JP5798606B2 - Method for producing lithium manganese phosphate positive electrode active material - Google Patents

Method for producing lithium manganese phosphate positive electrode active material Download PDF

Info

Publication number
JP5798606B2
JP5798606B2 JP2013209917A JP2013209917A JP5798606B2 JP 5798606 B2 JP5798606 B2 JP 5798606B2 JP 2013209917 A JP2013209917 A JP 2013209917A JP 2013209917 A JP2013209917 A JP 2013209917A JP 5798606 B2 JP5798606 B2 JP 5798606B2
Authority
JP
Japan
Prior art keywords
reaction mixture
lithium
temperature
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013209917A
Other languages
Japanese (ja)
Other versions
JP2015076155A (en
Inventor
三崎 紀彦
紀彦 三崎
弘樹 山下
弘樹 山下
四穂 石原
四穂 石原
充志 中村
充志 中村
大神 剛章
剛章 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2013209917A priority Critical patent/JP5798606B2/en
Publication of JP2015076155A publication Critical patent/JP2015076155A/en
Application granted granted Critical
Publication of JP5798606B2 publication Critical patent/JP5798606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、高い電池物性を発現し得るリン酸マンガンリチウム正極活物質を得るためのリン酸マンガンリチウム正極活物質の製造方法に関する。   The present invention relates to a method for producing a lithium manganese phosphate positive electrode active material for obtaining a lithium manganese phosphate positive electrode active material capable of expressing high battery properties.

従来より、電池の性能を高めるべく、正極材料や負極材料として導電性の高い物質が用いられている。近年では、リチウムイオン電池等の次世代電池が益々台頭してきており、かかる電池における正極材料としても種々のものが開発されている。リン酸マンガンリチウムもそのなかの一つであり、リン酸、マンガン化合物及び水を混合して酸性溶液とし、これに水酸化リチウムを滴下してアルカリ性に調整したものを水熱反応に付して得られる方法が知られている(非特許文献1参照)。   Conventionally, highly conductive substances have been used as positive electrode materials and negative electrode materials in order to improve battery performance. In recent years, next-generation batteries such as lithium ion batteries have been increasingly used, and various positive electrode materials for such batteries have been developed. Lithium manganese phosphate is one of them. Phosphoric acid, manganese compound and water are mixed to make an acidic solution, and lithium hydroxide is added dropwise to make it alkaline and subjected to hydrothermal reaction. An obtained method is known (see Non-Patent Document 1).

こうしたなか、リン酸マンガンリチウムはその物自体の導電性が低いため、正極活物質として有効活用するには、粒子を十分に微細化して良好な電池物性を確保する必要があり、これを正極活物質として得るための様々な製造方法が知られている。例えば、特許文献1には、リチウムを含む溶液とリンを含む溶液を混合し、弱アルカリ性の混合液を形成してマンガン等を含み得る溶液に滴下し、得られた混合液を用いて水熱法によりリチウム含有複合酸化物を製造する方法が開示されている。また、特許文献2には、Li+源、PO4 3-源、及びマンガン源等を含む前駆体混合物を生成し、得られた前駆体混合物に分散又は粉砕処理を施し、熱水条件下での反応によりLiMPO4化合物を得る方法が開示されている。 Under these circumstances, lithium manganese phosphate itself has low conductivity, and therefore, in order to effectively use it as a positive electrode active material, it is necessary to sufficiently refine the particles to ensure good battery properties. Various production methods are known for obtaining the substance. For example, in Patent Document 1, a solution containing lithium and a solution containing phosphorus are mixed, a weakly alkaline mixed solution is formed and dropped into a solution that can contain manganese or the like, and hydrothermal heat is generated using the obtained mixed solution. A method for producing a lithium-containing composite oxide by the method is disclosed. Patent Document 2 discloses that a precursor mixture containing a Li + source, a PO 4 3− source, a manganese source, and the like is generated, and the obtained precursor mixture is subjected to dispersion or pulverization treatment under hydrothermal conditions. A method for obtaining a LiMPO 4 compound by this reaction is disclosed.

