are used.
  • the heat sink 31 is configured by a rectangular flat plate-shaped large diameter portion 31A and rectangular flat plate-shaped small diameter portions 31B stacked on the large diameter portion 31A.
  • the large diameter portion 31A has a dimension that is larger than the dimension in the longitudinal direction of the substrate 22 in the longitudinal direction, while the dimension in the lateral direction is slightly smaller than the dimension in the lateral direction of the substrate 22.
  • the small diameter portion 31B has a dimension equivalent to the dimension in the longitudinal direction of the substrate 22 in the longitudinal direction, while the dimension equivalent to the dimension in the short direction of the large diameter part 31A in the lateral direction. have.
  • the small-diameter portion 31B is located at the center in the longitudinal direction on the surface of the large-diameter portion 31A (the lower surface in FIG. 1 and the upper surface in FIG. 3), and both end portions in the longitudinal direction on the surface of the large-diameter portion 31A. The surface is exposed.
  • the substrate 22 is disposed on the surface of the small diameter portion 31 ⁇ / b> B in a state in which both sides of the substrate 22 are slightly projected from the heat sink 31.
  • the light source units 20 adjacent to each other are in a state in which the substrate 22 is in close proximity and the heat sink 31 is in a state of being slightly separated.
  • the water-cooled structure constituted by the plurality of heat sinks 31 and the cooling block 40 is one in which a flow path for a cooling medium is formed inside the water-cooled structure.
  • This circulation channel has a cooling channel 35 in the plurality of heat sinks 31, a cooling medium supply channel 42 and a cooling medium discharge channel 44 in the cooling block 40.
  • the water cooling structure includes a supply portion 17 for supplying a cooling medium to the flow passage and a discharge portion 18 for discharging the cooling medium from the flow passage. In the area other than the area where the light source unit 20 is located.
  • the supply unit 17 and the discharge unit 18 are constituted by joint members, and a cooling medium supply opening (not shown) and a cooling medium discharge opening formed in the cover member 12 in the cooling block 40. It is provided on one side facing (not shown).
  • the leading end portion of the supply unit 17 protrudes outward from the cooling medium supply opening to the cover member 12, and the leading end portion of the discharge portion 18 protrudes outward from the cooling medium discharge opening to the cover member 12. Yes.
  • the water-cooled structure is formed by each of the plurality of light source units 20 being disposed so as to be replaceable with the back surface of the heat sink 31 being in close contact with the surface of the cooling block 40. More specifically, each of the plurality of light source units 20 is fixed by a plurality of (four in the example of this figure) fixing screws 28 so that the back surface of the heat sink 31 is in close contact with the surface of the cooling block 40. It is fixed to the cooling block 40.
  • the supply communication passage 26 extending in the stacking direction of the heat sink 31 and the cooling block 40 is formed between each of the plurality of cooling passages 35 and the cooling medium supply passage 42. Each of the plurality of cooling flow paths 35 and the cooling medium supply flow path 42 communicate with each other through these supply communication paths 26.
  • the supply communication path 26 includes a supply communication path hole 26 ⁇ / b> A in the heat sink 31 and a supply communication path hole 26 ⁇ / b> B in the cooling block 40. Further, a discharge communication passage 27 extending in the stacking direction of the heat sink 31 and the cooling block 40 is formed between each of the plurality of cooling flow paths 35 and the cooling medium discharge flow path 44. Each of the plurality of cooling channels 35 and the cooling medium discharge channel 44 are communicated with each other by the passage 27.
  • the discharge communication path 27 is configured by a discharge communication path hole 27 ⁇ / b> A in the heat sink 31 and a discharge communication path hole 27 ⁇ / b> B in the cooling block 40.
  • An annular seal member 29 is arranged between each of the plurality of light source units 20 and the cooling block 40 so as to surround each of the supply communication path 26 and the discharge communication path 27.
  • the plurality of light source units 20 are fixed to the cooling block 40 in an exchangeable manner, and the liquid tightness of the supply communication passage 26 and the discharge communication passage 27 is realized, whereby a water cooling structure is formed.
  • each of the plurality of light source units 20 is fixed to the cooling block 40 by fixing screws 28 at each of the four corners of the surface of the heat sink 31 (the surface of the large diameter portion 31A).
  • annular seal member arranging groove 41 is formed on the surface of the cooling block 40 so as to make a round of an opening communicating with the supply communication passage hole 26B and an opening communicating with the discharge communication passage hole 27B.
  • a seal member 29 made of an O-ring is arranged in the seal member arrangement groove 41, and the seal member 29 is clamped.
  • each of the plurality of light source units 20 a plurality (160 in the illustrated example) of light emitting elements 21 are two-dimensionally arranged on the surface of the substrate 22 at regular intervals.
  • the plurality of light emitting elements 21 are arranged in a substantially rectangular light emitting element arrangement region located in the center of the substrate 22 in the longitudinal direction on the surface of the substrate 22 in the short direction of the light emitting element arrangement region.
  • 10 in the vertical direction (FIG. 2) and 16 in the longitudinal direction of the light emitting element arrangement region (left and right direction in FIG. 2) are arranged in a staggered pattern.
  • On the surface of the substrate 22, a plurality of (two in the illustrated example) electrical connection portions 23 are disposed at both ends in the longitudinal direction of the substrate 22. All the light emitting elements 21 on the substrate 22 are electrically connected to the electrical connection portion 23.
  • an LED element As the light emitting element 21, an LED element, an LD (laser diode) element, or the like is used. Specifically, for example, those having peak emission wavelengths of 365 nm, 385 nm, 395 nm, 405 nm, and 450 nm are used. In the example of this figure, as the light emitting element 21, an LED element having a peak emission wavelength of 365 nm is used.
  • the base material constituting the substrate 22 an appropriate material according to the type of the light emitting element 21 or the like is used.
  • the material of the substrate 22 include thermally conductive ceramics such as aluminum nitride (AlN) and aluminum oxide (Al 2 O 3 ).
  • the base material of the substrate 22 is made of aluminum nitride.
  • each of the plurality of light source units 20 one cooling channel 35 is formed inside the heat sink 31.
  • the cooling flow path 35 is provided in parallel to the surface of the heat sink 31 so that the cooling medium can flow along the surface of the heat sink 31, and a cooling medium supply port 35A is formed at one end and the other end.
  • a cooling medium discharge port 35B is formed.
  • the heat of the plurality of light emitting elements 21 is received by the cooling medium via the substrate 22 and the heat sink 31, whereby the light emitting elements 21 are cooled.
  • the cooling channel 35 has a flat cross-sectional shape that has a channel width larger than the channel height and extends along the surface of the heat sink 31.
  • the ratio of the channel width to the channel height is preferably 1.5 to 3.5 from the viewpoint of cooling efficiency.
  • the cooling channel 35 has a cross-sectional shape having a width (channel width) of 5 mm and a height (channel height) of 2.5 mm, and the ratio of the channel width to the channel height. Is a flat rectangular shape of 2.
  • the cooling flow path 35 is a part of the light emitting element arrangement region in the area immediately below the light emitting element arrangement area where the plurality of light emitting elements 21 are located on the surface of the heat sink 31 (hereinafter also referred to as “light source immediately below area”).
  • the first flow path portion extending along the edge and the cooling medium outlet of the first flow path portion are continuous and extend in the same direction as the first flow path portion via the heat conductive partition wall 39A. It has a meandering shape with the second flow path portion. More specifically, the cooling flow path 35 extends in parallel along the region edge (specifically, the region edge extending in the short direction of the heat sink 31) 33A and 33C of the region directly below the light source in the region directly below the light source.
  • inward linear portions 36 are provided.
  • the “inner straight portion” indicates a straight flow path portion that is entirely located in the region directly under the light source.
  • the inward linear portions 36 that are adjacent to each other via the heat conductive partition wall 39A are provided as cooling medium outlets of the one inward linear portion 36.
  • the other inward linear portion 36 is communicated via a bent flow passage portion (hereinafter, also simply referred to as “bent portion”) 38A so that the cooling medium inflow port is continuous.
  • the inward linear portions 36 located on both ends in the longitudinal direction of the heat sink 31 in the region immediately below the light source extend in the region edge of the region directly below the light source (specifically, in the short direction of the heat sink 31).
  • (Region edge) 33A and 33C are located slightly inward.
  • the bent portion 38A is located slightly inward from the region edges (specifically, region edges extending in the longitudinal direction of the heat sink 31) 33B and 33D of the region directly below the light source.
  • the inward linear portions 36 located on both ends in the longitudinal direction of the heat sink 31 in the region directly below the light source are straight lines each partially located outside the region directly below the light source via a bent flow path portion (bent portion) 38B.
  • outer straight portion 37 Is communicated with a cylindrical channel portion (hereinafter also referred to as “outward linear portion”) 37.
  • outer straight portion 37 are arranged in parallel along the inner straight portion 36.
  • the thermally conductive partition wall 39B located between the outer straight portion 37 and the inner straight portion 36 is located in the region directly under the light source.
  • the cooling medium supply port 35A is formed by the cooling medium inflow port of one outer straight portion 37
  • the cooling medium discharge port 35B is formed by the cooling medium outflow port of the other outer straight portion 37.
  • the flow path lengths of these two outer straight portions 37 are such that the cooling medium supply port 35A and the cooling medium discharge port 35B are located in the center in the short direction of the heat sink 31, respectively. Is approximately half the flow path length.
  • the cooling channel 35 has a meandering shape as a whole.
  • the flow direction of the cooling medium in the cooling flow path 35 is indicated by arrows.
  • the region directly under the light source is a region surrounded by a one-dot chain line.
  • the heat conductive partition wall 39 ⁇ / b> A has a thickness smaller than the channel width of the cooling channel 35. Since the thickness of the heat conductive partition wall 39A is smaller than the channel width of the cooling channel 35, the adjacent inner straight portions 36 are located close to each other. Heat exchange is performed between the cooling media flowing through the portion 36.
  • the thickness of the thermally conductive partition wall 39A is preferably less than or equal to half the channel width of the cooling channel 35 from the viewpoint of thermal conductivity (thermal diffusion). In the example of this figure, the thickness of the heat conductive partition wall 39B is smaller than the channel width of the cooling channel 35 and is not more than half the channel width.
  • the thickness of the thermally conductive partition wall 39A is required to be equal to or greater than the thickness capable of withstanding the pressure from the cooling medium flowing through the cooling flow path 35. Furthermore, the material of the heat sink 31 and the cooling Depending on the width of the flow path 35 and in consideration of the type of the light emitting element 21 and the like, it is determined as appropriate, for example 0.5 to 2.5 mm. In the example of this figure, the thickness of the heat conductive partition wall 39A is 1 mm. The thickness of the heat conductive partition wall 39B is also 1 mm.
  • cooling flow path formation area 80% of the area of the light emitting element arrangement area (hereinafter also referred to as “light emitting element arrangement area”). The above is preferable. Since the cooling flow path formation area is 80% or more of the light emitting element arrangement area, specifically, all the light emitting elements on the substrate 22 regardless of the positional relationship between the plurality of light emitting elements 21 and the cooling flow path 35.
  • the cooling channel forming area is 83.3% of the light emitting element arrangement area.
  • the cooling medium supply port 35A and the cooling medium discharge port 35B are provided outside the region directly below the light source. It is preferable that Since the cooling medium supply port 35A and the cooling medium discharge / discharge port 35B are provided outside the region directly under the light source, it is possible to achieve more uniform temperature in the plurality of inwardly linear portions 36. Therefore, the plurality of light emitting elements 21 can be cooled with higher uniformity.
  • the cooling flow path 35 is preferably provided at a position level close to the surface of the heat sink 31 from the viewpoint of increasing the cooling efficiency by reducing the thermal resistance with the light emitting element 21.
  • the cooling channel 35 is at a position level where the depth from the surface of the heat sink 31 (the surface of the small diameter portion 31B) is 2.5 mm, that is, the distance from the surface of the heat sink 31 is 2.5 mm. It is formed to become.
  • the heat sink 31 is made of a heat conductive material.
  • the heat conductive material used for the heat sink 31 include high heat conductive metals such as copper and aluminum.
  • the thickness of the heat sink 31 is appropriately determined according to the arrangement interval of the plurality of light emitting elements 21, the cross-sectional shape of the cooling flow path 35 (specifically, the flow path height and the flow path width), and the like.
  • the heat sink 31 having such a configuration, two substantially rectangular plate-shaped base materials (specifically, a large-diameter portion base material and a small-diameter portion base material) made of a heat conductive material are joined by brazing.
  • the cooling channel 35 is formed by sealing the groove formed on the bonding surface of one of the base materials by joining the two base materials. More specifically, a cooling channel groove is formed on the joint surface of the small diameter portion base material.
  • the supply communication passage hole 26A and the discharge communication passage hole 27A are provided in the large diameter portion base material in a state where the large diameter portion base material is joined to the small diameter portion base material.
  • the two base materials constituting the heat sink 31 may be made of the same type of heat conductive material, or may be made of different types of heat conductive material.
  • the base material for a small diameter part and the base material for a large diameter part which constitute the heat sink 31 are both made of copper.
  • the cooling medium supply flow path 42 and the cooling medium discharge flow path 44 are provided in parallel to the surface of the cooling block 40, and the cooling medium supply flow path 42 is the cooling medium supplied from the supply unit 17.
  • the medium is circulated toward each of the cooling medium supply ports 35 ⁇ / b> A of the plurality of cooling channels 35, while the cooling medium discharge channel 44 is each of the cooling medium discharge ports 35 ⁇ / b> B of the plurality of cooling channels 35.
  • the cooling medium discharged from the refrigerant is circulated toward the discharge unit 18.
  • a supply opening is formed at one end of the cooling medium supply channel 42, and a supply member 17 is configured by inserting a joint member into the supply opening.
  • a discharge opening is formed at one end of the cooling medium discharge flow path 44, and a discharge member 18 is configured by inserting a joint member into the discharge opening.
  • the water cooling structure is constituted by the cooling block 40 and the plurality of heat sinks 31 as shown in the example of this figure, that is, when the plurality of cooling flow paths 35 are provided, the plurality of these cooling structures are provided.
  • the cooling medium supply channel 42 and the cooling medium discharge channel 44 preferably have the same shape (specifically, the overall shape and the cross-sectional shape) and are provided in parallel.
  • each of the cooling medium supply channel 42 and the cooling medium discharge channel 44 has a linear shape extending in the longitudinal direction of the cooling block 40, that is, in the direction in which the plurality of light source units 20 are arranged in parallel.
  • the cross-sectional shape is circular with a diameter of 6 mm.
  • the cooling medium supply channel 42 and the cooling medium discharge channel 44 are each configured by inserting a sealing member 48 on the other end side of the linear through hole formed in the cooling block 40. Yes.
  • each of the cooling medium supply channel 42 and the cooling medium discharge channel 44 it is preferable that a buffer 46 is provided from the viewpoint of controlling the pressure of the cooling medium in the flow channel.
  • each of the cooling medium supply channel 42 and the cooling medium discharge channel 44 is provided with a buffer 46.
  • the cooling block 40 is made of an appropriate metal depending on the material of the heat sink 31 from the viewpoints of mechanical strength and electric corrosion resistance. Moreover, it is preferable that the metal constituting the cooling block 40 has a lower thermal conductivity than the thermally conductive material constituting the heat sink 31. Since the cooling block 40 is made of a metal having low thermal conductivity, heat transfer between the cooling medium supply channel 42 and the cooling medium discharge channel 44 can be suppressed. Therefore, it is possible to prevent the temperature gradient of the cooling medium from increasing in the cooling medium supply flow path 42 due to the heat received from the cooling medium flowing through the cooling medium discharge flow path 44, and thus more efficient. Thus, a large number of light emitting elements 21 can be cooled. In the example of this figure, the cooling block 40 is made of stainless steel.
  • the cooling medium supplied from the supply unit 17 is discharged.
  • the path to the portion 18 is formed by the number of the cooling channels 35 connected in parallel by the cooling medium supply channel 42 and the cooling medium discharge channel 44.
  • the supply opening (supply unit 17) which is the most upstream position of the cooling medium supply flow path 42, passes through the cooling flow path 35 and reaches the uppermost position of the cooling medium discharge flow path 44. It is preferable that the length of the path to the discharge opening (discharge section 18) which is the downstream position is the same for each of the plurality of cooling flow paths 35.
  • the cooling medium is supplied from the supply unit 17 to the water cooling structure and supplied from the supply unit 17.
  • the cooling medium is distributed and flows into each of the plurality of cooling flow paths 35 via the cooling medium supply flow path 42 and the supply communication path 26.
  • the cooling medium passes through each of the plurality of cooling flow paths 35 and is then discharged from the discharge unit 18 to the outside of the water cooling structure via the discharge communication path 27 and the cooling medium discharge flow path 44. In this way, the cooling medium flows through the water-cooled structure, whereby the plurality of light emitting elements 21 are cooled by the cooling medium flowing through the heat sink 31 and the cooling flow path 35 in each of the plurality of light source units 20. Become.
  • the cooling flow path 35 formed inside the heat sink 31 has a plurality of inner straight portions 36 and a plurality of outer straight shapes in the region directly below the light source and its peripheral region.
  • the portion 37 has a channel structure in which the portions 37 are densely arranged. Therefore, the contact area between the heat sink 31 and the cooling medium can be increased without excessively increasing the flow path width of the cooling flow path 35, so that the plurality of light emitting elements 21 can be cooled with high efficiency.
  • cooling medium flow path 35 heat exchange is performed between the cooling medium flowing through the inner straight portion 36 and the outer straight portion 37 that are adjacent to each other through the heat conductive partition walls 39A and 39B, so that a plurality of inner portions Since temperature uniformity is achieved in the linear portion 36 and the plurality of outward linear portions 37, a large temperature gradient does not occur in the cooling flow path 35.
  • a cooling medium supply channel 42 and a cooling medium discharge channel 44 are formed in the cooling block 40. For this reason, the temperature of the cooling medium flowing through the cooling medium supply flow path 42 is suppressed from rising due to the heat received from the light emitting element 21, so that a large temperature gradient does not occur in the cooling medium supply flow path 42.
  • the surface temperature of the substrate 22 is within a temperature range of ⁇ 3 ° C. with an average temperature of 60 ° C. or less. can do.
  • the cooling medium supply port 35 ⁇ / b> A and the cooling medium discharge port 35 ⁇ / b> B are each provided outside the region directly under the light source, so that the temperature in the plurality of inward linear portions 36 is further increased. Uniformity can be achieved.
  • the water cooling structure is constituted by the heat sink 31 made of copper and the cooling block 40 made of stainless steel, the occurrence of electrolytic corrosion is prevented or sufficiently suppressed.
  • the cooling medium supply flow path 42 and the cooling flow path 35 are provided between the cooling medium supply flow path 42 and the cooling medium discharge flow path 44. Heat transfer between the cooling medium discharge channel 44 and the cooling channel 35 is suppressed. Therefore, the temperature gradient can be prevented from occurring in the cooling medium supply channel 42 and the cooling channel 35, so that the light emitting element 21 can be cooled more effectively.
  • a plurality of cooling channels 35 are connected in parallel by the cooling medium supply channel 42 and the cooling medium discharge channel 44, and each of the plurality of cooling channels 35 is connected.
  • the cooling medium having the same temperature as the cooling medium flowing through the supply opening in the cooling medium supply channel 42 can be caused to flow. Therefore, even if the light emitting element light source module 10 includes a plurality of light source units 20, a large number of light emitting elements 21 constituting the plurality of light source units 20 are cooled efficiently and with high uniformity. can do.
  • the light emitting element light source module 10 since the plurality of light source units 20 are fixed to the cooling block 40 so as to be replaceable, the light source unit including the light emitting element 21 that needs to be replaced. By removing 20 from the cooling block 40 and attaching a new light source unit 20, the light emitting element 21 can be replaced.
  • the light-emitting element light source module 10 is suitable as a light source for an ultraviolet irradiation device used in, for example, a liquid crystal panel manufacturing process (ODF method), a printed circuit board manufacturing process (exposure process), and a printing ink fixing process (drying process). Can be used.
  • ODF method liquid crystal panel manufacturing process
  • exposure process a printed circuit board manufacturing process
  • drying process a printing ink fixing process
  • the cooling flow path has a plurality of flow path portions that are adjacent to each other through the partition wall portion in the region immediately below the light source, and are located between the adjacent flow path portions. 1 may have a shape other than the shape shown in FIG. 1, as long as the thickness has a shape smaller than the channel width of the cooling channel. That is, the cooling channel has a bent portion or a curved portion, and in the region directly below the light source, a plurality of channel portions that run side by side through a thermally conductive partition wall having a thickness smaller than the channel width of the cooling channel. What is necessary is just to have.
  • the shape of the region directly below the light source of the cooling channel is continuous with the first channel part extending along one edge of the light emitting element arrangement region and the cooling medium outlet of the first channel part. Also, it may be U-shaped with a second flow path portion extending in the same direction as the first flow path portion via a thermally conductive partition wall portion. Further, the shape of the region immediately below the light source in the cooling channel may be a meandering shape extending meandering along the short direction of the heat sink in FIG. 4, or may be a spiral shape (specifically, a circular spiral shape or a rectangular shape). It may be a spiral shape.
  • the cooling medium supply port and the cooling medium discharge port are provided outside the region directly below the light source from the viewpoint of cooling efficiency. It is preferable. Further, when the shape of the region immediately below the light source of the cooling channel is spiral, from the viewpoint of cooling efficiency, the cooling medium supply port is provided in the region immediately below the light source, and the cooling medium discharge port is the light source. It is preferable to be provided outside the region immediately below.
  • the light emitting element light source module may have a configuration in which one light source unit is disposed on the surface of the cooling block.
  • the light emitting element is directly arranged on the surface of the heat sink, and the wiring pattern is applied to the surface of the heat sink, that is, the heat sink has a function as a substrate. There may be. In such a case, since the light emitting element is directly cooled by the heat sink, the light emitting element can be cooled more effectively.
  • a light-emitting element light source module having the configuration of FIG. 1 (hereinafter, also referred to as “light-emitting element light source module (1)”) was manufactured.
  • the substrate is made of aluminum nitride in which 160 LED elements having a peak emission wavelength of 365 nm are arranged in a 10-by-16 pattern in a staggered pattern.
  • the heat sink is formed by joining two substantially rectangular plate-shaped base materials made of copper by brazing, and the cross-sectional shape is 5 mm wide and high in the heat sink.
  • a cooling flow path having a flat rectangular shape with a ratio of the flow path width to the flow path height of 2 and a meandering shape is formed.
  • the cooling channel formation area is 83.3% of the light emitting element arrangement area.
  • the cooling medium supply port and the cooling medium discharge port have a circular shape with a diameter of 6 mm.
  • the cooling block is made of stainless steel, and the cooling block has a circular cross section having a diameter of 6 mm and a linear cooling medium supply channel and cooling medium discharge inside the cooling block.
  • the produced light-emitting element light source module (1) under the environmental condition of a temperature of 25 ° C., 160 light-emitting elements constituting each of the three light source units emit light under the condition of a heating value of 1.82 W, and the water-cooling structure A cooling medium made of cooling water having a temperature of 25 ⁇ 5 ° C. was supplied to the body circulation channel under the condition of a flow rate of 3 L / min.
  • the calorific value in each light source unit was 291.2W.
  • substrate is 59 +/- 3 degreeC
  • the temperature of the cooling medium at the supply port was 37 ° C.
  • the temperature of the cooling medium at the cooling medium discharge port was 38 ° C.
  • the surface temperature of the substrate, the temperature of the cooling medium at the cooling medium supply port, and the temperature of the cooling medium at the cooling medium discharge port were measured in the same manner as in Experimental Example 1.
  • the surface temperature was 80 ⁇ 16 ° C.
  • the temperature of the cooling medium at the cooling medium supply port was 45 ° C.
  • the temperature of the cooling medium at the cooling medium discharge port was 48 ° C.
  • the surface temperature of the substrate, the temperature of the cooling medium at the cooling medium supply port, and the temperature of the cooling medium at the cooling medium discharge port were measured in the same manner as in Experimental Example 1.
  • the surface temperature was 72 ⁇ 8 ° C.
  • the temperature of the cooling medium at the cooling medium supply port was 47 ° C.
  • the temperature of the cooling medium at the cooling medium discharge port was 50 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

