JP2013209725A - Cold rolled steel sheet excellent in bendability and manufacturing method thereof - Google Patents

Cold rolled steel sheet excellent in bendability and manufacturing method thereof Download PDF

Info

Publication number
JP2013209725A
JP2013209725A JP2012081987A JP2012081987A JP2013209725A JP 2013209725 A JP2013209725 A JP 2013209725A JP 2012081987 A JP2012081987 A JP 2012081987A JP 2012081987 A JP2012081987 A JP 2012081987A JP 2013209725 A JP2013209725 A JP 2013209725A
Authority
JP
Japan
Prior art keywords
less
steel sheet
cold
rolled steel
bending workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012081987A
Other languages
Japanese (ja)
Inventor
Yoshimasa Funakawa
義正 船川
Taro Kizu
太郎 木津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012081987A priority Critical patent/JP2013209725A/en
Priority to RU2012132654/02A priority patent/RU2526345C2/en
Priority to BR102012019162A priority patent/BR102012019162A2/en
Priority to ZA2012/05756A priority patent/ZA201205756B/en
Priority to MYPI2012003441A priority patent/MY162361A/en
Publication of JP2013209725A publication Critical patent/JP2013209725A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cold rolled steel sheet having excellent bendability and to provide an advantageous manufacturing method thereof.SOLUTION: A cold rolled steel sheet has a composition containing, by mass, 0.005-0.030% C, 0.05% or less Si, 0.10-0.35% Mn, 0.025% or less P, 0.015% or less S, 0.0050% or less N, and 0.07% or less Al, and satisfying the relation of [%Si]/[%Mn]<0.5, with the remainder comprising Fe and unavoidable impurities. The cold rolled steel sheet is characterized in that the ferrite grain size in the steel is 15 μm or less, and 50% or more of the precipitating cementite precipitates in the ferrite grain.

Description

本発明は、自動車用部品等の構造部材や住居、家具、机、家電製品などの構造体の素材として好適な、曲げ加工性に優れた冷延鋼板及びその製造方法に関するものである。   The present invention relates to a cold-rolled steel sheet excellent in bending workability and a method for producing the same, which is suitable as a material for a structural member such as an automobile part or a structural body such as a house, furniture, desk, or home appliance.

冷延鋼板は、その成形性の良さから、多種多様な構造体の素材として用いられている。通常、冷延鋼板は、プレス成形によって2次元の板形状のものを3次元構造体とし、これらを接合してさらに複雑な3次元の構造体を形成することから、優れたプレス加工性が要求される。   Cold-rolled steel sheets are used as materials for a wide variety of structures because of their good formability. Normally, cold-rolled steel sheets are formed by pressing into a two-dimensional plate shape to form a three-dimensional structure, and these are joined to form a more complex three-dimensional structure, so excellent press workability is required. Is done.

プレス加工には数種類のプレス様式が存在するが、このうち、曲げ加工は板厚方向の歪み分布を考えなければならない唯一の加工方法である。この曲げ加工については、従来余り注目されることはなかったが、プレス成形形状の複雑化に伴って曲げ加工の度合いも厳しくなってきている。そのため、曲げ加工でプレス割れが生じるケースが散見されていた。   There are several types of pressing in press working, but bending is the only working method that must consider the strain distribution in the thickness direction. This bending process has not received much attention in the past, but the degree of bending process has become severe as the press-molded shape becomes more complicated. For this reason, there have been cases where press cracks occur during bending.

そのため、直接曲げ加工性を改善することを目的とした物ではないが、例えば特許文献1には、C、Mn、Al、Nの量を低減し、50%以上の圧延率で冷間圧延した後、焼鈍後の冷却条件及び過時効条件を規定するとともに調質圧延率を規定することで、耐時効性に優れた高加工性冷延鋼板を製造する方法が開示されている。
しかしながら、この方法では耐時効性の良好な鋼板を製造できるものの、調質圧延で表面に歪みが導入されるため曲げ加工を行った場合、表面に割れが生じやすい。
Therefore, although not intended to improve the direct bending workability, for example, in Patent Document 1, the amount of C, Mn, Al, N is reduced, and cold rolling is performed at a rolling rate of 50% or more. Thereafter, a method for producing a highly workable cold-rolled steel sheet having excellent aging resistance by prescribing the cooling condition and the overaging condition after annealing and the temper rolling ratio is disclosed.
However, although this method can produce a steel plate with good aging resistance, since the surface is strained by temper rolling, cracking tends to occur on the surface when bending is performed.

特許文献2には、C、Mn、S、O、Bの量を規定した鋼を、規定された条件で連続鋳造した後に熱延、冷延、連続焼鈍することで曲げ加工性に優れた冷延鋼板を製造する方法が開示されている。
しかしながら、この方法では、酸化物系介在物でMnSの大きさを制御しているものの、酸素を60ppm以上に含有させなければならず、酸化物系の介在物が多量に発生し、これが起点となって曲げ加工において割れが生じるという問題があった。
In Patent Document 2, a steel having a specified amount of C, Mn, S, O, and B is continuously cast under specified conditions, and then hot-rolled, cold-rolled, and continuously annealed to provide a cold work with excellent bending workability. A method of manufacturing a rolled steel sheet is disclosed.
However, in this method, although the size of MnS is controlled by oxide inclusions, oxygen must be contained at 60 ppm or more, and a large amount of oxide inclusions are generated. Thus, there was a problem that cracking occurred in the bending process.

特許文献3には、C、Si、Mn、P、Al、Nの量を規定した鋼を、熱延、冷延したのちの連続焼鈍時に急速加熱急速冷却することで、耐時効性と加工性の優れた冷延鋼板の製造技術か開示されている。
しかしながら、この方法では、加熱と冷却があまりにも速いため、板厚方向の組織が不均一となり、曲げ加工には適さないという問題があった。
Patent Document 3 discloses aging resistance and workability by rapidly heating and rapidly cooling a steel in which the amounts of C, Si, Mn, P, Al, and N are specified after hot rolling and cold rolling. The manufacturing technology of the excellent cold-rolled steel sheet is disclosed.
However, this method has a problem that the structure in the thickness direction is not uniform because heating and cooling are too fast, and is not suitable for bending.

