JP2013206562A - Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing cathode material for lithium-ion secondary battery - Google Patents

Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing cathode material for lithium-ion secondary battery Download PDF

Info

Publication number
JP2013206562A
JP2013206562A JP2012070962A JP2012070962A JP2013206562A JP 2013206562 A JP2013206562 A JP 2013206562A JP 2012070962 A JP2012070962 A JP 2012070962A JP 2012070962 A JP2012070962 A JP 2012070962A JP 2013206562 A JP2013206562 A JP 2013206562A
Authority
JP
Japan
Prior art keywords
ion secondary
positive electrode
secondary battery
particle size
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012070962A
Other languages
Japanese (ja)
Other versions
JP5594309B2 (en
Inventor
Keitaro Otsuki
佳太郎 大槻
Atsushi Sano
篤史 佐野
Tomohiko Kato
友彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012070962A priority Critical patent/JP5594309B2/en
Publication of JP2013206562A publication Critical patent/JP2013206562A/en
Application granted granted Critical
Publication of JP5594309B2 publication Critical patent/JP5594309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve rate characteristics in high-rate discharge of β-LiVOPO.SOLUTION: The cathode material for a lithium-ion secondary battery is characterized in that a ratio D90/D50 of a cumulative particle diameter D90 to a cumulative particle diameter D50 of β-LiVOPOis 1.10 to 6.25 inclusive.

Description

本発明は、リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池ならびにリチウムイオン二次電池正極材料の製造方法に関する。   The present invention relates to a positive electrode material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, a lithium ion secondary battery, and a method for producing a lithium ion secondary battery positive electrode material.

近年、高温においても結晶安定性及び熱的安定性に優れた正極活物質として、リン酸鉄リチウム(LiFePO)に代表されるポリアニオン系正極活物質が検討されている。LiFePOを正極活物質として用いた非水電解質電池は、電動工具用途に実用化されており、放電容量は160mAh/gと高く、正極活物質表面への電子電導性炭素質担持技術によりハイレート性能にも優れたものとなっている。 In recent years, a polyanionic positive electrode active material typified by lithium iron phosphate (LiFePO 4 ) has been studied as a positive electrode active material excellent in crystal stability and thermal stability even at high temperatures. Non-aqueous electrolyte batteries using LiFePO 4 as a positive electrode active material have been put into practical use for power tools, have a high discharge capacity of 160 mAh / g, and have a high rate performance due to the electron conductive carbonaceous support technology on the surface of the positive electrode active material. It is also excellent.

しかしながら、LiFePOの作動電位はLi/Li基準に対して3.42Vであり、汎用電池に用いられている正極活物質の作動電位に比べて低いため、エネルギー密度や出力特性の点で不十分である。 However, the operating potential of LiFePO 4 is 3.42 V with respect to the Li / Li + standard, which is lower than the operating potential of the positive electrode active material used in general-purpose batteries. It is enough.

そこで、LiFePOよりも作動電位の高いポリアニオン正極活物質として、LiVOPOが提案されている。 Therefore, LiVOPO 4 has been proposed as a polyanion positive electrode active material having a higher operating potential than LiFePO 4 .

この中で、LiVOPOはα型とβ型がリチウムイオン二次電池用正極材料として用いられることが知られている。 Among them, it is known that LiVOPO 4 is used as a positive electrode material for lithium ion secondary batteries in α type and β type.

この中で、β型のβ−LiVOPOを正極活物質として用いた非水電解質電池は、C/50という低レート放電において、100mAh/g程度の容量が得られることが知られている。(例えば、特許文献1参照)また、別の製造方法においてもC/40という低レート放電においてのみ140mAh/gという高容量が得られることが知られている(非特許文献1) Among these, it is known that a non-aqueous electrolyte battery using β-type β-LiVOPO 4 as a positive electrode active material can obtain a capacity of about 100 mAh / g at a low rate discharge of C / 50. (For example, refer to Patent Document 1) Further, it is known that a high capacity of 140 mAh / g can be obtained only by a low rate discharge of C / 40 in another manufacturing method (Non-Patent Document 1).

特開2003−68304号公報JP 2003-68304 A

J. Barker, et. al., J. Electrochem. Soc., 151 (6) A796−800(2004)J. et al. Barker, et. al. , J. et al. Electrochem. Soc. , 151 (6) A796-800 (2004)

しかしながら、β−LiVOPOを正極活物質として用いた非水電解質電池は、高レート放電におけるレート特性に問題があった。(例えば非特許文献1参照) However, the nonaqueous electrolyte battery using β-LiVOPO 4 as the positive electrode active material has a problem in rate characteristics in high rate discharge. (For example, see Non-Patent Document 1)

そこで、本発明では、高レート放電特性が優れたリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池、ならびにリチウムイオン二次電池用正極材料の製造方法を提供することを目的とする。   Accordingly, the present invention provides a positive electrode material for a lithium ion secondary battery having excellent high rate discharge characteristics, a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery, and a method for producing a positive electrode material for a lithium ion secondary battery. The purpose is to do.

本発明のリチウムイオン二次電池用正極材料は、β−LiVOPOの累積粒径D90及び累積粒径D50の比(D90/D50)が、1.10以上6.25以下であることを特徴とする。 The positive electrode material for a lithium ion secondary battery of the present invention is characterized in that the ratio (D90 / D50) of the cumulative particle diameter D90 and the cumulative particle diameter D50 of β-LiVOPO 4 is 1.10 or more and 6.25 or less. To do.