The objective of the present invention is to provide a light-emitting element light source module with which a plurality of light-emitting elements can be cooled efficiently and with high uniformity. This light-emitting element light source module is provided with a light source unit, in which a plurality of light-emitting elements are disposed on the surface of a heat sink, and a cooling block, which is disposed on the rear surface of the heat sink, said module being characterized in that: a cooling channel for distributing a cooling medium is formed in the heat sink; the channel width of the cooling channel is greater than the channel height; the cooling channel has a flat cross-sectional shape that extends along the surface of the heat sink; a cooling medium supply port and cooling medium discharge port of the cooling channel are connected, respectively, to a cooling medium supply channel and cooling medium discharge channel formed in the cooling block; the cooling channel has a plurality of channel portions being contiguous to each other in a region directly below a light-emitting element disposition region in which the light-emitting elements are disposed on the surface of the heat sink, and being adjacent to each other with a thermally conductive partition wall portion therebetween; and the thickness of the thermally conductive partition wall portion is smaller than the channel width of the cooling channel.

Description

発光素子光源モジュールLight-emitting element light source module
 本発明は、LED(light emitting diode)素子などの発光素子を複数備えた発光素子光源モジュールに関する。 The present invention relates to a light emitting element light source module provided with a plurality of light emitting elements such as LED (light emitting diode) elements.
 近年、紫外線硬化性樹脂を硬化する技術(UVキュアリング技術)は、様々な分野、具体的には、例えば液晶パネルの製造工程(ODF法)、プリント基板の製造工程(露光処理)および印刷インキの定着工程(乾燥処理)などに利用されている。このようなUVキュアリング処理(紫外線硬化処理)において用いられる紫外線照射装置には、光源として、LED素子などの発光素子を発光源とする発光素子光源モジュールが用いられている。LED素子を発光源とする発光素子光源モジュールは、所期の発光強度を得るために、通常、多数のLED素子が高密度に配置されて構成されている。 In recent years, technologies for curing ultraviolet curable resins (UV curing technology) are used in various fields, specifically, for example, liquid crystal panel manufacturing processes (ODF method), printed circuit board manufacturing processes (exposure processing), and printing inks. It is used in the fixing process (drying process). A light emitting element light source module using a light emitting element such as an LED element as a light source is used as a light source in an ultraviolet irradiation apparatus used in such a UV curing process (ultraviolet curing process). In order to obtain a desired light emission intensity, a light-emitting element light source module that uses LED elements as a light-emitting source is usually configured by arranging a large number of LED elements at high density.
 このような多数のLED素子を備えた発光素子光源モジュールにおいては、多数のLED素子の各々が自らの発熱あるいは周囲からの受熱によって温度上昇して高温となりやすく、それに起因して当該LED素子自体の発光効率が低下してしまう、という問題がある。また、LED素子が、温度特性や寿命特性に個体差があり、とりわけ発光波長によって寿命特性が大きく異なるものであることから、特に多数のLED素子が発光波長の異なる複数種類のLED素子によって構成されている場合においては、経時的に照度分布の一様性が悪化するおそれがある、という問題もある。
 而して、多数のLED素子を備えた発光素子光源モジュールとしては、複数のLED素子が配設された基板の複数が、各々、ヒートシンク上に接合配置されており、これらの複数のヒートシンクの各々が、絶縁材料よりなるスペーサを介して金属よりなる支持台上に交換可能に配置されてなる構成のものが提案されている(特許文献1参照。)。この発光素子光源モジュールにおいて、各ヒートシンクの内部には、冷却媒体を流通させるための冷却流路が形成されている。また、支持台の内部には、複数のヒートシンクにおける冷却流路に供給される冷却媒体が流通する冷却媒体供給流路、および当該冷却流路から排出された冷却媒体が流通する冷却媒体排出流路が形成されている。また、スペーサには、複数のヒートシンクにおける冷却流路の各々と、支持台における冷却媒体供給流路および冷却媒体排出流路とに連通する冷却媒体供給用貫通孔および冷却媒体排出用貫通孔が形成されている。
 この特許文献1に記載の発光素子光源モジュールによれば、ヒートシンクおよび冷却媒体によって多数のLED素子を冷却することができる。また、交換が必要となったLED素子が配設された基板が接合配置されてなるヒートシンクを、支持台から取り外して新たなヒートシンク(具体的には、基板が接合配置されてなるヒートシンク)を取り付けることにより、LED素子を交換することもできる。
In such a light emitting element light source module having a large number of LED elements, each of the large number of LED elements is likely to increase in temperature due to its own heat generation or heat received from the surroundings, resulting in the LED element itself. There is a problem that the luminous efficiency is lowered. In addition, there are individual differences in temperature characteristics and lifetime characteristics of LED elements, and in particular, the lifetime characteristics vary greatly depending on the emission wavelength, so that a large number of LED elements are composed of a plurality of types of LED elements having different emission wavelengths. In such a case, there is a problem that the uniformity of the illuminance distribution may deteriorate over time.
Thus, as a light-emitting element light source module having a large number of LED elements, a plurality of substrates on which a plurality of LED elements are arranged are each arranged on a heat sink, and each of the plurality of heat sinks is arranged. However, the thing of the structure arrange | positioned so that replacement | exchange is possible on the support stand which consists of metals through the spacer which consists of insulating materials is proposed (refer patent document 1). In this light emitting element light source module, a cooling flow path for circulating a cooling medium is formed inside each heat sink. Further, inside the support base, a cooling medium supply channel through which the cooling medium supplied to the cooling channels in the plurality of heat sinks flows, and a cooling medium discharge channel through which the cooling medium discharged from the cooling channels flows Is formed. The spacer is formed with a cooling medium supply through-hole and a cooling medium discharge through-hole communicating with each of the cooling flow paths in the plurality of heat sinks, and the cooling medium supply flow path and the cooling medium discharge flow path in the support base. Has been.
According to the light emitting element light source module described in Patent Document 1, a large number of LED elements can be cooled by the heat sink and the cooling medium. In addition, the heat sink formed by bonding the substrate on which the LED element that needs to be replaced is bonded is removed from the support base, and a new heat sink (specifically, a heat sink formed by bonding the substrate) is attached. Thus, the LED element can be exchanged.
 しかしながら、このような構成の発光素子光源モジュールにおいては、冷却流路の流路構造について十分に検討されておらず、よって多数のLED素子を、効率的に、かつ均一に冷却することができない、という問題がある。 However, in the light-emitting element light source module having such a configuration, the channel structure of the cooling channel has not been sufficiently studied, and therefore, a large number of LED elements cannot be efficiently and uniformly cooled. There is a problem.
特開2009-65128号公報JP 2009-65128 A
 本発明は、以上のような事情に基づいてなされたものであって、その目的は、複数の発光素子を効率的、かつ高い均一性をもって冷却することのできる発光素子光源モジュールを提供することにある。 The present invention has been made based on the above circumstances, and an object thereof is to provide a light emitting element light source module capable of cooling a plurality of light emitting elements efficiently and with high uniformity. is there.
 本発明の発光素子光源モジュールは、熱伝導性材料よりなるヒートシンクの表面上に複数の発光素子が配置された光源ユニットと、当該ヒートシンクの裏面に配設された冷却ブロックとを備えており、
 前記ヒートシンクには、その内部に、冷却媒体を流通させるための冷却流路が形成されており、
 前記冷却流路は、流路幅が流路高さより大きく、前記ヒートシンクの表面に沿って伸びる扁平な断面形状を有し、当該冷却流路における冷却媒体供給口および冷却媒体排出口が、それぞれ前記冷却ブロックに形成された冷却媒体供給流路および冷却媒体排出流路に接続されており、
 前記冷却流路は、前記ヒートシンクの表面上における複数の発光素子が配置される発光素子配置領域の直下領域において、互いに連続し、熱伝導性隔壁部を介して隣接する複数の流路部分を有しており、当該熱伝導性隔壁部の厚みが、当該冷却流路の流路幅より小さいことを特徴とする。
The light emitting element light source module of the present invention includes a light source unit in which a plurality of light emitting elements are arranged on the surface of a heat sink made of a heat conductive material, and a cooling block arranged on the back surface of the heat sink.
In the heat sink, a cooling channel for circulating a cooling medium is formed in the heat sink,
The cooling flow path has a flat cross-sectional shape in which the flow path width is larger than the flow path height and extends along the surface of the heat sink, and the cooling medium supply port and the cooling medium discharge port in the cooling flow path are respectively Connected to the cooling medium supply channel and the cooling medium discharge channel formed in the cooling block,
The cooling flow path has a plurality of flow path portions that are continuous with each other and are adjacent to each other via a thermally conductive partition wall in a region immediately below the light emitting element arrangement region on the surface of the heat sink where a plurality of light emitting elements are arranged. The thickness of the thermally conductive partition wall portion is smaller than the channel width of the cooling channel.
 本発明の発光素子光源モジュールにおいては、前記冷却流路は、前記発光素子配置領域の一縁に沿って伸びる第1の流路部分と、当該第1の流路部分の冷却媒体流出口に連続し、前記熱伝導性隔壁部を介して当該第1の流路部分と同一方向に伸びる第2の流路部分とを有していることが好ましい。
 このような構成の本発明の発光素子光源モジュールにおいては、前記冷却媒体供給口および前記冷却媒体排出口が、各々、前記直下領域外に設けられていることが好ましい。
In the light emitting element light source module of the present invention, the cooling flow path is continuous with a first flow path portion extending along one edge of the light emitting element arrangement region and a cooling medium outlet of the first flow path portion. And it is preferable to have the 2nd flow-path part extended in the same direction as the said 1st flow-path part through the said heat conductive partition part.
In the light emitting element light source module of the present invention having such a configuration, it is preferable that the cooling medium supply port and the cooling medium discharge port are respectively provided outside the region immediately below.
 本発明の発光素子光源モジュールにおいては、前記冷却流路は、流路高さに対する流路幅の比が1.5~3.5であることが好ましい。 In the light emitting element light source module of the present invention, the cooling channel preferably has a ratio of the channel width to the channel height of 1.5 to 3.5.
 本発明の発光素子光源モジュールにおいては、前記光源ユニットを、前記ヒートシンクの表面に垂直な方向に透視したとき、前記発光素子配置領域における、前記冷却流路が占める領域部分の面積が、当該発光素子配置領域の面積に対して80%以上であることが好ましい。 In the light emitting element light source module of the present invention, when the light source unit is seen through in a direction perpendicular to the surface of the heat sink, the area of the area occupied by the cooling flow path in the light emitting element arrangement area is the light emitting element. It is preferably 80% or more with respect to the area of the arrangement region.
 本発明の発光素子光源モジュールにおいては、前記光源ユニットを複数備え、前記冷却ブロックがこれらの複数の光源ユニットに共通のものとされており、
 前記複数の光源ユニットにおける冷却流路の各々の冷却媒体供給口および冷却媒体排出口が、前記冷却ブロックにおける共通の冷却媒体供給流路および共通の冷却媒体排出流路に接続されていることが好ましい。
In the light emitting element light source module of the present invention, a plurality of the light source units are provided, and the cooling block is common to the plurality of light source units,
It is preferable that the cooling medium supply port and the cooling medium discharge port of each of the cooling channels in the plurality of light source units are connected to a common cooling medium supply channel and a common cooling medium discharge channel in the cooling block. .
 本発明の発光素子光源モジュールにおいては、ヒートシンクの内部に形成された冷却流路を、当該ヒートシンクの表面上における複数の発光素子が配置される発光素子配置領域の直下領域において、複数の流路部分が密に配置された流路構造のものとすることができる。そのため、冷却流路の流路幅を過度に大きくすることなく、ヒートシンクと冷却媒体との接触面積を大きくできることから、複数の発光素子を高い効率で冷却することができる。しかも、互いに隣接する流路部分を流通する冷却媒体の間において熱交換が行われることから、複数の流路部分における温度均一化が図られるため、冷却流路に大きな温度勾配が生じることがない。
 また、本発明の発光素子光源モジュールにおいては、冷却流路に供給される冷却媒体が流通する冷却媒体供給流路、および当該冷却流路から排出された冷却媒体が流通する冷却媒体排出流路が、ヒートシンクの裏面に配設された冷却ブロックに形成されている。そのため、冷却媒体供給流路を流通する冷却媒体が、発光素子からの受熱によって温度上昇することが抑制されることから、冷却媒体供給流路に大きな温度勾配が生じることがない。また、冷却流路を流通する冷却媒体が、冷却媒体排出流路を流通する、発光素子からの受熱によって加熱された冷却媒体からの受熱によって温度上昇することを抑制することができる。
 従って、本発明の発光素子光源モジュールによれば、複数の発光素子を効率的、かつ高い均一性をもって冷却することができる。
In the light emitting element light source module of the present invention, the cooling flow path formed inside the heat sink has a plurality of flow path portions in a region immediately below the light emitting element arrangement area where the plurality of light emitting elements are arranged on the surface of the heat sink. Can be of a channel structure in which are closely arranged. Therefore, since the contact area between the heat sink and the cooling medium can be increased without excessively increasing the channel width of the cooling channel, the plurality of light emitting elements can be cooled with high efficiency. In addition, since heat is exchanged between the cooling media flowing through the adjacent flow path portions, temperature uniformity in the plurality of flow path portions is achieved, so that a large temperature gradient does not occur in the cooling flow paths. .
In the light-emitting element light source module of the present invention, the cooling medium supply channel through which the cooling medium supplied to the cooling channel flows, and the cooling medium discharge channel through which the cooling medium discharged from the cooling channel flows. The cooling block is formed on the back surface of the heat sink. Therefore, since the temperature of the cooling medium flowing through the cooling medium supply channel is suppressed from being increased by heat received from the light emitting element, a large temperature gradient is not generated in the cooling medium supply channel. Moreover, it can suppress that the cooling medium which distribute | circulates a cooling flow path raises temperature by the heat receiving from the cooling medium heated by the heat receiving from the light emitting element which distribute | circulates a cooling medium discharge flow path.
Therefore, according to the light emitting element light source module of the present invention, a plurality of light emitting elements can be efficiently cooled with high uniformity.
本発明の発光素子光源モジュールの構成の一例を示す説明用断面図である。It is sectional drawing for description which shows an example of a structure of the light emitting element light source module of this invention. 図1の発光素子光源モジュールを構成する、冷却ブロックと光源ユニットとの組立体の表面側を示す説明用図である。It is explanatory drawing which shows the surface side of the assembly of the cooling block and light source unit which comprises the light emitting element light source module of FIG. 図1の発光素子光源モジュールを構成する、冷却ブロックと光源ユニットとの組立体の断面を示す説明図である。It is explanatory drawing which shows the cross section of the assembly of the cooling block and light source unit which comprises the light emitting element light source module of FIG. 図1の発光素子光源モジュールを構成するヒートシンクを示す説明図である。It is explanatory drawing which shows the heat sink which comprises the light emitting element light source module of FIG.