特開2012−211072号公報JP 2012-211072 A 特開2007−511458号公報JP 2007-511458 A

Hongmei Ji et al,Elestrochimica Acta 56(2011),p3093−3100Hongmei Ji et al, Elestrochimica Acta 56 (2011), p3093-3100

しかしながら、上記いずれの文献に記載の方法であっても、調製した混合物や混合液を、いわゆる水熱反応に付するにあたっての選択すべき条件については、十分な検討がなされておらず、高い電池物性を発現し得るリン酸マンガンリチウムを得るまでには至っていない。   However, in any of the methods described in any of the above documents, the conditions to be selected for subjecting the prepared mixture or liquid mixture to a so-called hydrothermal reaction have not been sufficiently studied, and a high battery It has not yet reached lithium manganese phosphate that can express physical properties.

したがって、本発明の課題は、リチウムイオン電池の正極材料として、優れた電池物性を発現し得るリン酸マンガンリチウム正極活物質を得るための製造方法を提供することにある。   Therefore, the subject of this invention is providing the manufacturing method for obtaining the lithium manganese phosphate positive electrode active material which can express the outstanding battery physical property as a positive electrode material of a lithium ion battery.

そこで本発明者らは、種々検討したところ、マンガン化合物を含む遷移金属化合物等を混合して得られる反応混合物を水熱反応に付する工程を含む製造方法において、特定条件下において求められる経過時間(分)と反応混合物の温度(℃)との積を積算した値が特定の値以下であると、優れた電池物性を発現し得るリン酸マンガンリチウム正極活物質が得られることを見出し、本発明を完成させるに至った。   Therefore, the present inventors have made various studies, and in the production method including a step of subjecting a reaction mixture obtained by mixing a transition metal compound containing a manganese compound to a hydrothermal reaction, an elapsed time required under specific conditions. It has been found that a lithium manganese phosphate positive electrode active material capable of exhibiting excellent battery physical properties can be obtained when the value obtained by integrating the product of (minute) and the temperature (° C.) of the reaction mixture is not more than a specific value. The invention has been completed.

すなわち、本発明は、少なくともマンガン化合物を含む遷移金属化合物、リチウム化合物、及びリン酸化合物を混合し、得られた反応混合物を水熱反応に付する工程を含むリン酸マンガンリチウム正極活物質の製造方法であって、
水熱反応に付する工程において、水熱反応の開始時から終了時までの間に反応混合物の温度が60〜210℃の範囲内であるときの、水熱反応の開始時からの経過時間(分)と反応混合物の温度(℃)との積を積算した値が、16000(分・℃)以下であるリン酸マンガンリチウム正極活物質の製造方法を提供するものである。
また、本発明は、上記製造方法により得られるリン酸マンガンリチウム正極活物質を提供するものである。
That is, the present invention provides a lithium manganese phosphate positive electrode active material comprising a step of mixing a transition metal compound containing at least a manganese compound, a lithium compound, and a phosphate compound, and subjecting the resulting reaction mixture to a hydrothermal reaction. A method,
In the step for hydrothermal reaction, the elapsed time from the start of the hydrothermal reaction when the temperature of the reaction mixture is in the range of 60 to 210 ° C. between the start and end of the hydrothermal reaction ( The product of the product of (min) and the temperature (° C.) of the reaction mixture provides a method for producing a lithium manganese phosphate positive electrode active material having a value of 16000 (min · ° C.) or less.
Moreover, this invention provides the lithium manganese phosphate positive electrode active material obtained by the said manufacturing method.