D90/D50が1.10以上6.25以下の範囲であるβ−LiVOPOは、大粒径の粒子がある程度存在することにより小粒径の粒子のみが存在する場合よりも電極中のパッキング密度が向上するため、高レート放電特性が向上するものと考えられる。 Β-LiVOPO 4 in which D90 / D50 is in the range of 1.10 to 6.25 is a packing density in the electrode as compared to the case where only small particles are present due to the presence of large particles. Therefore, it is considered that the high rate discharge characteristics are improved.

本発明のリチウムイオン二次電池用正極材料は、さらにβ−LiVOPOの粒度分布測定の相対頻度分布における大粒径側の頂点の粒径Aと小粒径側の頂点の粒径Bとの比(A/B)の値が0.97以上10.71以下であることが好ましい。 The positive electrode material for a lithium ion secondary battery according to the present invention further includes a particle size A at the apex on the large particle size side and a particle size B at the apex on the small particle size side in the relative frequency distribution of the particle size distribution measurement of β-LiVOPO 4 . The ratio (A / B) is preferably 0.97 or more and 10.71 or less.

正極材料の相対頻度分布の大粒径側および小粒径側の頂点の粒径の比(A/B)の値が0.97以上10.71以下の範囲であることにより高レート放電特性が一層向上する。A/Bの値が10.71より大きい場合、大粒径の粒子が多くなることにより高レート放電特性が低下すると考えられる。A/Bの値が0.97より小さい場合、電極内の正極材料のパッキング密度が低下することにより高レート放電特性が低下すると考えられる。   High rate discharge characteristics are obtained when the ratio of the particle size ratio (A / B) of the apex on the large particle size side and the small particle size side in the relative frequency distribution of the positive electrode material is in the range of 0.97 to 10.71. Further improve. When the value of A / B is larger than 10.71, it is considered that the high-rate discharge characteristics are deteriorated due to an increase in the number of large particles. When the value of A / B is smaller than 0.97, it is considered that the high-rate discharge characteristics are deteriorated due to a decrease in the packing density of the positive electrode material in the electrode.

本発明に係るリチウムイオン二次電池用正極材料の製造方法は、リチウム源とリン酸源とバナジウム源と還元剤と水とを含む混合物を乾燥することにより前駆体を得る前駆体合成工程と、前駆体合成工程において得られた前駆体を熱処理する熱処理工程を備えることが好ましい。   A method for producing a positive electrode material for a lithium ion secondary battery according to the present invention includes a precursor synthesis step of obtaining a precursor by drying a mixture containing a lithium source, a phosphate source, a vanadium source, a reducing agent, and water; It is preferable to provide a heat treatment step for heat treating the precursor obtained in the precursor synthesis step.

本発明に係るリチウムイオン二次電池用正極材料の製造方法では、熱処理工程にて熱処理を400℃〜650℃で行うことがさらに好ましい。   In the method for producing a positive electrode material for a lithium ion secondary battery according to the present invention, it is more preferable that the heat treatment is performed at 400 ° C. to 650 ° C. in the heat treatment step.

400℃〜600℃の熱処理により得られたリチウムイオン二次電池用正極材料を正極活物質として用いた場合、リチウムイオン二次電池の高レート放電特性を向上させやすくなる。   When the positive electrode material for a lithium ion secondary battery obtained by heat treatment at 400 ° C. to 600 ° C. is used as the positive electrode active material, it becomes easy to improve the high rate discharge characteristics of the lithium ion secondary battery.

本発明によれば、高レート放電特性に優れたリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池、ならびにリチウムイオン二次電池用正極材料の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode material for lithium ion secondary batteries excellent in the high-rate discharge characteristic, the positive electrode for lithium ion secondary batteries, a lithium ion secondary battery, and the manufacturing method of the positive electrode material for lithium ion secondary batteries are provided. can do.

リチウムイオン二次電池の模式断面図である。It is a schematic cross section of a lithium ion secondary battery. 実施例のリチウムイオン二次電池用正極材料の粒径に対する相対頻度分布図である。It is a relative frequency distribution figure with respect to the particle size of the positive electrode material for lithium ion secondary batteries of an Example.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

<リチウムイオン二次電池>
図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える発電要素30と、リチウムイオンを含む電解質溶液(図示せず)と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出される負極リード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出される正極リード60とを備える。
<Lithium ion secondary battery>
As shown in FIG. 1, a lithium ion secondary battery 100 according to the present embodiment is disposed adjacent to each other between a plate-like negative electrode 20 and a plate-like positive electrode 10 facing each other, and the negative electrode 20 and the positive electrode 10. A plate-like separator 18, an electrolyte solution (not shown) containing lithium ions, a case 50 containing these in a sealed state, and one end of the negative electrode 20 electrically And a negative electrode lead 62 whose other end protrudes outside the case, and a positive electrode whose one end is electrically connected to the positive electrode 10 and whose other end protrudes outside the case. A lead 60.

負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24と、を有する。また、正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。正極活物質層14は、本実施形態に係る活物質を含有する。   The negative electrode 20 includes a negative electrode current collector 22 and a negative electrode active material layer 24 formed on the negative electrode current collector 22. The positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 formed on the positive electrode current collector 12. The separator 18 is located between the negative electrode active material layer 24 and the positive electrode active material layer 14. The positive electrode active material layer 14 contains the active material according to the present embodiment.

リチウムイオン二次電池の他の部材については、公知の材料を適宜用いることができる。   For other members of the lithium ion secondary battery, known materials can be used as appropriate.