 以下、本発明の実施の形態について説明する。
 図1は、本発明の発光素子光源モジュールの構成の一例を示す説明用断面図であり、図2は、図1の発光素子光源モジュールを構成する、冷却ブロックと光源ユニットとの組立体の表面(発光面)側を示す説明用図であり、図3は、図1の発光素子光源モジュールを構成する冷却ブロックと光源ユニットとの組立体の断面を示す説明図であり、図4は、図1の発光素子光源モジュールを構成するヒートシンクを示す説明図である。
 この発光素子光源モジュール10は、複数(図の例においては、3個)の光源ユニット20を備えたものである。これらの複数の光源ユニット20は、各々、複数の発光素子21が表面(図1における下面であって図3における上面)に配設された矩形平板状の基板22が、略矩形平板状のヒートシンク31の表面(図1における下面であって図3における上面)に位置されてなるものである。また、複数の光源ユニット20の各々において、ヒートシンク31の内部には、例えば水などの冷却媒体を流通させるための冷却流路35が形成されている。また、複数の光源ユニット20は、略矩形平板状の冷却ブロック40の表面(図1における下面であって図3における上面)に、当該冷却ブロック40の長手方向(図2および図3における左右方向)に並列配置されている。この冷却ブロック40の内部には、複数の光源ユニット20における冷却流路35の各々に連通する、冷却媒体供給流路42および冷却媒体排出流路44が形成されている。そして、複数のヒートシンク31と冷却ブロック40とにより、多数の発光素子21(複数の光源ユニット20の各々を構成する複数の発光素子21)を、冷却媒体によって冷却するための水冷構造体が構成されている。
 また、複数の光源ユニット20と冷却ブロック40とは、略直方体状の外観形状を有するアルミニウム製のカバー部材12によって覆われている。このカバー部材12には、当該カバー部材12の底面(図1における下面)における多数の発光素子21と対向する領域に、矩形状の開口が形成されており、この開口はホウケイ酸ガラス製の窓部材13によって閉塞されている。また、カバー部材12の一側面には、外部電源に接続する電源供給部(図示省略)が設けられていると共に、冷却媒体供給用開口(図示省略)および冷却媒体排出用開口(図示省略)が形成されている。
 ここに、カバー部材12の内周面においては、複数の基板22の各々に設けられた複数の発光素子21からの光が窓部材13に至るまでの光路が形成される空間を囲繞する領域12Aに、それらの発光素子21からの光を高い効率で窓部材13から放射させる観点から、鏡面加工が施される場合もある。また、発光素子光源モジュール10は、所望の照度や照度分布を得るために、多数の発光素子21からの光を、ミラーおよびレンズなどの光学部材によって、反射あるいは屈折させる構成のものであってもよい。
 この図の例において、多数の発光素子21と窓部材13とは、当該多数の発光素子21から放射角(半角)60°程度で放射される光の大部分が、窓部材13を透過するように、可及的に近接して配置されている。
Embodiments of the present invention will be described below.
FIG. 1 is a cross-sectional view for explaining an example of the configuration of the light-emitting element light source module of the present invention, and FIG. 2 shows the surface of the assembly of the cooling block and the light source unit constituting the light-emitting element light source module of FIG. FIG. 3 is an explanatory view showing a (light emitting surface) side, FIG. 3 is an explanatory view showing a cross section of an assembly of a cooling block and a light source unit constituting the light emitting element light source module of FIG. 1, and FIG. It is explanatory drawing which shows the heat sink which comprises the 1 light emitting element light source module.
The light-emitting element light source module 10 includes a plurality of (three in the illustrated example) light source units 20. Each of the plurality of light source units 20 includes a rectangular flat plate-like substrate 22 having a plurality of light emitting elements 21 disposed on the surface (the lower surface in FIG. 1 and the upper surface in FIG. 3). It is located on the surface of 31 (the lower surface in FIG. 1 and the upper surface in FIG. 3). Further, in each of the plurality of light source units 20, a cooling flow path 35 for circulating a cooling medium such as water is formed inside the heat sink 31. The plurality of light source units 20 are arranged on the surface of the substantially rectangular flat plate-like cooling block 40 (the lower surface in FIG. 1 and the upper surface in FIG. 3) in the longitudinal direction of the cooling block 40 (the horizontal direction in FIGS. 2 and 3). ) In parallel. Inside the cooling block 40, there are formed a cooling medium supply channel 42 and a cooling medium discharge channel 44 that communicate with each of the cooling channels 35 in the plurality of light source units 20. The plurality of heat sinks 31 and the cooling block 40 constitute a water cooling structure for cooling a large number of light emitting elements 21 (a plurality of light emitting elements 21 constituting each of the plurality of light source units 20) with a cooling medium. ing.
The plurality of light source units 20 and the cooling block 40 are covered with an aluminum cover member 12 having a substantially rectangular parallelepiped appearance. The cover member 12 has a rectangular opening formed in a region facing the light emitting elements 21 on the bottom surface (the lower surface in FIG. 1) of the cover member 12, and this opening is a window made of borosilicate glass. It is closed by the member 13. In addition, a power supply unit (not shown) connected to an external power source is provided on one side surface of the cover member 12, and a cooling medium supply opening (not shown) and a cooling medium discharge opening (not shown) are provided. Is formed.
Here, on the inner peripheral surface of the cover member 12, a region 12 </ b> A surrounding a space in which an optical path from the light emitting elements 21 provided on each of the plurality of substrates 22 to the window member 13 is formed. In addition, mirror processing may be performed from the viewpoint of emitting light from the light emitting elements 21 from the window member 13 with high efficiency. Further, the light emitting element light source module 10 may be configured to reflect or refract light from a large number of light emitting elements 21 by optical members such as mirrors and lenses in order to obtain desired illuminance and illuminance distribution. Good.
In the example of this figure, the large number of light emitting elements 21 and the window member 13 are such that most of the light emitted from the large number of light emitting elements 21 at a radiation angle (half angle) of about 60 ° is transmitted through the window member 13. Are arranged as close as possible.
 複数の光源ユニット20は、各々、ヒートシンク31の表面に、複数の発光素子21が表面に配設された基板22が、当該基板22の裏面と当該ヒートシンク31の表面とが対向した状態で接合されたものである。そして、ヒートシンク31と基板22との間には、熱伝導性接合材よりなる接合層(図示省略)が形成されている。熱伝導性接合材としては、例えば熱伝導性接着剤および熱伝導性両面接着シートなどが用いられる。
 この図の例において、ヒートシンク31は、矩形平板状の大径部31Aと、この大径部31A上に積重された矩形平板状の小径部31Bとにより構成されている。大径部31Aは、長手方向において、基板22の長手方向の寸法よりも大きな寸法を有しており、一方、短手方向においては、基板22の短手方向の寸法よりも僅かに小さい寸法を有している。また、小径部31Bは、長手方向において、基板22の長手方向の寸法と同等の寸法を有しており、一方、短手方向においては、大径部31Aの短手方向の寸法と同等の寸法を有している。この小径部31Bは、大径部31Aの表面(図1における下面であって図3における上面)における長手方向の中央部に位置されており、その大径部31Aの表面における長手方向の両端部は、当該表面が露出した状態とされている。このヒートシンク31において、基板22は、小径部31Bの表面に、当該表面を覆い、かつ当該基板22における短手方向の両縁部がヒートシンク31から僅かに突出した状態で配置されている。そして、互いに隣接する光源ユニット20は、基板22が近接した状態とされ、ヒートシンク31が僅かに離間した状態とされている。
Each of the plurality of light source units 20 is bonded to the surface of the heat sink 31 with the substrate 22 having the plurality of light emitting elements 21 disposed on the surface in a state where the back surface of the substrate 22 and the surface of the heat sink 31 face each other. It is a thing. A bonding layer (not shown) made of a heat conductive bonding material is formed between the heat sink 31 and the substrate 22. As the heat conductive bonding material, for example, a heat conductive adhesive and a heat conductive double-sided adhesive sheet are used.
In the example of this figure, the heat sink 31 is configured by a rectangular flat plate-shaped large diameter portion 31A and rectangular flat plate-shaped small diameter portions 31B stacked on the large diameter portion 31A. The large diameter portion 31A has a dimension that is larger than the dimension in the longitudinal direction of the substrate 22 in the longitudinal direction, while the dimension in the lateral direction is slightly smaller than the dimension in the lateral direction of the substrate 22. Have. Further, the small diameter portion 31B has a dimension equivalent to the dimension in the longitudinal direction of the substrate 22 in the longitudinal direction, while the dimension equivalent to the dimension in the short direction of the large diameter part 31A in the lateral direction. have. The small-diameter portion 31B is located at the center in the longitudinal direction on the surface of the large-diameter portion 31A (the lower surface in FIG. 1 and the upper surface in FIG. 3), and both end portions in the longitudinal direction on the surface of the large-diameter portion 31A. The surface is exposed. In the heat sink 31, the substrate 22 is disposed on the surface of the small diameter portion 31 </ b> B in a state in which both sides of the substrate 22 are slightly projected from the heat sink 31. The light source units 20 adjacent to each other are in a state in which the substrate 22 is in close proximity and the heat sink 31 is in a state of being slightly separated.
 また、複数のヒートシンク31と冷却ブロック40とにより構成される水冷構造体は、当該水冷構造体の内部に、冷却媒体の流通流路が形成されたものである。この流通流路は、複数のヒートシンク31における冷却流路35と、冷却ブロック40における冷却媒体供給流路42および冷却媒体排出流路44とを有している。
 また、水冷構造体には、流通流路に対して冷却媒体を供給するための供給部17と、当該流通流路から冷却媒体を排出するための排出部18とが、冷却ブロック40の外表面における光源ユニット20が位置されている領域以外の領域に設けられている。
 この図の例において、供給部17および排出部18は、継手部材によって構成されており、冷却ブロック40における、カバー部材12に形成された冷却媒体供給用開口(図示省略)および冷却媒体排出用開口(図示省略)に対向する一側面に設けられている。また、供給部17の先端部分は、冷却媒体供給用開口からカバー部材12の外方に突出しており、排出部18の先端部分は、冷却媒体排出用開口からカバー部材12の外方に突出している。
Further, the water-cooled structure constituted by the plurality of heat sinks 31 and the cooling block 40 is one in which a flow path for a cooling medium is formed inside the water-cooled structure. This circulation channel has a cooling channel 35 in the plurality of heat sinks 31, a cooling medium supply channel 42 and a cooling medium discharge channel 44 in the cooling block 40.
In addition, the water cooling structure includes a supply portion 17 for supplying a cooling medium to the flow passage and a discharge portion 18 for discharging the cooling medium from the flow passage. In the area other than the area where the light source unit 20 is located.
In the example of this figure, the supply unit 17 and the discharge unit 18 are constituted by joint members, and a cooling medium supply opening (not shown) and a cooling medium discharge opening formed in the cover member 12 in the cooling block 40. It is provided on one side facing (not shown). The leading end portion of the supply unit 17 protrudes outward from the cooling medium supply opening to the cover member 12, and the leading end portion of the discharge portion 18 protrudes outward from the cooling medium discharge opening to the cover member 12. Yes.
 水冷構造体は、複数の光源ユニット20の各々が、ヒートシンク31の裏面が冷却ブロック40の表面に密着した状態で交換可能に配設されることによって形成されている。
 具体的に説明すると、複数の光源ユニット20は、各々、ヒートシンク31の裏面が冷却ブロック40の表面に密着した状態となるように、複数(この図の例においては4個)の固定ネジ28によって当該冷却ブロック40に固定されている。
 そして、水冷構造体においては、複数の冷却流路35の各々と冷却媒体供給流路42との間に、ヒートシンク31と冷却ブロック40との積重方向に伸びる供給連通路26が形成されており、これらの供給連通路26により、複数の冷却流路35の各々と冷却媒体供給流路42とが連通されている。供給連通路26は、ヒートシンク31における供給連通路用孔26Aと冷却ブロック40における供給連通路用孔26Bとによって構成されている。また、複数の冷却流路35の各々と冷却媒体排出流路44との間には、ヒートシンク31と冷却ブロック40との積重方向に伸びる排出連通路27が形成されており、これらの排出連通路27により、複数の冷却流路35の各々と冷却媒体排出流路44とが連通されている。排出連通路27は、ヒートシンク31における排出連通路用孔27Aと冷却ブロック40における排出連通路用孔27Bとによって構成されている。
 また、複数の光源ユニット20の各々と冷却ブロック40との間には、供給連通路26および排出連通路27の各々を囲むように環状のシール部材29が配置されている。
 このようにして、複数の光源ユニット20が冷却ブロック40に交換可能に固定されると共に、供給連通路26および排出連通路27の液密性が実現されることにより、水冷構造体が形成されている。
 この図の例において、複数の光源ユニット20の各々は、ヒートシンク31の表面(大径部31Aの表面)の四隅の各々において固定ネジ28によって冷却ブロック40に固定されている。また、冷却ブロック40の表面には、供給連通路用孔26Bに連通する開口および排出連通路用孔27Bに連通する開口を一巡するように、円環状のシール部材配置用溝41が形成されており、このシール部材配置用溝41に、Oリングよりなるシール部材29が配置され、当該シール部材29が挟圧されている。
The water-cooled structure is formed by each of the plurality of light source units 20 being disposed so as to be replaceable with the back surface of the heat sink 31 being in close contact with the surface of the cooling block 40.
More specifically, each of the plurality of light source units 20 is fixed by a plurality of (four in the example of this figure) fixing screws 28 so that the back surface of the heat sink 31 is in close contact with the surface of the cooling block 40. It is fixed to the cooling block 40.
In the water cooling structure, the supply communication passage 26 extending in the stacking direction of the heat sink 31 and the cooling block 40 is formed between each of the plurality of cooling passages 35 and the cooling medium supply passage 42. Each of the plurality of cooling flow paths 35 and the cooling medium supply flow path 42 communicate with each other through these supply communication paths 26. The supply communication path 26 includes a supply communication path hole 26 </ b> A in the heat sink 31 and a supply communication path hole 26 </ b> B in the cooling block 40. Further, a discharge communication passage 27 extending in the stacking direction of the heat sink 31 and the cooling block 40 is formed between each of the plurality of cooling flow paths 35 and the cooling medium discharge flow path 44. Each of the plurality of cooling channels 35 and the cooling medium discharge channel 44 are communicated with each other by the passage 27. The discharge communication path 27 is configured by a discharge communication path hole 27 </ b> A in the heat sink 31 and a discharge communication path hole 27 </ b> B in the cooling block 40.
An annular seal member 29 is arranged between each of the plurality of light source units 20 and the cooling block 40 so as to surround each of the supply communication path 26 and the discharge communication path 27.
In this way, the plurality of light source units 20 are fixed to the cooling block 40 in an exchangeable manner, and the liquid tightness of the supply communication passage 26 and the discharge communication passage 27 is realized, whereby a water cooling structure is formed. Yes.
In the example of this figure, each of the plurality of light source units 20 is fixed to the cooling block 40 by fixing screws 28 at each of the four corners of the surface of the heat sink 31 (the surface of the large diameter portion 31A). Further, an annular seal member arranging groove 41 is formed on the surface of the cooling block 40 so as to make a round of an opening communicating with the supply communication passage hole 26B and an opening communicating with the discharge communication passage hole 27B. In addition, a seal member 29 made of an O-ring is arranged in the seal member arrangement groove 41, and the seal member 29 is clamped.
 複数の光源ユニット20の各々において、基板22の表面には、複数(図の例においては160個)の発光素子21が、一定間隔で2次元的に配置されている。
 この図の例において、複数の発光素子21は、基板22の表面における、当該基板22の長手方向の中央部に位置する略矩形状の発光素子配置領域に、当該発光素子配置領域の短手方向(図2における上下方向)に10個、当該発光素子配置領域の長手方向(図2における左右方向)に16個で千鳥格子状に配置されている。また、基板22の表面には、当該基板22の長手方向の両端部の各々に、複数(図の例においては2個)の電気接続部23が配設されている。この電気接続部23には、基板22上の全ての発光素子21が電気的に接続されている。
In each of the plurality of light source units 20, a plurality (160 in the illustrated example) of light emitting elements 21 are two-dimensionally arranged on the surface of the substrate 22 at regular intervals.