特許文献4には、C、Mn、Si、N、B、Sの量を規定し、MnをSよりも過剰に添加することを特徴とした曲げ加工性に優れた薄鋼板が開示されている。この技術によれば、表面へのMn、Siの偏析を抑制し、非時効として降伏点を下げることで、鋼板の腰折れを回避してある程度曲げ加工性が改善する。
しかしながら、C含有量が多いため、セメンタイトとフェライト界面で割れが生じやすく、厳しい曲げ加工に対して十分な曲げ加工性を得ることができないという問題があった。
Patent Document 4 discloses a thin steel sheet excellent in bending workability, characterized in that the amounts of C, Mn, Si, N, B, and S are defined and Mn is added in excess of S. . According to this technique, the segregation of Mn and Si on the surface is suppressed, and the yield point is lowered as non-aging, so that the bending workability of the steel sheet is improved to some extent by avoiding the buckling of the steel sheet.
However, since the C content is large, there is a problem that cracking is likely to occur at the cementite / ferrite interface, and sufficient bending workability cannot be obtained for severe bending work.

特開昭61−124533号公報JP 61-124533 A 特開平2−267227号公報JP-A-2-267227 特開平7−216459号公報JP-A-7-216459 特開昭56−136956号公報JP 56-136956 A

上述したとおり、従来の技術では、曲げ加工性の良好な冷延鋼板を工業的に安定して提供することは困難であった。
本発明は、上記した従来技術が抱える問題を有利に解決するもので、優れた曲げ加工性を有する冷延鋼板を、その有利な製造方法と共に提供することを目的とする。
As described above, with the conventional technology, it has been difficult to industrially stably provide a cold-rolled steel sheet having good bending workability.
The present invention advantageously solves the above-described problems of the prior art, and an object thereof is to provide a cold-rolled steel sheet having excellent bending workability together with its advantageous manufacturing method.

従来、冷延鋼板の加工性は、固溶C量を低減することに主眼がおかれて開発されてきた。このため、過時効条件や調質圧延条件による加工性の改善が図られてきた。
しかしながら、固溶Cの低減のみでは曲げ加工性の改善に限界が見られるようになった。
Conventionally, the workability of cold-rolled steel sheets has been developed with a focus on reducing the amount of dissolved C. For this reason, workability has been improved by overaging conditions and temper rolling conditions.
However, there is a limit in improving the bending workability only by reducing solute C.

そこで、発明者らは、固溶C量の低減を目的とした過時効条件や調質圧延条件の制御ではなく、その他の曲げ加工性を向上させる方法を探求した結果、曲げ加工性の向上には、フェライト粒径とセメンタイトの析出位置を同時に制御しなければならず、これに適した鋼成分は、Si及びMnの含有量が低く、かつそれぞれに好適な含有量比が存在することを見いだした。   Therefore, the inventors sought other methods for improving bending workability rather than controlling overaging conditions and temper rolling conditions for the purpose of reducing the amount of solute C, and as a result, improved bending workability. Therefore, it is necessary to control the ferrite grain size and the cementite precipitation position at the same time, and the steel components suitable for this are found to have low Si and Mn contents and suitable content ratios for each. It was.

本発明は、上記の知見に基づき完成されたもので、その要旨構成は次の通りである。
1.質量%で、C:0.005〜0.030%、Si:0.05%以下、Mn:0.10〜0.35%、P:0.025%以下、S:0.015%以下、N:0.01%以下、Al:0.07%以下を含有し、かつ[%Si]/[%Mn]<0.5の関係を満足し、残部がFe及び不可避不純物の組成からなり、
鋼中のフェライト粒径が20μm以下であり、析出セメンタイトの50%以上がフェライト粒内に析出することを特徴とする曲げ加工性に優れた冷延鋼板。
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。
The present invention has been completed based on the above findings, and the gist of the present invention is as follows.
1. In mass%, C: 0.005 to 0.030%, Si: 0.05% or less, Mn: 0.10 to 0.35%, P: 0.025% or less, S: 0.015% or less, N: 0.01% or less, Al: 0.07% or less And satisfying the relationship of [% Si] / [% Mn] <0.5, the balance is composed of Fe and inevitable impurities,
A cold-rolled steel sheet having excellent bending workability, characterized in that the ferrite grain size in steel is 20 μm or less, and 50% or more of precipitated cementite is precipitated in ferrite grains.
Here, [% M] represents the content (mass%) of M element in steel.

2.さらに質量%で、B:0.0050%以下を含有することを特徴とする上記1に記載の曲げ加工性に優れた冷延鋼板。 2. The cold-rolled steel sheet having excellent bending workability as described in 1 above, further comprising B: 0.0050% or less by mass%.

3.さらに質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Ti、Pb、Ta、REM、V、Cs、Zr、Hfのいずれか1種以上を、合計で1%以下含有することを特徴とする上記1又は2に記載の曲げ加工性に優れた冷延鋼板。 3. Furthermore, by mass%, any one or more of Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Mo, Sb, W, Nb, Ti, Pb, Ta, REM, V, Cs, Zr, Hf The cold-rolled steel sheet having excellent bending workability as described in 1 or 2 above, wherein the total content of

4.鋼板表面にめっき皮膜をさらに備えることを特徴とする上記1〜3のいずれかに記載の曲げ加工性に優れた冷延鋼板。 4). The cold-rolled steel sheet excellent in bending workability according to any one of the above 1 to 3, further comprising a plating film on the surface of the steel sheet.

5.上記1〜3のいずれかに記載の成分組成からなる鋼素材に、熱間圧延を施し、仕上げ圧延終了後、コイルに巻き取り、ついで酸洗後、冷間圧延を施したのち、連続焼鈍し、さらに過時効処理を施して冷延鋼板を製造するに際し、
オーステナイト単相域に加熱後、仕上げ圧延温度:820℃以上950℃未満で熱間圧延を終了したのち、780℃以下の温度で巻き取り、ついで鋼板表面のスケール除去後、85%以下の圧延率で冷間圧延したのち、800℃以下で焼鈍し、さらに過時効温度まで冷却後、420℃未満の温度域で過時効処理を施すことを特徴とする曲げ加工性に優れた冷延鋼板の製造方法。
5. The steel material having the composition described in any one of 1 to 3 above is hot-rolled, and after finishing rolling, wound on a coil, then pickled, and then cold-rolled and then continuously annealed. Furthermore, when producing cold-rolled steel sheets by further overaging treatment,
After heating to the austenite single-phase region, finish rolling temperature: 820 ° C or more and less than 950 ° C, after finishing hot rolling, winding at a temperature of 780 ° C or less, and then removing the scale on the steel sheet surface, then rolling rate of 85% or less Cold rolled steel sheet with excellent bending workability, characterized by annealing at 800 ° C or lower after cold rolling, cooling to the overaging temperature, and then overaging at a temperature range below 420 ° C Method.

6.前記過時効処理に先立って、前記焼鈍後に水冷を行うことを特徴とする上記5に記載の曲げ加工性に優れた冷延鋼板の製造方法。 6). 6. The method for producing a cold-rolled steel sheet having excellent bending workability according to 5 above, wherein water cooling is performed after the annealing prior to the overaging treatment.