<リチウムイオン二次電池用正極材料>
以下に本実施形態に係るリチウムイオン二次電池用正極材料について説明する。本実施形態に関わるリチウムイオン二次電池材料は一般式β−LiVOPOで表され、粒度分布における50%累積粒径を表すD50で示される値に対する90%累積粒径を表すD90で示される値の比であるD90/D50の値が1.10以上6.25以下の範囲である。
<Positive electrode material for lithium ion secondary battery>
The positive electrode material for a lithium ion secondary battery according to this embodiment will be described below. The lithium ion secondary battery material according to the present embodiment is represented by the general formula β-LiVOPO 4 , and a value represented by D90 representing 90% cumulative particle size with respect to a value represented by D50 representing 50% cumulative particle size in the particle size distribution. The value of D90 / D50, which is the ratio, is in the range of 1.10 to 6.25.

上記D90/D50の値は1.75以上4.27以下の範囲であることがより好ましい。   The value of D90 / D50 is more preferably in the range of 1.75 or more and 4.27 or less.

本実施形態に係るβ−LiVOPOの粒度分布測定の相対頻度分布における大粒径側の頂点の粒径Aと小粒径側の頂点の粒径Bとの比(A/B)の値が0.97以上10.71以下の範囲であることが好ましい。 In the relative frequency distribution of the particle size distribution measurement of β-LiVOPO 4 according to this embodiment, the value of the ratio (A / B) of the particle size A at the vertex on the large particle size side to the particle size B at the vertex on the small particle size side is It is preferably in the range of 0.97 or more and 10.71 or less.

β−LiVOPOは、Vの一部がFe,Mnなどの他元素に置換、またはVの一部が欠損していてもよい。 In β-LiVOPO 4 , part of V may be substituted with other elements such as Fe and Mn, or part of V may be missing.

<リチウムイオン二次電池用正極材料の製造方法>
次に、本発明の一実施形態に係る正極材料の製造方法について説明する。本実施形態に係る正極材料の製造方法は、リチウム源とリン酸源とバナジウム源と還元剤と水とを混合物に、外部から熱を加えることによって水分を除去し、正極材料の前駆体となる混合物を得る前駆体混合工程と、得られた前駆体を熱処理する熱処理工程とを備える。
<Method for producing positive electrode material for lithium ion secondary battery>
Next, the manufacturing method of the positive electrode material which concerns on one Embodiment of this invention is demonstrated. The manufacturing method of the positive electrode material according to the present embodiment removes moisture by applying heat from the outside to a mixture of a lithium source, a phosphoric acid source, a vanadium source, a reducing agent, and water, and becomes a precursor of the positive electrode material. A precursor mixing step for obtaining a mixture; and a heat treatment step for heat-treating the obtained precursor.

(前駆体合成工程)
前駆体合成工程では、まず、上述したリチウム源、リン酸源、バナジウム源、還元剤及び水を投入して、これらが分散した混合物(水溶液)を調製する。なお、混合物を調製する際は、例えば、最初に、リン酸源、マンガン源及び水を混合したものを還流した後、これにリチウム源を加えてもよい。
(Precursor synthesis process)
In the precursor synthesis step, first, the above-described lithium source, phosphate source, vanadium source, reducing agent and water are added to prepare a mixture (aqueous solution) in which these are dispersed. In preparing the mixture, for example, first, a mixture of a phosphoric acid source, a manganese source and water may be refluxed, and then a lithium source may be added thereto.

リチウム源としては、例えば、LiNO、LiCO、LiOH、LiCl、LiSO及びCHCOOLiからなる群より選ばれる少なくとも一種を用いることができる。 As the lithium source, for example, at least one selected from the group consisting of LiNO 3 , Li 2 CO 3 , LiOH, LiCl, Li 2 SO 4 and CH 3 COOLi can be used.

リン酸源としては、例えば、HPO、NHPO、(NHHPO及びLiPOからなる群より選ばれる少なくとも一種を用いることができる。 As the phosphoric acid source, for example, at least one selected from the group consisting of H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 and Li 3 PO 4 can be used.

バナジウム源としては、例えば、V、VO及びNHVOからなる群より選ばれる少なくとも一種を用いることができる。 As the vanadium source, for example, at least one selected from the group consisting of V 2 O 5 , VO 2, and NH 4 VO 3 can be used.

還元剤としては、例えば、アスコルビン酸、クエン酸、酒石酸、ポリエチレングリコール(PEG)、ポリエチレン(PE)、ヒドラジンからなる群より選ばれる少なくとも一種を用いることができる。   As the reducing agent, for example, at least one selected from the group consisting of ascorbic acid, citric acid, tartaric acid, polyethylene glycol (PEG), polyethylene (PE), and hydrazine can be used.

なお、二種以上のリチウム源、二種以上のリン酸源又は二種以上のバナジウム源、二種以上の還元剤を併用してもよい。   In addition, you may use together 2 or more types of lithium sources, 2 or more types of phosphoric acid sources, or 2 or more types of vanadium sources, and 2 or more types of reducing agents.

上記前駆体合成工程は常温で混合してもよく、オイルバスなどを用いて常温以上の温度で混合してもよい。   The precursor synthesis step may be mixed at normal temperature, or may be mixed at a temperature equal to or higher than normal temperature using an oil bath or the like.

原料混合物である水溶液を10〜40時間攪拌することが望ましい。攪拌を行うことにより、水溶液中から溶解成分の偏析が起こり生成するβ―LiVOPOの粒径を小さくすることができる。また、40時間以内で攪拌を行うことにより、原料であるバナジウム源の分解が進むのを押さえ、水溶液の粘度上昇を防ぐことができ、容易に攪拌することができる。 It is desirable to stir the aqueous solution as the raw material mixture for 10 to 40 hours. By stirring, the particle size of β-LiVOPO 4 produced by segregation of dissolved components from the aqueous solution can be reduced. Moreover, by stirring within 40 hours, it can suppress that the decomposition | disassembly of the vanadium source which is a raw material advances, can prevent the viscosity increase of aqueous solution, and can stir easily.