In the example of this figure, the plurality of light emitting elements 21 are arranged in a substantially rectangular light emitting element arrangement region located in the center of the substrate 22 in the longitudinal direction on the surface of the substrate 22 in the short direction of the light emitting element arrangement region. 10 in the vertical direction (FIG. 2) and 16 in the longitudinal direction of the light emitting element arrangement region (left and right direction in FIG. 2) are arranged in a staggered pattern. On the surface of the substrate 22, a plurality of (two in the illustrated example) electrical connection portions 23 are disposed at both ends in the longitudinal direction of the substrate 22. All the light emitting elements 21 on the substrate 22 are electrically connected to the electrical connection portion 23.
 発光素子21としては、LED素子およびLD(laser diode)素子などが用いられ、LED素子としては、具体的に、例えばピーク発光波長が365nm、385nm、395nm、405nmおよび450nmのものが用いられる。
 この図の例においては、発光素子21として、ピーク発光波長が365nmのLED素子が用いられている。
As the light emitting element 21, an LED element, an LD (laser diode) element, or the like is used. Specifically, for example, those having peak emission wavelengths of 365 nm, 385 nm, 395 nm, 405 nm, and 450 nm are used.
In the example of this figure, as the light emitting element 21, an LED element having a peak emission wavelength of 365 nm is used.
 基板22を構成する基材としては、発光素子21の種類などに応じた適宜のものが用いられる。基板22の材質の具体例としては、例えば窒化アルミニウム(AlN)および酸化アルミニウム(Al)などの熱伝導性セラミックが挙げられる。
 この図の例において、基板22の基材としては、窒化アルミニウム製のものが用いられている。
As the base material constituting the substrate 22, an appropriate material according to the type of the light emitting element 21 or the like is used. Specific examples of the material of the substrate 22 include thermally conductive ceramics such as aluminum nitride (AlN) and aluminum oxide (Al 2 O 3 ).
In the example of this figure, the base material of the substrate 22 is made of aluminum nitride.
 複数の光源ユニット20の各々において、ヒートシンク31の内部には、1本の冷却流路35が形成されている。
 この冷却流路35は、ヒートシンク31の表面に沿って冷却媒体を流通させることができるよう、ヒートシンク31の表面に平行に設けられており、一端に冷却媒体供給口35Aが形成され、他端に冷却媒体排出口35Bが形成されたものである。
 冷却流路35においては、複数の発光素子21の熱が基板22およびヒートシンク31を介して冷却媒体に受熱され、これにより、当該発光素子21が冷却されることとなる。
In each of the plurality of light source units 20, one cooling channel 35 is formed inside the heat sink 31.
The cooling flow path 35 is provided in parallel to the surface of the heat sink 31 so that the cooling medium can flow along the surface of the heat sink 31, and a cooling medium supply port 35A is formed at one end and the other end. A cooling medium discharge port 35B is formed.
In the cooling flow path 35, the heat of the plurality of light emitting elements 21 is received by the cooling medium via the substrate 22 and the heat sink 31, whereby the light emitting elements 21 are cooled.
 また、冷却流路35は、流路幅が流路高さより大きく、ヒートシンク31の表面に沿って伸びる扁平な断面形状を有している。この冷却流路35においては、冷却効率の観点から、流路高さに対する流路幅の比が1.5~3.5であることが好ましい。
 この図の例において、冷却流路35は、その断面形状が、幅(流路幅)5mm、高さ(流路高さ)2.5mmであって、流路高さに対する流路幅の比が2の扁平矩形状のものである。
The cooling channel 35 has a flat cross-sectional shape that has a channel width larger than the channel height and extends along the surface of the heat sink 31. In the cooling channel 35, the ratio of the channel width to the channel height is preferably 1.5 to 3.5 from the viewpoint of cooling efficiency.
In the example of this figure, the cooling channel 35 has a cross-sectional shape having a width (channel width) of 5 mm and a height (channel height) of 2.5 mm, and the ratio of the channel width to the channel height. Is a flat rectangular shape of 2.
 そして、冷却流路35は、ヒートシンク31の表面上における複数の発光素子21が位置される発光素子配置領域の直下領域(以下、「光源直下領域」ともいう。)において、発光素子配置領域の一縁に沿って伸びる第1の流路部分と、当該第1の流路部分の冷却媒体流出口に連続し、熱伝導性隔壁部39Aを介して当該第1の流路部分と同一方向に伸びる第2の流路部分と有する、蛇行状の形状とされている。
 具体的に説明すると、冷却流路35は、光源直下領域において、当該光源直下領域の領域縁(具体的には、ヒートシンク31の短手方向に伸びる領域縁)33A,33Cに沿って平行に伸びる複数(図4においては3つ)の直線状流路部分(以下、「内方直線状部分」ともいう。)36を有している。ここに、「内方直線状部分」とは、その全体が光源直下領域に位置している直線状の流路部分を示す。そして、これらの複数の内方直線状部分36においては、熱伝導性隔壁部39Aを介して互いに隣接した内方直線状部分36が、一方の内方直線状部分36の冷却媒体流出口に、他方の内方直線状部分36の冷却媒体流入口が連続するように、屈曲流路部分(以下、単に「屈曲部分」ともいう。)38Aを介して連通されている。
 この図の例において、光源直下領域におけるヒートシンク31の長手方向の両端側に位置する内方直線状部分36は、当該光源直下領域の領域縁(具体的には、ヒートシンク31の短手方向に伸びる領域縁)33A,33Cよりも僅かに内方側に位置している。また、屈曲部分38Aは、当該光源直下領域の領域縁(具体的には、ヒートシンク31の長手方向に伸びる領域縁)33B,33Dよりも僅かに内方側に位置している。
 また、光源直下領域におけるヒートシンク31の長手方向の両端側に位置する内方直線状部分36は、各々、屈曲流路部分(屈曲部分)38Bを介して、一部分が光源直下領域外に位置する直線状流路部分(以下、「外方直線状部分」ともいう。)37に連通されている。これらの2つの外方直線状部分37は、内方直線状部分36に沿って平行に配置されている。この外方直線状部分37と内方直線状部分36との間に位置する熱伝導性隔壁部39Bは、光源直下領域内に位置している。そして、一方の外方直線状部分37の冷却媒体流入口によって、冷却媒体供給口35Aが形成されており、他方の外方直線状部分37の冷却媒体流出口によって、冷却媒体排出口35Bが形成されている。これらの2つの外方直線状部分37の流路長は、各々、冷却媒体供給口35Aおよび冷却媒体排出口35Bがヒートシンク31の短手方向の中央部に位置するよう、内方直線状部分36の流路長の略半分とされている。このようにして、冷却流路35は、その全体形状が蛇行状の形状とされている。
 図4には、冷却流路35における冷却媒体の流通方向が矢印によって示されている。また、同図において、光源直下領域は、一点鎖線によって囲まれた領域である。
The cooling flow path 35 is a part of the light emitting element arrangement region in the area immediately below the light emitting element arrangement area where the plurality of light emitting elements 21 are located on the surface of the heat sink 31 (hereinafter also referred to as “light source immediately below area”). The first flow path portion extending along the edge and the cooling medium outlet of the first flow path portion are continuous and extend in the same direction as the first flow path portion via the heat conductive partition wall 39A. It has a meandering shape with the second flow path portion.
More specifically, the cooling flow path 35 extends in parallel along the region edge (specifically, the region edge extending in the short direction of the heat sink 31) 33A and 33C of the region directly below the light source in the region directly below the light source. A plurality (three in FIG. 4) of linear flow path portions (hereinafter also referred to as “inward linear portions”) 36 are provided. Here, the “inner straight portion” indicates a straight flow path portion that is entirely located in the region directly under the light source. In the plurality of inward linear portions 36, the inward linear portions 36 that are adjacent to each other via the heat conductive partition wall 39A are provided as cooling medium outlets of the one inward linear portion 36. The other inward linear portion 36 is communicated via a bent flow passage portion (hereinafter, also simply referred to as “bent portion”) 38A so that the cooling medium inflow port is continuous.
In the example of this figure, the inward linear portions 36 located on both ends in the longitudinal direction of the heat sink 31 in the region immediately below the light source extend in the region edge of the region directly below the light source (specifically, in the short direction of the heat sink 31). (Region edge) 33A and 33C are located slightly inward. Further, the bent portion 38A is located slightly inward from the region edges (specifically, region edges extending in the longitudinal direction of the heat sink 31) 33B and 33D of the region directly below the light source.
In addition, the inward linear portions 36 located on both ends in the longitudinal direction of the heat sink 31 in the region directly below the light source are straight lines each partially located outside the region directly below the light source via a bent flow path portion (bent portion) 38B. Is communicated with a cylindrical channel portion (hereinafter also referred to as “outward linear portion”) 37. These two outer straight portions 37 are arranged in parallel along the inner straight portion 36. The thermally conductive partition wall 39B located between the outer straight portion 37 and the inner straight portion 36 is located in the region directly under the light source. The cooling medium supply port 35A is formed by the cooling medium inflow port of one outer straight portion 37, and the cooling medium discharge port 35B is formed by the cooling medium outflow port of the other outer straight portion 37. Has been. The flow path lengths of these two outer straight portions 37 are such that the cooling medium supply port 35A and the cooling medium discharge port 35B are located in the center in the short direction of the heat sink 31, respectively. Is approximately half the flow path length. In this way, the cooling channel 35 has a meandering shape as a whole.
In FIG. 4, the flow direction of the cooling medium in the cooling flow path 35 is indicated by arrows. In the same figure, the region directly under the light source is a region surrounded by a one-dot chain line.
 この冷却流路35において、熱伝導性隔壁部39Aは、その厚みが、冷却流路35の流路幅より小さいものである。
 熱伝導性隔壁部39Aの厚みが冷却流路35の流路幅より小さいことにより、互いに隣接する内方直線状部分36が近接して位置した状態とされ、これらの互いに隣接する内方直線状部分36を流通する冷却媒体の間において熱交換が行われることとなる。
 そして、熱伝導性隔壁部39Aの厚みは、熱伝導性(熱拡散)の観点からは、冷却流路35の流路幅の半分以下であることが好ましい。
 この図の例において、熱伝導性隔壁部39Bは、その厚みが冷却流路35の流路幅より小さく、当該流路幅の半分以下とされている。
In the cooling channel 35, the heat conductive partition wall 39 </ b> A has a thickness smaller than the channel width of the cooling channel 35.
Since the thickness of the heat conductive partition wall 39A is smaller than the channel width of the cooling channel 35, the adjacent inner straight portions 36 are located close to each other. Heat exchange is performed between the cooling media flowing through the portion 36.
The thickness of the thermally conductive partition wall 39A is preferably less than or equal to half the channel width of the cooling channel 35 from the viewpoint of thermal conductivity (thermal diffusion).
In the example of this figure, the thickness of the heat conductive partition wall 39B is smaller than the channel width of the cooling channel 35 and is not more than half the channel width.
 熱伝導性隔壁部39Aの厚みは、具体的には、冷却流路35を流通する冷却媒体からの圧力に耐え得る厚み以上であることが必要とされており、更にはヒートシンク31の材質および冷却流路35の流路幅に応じ、また発光素子21の種類などを考慮して適宜に定められるが、例えば0.5~2.5mmである。
 この図の例において、熱伝導性隔壁部39Aの厚みは1mmとされている。また、熱伝導性隔壁部39Bの厚みも、1mmとされている。
Specifically, the thickness of the thermally conductive partition wall 39A is required to be equal to or greater than the thickness capable of withstanding the pressure from the cooling medium flowing through the cooling flow path 35. Furthermore, the material of the heat sink 31 and the cooling Depending on the width of the flow path 35 and in consideration of the type of the light emitting element 21 and the like, it is determined as appropriate, for example 0.5 to 2.5 mm.
In the example of this figure, the thickness of the heat conductive partition wall 39A is 1 mm. The thickness of the heat conductive partition wall 39B is also 1 mm.
 また、冷却流路35においては、光源ユニット20を、ヒートシンク31の表面に垂直な方向(図2における紙面に垂直な方向)に透視したとき、発光素子配置領域(光源直下領域)における、当該冷却流路35が占める領域部分の面積(以下、「冷却流路形成面積」ともいう。)が、当該発光素子配置領域の面積(以下、「発光素子配置面積」ともいう。)に対して80%以上であることが好ましい。
 冷却流路形成面積が発光素子配置面積の80%以上であることにより、複数の発光素子21と冷却流路35との位置関係によらず、具体的には、基板22上における全ての発光素子21が冷却流路35の直上位置に配置されていない場合であっても、それらの発光素子21の全てをより効率的、かつより高い均一性をもって冷却することができる。
 この図の例において、冷却流路形成面積は、発光素子配置面積の83.3%である。
In the cooling flow path 35, when the light source unit 20 is seen through in a direction perpendicular to the surface of the heat sink 31 (direction perpendicular to the paper surface in FIG. 2), the cooling in the light emitting element arrangement region (region directly under the light source) is performed. The area of the area occupied by the flow path 35 (hereinafter also referred to as “cooling flow path formation area”) is 80% of the area of the light emitting element arrangement area (hereinafter also referred to as “light emitting element arrangement area”). The above is preferable.
Since the cooling flow path formation area is 80% or more of the light emitting element arrangement area, specifically, all the light emitting elements on the substrate 22 regardless of the positional relationship between the plurality of light emitting elements 21 and the cooling flow path 35. Even when 21 is not arranged at a position directly above the cooling flow path 35, all of the light emitting elements 21 can be cooled more efficiently and with higher uniformity.
In the example of this figure, the cooling channel forming area is 83.3% of the light emitting element arrangement area.
 また、光源直下領域における形状が蛇行状である冷却流路35においては、図4に示されているように、冷却媒体供給口35Aおよび冷却媒体排出口35Bは、各々、光源直下領域外に設けられていることが好ましい。
 冷却媒体供給口35Aおよび冷却媒体排排出口35Bが光源直下領域外に設けられていることにより、複数の内方直線状部分36においてより一層の温度均一化を図ることができる。そのため、複数の発光素子21をより一層高い均一性をもって冷却することができる。
Further, in the cooling flow path 35 having a meandering shape in the region directly below the light source, as shown in FIG. 4, the cooling medium supply port 35A and the cooling medium discharge port 35B are provided outside the region directly below the light source. It is preferable that
Since the cooling medium supply port 35A and the cooling medium discharge / discharge port 35B are provided outside the region directly under the light source, it is possible to achieve more uniform temperature in the plurality of inwardly linear portions 36. Therefore, the plurality of light emitting elements 21 can be cooled with higher uniformity.
 また、冷却流路35は、発光素子21との間における熱抵抗を小さくすることによって冷却効率の高効率化を図る観点から、ヒートシンク31の表面に近接した位置レベルに設けられていることが好ましい。
 この図の例において、冷却流路35は、ヒートシンク31の表面(小径部31Bの表面)からの深さが2.5mmの位置レベルに、すなわちヒートシンク31の表面との離間距離が2.5mmとなるように形成されている。
In addition, the cooling flow path 35 is preferably provided at a position level close to the surface of the heat sink 31 from the viewpoint of increasing the cooling efficiency by reducing the thermal resistance with the light emitting element 21. .
In the example of this figure, the cooling channel 35 is at a position level where the depth from the surface of the heat sink 31 (the surface of the small diameter portion 31B) is 2.5 mm, that is, the distance from the surface of the heat sink 31 is 2.5 mm. It is formed to become.
 ヒートシンク31は、熱伝導性材料よりなるものである。
 ヒートシンク31に用いられる熱伝導性材料としては、例えば銅およびアルミニウムなどの高熱伝導性金属が挙げられる。
 また、ヒートシンク31の厚みは、複数の発光素子21の配置間隔、冷却流路35の断面形状(具体的には、流路高さおよび流路幅)などに応じて、適宜に定められる。
The heat sink 31 is made of a heat conductive material.
Examples of the heat conductive material used for the heat sink 31 include high heat conductive metals such as copper and aluminum.
Further, the thickness of the heat sink 31 is appropriately determined according to the arrangement interval of the plurality of light emitting elements 21, the cross-sectional shape of the cooling flow path 35 (specifically, the flow path height and the flow path width), and the like.
 このような構成のヒートシンク31は、熱伝導性材料よりなる2枚の略矩形板状の基材(具体的には、大径部用基材と小径部用基材)がろう付けによって接合されたものであり、一方の基材の接合面に形成された溝が、当該2枚の基材が接合されることによって密閉されることにより、冷却流路35が形成されたものである。
 具体的に説明すると、小径部用基材の接合面には、冷却流路用溝が形成されている。また、大径部用基材には、供給連通路用孔26Aおよび排出連通路用孔27Aが、当該大径部用基材が小径部用基材と接合された状態において、当該供給連通路用孔26Aが冷却流路用溝の一端部上に位置し、当該排出連通路用孔27Aが冷却流路用溝の他端部上に位置するように形成されている。そして、小径部用基材と大径部用基材とがろう付けによって接合されることにより、小径部用基材における冷却流路用溝が大径部用基材によって密閉される。以って、内部に冷却流路35が形成されたヒートシンク31が得られる。