7.前記過時効処理後、めっき処理を施すことを特徴とする上記5又は6に記載の曲げ加工性に優れた冷延鋼板の製造方法。 7). The method for producing a cold-rolled steel sheet having excellent bending workability according to 5 or 6 above, wherein a plating treatment is performed after the overaging treatment.

本発明によれば、従来に比べて曲げ加工性が大幅に向上した冷延鋼板を、その有利な製造方法と共に提供することが可能となる。   According to the present invention, it is possible to provide a cold-rolled steel sheet having significantly improved bending workability as compared with the prior art together with its advantageous manufacturing method.

以下、本発明を具体的に説明する。
(曲げ加工性に優れた冷延鋼板)
まず、本発明において、冷延鋼板の成分組成を上記の範囲に限定した理由について説明する。なお、以下の成分組成を表す%、ppmは、特に断らない限り質量%、質量ppmを意味するものとする。
Hereinafter, the present invention will be specifically described.
(Cold rolled steel plate with excellent bending workability)
First, the reason why the component composition of the cold rolled steel sheet is limited to the above range in the present invention will be described. In addition, unless otherwise indicated,% and ppm which represent the following component composition shall mean the mass% and the mass ppm.

C:0.005〜0.030%
Cは、鋼中でセメンタイトを成形する。C量が0.005%未満では固溶Cの析出駆動力が低くなり固溶Cが多くなり、歪み時効が生じやすくなることで曲げ加工性が劣化する。このため、C量下限は0.005%以上とし、好ましくは0.010%以上とする。
また、0.030%を超えるとセメンタイト量が多くなることを通じて、セメンタイトとフェライトの界面でのボイドの発生サイトが増え、鋼板の曲げ加工性が低下する。このため、C量の上限を0.030%以下とし、好ましくは、0.025%以下とする。
C: 0.005-0.030%
C forms cementite in steel. If the amount of C is less than 0.005%, the driving force for precipitation of solute C decreases and the amount of solute C increases, and strain aging is likely to occur, so bending workability deteriorates. For this reason, the lower limit of C amount is 0.005% or more, preferably 0.010% or more.
On the other hand, if the content exceeds 0.030%, the amount of cementite increases, resulting in an increase in void generation sites at the interface between cementite and ferrite, which lowers the bending workability of the steel sheet. Therefore, the upper limit of the C amount is 0.030% or less, preferably 0.025% or less.

Si:0.05%以下
Siは、セメンタイトの生成を抑制する元素であり、Cのセメンタイト化も抑制する。そのため、Si量が0.05%を超える場合、セメンタイトの析出位置の制御が失われ、セメンタイトがフェライト粒界に出やすくなる結果、曲げ加工時にボイドが発生することがあることから、Si量を0.05%以下とする。
Si: 0.05% or less
Si is an element that suppresses the formation of cementite, and also suppresses the cementation of C. Therefore, when the Si content exceeds 0.05%, the control of the cementite precipitation position is lost, and as a result of the cementite being likely to come out to the ferrite grain boundary, voids may be generated during bending, so the Si content is 0.05%. The following.

Mn:0.10〜0.35%
Mnは、Cと化合物は形成しないものの、セメンタイト中に溶解し、セメンタイトを微細に保つ。このセメンタイトはフェライト粒内に析出する。Mn量が0.10%未満ではセメンタイトの微細化効果が小さく、所望の特性を得られない。このため、Mn量の下限を0.10%以上とする。一方、Mn量が0.35%を超えるとMnの偏析に伴って、MnSが偏析する結果、曲げ加工性は劣化する。そのため、Mnの上限を0.35%以下とする。
Mn: 0.10 to 0.35%
Mn does not form a compound with C, but dissolves in cementite and keeps cementite fine. This cementite precipitates in the ferrite grains. If the Mn content is less than 0.10%, the effect of refining cementite is small, and desired characteristics cannot be obtained. For this reason, the lower limit of the amount of Mn is made 0.10% or more. On the other hand, if the amount of Mn exceeds 0.35%, MnS segregates with the segregation of Mn, resulting in deterioration of bending workability. Therefore, the upper limit of Mn is set to 0.35% or less.

P:0.025%以下
Pは、フェライト粒界に偏析して曲げ加工時にフェライト粒界でのボイドの発生を助長することから、含有量は低い方が望ましい。このため、P量を0.025%以下、好ましくは0.020%以下とする。
P: 0.025% or less
Since P segregates at the ferrite grain boundary and promotes the generation of voids at the ferrite grain boundary during bending, the lower content is desirable. Therefore, the P content is 0.025% or less, preferably 0.020% or less.

S:0.015%以下
Sは、本発明において、Mnと結合してMnSを形成する元素である。このSが多いとMnSが多量に生成して曲げ加工時にフェライト粒界での破壊を助長する。このため、本発明では、S量を0.015%以下とする。
S: 0.015% or less
In the present invention, S is an element that combines with Mn to form MnS. If this amount of S is large, a large amount of MnS is formed, which promotes fracture at the ferrite grain boundary during bending. Therefore, in the present invention, the S amount is set to 0.015% or less.

N:0.01%以下
Nは、Alと結合してAlNを形成したり、B が添加された場合にはBNを形成する。N含有量が多いとAlNが多量に生じ、曲げ加工時にボイドが生成しやすくなるため、曲げ加工性が劣化する。それ故、本発明では、N量を0.01%以下とし、好ましくは0.0040%以下とする。
N: 0.01% or less
N combines with Al to form AlN, or when B is added, forms BN. If the N content is large, a large amount of AlN is generated, and voids are likely to be generated during bending, so that bending workability deteriorates. Therefore, in the present invention, the N content is 0.01% or less, preferably 0.0040% or less.

Al:0.07%以下
Alは、脱酸剤として用いられる。0.07%を超えるAlの含有は、微細なAlNや不可避不純物であるOと結合して微細酸化物を生成する結果、曲げ加工時にフェライト粒界でのボイドの生成を助長する。そのため、上限を0.07%以下とする。
Al: 0.07% or less
Al is used as a deoxidizer. The content of Al exceeding 0.07% combines with fine AlN and O, which is an inevitable impurity, to produce fine oxides. As a result, void formation at the ferrite grain boundaries is promoted during bending. Therefore, the upper limit is made 0.07% or less.