(熱処理工程)
熱処理工程では、前駆体合成工程により得られた前駆体はアモルファス状態であることが想定されるため、これを大気中で熱処理することでβ―LiVOPOを合成することができる。
(Heat treatment process)
In the heat treatment step, it is assumed that the precursor obtained in the precursor synthesis step is in an amorphous state, so that β-LiVOPO 4 can be synthesized by heat-treating the precursor in the atmosphere.

熱処理の温度は400℃〜600℃で行うことが好ましく、500℃〜550℃で行うことがより好ましい。熱処理温度が低すぎる場合、β―LiVOPO相が生成せずに前駆体がアモルファス構造を部分的に維持することになり、活物質の充放電特性が低下する傾向がある。熱処理温度が高すぎる場合β−LiVOPO相が分解、または相変化を起こし目的の相が得られなくなる。熱処理の温度を上記の範囲内とすることによって、安定して得ることができる。 The temperature of the heat treatment is preferably 400 ° C to 600 ° C, and more preferably 500 ° C to 550 ° C. When the heat treatment temperature is too low, the β-LiVOPO 4 phase is not formed and the precursor partially maintains the amorphous structure, and the charge / discharge characteristics of the active material tend to be lowered. If the heat treatment temperature is too high, the β-LiVOPO 4 phase decomposes or undergoes a phase change, and the target phase cannot be obtained. By setting the temperature of the heat treatment within the above range, it can be stably obtained.

(粒度分布測定)
粒度分布測定はマイクロトラックなど、既存の装置を用いて行うことができる。
(Particle size distribution measurement)
The particle size distribution measurement can be performed using an existing apparatus such as a microtrack.

ある粒径のふるい目を通過した量の重量百分率(%)を縦軸に、粒径を対数目盛の横軸にしてプロットした粒径累積曲線において重量百分率50%にあたる粒度をD50、重量百分率90%にあたる重量をD90とする。   The particle size corresponding to 50% by weight in a particle size cumulative curve plotted with the weight percentage (%) passing through a sieve of a certain particle size on the vertical axis and the particle size on the horizontal axis of the logarithmic scale is D50, weight percentage 90 % Is D90.

上述のように算出したD50とD90の比率、つまりD90/D50が1.10以上6.25以下の範囲であり、好ましくは1.75以上4.17以下の範囲であることが望ましい。   The ratio of D50 and D90 calculated as described above, that is, D90 / D50 is in the range of 1.10 to 6.25, and preferably in the range of 1.75 to 4.17.

粒度分布測定結果を相対頻度分布で表した場合に、2つの相対頻度分布の山が見られる場合、大粒径側の山の頂点における粒径をA、小粒径側の山の頂点における粒径をBとする。   When the particle size distribution measurement result is expressed as a relative frequency distribution, if two peaks of relative frequency distribution are seen, the particle size at the peak of the peak on the large particle size side is A, and the particle at the peak of the peak on the small particle size side Let B be the diameter.

上記AおよびBと規定する頂点については粒径はどのような範囲でもよく、2つの頂点の粒径の大小の区別によりAとBとを区別する。   For the vertices defined as A and B, the particle diameter may be in any range, and A and B are distinguished by distinguishing between the particle diameters of the two vertices.

粒度分布測定をした結果、相対頻度分布図において2つの相対頻度分布が見られない場合、上記A/Bの値は規定されない。   As a result of the particle size distribution measurement, when two relative frequency distributions are not found in the relative frequency distribution diagram, the value of A / B is not defined.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
POを0.2molと蒸留水を180mlとを容器に入れ、室温で攪拌を行った。さらに、Vを0.1mol加え攪拌を継続した。その後、ヒドラジンを添加し攪拌を継続した。その後LiOH・HOを0.1mol加えた。得られた混合溶液を、室温にて80h攪拌を行わずに静置した。
Example 1
0.2 mol of H 3 PO 4 and 180 ml of distilled water were put in a container and stirred at room temperature. Further, 0.1 mol of V 2 O 5 was added and stirring was continued. Thereafter, hydrazine was added and stirring was continued. Thereafter, 0.1 mol of LiOH.H 2 O was added. The obtained mixed solution was allowed to stand at room temperature without stirring for 80 h.

上記原料混合溶液を80℃にて乾燥し、前駆体を得た。   The raw material mixed solution was dried at 80 ° C. to obtain a precursor.

得られた前駆体を大気雰囲気中550℃で4時間熱処理することによりβ―LiVOPOを得た。 The obtained precursor was heat-treated at 550 ° C. for 4 hours in an air atmosphere to obtain β-LiVOPO 4 .

得られたβ−LiVOPOとカーボンブラックを84質量部:8質量部の比率で3分混合し、β−LiVOPO/C混合粉末を得た。 The obtained β-LiVOPO 4 and carbon black were mixed at a ratio of 84 parts by mass to 8 parts by mass for 3 minutes to obtain a β-LiVOPO 4 / C mixed powder.

<ハーフセルの作製>
熱処理後の正極用材料92質量部と、PVDF(ポリふっ化ビニリデン)8質量部とを、NMP(N−メチル−2−ピロリドン)に添加して、正極用塗料を調製した。正極用塗料中の固形分であるLi(PO、カーボンブラック及びPVDFの比率は、β−LiVOPO:カーボンブラック:PVDF=84質量部:8質量部:8質量部に調整した。
<Fabrication of half cell>
92 parts by mass of the positive electrode material after heat treatment and 8 parts by mass of PVDF (polyvinylidene fluoride) were added to NMP (N-methyl-2-pyrrolidone) to prepare a positive electrode paint. The ratio of Li 3 V 2 (PO 4 ) 3 , carbon black and PVDF, which is a solid content in the positive electrode paint, is adjusted to β-LiVOPO 4 : carbon black: PVDF = 84 parts by mass: 8 parts by mass: 8 parts by mass. did.