 ここに、ヒートシンク31を構成する2枚の基材は、同一種類の熱伝導性材料よりなるものであってもよく、異なる種類の熱伝導性材料よりなるものであってもよい。
 この図の例において、ヒートシンク31を構成する、小径部用基材および大径部用基材は、いずれも銅よりなるものである。
In the heat sink 31 having such a configuration, two substantially rectangular plate-shaped base materials (specifically, a large-diameter portion base material and a small-diameter portion base material) made of a heat conductive material are joined by brazing. The cooling channel 35 is formed by sealing the groove formed on the bonding surface of one of the base materials by joining the two base materials.
More specifically, a cooling channel groove is formed on the joint surface of the small diameter portion base material. Further, the supply communication passage hole 26A and the discharge communication passage hole 27A are provided in the large diameter portion base material in a state where the large diameter portion base material is joined to the small diameter portion base material. 26 A for holes are located on the one end part of the groove for cooling flow paths, and 27 A of said discharge communicating path is formed on the other end part of the groove for cooling flow paths. And the groove | channel for cooling flow paths in the base material for small diameter parts is sealed by the base material for large diameter parts by joining the base material for small diameter parts and the base material for large diameter parts by brazing. Thus, the heat sink 31 in which the cooling channel 35 is formed is obtained.
Here, the two base materials constituting the heat sink 31 may be made of the same type of heat conductive material, or may be made of different types of heat conductive material.
In the example of this figure, the base material for a small diameter part and the base material for a large diameter part which constitute the heat sink 31 are both made of copper.
 冷却ブロック40において、冷却媒体供給流路42および冷却媒体排出流路44は、冷却ブロック40の表面に平行に設けられており、この冷却媒体供給流路42は、供給部17から供給された冷却媒体を、複数の冷却流路35の冷却媒体供給口35Aの各々に向かって流通させるものであり、一方、冷却媒体排出流路44は、複数の冷却流路35の冷却媒体排出口35Bの各々から排出された冷却媒体を、排出部18に向かって流通させるものである。冷却媒体供給流路42には、一端に供給用開口が形成されており、この供給用開口に継手部材が挿設されることによって供給部17が構成されている。また、冷却媒体排出流路44には、一端に排出用開口が形成されており、この排出用開口に継手部材が挿設されることによって排出部18が構成されている。
 また、この図の例のように、水冷構造体が冷却ブロック40と複数のヒートシンク31とによって構成されている場合、すなわち複数の冷却流路35が設けられている場合においては、これらの複数の冷却流路35を共通の冷却媒体供給流路42および共通の冷却媒体排出流路44に接続することにより、当該複数の冷却流路35を並列に接続することができる。
 冷却媒体供給流路42と冷却媒体排出流路44とは、同一の形状(具体的には、全体形状および断面形状)を有すると共に、平行に設けられていることが好ましい。
 この図の例において、冷却媒体供給流路42および冷却媒体排出流路44は、各々、全体形状が、冷却ブロック40の長手方向、すなわち複数の光源ユニット20が並列する方向に伸びる直線状であり、断面形状が、直径6mmの円形状のものである。また、冷却媒体供給流路42および冷却媒体排出流路44は、各々、冷却ブロック40に形成された直線状の貫通孔の他端側に封止部材48が挿設されることによって構成されている。
In the cooling block 40, the cooling medium supply flow path 42 and the cooling medium discharge flow path 44 are provided in parallel to the surface of the cooling block 40, and the cooling medium supply flow path 42 is the cooling medium supplied from the supply unit 17. The medium is circulated toward each of the cooling medium supply ports 35 </ b> A of the plurality of cooling channels 35, while the cooling medium discharge channel 44 is each of the cooling medium discharge ports 35 </ b> B of the plurality of cooling channels 35. The cooling medium discharged from the refrigerant is circulated toward the discharge unit 18. A supply opening is formed at one end of the cooling medium supply channel 42, and a supply member 17 is configured by inserting a joint member into the supply opening. Further, a discharge opening is formed at one end of the cooling medium discharge flow path 44, and a discharge member 18 is configured by inserting a joint member into the discharge opening.
In the case where the water cooling structure is constituted by the cooling block 40 and the plurality of heat sinks 31 as shown in the example of this figure, that is, when the plurality of cooling flow paths 35 are provided, the plurality of these cooling structures are provided. By connecting the cooling flow path 35 to the common cooling medium supply flow path 42 and the common cooling medium discharge flow path 44, the plurality of cooling flow paths 35 can be connected in parallel.
The cooling medium supply channel 42 and the cooling medium discharge channel 44 preferably have the same shape (specifically, the overall shape and the cross-sectional shape) and are provided in parallel.
In the example of this figure, each of the cooling medium supply channel 42 and the cooling medium discharge channel 44 has a linear shape extending in the longitudinal direction of the cooling block 40, that is, in the direction in which the plurality of light source units 20 are arranged in parallel. The cross-sectional shape is circular with a diameter of 6 mm. The cooling medium supply channel 42 and the cooling medium discharge channel 44 are each configured by inserting a sealing member 48 on the other end side of the linear through hole formed in the cooling block 40. Yes.
 冷却媒体供給流路42および冷却媒体排出流路44においては、各々、流通流路内における冷却媒体の圧力制御の観点から、緩衝部46が設けられていることが好ましい。
 この図の例において、冷却媒体供給流路42および冷却媒体排出流路44には、各々、緩衝部46が設けられている。
In each of the cooling medium supply channel 42 and the cooling medium discharge channel 44, it is preferable that a buffer 46 is provided from the viewpoint of controlling the pressure of the cooling medium in the flow channel.
In the example of this figure, each of the cooling medium supply channel 42 and the cooling medium discharge channel 44 is provided with a buffer 46.
 冷却ブロック40は、機械的強度および耐電食性などの観点から、ヒートシンク31の材質に応じて適宜の金属が用いられる。
 また、冷却ブロック40を構成する金属は、ヒートシンク31を構成する熱伝導性材料に比して熱伝導性が小さいものであることが好ましい。
 冷却ブロック40が熱伝導性の小さい金属よりなるものであることにより、冷却媒体供給流路42と冷却媒体排出流路44との間において熱の授受が行われることを抑制することができる。そのため、冷却媒体排出流路44を流通する冷却媒体からの受熱に起因して冷却媒体供給流路42において冷却媒体の温度が上昇し、温度勾配が生じることを抑制することができることから、より効率的に多数の発光素子21を冷却することができる。
 この図の例において、冷却ブロック40は、ステンレス鋼よりなるものである。
The cooling block 40 is made of an appropriate metal depending on the material of the heat sink 31 from the viewpoints of mechanical strength and electric corrosion resistance.
Moreover, it is preferable that the metal constituting the cooling block 40 has a lower thermal conductivity than the thermally conductive material constituting the heat sink 31.
Since the cooling block 40 is made of a metal having low thermal conductivity, heat transfer between the cooling medium supply channel 42 and the cooling medium discharge channel 44 can be suppressed. Therefore, it is possible to prevent the temperature gradient of the cooling medium from increasing in the cooling medium supply flow path 42 due to the heat received from the cooling medium flowing through the cooling medium discharge flow path 44, and thus more efficient. Thus, a large number of light emitting elements 21 can be cooled.
In the example of this figure, the cooling block 40 is made of stainless steel.
 また、発光素子光源モジュール10においては、この図の例のように、水冷構造体が冷却ブロック40と複数のヒートシンク31によって構成されている場合には、供給部17から供給された冷却媒体が排出部18に至るまでの経路が、冷却媒体供給流路42および冷却媒体排出流路44によって並列接続されている冷却流路35の数分だけ形成されることとなる。而して、これらの複数の経路については、冷却媒体供給流路42の最上流位置である供給用開口(供給部17)から、冷却流路35を介して、冷却媒体排出流路44の最下流位置である排出用開口(排出部18)に至るまでの経路の長さが、複数の冷却流路35の各々について、同一であることが好ましい。 Further, in the light emitting element light source module 10, when the water cooling structure is constituted by the cooling block 40 and the plurality of heat sinks 31 as in the example of this figure, the cooling medium supplied from the supply unit 17 is discharged. The path to the portion 18 is formed by the number of the cooling channels 35 connected in parallel by the cooling medium supply channel 42 and the cooling medium discharge channel 44. Thus, with respect to the plurality of paths, the supply opening (supply unit 17), which is the most upstream position of the cooling medium supply flow path 42, passes through the cooling flow path 35 and reaches the uppermost position of the cooling medium discharge flow path 44. It is preferable that the length of the path to the discharge opening (discharge section 18) which is the downstream position is the same for each of the plurality of cooling flow paths 35.
 冷却媒体供給流路42の供給用開口から、複数の冷却流路35の各々を介して、冷却媒体排出流路44の排出用開口に至るまでの経路のすべての長さが同一であることにより、設計上、各経路における流路抵抗が同等となる。そのため、複数の冷却流路35の各々に対して同等量の冷却媒体を流入、すなわち供給部17を介して冷却媒体供給流路42に供給された冷却媒体を、複数の冷却流路35の各々に対して均一に配分して流入させることができる。 Since all the lengths of the path from the supply opening of the cooling medium supply flow path 42 to the discharge opening of the cooling medium discharge flow path 44 through each of the plurality of cooling flow paths 35 are the same In design, the channel resistance in each path is equivalent. Therefore, an equal amount of cooling medium flows into each of the plurality of cooling channels 35, that is, the cooling medium supplied to the cooling medium supply channel 42 via the supply unit 17 is supplied to each of the plurality of cooling channels 35. Can be distributed evenly.
 以上のような発光素子光源モジュール10においては、多数の発光素子21が発光している状態においては、水冷構造体に対して供給部17から冷却媒体が供給され、この供給部17から供給された冷却媒体が、冷却媒体供給流路42および供給連通路26を介して複数の冷却流路35の各々に分配して流入される。そして、冷却媒体は、複数の冷却流路35の各々を通過した後、排出連通路27および冷却媒体排出流路44を介して排出部18から水冷構造体外に排出される。このようにして、冷却媒体が水冷構造体内を流通することにより、複数の光源ユニット20の各々において、ヒートシンク31および冷却流路35を流通する冷却媒体によって複数の発光素子21が冷却されることとなる。 In the light emitting element light source module 10 as described above, in the state where a large number of light emitting elements 21 emit light, the cooling medium is supplied from the supply unit 17 to the water cooling structure and supplied from the supply unit 17. The cooling medium is distributed and flows into each of the plurality of cooling flow paths 35 via the cooling medium supply flow path 42 and the supply communication path 26. The cooling medium passes through each of the plurality of cooling flow paths 35 and is then discharged from the discharge unit 18 to the outside of the water cooling structure via the discharge communication path 27 and the cooling medium discharge flow path 44. In this way, the cooling medium flows through the water-cooled structure, whereby the plurality of light emitting elements 21 are cooled by the cooling medium flowing through the heat sink 31 and the cooling flow path 35 in each of the plurality of light source units 20. Become.
 而して、発光素子光源モジュール10においては、ヒートシンク31の内部に形成された冷却流路35が、光源直下領域およびその周辺領域において、複数の内方直線状部分36および複数の外方直線状部分37が密に配置された流路構造を有するものとされている。そのため、冷却流路35の流路幅を過度に大きくすることなく、ヒートシンク31と冷却媒体との接触面積を大きくできることから、複数の発光素子21を高い効率で冷却することができる。また、互いに隣接する内方直線状部分36および外方直線状部分37を流通する冷却媒体の間において、熱伝導性隔壁部39A,39Bを介して熱交換が行われることから、複数の内方直線状部分36および複数の外方直線状部分37における温度均一化が図られるため、冷却流路35に大きな温度勾配が生じることがない。
 また、発光素子光源モジュール10においては、冷却媒体供給流路42および冷却媒体排出流路44が、冷却ブロック40に形成されている。そのため、冷却媒体供給流路42を流通する冷却媒体が、発光素子21からの受熱によって温度上昇することが抑制されることから、冷却媒体供給流路42に大きな温度勾配が生じることがない。また、冷却流路35を流通する冷却媒体が、冷却媒体排出流路44を流通する、発光素子21からの受熱によって加熱された冷却媒体からの受熱によって温度上昇することを抑制することもできる。
 従って、発光素子光源モジュール10によれば、多数の発光素子21の全てが冷却流路35の直上位置に配置されていない場合であっても、当該多数の発光素子21を効率的、かつ高い均一性をもって冷却することができる。
 ここに、この図の例の発光素子光源モジュール10によれば、後述する実験例からも明らかなように、基板22の表面温度を、平均温度が60℃以下の±3℃の温度範囲内とすることができる。
Thus, in the light emitting element light source module 10, the cooling flow path 35 formed inside the heat sink 31 has a plurality of inner straight portions 36 and a plurality of outer straight shapes in the region directly below the light source and its peripheral region. The portion 37 has a channel structure in which the portions 37 are densely arranged. Therefore, the contact area between the heat sink 31 and the cooling medium can be increased without excessively increasing the flow path width of the cooling flow path 35, so that the plurality of light emitting elements 21 can be cooled with high efficiency. In addition, heat exchange is performed between the cooling medium flowing through the inner straight portion 36 and the outer straight portion 37 that are adjacent to each other through the heat conductive partition walls 39A and 39B, so that a plurality of inner portions Since temperature uniformity is achieved in the linear portion 36 and the plurality of outward linear portions 37, a large temperature gradient does not occur in the cooling flow path 35.
In the light emitting element light source module 10, a cooling medium supply channel 42 and a cooling medium discharge channel 44 are formed in the cooling block 40. For this reason, the temperature of the cooling medium flowing through the cooling medium supply flow path 42 is suppressed from rising due to the heat received from the light emitting element 21, so that a large temperature gradient does not occur in the cooling medium supply flow path 42. In addition, it is possible to suppress the temperature of the cooling medium flowing through the cooling flow path 35 from rising due to heat received from the cooling medium heated by heat received from the light emitting elements 21 flowing through the cooling medium discharge flow path 44.
Therefore, according to the light emitting element light source module 10, even when not all of the large number of light emitting elements 21 are arranged immediately above the cooling flow path 35, the large number of light emitting elements 21 can be efficiently and highly uniform. Can be cooled.
Here, according to the light emitting element light source module 10 of the example of this figure, as is clear from an experimental example described later, the surface temperature of the substrate 22 is within a temperature range of ± 3 ° C. with an average temperature of 60 ° C. or less. can do.
 また、発光素子光源モジュール10においては、冷却媒体供給口35Aおよび冷却媒体排出口35Bが、各々、光源直下領域外に設けられていることから、複数の内方直線状部分36においてより一層の温度均一化を図ることができる。 Further, in the light emitting element light source module 10, the cooling medium supply port 35 </ b> A and the cooling medium discharge port 35 </ b> B are each provided outside the region directly under the light source, so that the temperature in the plurality of inward linear portions 36 is further increased. Uniformity can be achieved.