以上、基本成分について説明したが、本発明では、その他にも、以下に述べる元素を必要に応じて適宜含有させることができる。
B:0.0050%以下
Bが添加された場合、Nと結合してBNを形成し、微細AlNの析出を抑制することができる。また、BNはMnSを核として析出するため、微細なMnSの量も低減することができ、フェライト粒がこれらの析出物を粒内に取り込む。その結果、曲げ加工時のボイドの発生源となるフェライト粒界の窒化物数が減るため、より曲げ加工性を向上できる。
しかしながら、B含有量が0.0050%を超えると微細なFe23(CB)6が粒界に生じるようになり、曲げ加工性が劣化する。以上のことから、B量を0.0050%以下とする。
Although the basic components have been described above, in the present invention, other elements described below can be appropriately contained as necessary.
B: 0.0050% or less
When B is added, it can combine with N to form BN and suppress the precipitation of fine AlN. Further, since BN precipitates with MnS as a nucleus, the amount of fine MnS can also be reduced, and ferrite grains take these precipitates into the grains. As a result, the number of nitrides at the ferrite grain boundary, which is a generation source of voids during bending, is reduced, so that bending workability can be further improved.
However, when the B content exceeds 0.0050%, fine Fe 23 (CB) 6 is generated at the grain boundary, and the bending workability is deteriorated. From the above, the B content is 0.0050% or less.

Cu,Sn,Ni,Ca,Mg,Co,As,Cr,Sb,W,Mo,Pb,Ti,Nb,Ta,REM,V,Cs,Zr及びHfのうちから選んだ一種又は二種以上を合計で1%以下
Cu,Sn,Ni,Ca,Mg,Co,As,Cr,Sb,W,Mo,Pb,Ti,Nb,Ta,REM,V,Cs,Zr及びHfはいずれも、耐食性向上に有用な元素であるが、合計量が1%を超えると粒界に偏析して曲げ加工時に粒界からのボイド発生を促進してしまう。このため、単独添加又は複合添加いずれの場合も1%以下で含有させる。好ましくは0.5%以下とする。
なお、上記した以外の成分は、Fe及び不可避的不純物である。
One or more selected from Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Sb, W, Mo, Pb, Ti, Nb, Ta, REM, V, Cs, Zr and Hf 1% or less in total
Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Sb, W, Mo, Pb, Ti, Nb, Ta, REM, V, Cs, Zr and Hf are all useful elements for improving corrosion resistance. However, if the total amount exceeds 1%, it segregates at the grain boundary and promotes the generation of voids from the grain boundary during bending. For this reason, it is made to contain at 1% or less in any case of single addition or compound addition. Preferably it is 0.5% or less.
Components other than those described above are Fe and inevitable impurities.

以上、鋼板の成分組成について説明したが、本発明で所期した効果を得るには、成分組成を上記の範囲に調整するだけでは不十分で、Mn量とSi量の比率及びフェライト粒径及びセメンタイトのフェライト粒内への析出割合を制御することが重要である。
すなわち、本発明では、[%Si]/[%Mn]<0.5(ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。)を満足し、フェライト粒径を20μm以下、析出セメンタイトのフェライト粒内割合を50%以上とする必要がある。
As described above, the component composition of the steel sheet has been described. However, in order to obtain the effect expected in the present invention, it is not sufficient to adjust the component composition within the above range, the ratio of the Mn amount and the Si amount, the ferrite grain size, It is important to control the precipitation rate of cementite in the ferrite grains.
That is, in the present invention, [% Si] / [% Mn] <0.5 (where [% M] represents the content (mass%) of M element in the steel) and the ferrite particle size is determined. It is necessary to set the ratio of precipitated cementite in the ferrite grains to 50 μm or less.

[%Si]/[%Mn]<0.5
(ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。)
本発明で極めて重要な成分規定である。Mnはオーステナイト形成元素でCをフェライト粒内に留めようとするが、Siは逆にフェライト粒よりCをはき出す効果がある。つまり、Mnのフェライト粒内のセメンタイトへ固溶してセメンタイトを微細化する効果をSiは阻害する。そのため、本発明の効果を得るには、[%Si]/[%Mn]比を規定する必要がある。
この[%Si]/[%Mn]が0.5を超えると、フェライト粒内のセメンタイト量が減じてしまうため、本発明では0.5以下と規定した。
[% Si] / [% Mn] <0.5
(Here, [% M] represents the content (mass%) of M element in steel.)
This is an extremely important component definition in the present invention. Mn is an austenite-forming element and tries to keep C in the ferrite grains, but Si has an effect of expelling C from the ferrite grains. In other words, Si inhibits the effect of solidifying the cementite in the ferrite grains of Mn to refine cementite. Therefore, in order to obtain the effect of the present invention, it is necessary to define the [% Si] / [% Mn] ratio.
If this [% Si] / [% Mn] exceeds 0.5, the amount of cementite in the ferrite grains decreases, so in the present invention it is defined as 0.5 or less.

フェライト粒径:20μm以下
フェライト粒径が20μmを超えると曲げ加工での歪みがフェライト粒界に集中して、フェライト粒界より亀裂が発生しやすくなり、曲げ加工性が劣化する。このため、フェライト粒径を20μm以下とした。好ましくは15μm以下である。
Ferrite grain size: 20 μm or less When the ferrite grain size exceeds 20 μm, strain in bending is concentrated on the ferrite grain boundary, cracking is likely to occur at the ferrite grain boundary, and bending workability deteriorates. For this reason, the ferrite grain size was set to 20 μm or less. Preferably, it is 15 μm or less.

析出セメンタイト:50%以上がフェライト粒内に析出
本発明において、セメンタイトの析出位置は重要である。フェライト粒界にセメンタイトが多量に析出すると、曲げ加工時にそのフェライト粒界のセメンタイトの周囲でボイドが発生し、曲げ加工性を著しく劣化させる。つまり、フェライト粒内にあるセメンタイト量がセメンタイト全体の50%未満の場合、曲げ加工性が低下する。そのため、セメンタイトの体積の50%以上がフェライト粒内に析出することが必要となる。
なお、フェライト粒内における析出したセメンタイトの量は、断面組織から、次のようにして求めることができる。圧延方向に平行な板厚断面で組織を観察する。鏡面研磨後にピクラール腐食液でセメンタイトを現出した後に、走査型電子顕微鏡(1000倍)でセメンタイトを観察する。このとき、全セメンタイト面積に対するフェライト粒内に存在するセメンタイトの面積の比を粒内に存在するセメンタイトの割合とする。
Precipitated cementite: 50% or more is precipitated in ferrite grains In the present invention, the position of cementite precipitation is important. If a large amount of cementite precipitates at the ferrite grain boundary, voids are generated around the cementite at the ferrite grain boundary during bending, which significantly deteriorates the bending workability. That is, when the amount of cementite in the ferrite grains is less than 50% of the whole cementite, the bending workability is lowered. Therefore, it is necessary that 50% or more of the cementite volume is precipitated in the ferrite grains.
The amount of cementite precipitated in the ferrite grains can be determined from the cross-sectional structure as follows. The structure is observed in a plate thickness section parallel to the rolling direction. After the mirror polishing, the cementite appears in the Picral corrosive solution, and then the cementite is observed with a scanning electron microscope (1000 times). At this time, the ratio of the area of cementite present in the ferrite grains to the total cementite area is defined as the ratio of cementite present in the grains.