正極用塗料を、厚みが20μmのアルミニウム箔に塗布した。塗布した正極用塗料を乾燥した後、圧延することにより、正極を得た。次に、リチウム箔を所定の大きさに切断して銅箔(厚み15μm)に貼り付けることにより、負極とした。正極及び負極を、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。正極、負極には、それぞれ、リードとして、アルミニウム箔(幅4mm、長さ40mm、厚み80μm)、ニッケル箔(幅4mm、長さ40mm、厚み80μm)を超音波溶接した。このリードには、前もって無水マレイン酸をグラフト化したポリプロピレン(PP)を巻き付け熱接着させた。これはリードとケースとのシール性を向上させるためである。リチウムイオン二次電池のケースはアルミニウムラミネート材料からなり、その構成は、PET(12)/Al(40)/PP(50)のものを用意した。PETはポリエチレンテレフタレート、PPはポリプロピレンである。かっこ内は各層の厚み(単位はμm)を表す。なおこの時PPが内側となるように製袋した。上の積層体をケースに入れ、これに電解液である1MLiPF/EC+DEC(30:70体積比)を注入した後、ケースを真空ヒートシールし、実施例1の電極評価用ハーフセルを作製した。 The positive electrode coating material was applied to an aluminum foil having a thickness of 20 μm. The applied positive electrode coating material was dried and then rolled to obtain a positive electrode. Next, the lithium foil was cut into a predetermined size and attached to a copper foil (thickness: 15 μm) to obtain a negative electrode. The positive electrode and the negative electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). An aluminum foil (width 4 mm, length 40 mm, thickness 80 μm) and nickel foil (width 4 mm, length 40 mm, thickness 80 μm) were ultrasonically welded as leads to the positive electrode and the negative electrode, respectively. The lead was wrapped with heat-bonded polypropylene (PP) previously grafted with maleic anhydride. This is to improve the sealing performance between the lead and the case. The case of the lithium ion secondary battery was made of an aluminum laminate material, and the configuration thereof was prepared as PET (12) / Al (40) / PP (50). PET is polyethylene terephthalate and PP is polypropylene. The value in parentheses represents the thickness of each layer (unit: μm). At this time, bags were made so that PP was inside. The upper laminate was placed in a case, and 1 M LiPF 6 / EC + DEC (30:70 volume ratio), which is an electrolytic solution, was injected into the case.

<放電容量の測定>
実施例1のハーフセルを用いて、レート特性を測定した。具体的には、放電レートを0.1C(定電流放電を行ったときに10時間で放電終了となる電流値)から10Cとした場合の放電容量(単位:mAh/g)を測定した。結果を表1に示す。表1に示す放電容量は、活物質1g当たりの放電容量である。なお、測定では、正極活物質であるβ―LiVOPOの理論容量を159mAh/gとして、0.1Cから10Cで充放電を行った。上限充電電圧は4.3V(VS.Li/Li)とし、下限放電電圧は2.8V(VS.Li/Li)とした。また、充電は、正極の電圧が上限充電電圧に達し、充電電流が1/20Cまで減衰するまで行った。測定温度は25℃で行った。
<Measurement of discharge capacity>
Using the half cell of Example 1, rate characteristics were measured. Specifically, the discharge capacity (unit: mAh / g) was measured when the discharge rate was changed from 0.1 C (current value at which discharge was completed in 10 hours when constant current discharge was performed) to 10 C. The results are shown in Table 1. The discharge capacity shown in Table 1 is the discharge capacity per gram of active material. In the measurement, charging and discharging were performed at 0.1 C to 10 C with a theoretical capacity of β-LiVOPO 4 as a positive electrode active material being 159 mAh / g. The upper limit charging voltage was 4.3 V (VS. Li / Li + ), and the lower limit discharging voltage was 2.8 V (VS. Li / Li + ). The charging was performed until the positive electrode voltage reached the upper limit charging voltage and the charging current was attenuated to 1 / 20C. The measurement temperature was 25 ° C.

<粒度分布の測定>
熱処理工程により得られβ−LiVOPO粉体を水とヘキサメタリン酸90重量部:10重量部の混合溶液中にて3分間超音波処理を行うことにより分散し、その粒子の粒度分布を測定した。粒径累積曲線により、重量百分率50%にあたる粒度をD50、重量百分率90%にあたる重量をD90を求め、比率D90/D50を計算したところ4.17であった。また、相対頻度分布において、2つの山が確認され、大粒径側の頂点の粒径Aと小粒径側の頂点の粒径Bとの比(A/B)の値は0.97であった。相対頻度分布図を図2に示す。
<Measurement of particle size distribution>
The β-LiVOPO 4 powder obtained by the heat treatment step was dispersed by performing ultrasonic treatment for 3 minutes in a mixed solution of 90 parts by weight and 10 parts by weight of hexametaphosphoric acid, and the particle size distribution of the particles was measured. From the particle size accumulation curve, D50 was determined for the particle size corresponding to 50% by weight, D90 for the weight corresponding to 90% by weight, and the ratio D90 / D50 was calculated to be 4.17. Also, in the relative frequency distribution, two peaks were confirmed, and the ratio (A / B) of the particle size A at the apex on the large particle size side to the particle size B at the apex on the small particle size side was 0.97. there were. A relative frequency distribution diagram is shown in FIG.