本発明のリン酸マンガンリチウム正極活物質の製造方法によれば、得られるリン酸マンガンリチウム正極活物質において、十分に粒子の微細化を図ることができるので、かかるリン酸マンガンリチウム正極活物質を用いれば、重量エネルギー密度が飛躍的に高められたリチウムイオン電池を容易に実現することが可能となる。   According to the method for producing a lithium manganese phosphate positive electrode active material of the present invention, in the obtained lithium manganese phosphate positive electrode active material, the particles can be sufficiently miniaturized. If it uses, it becomes possible to implement | achieve the lithium ion battery in which the weight energy density was raised dramatically easily.

実施例1及び比較例1において、反応混合物を水熱反応に付した際の反応混合物の温度と、水熱反応開始時から終了時までの時間をプロットしたグラフである。In Example 1 and Comparative Example 1, it is the graph which plotted the temperature of the reaction mixture at the time of attaching | subjecting a reaction mixture to hydrothermal reaction, and the time from the time of a hydrothermal reaction start to the end. 実施例2及び比較例2において、反応混合物を水熱反応に付した際の反応混合物の温度と、水熱反応開始時から終了時までの時間をプロットしたグラフである。In Example 2 and Comparative Example 2, it is the graph which plotted the temperature of the reaction mixture at the time of attaching | subjecting a reaction mixture to hydrothermal reaction, and the time from the time of a hydrothermal reaction start to the end.

以下、本発明について詳細に説明する。
本発明のリン酸マンガンリチウム正極活物質の製造方法は、少なくともマンガン化合物を含む遷移金属化合物、リチウム化合物、及びリン酸化合物を混合し、得られた反応混合物(以下、「反応混合物(X)」ともいう)を水熱反応に付する工程を含む製造方法であって、
水熱反応に付する工程において、水熱反応の開始時から終了時までの間に反応混合物(X)の温度が60〜210℃の範囲内であるときの、水熱反応の開始時からの経過時間(分)と反応混合物(X)の温度(℃)との積を積算した値が、16000(分・℃)以下である。
Hereinafter, the present invention will be described in detail.
In the method for producing a lithium manganese phosphate positive electrode active material of the present invention, a transition metal compound containing at least a manganese compound, a lithium compound, and a phosphoric acid compound are mixed, and an obtained reaction mixture (hereinafter referred to as “reaction mixture (X)”). A manufacturing method including a step of subjecting to hydrothermal reaction,
In the step of subjecting to a hydrothermal reaction, when the temperature of the reaction mixture (X) is within the range of 60 to 210 ° C. from the start to the end of the hydrothermal reaction, from the start of the hydrothermal reaction. A value obtained by integrating the product of the elapsed time (min) and the temperature (° C.) of the reaction mixture (X) is 16000 (min · ° C.) or less.

本発明で用いる遷移金属(M)化合物(Mは少なくともマンガンを含む遷移金属を示す)としては、少なくともマンガン化合物及びその水和物が挙げられる。かかるマンガン化合物としては、2価のマンガン化合物であればよく、例えば、ハロゲン化マンガン、硫酸マンガン、酢酸マンガン及びこれらの水和物等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池物性を高める観点から、硫酸マンガン及びその水和物を用いるのが好ましい。   Examples of the transition metal (M) compound (M represents a transition metal containing at least manganese) used in the present invention include at least a manganese compound and a hydrate thereof. Such a manganese compound may be a divalent manganese compound, and examples thereof include manganese halide, manganese sulfate, manganese acetate, and hydrates thereof. These may be used alone or in combination of two or more. Especially, it is preferable to use manganese sulfate and its hydrate from a viewpoint of improving battery physical property.