また、本発明の鋼板は、表面にめっき皮膜を有するものとしてもよい。鋼板表面にめっき皮膜を形成することにより、冷延鋼板の耐食性が向上する。なお、めっき皮膜としては、例えば溶融亜鉛めっき皮膜や合金化溶融亜鉛めっき皮膜の他、電気亜鉛めっき、例えばZn−Ni電気合金めっき等が挙げられる。   The steel sheet of the present invention may have a plating film on the surface. By forming a plating film on the steel sheet surface, the corrosion resistance of the cold-rolled steel sheet is improved. In addition, as a plating film, electrogalvanization, for example, Zn-Ni electroalloy plating, etc. other than a hot dip galvanization film and an alloying hot dip galvanization film, etc. are mentioned, for example.

(曲げ加工性に優れた冷延鋼板の製造方法)
次に、本発明の冷延鋼板の製造方法について説明する。
本発明では、好適には連続鋳造で得られたスラブを鋼素材とし、熱間圧延を施し、仕上げ圧延終了後、冷却してコイルに巻き取り、ついで酸洗後、冷間圧延したのち、連続焼鈍を施し、さらに過時効処理を施すことによって冷延鋼板とする。
(Method for producing cold-rolled steel sheet with excellent bending workability)
Next, the manufacturing method of the cold rolled steel sheet of this invention is demonstrated.
In the present invention, the slab obtained by continuous casting is preferably a steel material, hot-rolled, and after finishing rolling, cooled and wound into a coil, then pickled, cold-rolled, continuously A cold-rolled steel sheet is obtained by annealing and further overaging.

本発明において、鋼素材の溶製方法は特に限定されず、転炉、電気炉や誘導炉等、公知の溶製方法いずれもが適合する。鋳造方法も特に限定はされないが、連続鋳造法が好適である。また、スラブを熱間圧延するに際しては、加熱炉でスラブを再加熱した後に熱間圧延しても良いし、温度補償を目的として加熱炉で短時間加熱した後に熱間圧延に供しても良い。また、鋳造後一度室温まで冷却したのちに、1200℃以上、さらに好ましくは1250℃以上に加熱して圧延を行っても良い。
上記のようにして得られた鋼素材に、熱間圧延を施すが、粗圧延と仕上げ圧延による熱間圧延でも、粗圧延を省略して仕上げ圧延のみの圧延としてもよいが、いずれにしても、スラブ加熱温度及び仕上げ圧延温度が重要である。
In the present invention, the method for melting the steel material is not particularly limited, and any known melting method such as a converter, an electric furnace or an induction furnace is suitable. The casting method is not particularly limited, but the continuous casting method is suitable. In addition, when hot-rolling the slab, it may be hot-rolled after reheating the slab in a heating furnace, or may be subjected to hot-rolling after being heated in the heating furnace for a short time for the purpose of temperature compensation. . Further, after cooling to room temperature once after casting, rolling may be performed by heating to 1200 ° C. or higher, more preferably 1250 ° C. or higher.
The steel material obtained as described above is hot-rolled. However, even hot rolling by rough rolling and finish rolling may be performed by omitting rough rolling and performing only finish rolling. The slab heating temperature and finish rolling temperature are important.

スラブ加熱温度:オーステナイト単相となる温度域
スラブ加熱温度が、オーステナイト単相域に満たないフェライト−オーステナイト二相域であると、熱間圧延の際にフェライトのみが展伸して粗大なフェライト粒が生じるという不利が生じるので、スラブを加熱する場合にはオーステナイト単相域(Ac3点以上)まで加熱する必要がある。
Slab heating temperature: Temperature range in which the austenite single phase is formed. If the slab heating temperature is in the ferrite-austenite two-phase region, which is less than the austenite single phase region, only ferrite expands during hot rolling, resulting in coarse ferrite grains. Therefore, when the slab is heated, it is necessary to heat to the austenite single phase region (Ac 3 points or more).

仕上げ圧延温度:820℃以上950℃未満
仕上げ圧延温度が950℃以上となると、一部に粗大粒が生じ、フェライト粒径がばらつき不安定になる。その結果、曲げ加工性は劣化することから、仕上げ圧延温度は950℃未満とする。なお、仕上げ圧延温度の下限については、フェライト域圧延で粗大粒が生じないように820℃以上とする。
Finishing rolling temperature: 820 ° C. or more and less than 950 ° C. When the finishing rolling temperature is 950 ° C. or more, coarse grains are produced in part, and the ferrite grain size varies and becomes unstable. As a result, bending workability deteriorates, so the finish rolling temperature is set to less than 950 ° C. The lower limit of the finish rolling temperature is set to 820 ° C. or higher so that coarse grains are not generated in the ferrite region rolling.

上記の熱間圧延後、冷却してコイルに巻き取るが、この巻取り温度も重要である。
巻取り温度:780℃以下
巻取り温度が780℃を超えると、フェライト粒が粗大となり、曲げ加工性が劣化する。このため、巻き取り温度は780℃以下、好ましくは700℃以下とする。なお、巻取温度の下限については550℃未満の場合、窒化物の熱延板中への析出が抑制され、冷間圧延後の焼鈍時にフェライト粒界に微細に析出して混粒組織になりやすく曲げ加工性を劣化させるため、巻き取り温度は550℃以上とすることが好ましい。
After the above hot rolling, the coil is cooled and wound around a coil, and this winding temperature is also important.
Winding temperature: 780 ° C or less When the winding temperature exceeds 780 ° C, ferrite grains become coarse and bending workability deteriorates. Therefore, the winding temperature is 780 ° C. or lower, preferably 700 ° C. or lower. In addition, when the lower limit of the coiling temperature is less than 550 ° C., the precipitation of nitride into the hot rolled sheet is suppressed, and a fine grain precipitates at the ferrite grain boundary during annealing after cold rolling, resulting in a mixed grain structure. The winding temperature is preferably 550 ° C. or higher in order to easily deteriorate the bending workability.

冷間圧延における圧延率:85%以下
冷間圧延における圧下率が85%を越えると、フェライト粒が伸展して、曲げ加工時に表面に割れが生じやすくなる。そのため冷間圧延率の上限を85%以下とする。
Rolling ratio in cold rolling: 85% or less When the rolling reduction ratio in cold rolling exceeds 85%, ferrite grains extend and cracks are likely to occur on the surface during bending. Therefore, the upper limit of the cold rolling rate is set to 85% or less.