(実施例2)
原料を混合した水溶液を40時間攪拌したこと以外は実施例1と同様の方法で、実施例2の活物質及びハーフセルを作製した。
実施例1と同様の方法で粒度分布を測定した。粒径累積曲線により、重量百分率50%にあたる粒度をD50、重量百分率90%にあたる重量をD90を求め、比率D90/D50を計算したところ3.20であった。また、相対頻度分布において、2つの山が確認され、大粒径側の頂点の粒径Aと小粒径側の頂点の粒径Bとの比(A/B)の値は10.71であった。相対頻度分布図を図2に示す。
(Example 2)
The active material and half cell of Example 2 were produced in the same manner as in Example 1 except that the aqueous solution mixed with the raw materials was stirred for 40 hours.
The particle size distribution was measured in the same manner as in Example 1. From the particle size accumulation curve, the particle size corresponding to 50% by weight was D50, the weight corresponding to 90% was D90, and the ratio D90 / D50 was calculated to be 3.20. Further, in the relative frequency distribution, two peaks are confirmed, and the ratio (A / B) of the particle size A at the vertex on the large particle size side to the particle size B at the vertex on the small particle size side is 10.71. there were. A relative frequency distribution diagram is shown in FIG.

(実施例3)
原料を混合した水溶液を24時間攪拌したこと以外は実施例1と同様の方法で、実施例2の活物質及びハーフセルを作製した。
実施例1と同様の方法で粒度分布を測定した。粒径累積曲線により、重量百分率50%にあたる粒度をD50、重量百分率90%にあたる重量をD90を求め、比率D90/D50を計算したところ1.75であった。また、相対頻度分布において、2つの山が確認され、大粒径側の頂点の粒径Aと小粒径側の頂点の粒径Bとの比(A/B)の値は5.40であった。相対頻度分布図を図2に示す。
(Example 3)
The active material and half cell of Example 2 were produced in the same manner as in Example 1 except that the aqueous solution mixed with the raw materials was stirred for 24 hours.
The particle size distribution was measured in the same manner as in Example 1. From the particle size accumulation curve, D50 was determined for the particle size corresponding to 50% by weight, D90 for the weight corresponding to 90% by weight, and the ratio D90 / D50 was calculated to be 1.75. Also, in the relative frequency distribution, two peaks are confirmed, and the value of the ratio (A / B) of the particle size A at the vertex on the large particle size side to the particle size B at the vertex on the small particle size side is 5.40. there were. A relative frequency distribution diagram is shown in FIG.

(実施例4)
原料を混合した水溶液を12時間攪拌したこと以外は実施例1と同様の方法で、実施例2の活物質及びハーフセルを作製した。
実施例1と同様の方法で粒度分布を測定したところ、比率D90/D50=6.25であった。また、A/Bの値は12.83であった。
Example 4
The active material and half cell of Example 2 were produced in the same manner as in Example 1 except that the aqueous solution mixed with the raw materials was stirred for 12 hours.
When the particle size distribution was measured in the same manner as in Example 1, the ratio D90 / D50 = 6.25. The A / B value was 12.83.

(実施例5)
原料を混合した水溶液を6時間攪拌したこと以外は実施例1と同様の方法で、実施例2の活物質及びハーフセルを作製した。
実施例1と同様の方法で粒度分布を測定したところ、比率D90/D50=5.10であった。また、A/Bの値は3.91であった。
(Example 5)
The active material and half cell of Example 2 were produced in the same manner as in Example 1 except that the aqueous solution mixed with the raw materials was stirred for 6 hours.
When the particle size distribution was measured in the same manner as in Example 1, the ratio D90 / D50 = 5.10 was obtained. Moreover, the value of A / B was 3.91.

(実施例6)
原料を混合した水溶液を48時間攪拌したこと以外は実施例1と同様の方法で、実施例2の活物質及びハーフセルを作製した。
実施例1と同様の方法で粒度分布を測定したところ、比率D90/D50=1.10であった。また、A/Bの値は0.47であった。
(Example 6)
The active material and half cell of Example 2 were produced in the same manner as in Example 1 except that the aqueous solution mixed with the raw materials was stirred for 48 hours.
When the particle size distribution was measured in the same manner as in Example 1, the ratio D90 / D50 = 1.10 was obtained. Moreover, the value of A / B was 0.47.

(実施例7)
前駆体合成工程において、原料であるリチウム源、リン酸源、バナジウム源を全て混合した後、静置する替わりに混合溶液の攪拌温度45℃で80時間攪拌したことを除いて実施例1と同様の方法で、実施例7の活物質及びハーフセルを作製した。
実施例1と同様の方法で粒度分布を測定したところ、比率D90/D50=2.29であった。また、A/Bの値は4.81であった。
(Example 7)
In the precursor synthesis step, after all the lithium source, phosphoric acid source, and vanadium source as raw materials were mixed, instead of standing, the mixture solution was stirred at a stirring temperature of 45 ° C. for 80 hours, as in Example 1. The active material and half cell of Example 7 were produced by the method described above.
When the particle size distribution was measured in the same manner as in Example 1, the ratio D90 / D50 = 2.29 was obtained. The A / B value was 4.81.

(実施例8)
前駆体合成工程において、原料であるリチウム源、リン酸源、バナジウム源を全て混合した後、静置する替わりに混合溶液の攪拌温度60℃で80時間攪拌したことを除いて実施例1と同様の方法で、実施例8の活物質及びハーフセルを作製した。
実施例1と同様の方法で粒度分布を測定したところ、比率D90/D50=2.85であった。また、A/Bの値は3.37であった。
(Example 8)
In the precursor synthesis step, after all the lithium source, phosphoric acid source, and vanadium source as raw materials were mixed, instead of standing, the mixture solution was stirred at 60 ° C. for 80 hours, and the same as in Example 1. The active material and half cell of Example 8 were produced by the method described above.
When the particle size distribution was measured in the same manner as in Example 1, the ratio D90 / D50 = 2.85 was obtained. The A / B value was 3.37.