 また、発光素子光源モジュール10においては、水冷構造体が、銅よりなるヒートシンク31とステンレス鋼よりなる冷却ブロック40とによって構成されていることから、電食が生じることが防止または十分に抑制される。しかも、ステンレス鋼が銅に比して熱伝導率が小さいものであることから、冷却媒体供給流路42と冷却媒体排出流路44との間、冷却媒体供給流路42と冷却流路35との間、および冷却媒体排出流路44と冷却流路35との間の各々において、熱の授受が行われることが抑制される。そのため、冷却媒体供給流路42および冷却流路35において、温度勾配が生じることを抑制することができることから、より効果的に発光素子21を冷却することができる。 Further, in the light emitting element light source module 10, since the water cooling structure is constituted by the heat sink 31 made of copper and the cooling block 40 made of stainless steel, the occurrence of electrolytic corrosion is prevented or sufficiently suppressed. . In addition, since stainless steel has a smaller thermal conductivity than copper, the cooling medium supply flow path 42 and the cooling flow path 35 are provided between the cooling medium supply flow path 42 and the cooling medium discharge flow path 44. Heat transfer between the cooling medium discharge channel 44 and the cooling channel 35 is suppressed. Therefore, the temperature gradient can be prevented from occurring in the cooling medium supply channel 42 and the cooling channel 35, so that the light emitting element 21 can be cooled more effectively.
 また、発光素子光源モジュール10においては、冷却媒体供給流路42および冷却媒体排出流路44によって複数の冷却流路35が並列に接続されており、その複数の冷却流路35の各々に対して、冷却媒体供給流路42における供給用開口を流通する冷却媒体と同等温度の冷却媒体を流入させることができる。そのため、発光素子光源モジュール10が複数の光源ユニット20を備えた構成のものであっても、これらの複数の光源ユニット20を構成する多数の発光素子21を、効率的、かつ高い均一性をもって冷却することができる。 Further, in the light emitting element light source module 10, a plurality of cooling channels 35 are connected in parallel by the cooling medium supply channel 42 and the cooling medium discharge channel 44, and each of the plurality of cooling channels 35 is connected. The cooling medium having the same temperature as the cooling medium flowing through the supply opening in the cooling medium supply channel 42 can be caused to flow. Therefore, even if the light emitting element light source module 10 includes a plurality of light source units 20, a large number of light emitting elements 21 constituting the plurality of light source units 20 are cooled efficiently and with high uniformity. can do.
 また、発光素子光源モジュール10においては、複数の光源ユニット20が、各々、冷却ブロック40に対して、交換可能に固定されていることから、交換が必要となった発光素子21を備えた光源ユニット20を冷却ブロック40から取り外して新たな光源ユニット20を取り付けることにより、発光素子21を交換することができる。 Further, in the light emitting element light source module 10, since the plurality of light source units 20 are fixed to the cooling block 40 so as to be replaceable, the light source unit including the light emitting element 21 that needs to be replaced. By removing 20 from the cooling block 40 and attaching a new light source unit 20, the light emitting element 21 can be replaced.
 この発光素子光源モジュール10は、例えば液晶パネルの製造工程(ODF法)、プリント基板の製造工程(露光処理)および印刷インキの定着工程(乾燥処理)などに用いられる紫外線照射装置の光源として、好適に用いることができる。 The light-emitting element light source module 10 is suitable as a light source for an ultraviolet irradiation device used in, for example, a liquid crystal panel manufacturing process (ODF method), a printed circuit board manufacturing process (exposure process), and a printing ink fixing process (drying process). Can be used.
 本発明の発光素子光源モジュールにおいては、上記の実施の形態に限定されず、種々の変更を加えることが可能である。
 例えば、冷却流路は、光源直下領域において、互いに連続し、隔壁部を介して隣接した複数の流路部分を有しており、互いに隣接する流路部分の間に位置する熱伝導性隔壁部の厚みが、当該冷却流路の流路幅より小さい形状を有するものであれば、図1に示した形状以外の形状を有するものであってもよい。すなわち、冷却流路は、屈曲部または湾曲部を有しており、光源直下領域において、冷却流路の流路幅より小さい厚みの熱伝導性隔壁部を介して並走する複数の流路部分を有するものであればよい。具体的には、冷却流路の光源直下領域の形状は、発光素子配置領域の一縁に沿って伸びる第1の流路部分と、当該第1の流路部分の冷却媒体流出口に連続し、熱伝導性隔壁部を介して当該第1の流路部分と同一方向に伸びる第2の流路部分と有するU字状であってもよい。また、冷却流路の光源直下領域の形状は、図4におけるヒートシンクの短手方向に沿って蛇行して伸びる蛇行状であってもよく、また渦巻き状(具体的には、円形渦巻き状および矩形渦巻き状等)であってもよい。
 ここに、冷却流路の光源直下領域の形状が、U字状である場合には、冷却効率の観点から、冷却媒体供給口および冷却媒体排出口が、当該光源直下領域外に設けられていることが好ましい。また、冷却流路の光源直下領域の形状が、渦巻き状である場合には、冷却効率の観点から、冷却媒体供給口が、当該光源直下領域内に設けられ、冷却媒体排出口が、当該光源直下領域外に設けられていることが好ましい。
In the light emitting element light source module of this invention, it is not limited to said embodiment, A various change can be added.
For example, the cooling flow path has a plurality of flow path portions that are adjacent to each other through the partition wall portion in the region immediately below the light source, and are located between the adjacent flow path portions. 1 may have a shape other than the shape shown in FIG. 1, as long as the thickness has a shape smaller than the channel width of the cooling channel. That is, the cooling channel has a bent portion or a curved portion, and in the region directly below the light source, a plurality of channel portions that run side by side through a thermally conductive partition wall having a thickness smaller than the channel width of the cooling channel. What is necessary is just to have. Specifically, the shape of the region directly below the light source of the cooling channel is continuous with the first channel part extending along one edge of the light emitting element arrangement region and the cooling medium outlet of the first channel part. Also, it may be U-shaped with a second flow path portion extending in the same direction as the first flow path portion via a thermally conductive partition wall portion. Further, the shape of the region immediately below the light source in the cooling channel may be a meandering shape extending meandering along the short direction of the heat sink in FIG. 4, or may be a spiral shape (specifically, a circular spiral shape or a rectangular shape). It may be a spiral shape.
Here, when the shape of the region immediately below the light source of the cooling channel is U-shaped, the cooling medium supply port and the cooling medium discharge port are provided outside the region directly below the light source from the viewpoint of cooling efficiency. It is preferable. Further, when the shape of the region immediately below the light source of the cooling channel is spiral, from the viewpoint of cooling efficiency, the cooling medium supply port is provided in the region immediately below the light source, and the cooling medium discharge port is the light source. It is preferable to be provided outside the region immediately below.
 また、発光素子光源モジュールは、冷却ブロックの表面に1つの光源ユニットが配設されてなる構成のものであってもよい。 Further, the light emitting element light source module may have a configuration in which one light source unit is disposed on the surface of the cooling block.
 また、発光素子光源モジュールにおいては、発光素子がヒートシンクの表面に直接配置されており、当該ヒートシンクの表面に配線パターンが施されてなる構成、すなわちヒートシンクが基板としての機能を兼ね備えた構成のものであってもよい。
 このような場合においては、発光素子がヒートシンクによって直接冷却されることとなるため、より効果的に発光素子を冷却することができる。
In the light emitting element light source module, the light emitting element is directly arranged on the surface of the heat sink, and the wiring pattern is applied to the surface of the heat sink, that is, the heat sink has a function as a substrate. There may be.
In such a case, since the light emitting element is directly cooled by the heat sink, the light emitting element can be cooled more effectively.
  以下、本発明の実験例を示す。 Below, experimental examples of the present invention are shown.
〔実験例1〕
 図1の構成を有する発光素子光源モジュール(以下、「発光素子光源モジュール(1)」ともいう。)を作製した。
 この発光素子光源モジュール(1)において、基板は、ピーク発光波長が365nmのLED素子160個が、10個×16個で千鳥格子状に配置されてなる窒化アルミニウム製のものである。
 また、ヒートシンクは、銅よりなる2枚の略矩形板状の基材がろう付けによって接合されたものであり、当該ヒートシンクの内部には、断面形状が、幅(流路幅)5mm、高さ(流路高さ)2.5mmであって、流路高さに対する流路幅の比が2の扁平矩形状であり、全体形状が蛇行状の冷却流路が形成されている。この冷却流路において、互いに隣接する内方直線状部分の間の熱伝導性隔壁部の厚み、および互いに隣接する内方直線状部分と外方直線状部分との間の熱伝導性隔壁部の厚みは、いずれも1mmである。また、冷却流路形成面積は、発光素子配置面積の83.3%である。また、冷却媒体供給口および冷却媒体排出口は、直径6mmの円形状である。
 また、冷却ブロックは、ステンレス鋼よりなるものであり、当該冷却ブロックの内部には、断面形状が、直径6mmの円形状であって、全体形状が直線状の冷却媒体供給流路および冷却媒体排出流路が形成されている。
[Experimental Example 1]
A light-emitting element light source module having the configuration of FIG. 1 (hereinafter, also referred to as “light-emitting element light source module (1)”) was manufactured.
In this light-emitting element light source module (1), the substrate is made of aluminum nitride in which 160 LED elements having a peak emission wavelength of 365 nm are arranged in a 10-by-16 pattern in a staggered pattern.
In addition, the heat sink is formed by joining two substantially rectangular plate-shaped base materials made of copper by brazing, and the cross-sectional shape is 5 mm wide and high in the heat sink. (Flow path height) A cooling flow path having a flat rectangular shape with a ratio of the flow path width to the flow path height of 2 and a meandering shape is formed. In this cooling flow path, the thickness of the thermally conductive partition between the inner straight portions adjacent to each other, and the thickness of the thermally conductive partition between the inner straight portions and the outer straight portions adjacent to each other. Each thickness is 1 mm. The cooling channel formation area is 83.3% of the light emitting element arrangement area. The cooling medium supply port and the cooling medium discharge port have a circular shape with a diameter of 6 mm.
The cooling block is made of stainless steel, and the cooling block has a circular cross section having a diameter of 6 mm and a linear cooling medium supply channel and cooling medium discharge inside the cooling block. A flow path is formed.
 作製した発光素子光源モジュール(1)において、温度25℃の環境条件下にて、3つの光源ユニットの各々を構成する160個の発光素子を発熱量1.82Wの条件で発光させると共に、水冷構造体の流通流路に対して、温度25±5℃の冷却水よりなる冷却媒体を、流量3L/minの条件によって供給した。ここに、各光源ユニットにおける発熱量は、291.2Wであった。そして、基板の表面温度を測定すると共に、冷却媒体供給口における冷却媒体の温度および冷却媒体排出口における冷却媒体の温度を測定したところ、基板の表面温度は、59±3℃であり、冷却媒体供給口における冷却媒体の温度は37℃であり、冷却媒体排出口における冷却媒体の温度は38℃であった。 In the produced light-emitting element light source module (1), under the environmental condition of a temperature of 25 ° C., 160 light-emitting elements constituting each of the three light source units emit light under the condition of a heating value of 1.82 W, and the water-cooling structure A cooling medium made of cooling water having a temperature of 25 ± 5 ° C. was supplied to the body circulation channel under the condition of a flow rate of 3 L / min. Here, the calorific value in each light source unit was 291.2W. And while measuring the surface temperature of a board | substrate and measuring the temperature of the cooling medium in a cooling-medium supply port and the temperature of the cooling medium in a cooling-medium discharge port, the surface temperature of a board | substrate is 59 +/- 3 degreeC, The temperature of the cooling medium at the supply port was 37 ° C., and the temperature of the cooling medium at the cooling medium discharge port was 38 ° C.
〔比較実験例1〕
 実験例1の発光素子光源モジュール(1)において、ヒートシンクの冷却流路が、ヒートシンクの長手方向に伸びる直線状の形状であること以外は当該発光素子光源モジュール(1)と同様の構成の発光素子光源モジュール(以下、「比較用発光素子光源モジュール(1)」ともいう。)を作製した。
[Comparative Experiment Example 1]
In the light emitting element light source module (1) of Experimental Example 1, a light emitting element having the same configuration as that of the light emitting element light source module (1) except that the cooling channel of the heat sink has a linear shape extending in the longitudinal direction of the heat sink. A light source module (hereinafter also referred to as “comparative light emitting element light source module (1)”) was produced.
 比較用発光素子光源モジュール(1)について、実験例1と同様にして、基板の表面温度、冷却媒体供給口における冷却媒体の温度および冷却媒体排出口における冷却媒体の温度を測定したところ、基板の表面温度は80±16℃であり、冷却媒体供給口における冷却媒体の温度は45℃であり、冷却媒体排出口における冷却媒体の温度は48℃であった。 For the comparative light-emitting element light source module (1), the surface temperature of the substrate, the temperature of the cooling medium at the cooling medium supply port, and the temperature of the cooling medium at the cooling medium discharge port were measured in the same manner as in Experimental Example 1. The surface temperature was 80 ± 16 ° C., the temperature of the cooling medium at the cooling medium supply port was 45 ° C., and the temperature of the cooling medium at the cooling medium discharge port was 48 ° C.
〔比較実験例2〕
 実験例1の発光素子光源モジュール(1)において、ヒートシンクの冷却流路が、ヒートシンクの長手方向に伸びる直線状の3つの分岐路を有する形状であること以外は当該発光素子光源モジュール(1)と同様の構成の発光素子光源モジュール(以下、「比較用発光素子光源モジュール(2)」ともいう。)を作製した。
[Comparative Experiment 2]
In the light emitting element light source module (1) of Experimental Example 1, except that the cooling flow path of the heat sink has a shape having three straight branched paths extending in the longitudinal direction of the heat sink. A light-emitting element light source module having the same configuration (hereinafter, also referred to as “comparative light-emitting element light source module (2)”) was manufactured.
 比較用発光素子光源モジュール(2)について、実験例1と同様にして、基板の表面温度、冷却媒体供給口における冷却媒体の温度および冷却媒体排出口における冷却媒体の温度を測定したところ、基板の表面温度は72±8℃であり、冷却媒体供給口における冷却媒体の温度は47℃であり、冷却媒体排出口における冷却媒体の温度は50℃であった。 For the comparative light-emitting element light source module (2), the surface temperature of the substrate, the temperature of the cooling medium at the cooling medium supply port, and the temperature of the cooling medium at the cooling medium discharge port were measured in the same manner as in Experimental Example 1. The surface temperature was 72 ± 8 ° C., the temperature of the cooling medium at the cooling medium supply port was 47 ° C., and the temperature of the cooling medium at the cooling medium discharge port was 50 ° C.
 以上の実験例1、比較用実験例1および比較用実験例2の結果から、本発明に係る発光素子光源モジュール(1)によれば、発光源を構成する複数の発光素子を効率的、かつ高い均一性をもって冷却することができることが確認された。 From the results of the above experimental example 1, comparative experimental example 1 and comparative experimental example 2, according to the light emitting element light source module (1) according to the present invention, a plurality of light emitting elements constituting the light source can be efficiently and It was confirmed that cooling can be performed with high uniformity.
10  発光素子光源モジュール
12  カバー部材
12A  領域
13  窓部材
17  供給部
18  排出部
20  光源ユニット
21  発光素子
22  基板
23  電気接続部
26  供給連通路
26A,26B  供給連通路用孔
27  排出連通路
27A,27B  排出連通路用孔
28  固定ネジ
29  シール部材
31  ヒートシンク
31A  大径部
31B  小径部
33A,33B,33C,33D  領域縁
35  冷却流路
35A  冷却媒体供給口
35B  冷却媒体排出口
36  直線状流路部分(内方直線状部分)
37  直線状流路部分(外方直線状部分)
38A,38B  屈曲流路部分(屈曲部分)
39A,39B  熱伝導性隔壁部
40  冷却ブロック
41  シール部材配置用溝
42  冷却媒体供給流路
44  冷却媒体排出流路
46  緩衝部
48  封止部材
DESCRIPTION OF SYMBOLS 10 Light emitting element light source module 12 Cover member 12A Area | region 13 Window member 17 Supply part 18 Discharge part 20 Light source unit 21 Light emitting element 22 Board | substrate 23 Electrical connection part 26 Supply communication path 26A, 26B Supply communication path hole 27 Discharge communication path 27A, 27B Discharge communication passage hole 28 Fixing screw 29 Seal member 31 Heat sink 31A Large diameter portion 31B Small diameter portion 33A, 33B, 33C, 33D Region edge 35 Cooling flow path 35A Cooling medium supply port 35B Cooling medium discharge port 36 Linear flow path portion ( Inner straight part)
37 Straight channel part (outward straight part)
38A, 38B Bent channel part (bent part)
39A, 39B Thermally conductive partition 40 Cooling block 41 Sealing member disposition groove 42 Cooling medium supply channel 44 Cooling medium discharge channel 46 Buffer 48 Sealing member