焼鈍温度:800℃以下
焼鈍温度が800℃を超える場合、粗大フェライト粒がランダムに生じて曲げ加工性を劣化させる傾向がある。そのため、焼鈍温度を800℃以下とする。なお、焼鈍温度が650℃未満になると未再結晶組織が残留し易くなることから、650℃以上とすることが好ましく、680℃以上とすることがより好ましい。
Annealing temperature: 800 ° C. or less When the annealing temperature exceeds 800 ° C., coarse ferrite grains are randomly generated and tend to deteriorate the bending workability. Therefore, an annealing temperature shall be 800 degrees C or less. In addition, since an unrecrystallized structure tends to remain when the annealing temperature is less than 650 ° C., the temperature is preferably set to 650 ° C. or more, and more preferably 680 ° C.

なお、焼鈍温度から過時効温度までの冷却速度は50℃/s以上であることが好ましい。50℃/sを下回ると、セメンタイトがフェライト粒内に十分析出しなくなり曲げ加工性が劣化するおそれがある。なお、この冷却速度の上限については特に制限されることはないが、500℃/s程度で十分である。   The cooling rate from the annealing temperature to the overaging temperature is preferably 50 ° C./s or more. When it is less than 50 ° C./s, cementite is not sufficiently precipitated in the ferrite grains, and the bending workability may be deteriorated. The upper limit of the cooling rate is not particularly limited, but about 500 ° C./s is sufficient.

過時効温度:420℃未満
過時効温度が420℃以上ではセメンタイトはフェライト粒界に析出しやすくなる。セメンタイトをフェライト粒内に析出させるため、過時効温度を420℃未満とした。また、過時効時間が短すぎるとセメンタイトを十分に析出できないため、1分以上行うことが好ましい。また、長い分には効果に問題は生じないが、製造ラインの制約上10分以下が工業的に実現できる長さである。
Overaging temperature: less than 420 ° C. When the overaging temperature is 420 ° C. or more, cementite tends to precipitate at ferrite grain boundaries. In order to precipitate cementite in the ferrite grains, the overaging temperature was set to less than 420 ° C. Further, if the overaging time is too short, cementite cannot be sufficiently precipitated. In addition, although there is no problem in effect for a long portion, the length that can be industrially realized is 10 minutes or less due to restrictions on the production line.

また、前記過時効処理に先立って、水冷を行うことが好ましい。セメンタイトのフェライト粒内への析出を促進することができる結果、より優れた曲げ加工性が得られるからである。   Moreover, it is preferable to perform water cooling prior to the overaging treatment. This is because precipitation of cementite into ferrite grains can be promoted, and as a result, better bending workability can be obtained.

また、本発明では、以上のようにして製造された冷延鋼板に対し、めっき処理を施すことにより、鋼板表面にめっき皮膜を形成してもよい。例えば、めっき処理として、溶融亜鉛めっき処理を施して鋼板表面に溶融亜鉛めっき皮膜を形成しても良いし、溶融亜鉛めっき処理後、合金化処理を施すことにより、合金化溶融亜鉛めっき皮膜を形成してもよい。このとき、溶融亜鉛めっきと焼鈍を一つのライン内で行なってもよい。その他、Zn−Ni電気合金めっき等の電気めっきにより、めっき皮膜を形成してもよい。   Moreover, in this invention, you may form a plating film on the steel plate surface by performing the plating process with respect to the cold-rolled steel plate manufactured as mentioned above. For example, as a plating process, a hot dip galvanizing process may be performed to form a hot dip galvanized film on the surface of the steel sheet. May be. At this time, hot dip galvanizing and annealing may be performed in one line. In addition, the plating film may be formed by electroplating such as Zn-Ni electroalloy plating.

表1に示す成分組成になる溶鋼を、連続鋳造して、厚み:250mmのスラブ(鋼素材)とした。ついで、得られたスラブを1250℃のオーステナイト単相域まで加熱後、表2に示す温度で仕上げ圧延を終了したのち、同じく表2に示す温度で巻取って、種々の板厚の熱延鋼板とした。ついで、酸洗にて鋼板表面のスケールを除去したのち、表2に示す圧延率で板厚:1mmまで冷間圧延した。その後、表2に示す条件で、連続焼鈍、冷却処理及び過時効処理を施した。調質圧延率は0.8%とした。
また、表2のNo.17〜19の冷延鋼板については、前記焼鈍後過時効前に水冷を施した。さらに、表2のNo.8〜11の冷延鋼板については、乾燥後付着量:30g/m2(両面)の電気亜鉛めっき皮膜を形成した。
The molten steel having the composition shown in Table 1 was continuously cast into a slab (steel material) having a thickness of 250 mm. Next, after heating the obtained slab to the austenite single-phase region at 1250 ° C. and finishing rolling at the temperature shown in Table 2, it was wound up at the temperature shown in Table 2 to obtain hot-rolled steel sheets having various thicknesses. It was. Next, after removing the scale on the surface of the steel sheet by pickling, the steel sheet was cold-rolled to a thickness of 1 mm at a rolling rate shown in Table 2. Thereafter, continuous annealing, cooling treatment and overaging treatment were performed under the conditions shown in Table 2. The temper rolling ratio was 0.8%.
Moreover, about the cold rolled steel plates of No. 17-19 of Table 2, it water-cooled before the overaging after the said annealing. Further, for the cold rolled steel sheets Nos. 8 to 11 in Table 2, an electrogalvanized film having an adhesion amount after drying of 30 g / m 2 (both sides) was formed.

上記のようにして得られた冷延鋼板から試験片を採取して、引張試験を行った。
さらに、得られた冷延鋼板の加工性について調査した。
A specimen was taken from the cold-rolled steel sheet obtained as described above, and a tensile test was performed.
Furthermore, the workability of the obtained cold-rolled steel sheet was investigated.

試験方法及び測定方法については次のとおりである。
(i)組織観察
得られた冷延鋼板の圧延方向に平行な板厚断面を鏡面に研磨して、ナイタール組織現出液で組織を現出させて、フェライト粒径を測定した。光学顕微鏡組織写真を100倍で撮影し、板厚方向、圧延方向にそれぞれ10本の線を実際の長さで100μm以上の間隔で引き、フェライト粒界と線との交点の数を数えた。全線長を交点の数で除することで、フェライト粒一つあたりの線分長とし、これに1.13を乗じてASTMフェライト粒径を求めた。
The test method and measurement method are as follows.
(I) Structure observation The thickness cross section parallel to the rolling direction of the obtained cold-rolled steel sheet was polished to a mirror surface, the structure was revealed with a nital structure revealing solution, and the ferrite particle size was measured. Optical micrographs were taken at a magnification of 100, and 10 lines were drawn in the thickness direction and in the rolling direction at an actual length of 100 μm or more, respectively, and the number of intersections between the ferrite grain boundaries and the lines was counted. The total line length was divided by the number of intersections to obtain the line segment length per ferrite grain, which was multiplied by 1.13 to determine the ASTM ferrite grain size.