その他の遷移金属(M)化合物としては、鉄化合物が挙げられる。鉄化合物としても2価の鉄化合物及びこれらの水和物等であればよく、例えば、ハロゲン化鉄等のハロゲン化物;硫酸鉄、等の硫酸塩;シュウ酸鉄、酢酸鉄等の有機酸塩;並びにこれらの水和物等が挙げられる。なかでも、電池物性を高める観点から、硫酸鉄及びその水和物を用いるのが好ましい。   Examples of other transition metal (M) compounds include iron compounds. The iron compound may be a divalent iron compound or a hydrate thereof, for example, a halide such as iron halide; a sulfate such as iron sulfate; an organic acid salt such as iron oxalate or iron acetate As well as hydrates thereof. Of these, iron sulfate and hydrates thereof are preferably used from the viewpoint of improving battery physical properties.

本発明で用いるリチウム化合物としては、リチウム酸化物又はリチウム水酸化物が挙げられる。具体的には、例えば、水酸化リチウム、炭酸リチウム、硫酸リチウム、硝酸リチウム、酸化リチウム、シュウ酸リチウム、酢酸リチウム等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池物性を高める観点から、水酸化リチウムが好ましい。   Examples of the lithium compound used in the present invention include lithium oxide and lithium hydroxide. Specific examples include lithium hydroxide, lithium carbonate, lithium sulfate, lithium nitrate, lithium oxide, lithium oxalate, and lithium acetate. These may be used alone or in combination of two or more. Among these, lithium hydroxide is preferable from the viewpoint of improving battery physical properties.

本発明で用いるリン酸化合物としては、リン酸、リン酸2水素アンモニウム、リン酸水素2アンモニウム等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池物性を高める観点から、リン酸が好ましい。リン酸とは、いわゆるオルトリン酸(H3PO4)であり、70〜90質量%濃度の水溶液として用いるのが好ましい。 Examples of the phosphoric acid compound used in the present invention include phosphoric acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and the like. These may be used alone or in combination of two or more. Among these, phosphoric acid is preferable from the viewpoint of improving battery physical properties. Phosphoric acid is so-called orthophosphoric acid (H 3 PO 4 ) and is preferably used as an aqueous solution having a concentration of 70 to 90% by mass.

上記遷移金属(M)化合物、リチウム化合物、及びリン酸化合物を混合することにより、反応混合物(X)を得る。遷移金属(M)化合物として、マンガン化合物及び鉄化合物を用いる場合、反応混合物(X)中におけるこれらのモル比(マンガン化合物:鉄化合物)は、好ましくは99:1〜51:49であり、より好ましくは95:5〜70:30であり、さらに好ましくは90:10〜80:20である。また、反応混合物(X)中において、リチウム化合物1モルに対し、リン酸化合物を0.28〜0.38モル含有するのが好ましく、0.30〜0.36モル含有するのがより好ましく、0.32〜0.34モル含有するのがさらに好ましい。   The reaction mixture (X) is obtained by mixing the transition metal (M) compound, the lithium compound, and the phosphoric acid compound. When a manganese compound and an iron compound are used as the transition metal (M) compound, their molar ratio (manganese compound: iron compound) in the reaction mixture (X) is preferably 99: 1 to 51:49, and more Preferably it is 95: 5-70: 30, More preferably, it is 90: 10-80: 20. Moreover, in reaction mixture (X), it is preferable to contain 0.28-0.38 mol of phosphoric acid compounds with respect to 1 mol of lithium compounds, and it is more preferable to contain 0.30-0.36 mol, More preferably, the content is 0.32 to 0.34 mol.

上記遷移金属(M)化合物、リチウム化合物、及びリン酸化合物を混合して、上記反応混合物(X)を得る方法としては、例えばJournal of Power Source 196‘(2011),p6498−6501)に記載の方法を用いることができる。   As a method for obtaining the reaction mixture (X) by mixing the transition metal (M) compound, the lithium compound, and the phosphoric acid compound, for example, as described in Journal of Power Source 196 ′ (2011), p6498-6501). The method can be used.