Claims (6)

  1.  熱伝導性材料よりなるヒートシンクの表面上に複数の発光素子が配置された光源ユニットと、当該ヒートシンクの裏面に配設された冷却ブロックとを備えており、
     前記ヒートシンクには、その内部に、冷却媒体を流通させるための冷却流路が形成されており、
     前記冷却流路は、流路幅が流路高さより大きく、前記ヒートシンクの表面に沿って伸びる扁平な断面形状を有し、当該冷却流路における冷却媒体供給口および冷却媒体排出口が、それぞれ前記冷却ブロックに形成された冷却媒体供給流路および冷却媒体排出流路に接続されており、
     前記冷却流路は、前記ヒートシンクの表面上における複数の発光素子が配置される発光素子配置領域の直下領域において、互いに連続し、熱伝導性隔壁部を介して隣接する複数の流路部分を有しており、当該熱伝導性隔壁部の厚みが、当該冷却流路の流路幅より小さいことを特徴とする発光素子光源モジュール。
    A light source unit in which a plurality of light emitting elements are arranged on the surface of a heat sink made of a heat conductive material, and a cooling block disposed on the back surface of the heat sink,
    In the heat sink, a cooling channel for circulating a cooling medium is formed in the heat sink,
    The cooling flow path has a flat cross-sectional shape in which the flow path width is larger than the flow path height and extends along the surface of the heat sink, and the cooling medium supply port and the cooling medium discharge port in the cooling flow path are respectively Connected to the cooling medium supply channel and the cooling medium discharge channel formed in the cooling block,
    The cooling flow path has a plurality of flow path portions that are continuous with each other and are adjacent to each other via a thermally conductive partition wall in a region immediately below the light emitting element arrangement region on the surface of the heat sink where a plurality of light emitting elements are arranged. The light-emitting element light source module is characterized in that the thickness of the thermally conductive partition wall portion is smaller than the channel width of the cooling channel.
  2.  前記冷却流路は、前記発光素子配置領域の一縁に沿って伸びる第1の流路部分と、当該第1の流路部分の冷却媒体流出口に連続し、前記熱伝導性隔壁部を介して当該第1の流路部分と同一方向に伸びる第2の流路部分とを有していることを特徴とする請求項1に記載の発光素子光源モジュール。 The cooling flow path is continuous with a first flow path portion extending along one edge of the light emitting element arrangement region, and a cooling medium outlet of the first flow path portion, and via the thermally conductive partition wall portion. The light-emitting element light source module according to claim 1, further comprising a second flow path portion extending in the same direction as the first flow path portion.
  3.  前記冷却媒体供給口および前記冷却媒体排出口が、各々、前記直下領域外に設けられていることを特徴とする請求項2に記載の発光素子光源モジュール。 The light emitting element light source module according to claim 2, wherein the cooling medium supply port and the cooling medium discharge port are provided outside the region immediately below.
  4.  前記冷却流路は、流路高さに対する流路幅の比が1.5~3.5であることを特徴とする請求項1~請求項3のいずれかに記載の発光素子光源モジュール。 The light-emitting element light source module according to any one of claims 1 to 3, wherein the cooling channel has a ratio of channel width to channel height of 1.5 to 3.5.
  5.  前記光源ユニットを、前記ヒートシンクの表面に垂直な方向に透視したとき、前記発光素子配置領域における、前記冷却流路が占める領域部分の面積が、当該発光素子配置領域の面積に対して80%以上であることを特徴とする請求項1~請求項4のいずれかに記載の発光素子光源モジュール。 When the light source unit is seen through in a direction perpendicular to the surface of the heat sink, the area of the region occupied by the cooling channel in the light emitting element arrangement region is 80% or more with respect to the area of the light emitting element arrangement region. The light-emitting element light source module according to any one of claims 1 to 4, wherein
  6.  前記光源ユニットを複数備え、前記冷却ブロックがこれらの複数の光源ユニットに共通のものとされており、
     前記複数の光源ユニットにおける冷却流路の各々の冷却媒体供給口および冷却媒体排出口が、前記冷却ブロックにおける共通の冷却媒体供給流路および共通の冷却媒体排出流路に接続されていることを特徴とする請求項1~請求項5のいずれかに記載の発光素子光源モジュール。
    A plurality of the light source units, the cooling block is common to the plurality of light source units,
    A cooling medium supply port and a cooling medium discharge port of each of the cooling channels in the plurality of light source units are connected to a common cooling medium supply channel and a common cooling medium discharge channel in the cooling block. The light-emitting element light source module according to any one of claims 1 to 5.
PCT/JP2016/081516 2015-11-16 2016-10-25 Light-emitting element light source module WO2017086097A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680064470.1A CN108351092A (en) 2015-11-16 2016-10-25 Light-emitting element light source module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-223810 2015-11-16
JP2015223810A JP6558222B2 (en) 2015-11-16 2015-11-16 Light-emitting element light source module