(ii)セメンタイト析出位置
得られた冷延鋼板の圧延方向に平行な板厚断面を鏡面に研磨した後、ピクラール組織現出液でセメンタイトを現出させて、セメンタイト析出位置の割合を測定した。走査型電子顕微鏡組織写真を1000倍で撮影し、10視野についてセメンタイトの析出位置を観察した。全セメンタイトの面積でフェライト粒内に析出しているセメンタイトの面積を除することで、粒内に析出したセメンタイトの割合を求めた。
(Ii) Cementite Precipitation Position After a plate thickness cross section parallel to the rolling direction of the obtained cold-rolled steel sheet was polished to a mirror surface, cementite was exposed with a picral structure revealing solution, and the ratio of cementite precipitation positions was measured. Scanning electron micrographs were taken at a magnification of 1000, and the cementite deposition positions were observed for 10 fields of view. By dividing the area of cementite precipitated in the ferrite grains by the area of total cementite, the ratio of cementite precipitated in the grains was determined.

(iii)引張試験
得られた冷延鋼板から、圧延方向に対して平行方向を引張方向とするJIS 5号引張試験片(JIS Z 2201)を採取し、JIS Z 2241の規定に準拠した引張試験を行って、引張強さを測定した。
(Iii) Tensile test From the obtained cold-rolled steel sheet, a JIS No. 5 tensile test piece (JIS Z 2201) with the direction parallel to the rolling direction is taken, and a tensile test in accordance with the provisions of JIS Z 2241 The tensile strength was measured.

(iv)曲げ試験
頂角90度の曲げ試験ジグを作成して試験した。得られた冷延鋼板より、長手方向100mm、幅方向35mmの短冊状の試験片を採取し、この試験片の長手方向中央を曲げの稜線が圧延直角方向に曲がるように曲げ試験をおこなった。この時に曲げ試験ジグの頂角の曲率半径を変化させ、試験片表面に割れが認められない最小の試験ジグ先端半径(R)を導出し、得られた半径を板厚(t)で除することで限界曲げ半径(R/t)を算出した。この値が小さい程、優れた曲げ加工性を有することになる。
また、90度曲げで割れが生じなかった鋼については、90度曲げした試験片を万力で挟み、180度完全密着曲げまで行った。このとき、密着曲げでも割れが生じない場合には限界曲げ半径を0とした。
(Iv) Bending test A bending test jig having an apex angle of 90 degrees was prepared and tested. From the obtained cold-rolled steel sheet, a strip-shaped test piece having a longitudinal direction of 100 mm and a width direction of 35 mm was collected, and a bending test was performed so that the bending ridge line bends in the direction perpendicular to the rolling direction at the longitudinal center of the test piece. At this time, the radius of curvature of the apex angle of the bending test jig is changed to derive the minimum test jig tip radius (R) in which no crack is observed on the surface of the test piece, and the obtained radius is divided by the plate thickness (t). Thus, the critical bending radius (R / t) was calculated. The smaller this value, the better the bending workability.
In addition, for the steel that was not cracked by 90 ° bending, a 90 ° bent test piece was sandwiched in a vise and subjected to 180 ° complete adhesion bending. At this time, the limit bend radius was set to 0 when no cracking occurred even in close contact bending.

表2に示したとおり、本発明に従い得られた冷延鋼板はいずれも曲げ半径は1以下であり、曲げ成形性に優れていることがわかる。   As shown in Table 2, it can be seen that all the cold-rolled steel sheets obtained according to the present invention have a bending radius of 1 or less and are excellent in bending formability.

本発明によれば、従来に比べて曲げ加工性が大幅に向上した冷延鋼板を提供することが可能となり、産業上、極めて有用である。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the cold-rolled steel plate which the bending workability improved significantly compared with the past, and it is very useful industrially.

Claims (7)

質量%で、C:0.005〜0.030%、Si:0.05%以下、Mn:0.10〜0.35%、P:0.025%以下、S:0.015%以下、N:0.01%以下、Al:0.07%以下を含有し、かつ[%Si]/[%Mn]<0.5の関係を満足し、残部がFe及び不可避不純物の組成からなり、
鋼中のフェライト粒径が20μm以下であり、析出セメンタイトの50%以上がフェライト粒内に析出することを特徴とする曲げ加工性に優れた冷延鋼板。
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。
In mass%, C: 0.005 to 0.030%, Si: 0.05% or less, Mn: 0.10 to 0.35%, P: 0.025% or less, S: 0.015% or less, N: 0.01% or less, Al: 0.07% or less And satisfying the relationship of [% Si] / [% Mn] <0.5, the balance is composed of Fe and inevitable impurities,
A cold-rolled steel sheet having excellent bending workability, characterized in that the ferrite grain size in steel is 20 μm or less, and 50% or more of precipitated cementite is precipitated in ferrite grains.
Here, [% M] represents the content (mass%) of M element in steel.
さらに質量%で、B:0.0050%以下を含有することを特徴とする請求項1に記載の曲げ加工性に優れた冷延鋼板。   The cold-rolled steel sheet having excellent bending workability according to claim 1, further comprising B: 0.0050% or less in terms of mass%. さらに質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、Mo、Sb、W、Nb、Ti、Pb、Ta、REM、V、Cs、Zr、Hfのいずれか1種以上を、合計で1%以下含有することを特徴とする請求項1又は2に記載の曲げ加工性に優れた冷延鋼板。   Furthermore, by mass%, any one or more of Cu, Sn, Ni, Ca, Mg, Co, As, Cr, Mo, Sb, W, Nb, Ti, Pb, Ta, REM, V, Cs, Zr, Hf The cold-rolled steel sheet having excellent bending workability according to claim 1 or 2, characterized in that a total of 1% or less is contained. 鋼板表面にめっき皮膜をさらに備えることを特徴とする請求項1〜3のいずれかに記載の曲げ加工性に優れた冷延鋼板。   The cold-rolled steel sheet excellent in bending workability according to any one of claims 1 to 3, further comprising a plating film on the surface of the steel sheet. 請求項1〜3のいずれかに記載の成分組成からなる鋼素材に、熱間圧延を施し、仕上げ圧延終了後、コイルに巻き取り、ついで酸洗後、冷間圧延を施したのち、連続焼鈍し、さらに過時効処理を施して冷延鋼板を製造するに際し、
オーステナイト単相域に加熱後、仕上げ圧延温度:820℃以上950℃未満で熱間圧延を終了したのち、780℃以下の温度で巻き取り、ついで鋼板表面のスケール除去後、85%以下の圧延率で冷間圧延したのち、800℃以下で焼鈍し、さらに過時効温度まで冷却後、420℃未満の温度域で過時効処理を施すことを特徴とする曲げ加工性に優れた冷延鋼板の製造方法。
A steel material comprising the composition according to any one of claims 1 to 3 is hot-rolled, and after finishing rolling, wound on a coil, then pickled, and then cold-rolled and then continuously annealed. In addition, when producing a cold-rolled steel sheet by performing overaging treatment,
After heating to the austenite single-phase region, finish rolling temperature: 820 ° C or more and less than 950 ° C, after finishing hot rolling, winding at a temperature of 780 ° C or less, and then removing the scale on the steel sheet surface, then rolling rate of 85% or less Cold rolled steel sheet with excellent bending workability, characterized by annealing at 800 ° C or lower after cold rolling, cooling to the overaging temperature, and then overaging at a temperature range below 420 ° C Method.
前記過時効処理に先立って、前記焼鈍後に水冷を行うことを特徴とする請求項5に記載の曲げ加工性に優れた冷延鋼板の製造方法。   6. The method for producing a cold-rolled steel sheet having excellent bending workability according to claim 5, wherein water cooling is performed after the annealing prior to the overaging treatment. 前記過時効処理後、めっき処理を施すことを特徴とする請求項5又は6に記載の曲げ加工性に優れた冷延鋼板の製造方法。