(実施例9)
前駆体合成工程において、原料であるリチウム源、リン酸源、バナジウム源を全て混合した後、静置する替わりに混合溶液の攪拌温度80℃で80時間攪拌したことを除いて実施例1と同様の方法で、実施例9の活物質及びハーフセルを作製した。
実施例1と同様の方法で粒度分布を測定したところ、比率D90/D50=3.62であった。また、A/Bの値は9.61であった。
Example 9
In the precursor synthesizing step, after all the lithium source, phosphoric acid source, and vanadium source as raw materials were mixed, instead of standing, the mixture solution was stirred at 80 ° C. for 80 hours, and the same as in Example 1. The active material and half cell of Example 9 were produced by the method described above.
When the particle size distribution was measured by the same method as in Example 1, it was found that the ratio D90 / D50 = 3.62. The A / B value was 9.61.

(比較例1)
原料を混合した水溶液を24時間攪拌し、熱処理温度を650℃としたこと以外は実施例1と同様の方法で、実施例2の活物質及びハーフセルを作製した。
また、実施例1と同様の方法で粒度分布を測定したところ、D90/D50=8.50であった。また、A/Bの値は15.68であった。
(Comparative Example 1)
The active material and half cell of Example 2 were produced in the same manner as in Example 1 except that the aqueous solution mixed with the raw materials was stirred for 24 hours and the heat treatment temperature was 650 ° C.
Moreover, when the particle size distribution was measured by the same method as in Example 1, it was D90 / D50 = 8.50. Moreover, the value of A / B was 15.68.

(比較例2)
原料を混合した水溶液を40時間攪拌し、熱処理温度を650℃としたこと以外は実施例1と同様の方法で、実施例2の活物質及びハーフセルを作製した。
また、実施例1と同様の方法で粒度分布を測定したところ、D90/D50=10.00であった。また、A/Bの値は23.05であった。
(Comparative Example 2)
The active material and half cell of Example 2 were produced in the same manner as in Example 1 except that the aqueous solution mixed with the raw materials was stirred for 40 hours and the heat treatment temperature was 650 ° C.
Moreover, when the particle size distribution was measured in the same manner as in Example 1, it was D90 / D50 = 10.00. The A / B value was 23.05.

実施例1と同様の方法で、実施例2、比較例1の0.1Cの活物質1g当たりの放電容量の値をそれぞれ求めた。結果を表1に示す。実施例1から実施例9に見られるようにD90/D50の値が1.10以上6.25以下の範囲に入る正極材料は0.1Cで140mAh/g前後の良好な放電容量を示したのに対し、この範囲から外れる正極材料は120mAh/g前後と放電容量が低下した。また、高レート放電特性の比較として行った1Cにおける充放電測定においても同様の傾向が見られた。また、実施例1から実施例9に見られるように、粒度分布の相対頻度分布図から得られる大粒径側の頂点の粒径Aと小粒径側の頂点の粒径Bとの比(A/B)の値からも0.97以上10.71以下の範囲の正極材料は高い高レート放電特性を示した。また、実施例4の見られるように(A/B)の値が0.97以上10.71以下の範囲を外れる正極材料もD90/D50の範囲が1.10以上6.25以下の範囲に入るものは高レート放電特性の低下は見られないものの、比較例1、2に見られるようにどちらの値も規定範囲から外れる正極材料は高レート放電特性の低下が見られた。
In the same manner as in Example 1, discharge capacity values per 1 g of 0.1 C active material of Example 2 and Comparative Example 1 were obtained. The results are shown in Table 1. As can be seen from Example 1 to Example 9, the positive electrode material in which the value of D90 / D50 falls within the range of 1.10 or more and 6.25 or less showed a good discharge capacity of around 140 mAh / g at 0.1C. On the other hand, the positive electrode material outside this range had a discharge capacity of around 120 mAh / g. Moreover, the same tendency was seen also in the charge / discharge measurement in 1C performed as a comparison of the high rate discharge characteristic. Further, as can be seen from Example 1 to Example 9, the ratio between the particle size A at the apex on the large particle size side and the particle size B at the apex on the small particle size side obtained from the relative frequency distribution diagram of the particle size distribution ( Also from the value of A / B), the positive electrode material in the range of 0.97 to 10.71 showed high high-rate discharge characteristics. Further, as can be seen from Example 4, the positive electrode material whose (A / B) value is out of the range of 0.97 to 10.71 also has a D90 / D50 range of 1.10 to 6.25. Although no deterioration of the high rate discharge characteristics was observed when entering, positive electrode materials in which both values were out of the specified range as shown in Comparative Examples 1 and 2 showed a decrease in high rate discharge characteristics.