Publications (1)

Publication Number Publication Date
WO2017086097A1 true WO2017086097A1 (en) 2017-05-26

Family

ID=58718729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081516 WO2017086097A1 (en) 2015-11-16 2016-10-25 Light-emitting element light source module

Country Status (3)

Country Link
JP (1) JP6558222B2 (en)
CN (1) CN108351092A (en)
WO (1) WO2017086097A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019200478A1 (en) * 2019-01-16 2020-07-16 Heraeus Noblelight Gmbh LIGHT SOURCE WITH AT LEAST ONE FIRST LIGHT-EMITTING SEMICONDUCTOR COMPONENT, A FIRST CARRIER ELEMENT AND A DISTRIBUTION ELEMENT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065128A (en) * 2007-08-10 2009-03-26 Panasonic Electric Works Co Ltd Heatsink and semiconductor device with heatsink
JP2013168330A (en) * 2012-02-16 2013-08-29 Nk Works Kk Light irradiation device and light irradiation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700034B2 (en) * 2009-08-10 2015-04-15 富士電機株式会社 Semiconductor module and cooler
JP4893806B2 (en) * 2009-11-12 2012-03-07 ウシオ電機株式会社 Light emitting element light source unit
JP6161497B2 (en) * 2013-10-01 2017-07-12 商研株式会社 LED circuit board structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065128A (en) * 2007-08-10 2009-03-26 Panasonic Electric Works Co Ltd Heatsink and semiconductor device with heatsink
JP2013168330A (en) * 2012-02-16 2013-08-29 Nk Works Kk Light irradiation device and light irradiation system

Also Published As

Publication number Publication date
JP6558222B2 (en) 2019-08-14
JP2017091945A (en) 2017-05-25
CN108351092A (en) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6140672B2 (en) Insulated LED device
US9434151B2 (en) LED unit
CN103477179B (en) The uniform liquid cooling of LED array
KR101548781B1 (en) Light source device
JP4893806B2 (en) Light emitting element light source unit
JP2009064986A (en) Light source device
JP2009064987A (en) Light source unit
JP2019175871A (en) Light-emitting element light source module
JP6558222B2 (en) Light-emitting element light source module
JP2017033779A (en) Light source device, display device and electronic apparatus
JP2016025165A (en) Light irradiation device
JP2014207209A (en) Light source unit
JP5271849B2 (en) LED irradiation device
JP2016062677A (en) Light irradiation device
CN208197825U (en) UV-LED curing light source system
JP4552845B2 (en) Heat exchanger, light source device, projector, electronic equipment
JP2009010047A (en) Light source using light emitting diode
JP2019087561A (en) Cooling structure and light source unit
JP6171301B2 (en) Light source unit
JP6544002B2 (en) Irradiator
CN220190118U (en) Micro laser and portable laser cleaning equipment
JP6020007B2 (en) Light source unit
US10935876B2 (en) Light source device, projection display device, and method of cooling semiconductor light-emitting element
JP2019061819A (en) Light irradiation device
JP2019114547A (en) Irradiation body and irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866099

Country of ref document: EP

Kind code of ref document: A1