The method for producing a cold-rolled steel sheet having excellent bending workability according to claim 5 or 6, wherein a plating treatment is performed after the overaging treatment.

JP2012081987A 2012-03-30 2012-03-30 Cold rolled steel sheet excellent in bendability and manufacturing method thereof Pending JP2013209725A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012081987A JP2013209725A (en) 2012-03-30 2012-03-30 Cold rolled steel sheet excellent in bendability and manufacturing method thereof
RU2012132654/02A RU2526345C2 (en) 2012-03-30 2012-07-30 Cold-rolled steel sheet with perfect pliability and method of its production
BR102012019162A BR102012019162A2 (en) 2012-03-30 2012-07-31 COLD LAMINATED STEEL PLATE HAVING EXCELLENT CAPABILITY FOR FOLDING AND PRODUCTION METHOD OF THE SAME
ZA2012/05756A ZA201205756B (en) 2012-03-30 2012-07-31 Cold-rolled steel sheet having excellent bending formability and method for manufacturing the same
MYPI2012003441A MY162361A (en) 2012-03-30 2012-07-31 Cold-rolled steel sheet having excellent bending formability and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081987A JP2013209725A (en) 2012-03-30 2012-03-30 Cold rolled steel sheet excellent in bendability and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2013209725A true JP2013209725A (en) 2013-10-10

Family

ID=49527816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081987A Pending JP2013209725A (en) 2012-03-30 2012-03-30 Cold rolled steel sheet excellent in bendability and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP2013209725A (en)
BR (1) BR102012019162A2 (en)
MY (1) MY162361A (en)
RU (1) RU2526345C2 (en)
ZA (1) ZA201205756B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568501B1 (en) 2013-12-20 2015-11-11 주식회사 포스코 A formable hot-rolled steel having excellent surface quality, and manufacturing of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2755318C1 (en) * 2020-10-08 2021-09-15 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Method for producing high-strength cold-rolled continuously annealed flat stock of if-steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2368504C (en) * 2000-02-29 2007-12-18 Kawasaki Steel Corporation High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
DE60121233T2 (en) * 2000-05-26 2006-11-09 Jfe Steel Corp. High strength cold rolled steel sheet with high r-value, excellent strain aging properties and aging resistance, and process for its production
TW500809B (en) * 2000-05-31 2002-09-01 Kawasaki Steel Co Cold-rolled steel sheets with superior strain-aging hardenability, and manufacturing method thereof
JP3958921B2 (en) * 2000-08-04 2007-08-15 新日本製鐵株式会社 Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
RU2313583C2 (en) * 2006-01-24 2007-12-27 Открытое акционерное общество "Северсталь" Method for producing of cold-rolled steel for cold pressing
RU2330887C1 (en) * 2006-10-30 2008-08-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Method of producing cold-rolled steel for deep-drawing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568501B1 (en) 2013-12-20 2015-11-11 주식회사 포스코 A formable hot-rolled steel having excellent surface quality, and manufacturing of the same

Also Published As

Publication number Publication date
RU2012132654A (en) 2014-02-10
ZA201205756B (en) 2013-07-31
MY162361A (en) 2017-06-15
BR102012019162A2 (en) 2013-12-03
RU2526345C2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP6052472B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6409917B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP5838796B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
KR102004077B1 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, method for manufacturing high-strength cold-rolled steel sheet, and method for manufacturing high-strength coated steel sheet
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
JP6519016B2 (en) Hot rolled steel sheet and method of manufacturing the same
JP4050991B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
KR102217100B1 (en) High-strength steel sheet and its manufacturing method
JP6750771B1 (en) Hot-dip galvanized steel sheet and method for producing the same
JP6119928B1 (en) Cold rolled steel sheet and method for producing the same
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
KR20180120715A (en) Thin steel plate and coated steel sheet, method of manufacturing hot-rolled steel sheet, manufacturing method of cold-rolled full-hard steel sheet, manufacturing method of thin steel sheet and manufacturing method of coated steel sheet
KR101813914B1 (en) High-strength steel sheet having small planar anisotropy of elongation and method for producing the same
JP5206352B2 (en) Steel sheet and manufacturing method thereof
JP2013104114A (en) Cold rolled steel sheet having excellent bending workability and method for producing the same
RU2532563C2 (en) High-strength cold-rolled steel plate with excellent ability for deep drawing, and its manufacturing method
JP6278161B1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP2013209727A (en) Cold rolled steel sheet excellent in workability and manufacturing method thereof
JP2013209725A (en) Cold rolled steel sheet excellent in bendability and manufacturing method thereof
JP5919812B2 (en) High strength thin steel sheet with excellent formability and method for producing the same
JP6453140B2 (en) High strength steel sheet with excellent delayed fracture resistance of cut end face and method for producing the same
KR102590780B1 (en) steel plate
KR102647647B1 (en) steel plate