Figure 2013206562
Figure 2013206562

Claims (7)

β−LiVOPOの累積粒径D90及び累積粒径D50の比(D90/D50)が、1.10以上6.25以下であることを特徴とするリチウムイオン二次電池用正極材料。 A positive electrode material for a lithium ion secondary battery, wherein the ratio (D90 / D50) of the cumulative particle diameter D90 and the cumulative particle diameter D50 of β-LiVOPO 4 is 1.10 or more and 6.25 or less. β−LiVOPOの粒度分布測定の相対頻度分布における大粒径側の頂点の粒径Aと小粒径側の頂点の粒径Bとの比(A/B)の値が0.97以上10.71以下であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極材料。 The ratio (A / B) of the particle size A at the apex on the large particle size side to the particle size B at the apex on the small particle size side in the relative frequency distribution of the particle size distribution measurement of β-LiVOPO 4 is 0.97 or more and 10 The positive electrode material for a lithium ion secondary battery according to claim 1, wherein the positive electrode material is .71 or less. 請求項1または2に記載のリチウムイオン二次電池用正極材料を用いたリチウムイオン二次電池用正極。   The positive electrode for lithium ion secondary batteries using the positive electrode material for lithium ion secondary batteries of Claim 1 or 2. 請求項3に記載のリチウムイオン二次電池用正極を用いたリチウムイオン二次電池。   The lithium ion secondary battery using the positive electrode for lithium ion secondary batteries of Claim 3. リチウム源とリン酸源とバナジウム源と還元剤と水とを含む混合物を乾燥することにより前駆体を得る前駆体合成工程と、得られた前駆体を熱処理する熱処理工程とを備えるリチウムイオン二次電池用正極材料の製造方法。   Lithium ion secondary comprising a precursor synthesis step for obtaining a precursor by drying a mixture containing a lithium source, a phosphate source, a vanadium source, a reducing agent and water, and a heat treatment step for heat-treating the obtained precursor A method for producing a positive electrode material for a battery. 前記前駆体合成工程において、リチウム源とリン酸源とバナジウム源と還元剤と水とを含む混合物を静置ないしは攪拌することを特徴とする請求項5に記載のリチウムイオン二次電池正極材料の製造方法。   The lithium ion secondary battery positive electrode material according to claim 5, wherein in the precursor synthesis step, a mixture containing a lithium source, a phosphate source, a vanadium source, a reducing agent, and water is left standing or stirred. Production method. 前記熱処理工程において、前記混合物を400℃〜650℃で熱処理することを特徴とする請求項5または6に記載のリチウムイオン二次電池用正極材料の製造方法。   The method for producing a positive electrode material for a lithium ion secondary battery according to claim 5 or 6, wherein in the heat treatment step, the mixture is heat treated at 400 ° C to 650 ° C.
JP2012070962A 2012-03-27 2012-03-27 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery Active JP5594309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070962A JP5594309B2 (en) 2012-03-27 2012-03-27 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070962A JP5594309B2 (en) 2012-03-27 2012-03-27 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2013206562A true JP2013206562A (en) 2013-10-07
JP5594309B2 JP5594309B2 (en) 2014-09-24

Family

ID=49525473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070962A Active JP5594309B2 (en) 2012-03-27 2012-03-27 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5594309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139922A (en) * 2012-12-17 2014-07-31 Tdk Corp Positive electrode active material and lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291516A (en) * 2000-04-06 2001-10-19 Hitachi Powdered Metals Co Ltd Graphite particle for negative electrode of nonaqueous secondary battery
JP2003229127A (en) * 2002-02-05 2003-08-15 Toda Kogyo Corp Positive active material for secondary battery and its manufacturing method
JP2004363097A (en) * 2003-05-15 2004-12-24 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012004046A (en) * 2010-06-18 2012-01-05 Tdk Corp Manufacturing method of active material, active material and lithium ion secondary battery
JP2012022995A (en) * 2010-07-16 2012-02-02 Tdk Corp Active material, electrode containing the same, lithium secondary battery including the electrode, and method for producing active material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291516A (en) * 2000-04-06 2001-10-19 Hitachi Powdered Metals Co Ltd Graphite particle for negative electrode of nonaqueous secondary battery
JP2003229127A (en) * 2002-02-05 2003-08-15 Toda Kogyo Corp Positive active material for secondary battery and its manufacturing method
JP2004363097A (en) * 2003-05-15 2004-12-24 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012004046A (en) * 2010-06-18 2012-01-05 Tdk Corp Manufacturing method of active material, active material and lithium ion secondary battery
JP2012022995A (en) * 2010-07-16 2012-02-02 Tdk Corp Active material, electrode containing the same, lithium secondary battery including the electrode, and method for producing active material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139922A (en) * 2012-12-17 2014-07-31 Tdk Corp Positive electrode active material and lithium ion secondary battery
US9825295B2 (en) 2012-12-17 2017-11-21 Tdk Corporation Positive electrode active material and lithium-ion secondary battery

Also Published As

Publication number Publication date
JP5594309B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5509918B2 (en) Method for producing positive electrode active material for lithium ion battery, positive electrode active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5544934B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5966992B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5531532B2 (en) Method for producing lithium ion battery positive electrode active material
JP5890886B1 (en) Lithium manganese iron phosphate positive electrode active material and method for producing the same
JP5478693B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5820521B1 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP5910730B2 (en) Active material, electrode using the same, and lithium ion secondary battery
JP5836461B1 (en) Positive electrode material for lithium secondary battery
JP2018056054A (en) Electrode material for lithium ion secondary battery and lithium ion secondary battery
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP7089297B6 (en) Tungsten-doped lithium manganese iron phosphate fine particles, powder material containing the fine particles, and method for producing the powder material
JP2012033438A (en) Cathode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6329034B2 (en) Method for producing lithium titanate and method for producing lithium ion secondary battery using the same
JP5649068B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5594309B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5765810B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP6197541B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2015049995A (en) Method for manufacturing positive electrode active material for lithium ion batteries, and positive electrode active material for lithium ion batteries
JP2013206563A (en) Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2018056053A (en) Positive electrode material for lithium ion secondary battery, method for manufacturing the same, lithium ion secondary battery electrode, and lithium ion secondary battery
JP5831296B2 (en) Olivine-type lithium transition metal oxide and method for producing the same
JP5649069B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP6197540B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5798606B2 (en) Method for producing lithium manganese phosphate positive electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250