具体的には、例えば、まずリチウム化合物、リン酸化合物、及び水を混合した後、遷移金属(M)化合物を添加してさらに混合し、反応混合物(X)としての水分散液を調製する。次いで、得られた水分散液を水熱反応に付す。   Specifically, for example, after first mixing a lithium compound, a phosphoric acid compound, and water, a transition metal (M) compound is added and further mixed to prepare an aqueous dispersion as a reaction mixture (X). Next, the obtained aqueous dispersion is subjected to a hydrothermal reaction.

或いは、次の工程(I)〜(II)を経ることにより得られる前駆体スラリー液を用い、遷移金属(M)化合物を添加して反応混合物(X)を得てもよい。かかる前駆体スラリー液は、具体的には、水に対する溶解度を超える量のリチウム化合物を含有するスラリー水に、リン酸を滴下しながら該スラリー水を撹拌して、pH9〜11の混合スラリー液を得る工程(I)を経た後、得られた混合スラリー液に対して窒素をパージすることにより該混合スラリー液での反応を完了させる工程(II)を経ることにより得られる。   Alternatively, a reaction slurry (X) may be obtained by adding a transition metal (M) compound using a precursor slurry obtained by going through the following steps (I) to (II). Specifically, such a precursor slurry liquid is prepared by stirring the slurry water while dropping phosphoric acid into slurry water containing an amount of lithium compound exceeding the solubility in water, thereby preparing a mixed slurry liquid having a pH of 9 to 11. After the obtaining step (I), the obtained mixed slurry solution is purged with nitrogen to complete the reaction with the mixed slurry solution (II).

より具体的には、例えば、工程(I)では、水に対する溶解度(飽和水溶液100g中に溶解するリチウム化合物のg数)を超える量のリチウム化合物を含有するスラリー水を用いる。かかるスラリー水を調製するには、水と、かかる水に対する溶解度を超える量のリチウム化合物とを混合すればよい。かかるスラリー水は、リチウム化合物の水に対する溶解度を基準として、1.5〜3.5倍の量のリチウム化合物を含有するのが好ましく、2.2〜3.3倍の量のリチウム化合物を含有するのがより好ましく、2.5〜3.2倍の量のリチウム化合物を含有するのがさらに好ましい。また、例えば、リチウム化合物として水酸化リチウムを用いる場合、水100質量部に対し、20〜50質量部の水酸化リチウムを含有するのが好ましく、25〜48質量部の水酸化リチウムを含有するのがより好ましく、30〜45質量部の水酸化リチウムを含有するのがさらに好ましい。   More specifically, for example, in the step (I), slurry water containing an amount of lithium compound exceeding the solubility in water (g number of lithium compound dissolved in 100 g of saturated aqueous solution) is used. In order to prepare such slurry water, water and an amount of lithium compound exceeding the solubility in water may be mixed. Such slurry water preferably contains 1.5 to 3.5 times the amount of lithium compound, and contains 2.2 to 3.3 times the amount of lithium compound, based on the solubility of the lithium compound in water. More preferably, it contains 2.5 to 3.2 times as much lithium compound. For example, when using lithium hydroxide as a lithium compound, it is preferable to contain 20-50 mass parts lithium hydroxide with respect to 100 mass parts of water, and it contains 25-48 mass parts lithium hydroxide. Is more preferable, and it is more preferable to contain 30 to 45 parts by mass of lithium hydroxide.

工程(I)では、上記スラリー水に、リン酸化合物を滴下しながら該スラリー水を撹拌して、pH9〜11の混合スラリー液を得る。このように、飽和状態でありながら過剰な量のリチウム化合物が存在するスラリー液に、リン酸化合物を滴下して少量ずつ加えながら撹拌することで、リン酸マンガンリチウム正極活物質の前駆体(リン酸三リチウム:Li3PO4)である分散粒子が凝集するのを効果的に抑制して、これを有効に微細化することができる。リン酸化合物の上記スラリー水への滴下速度は、好ましくは15〜50mL/分であり、より好ましくは20〜45mL/分であり、さらに好ましくは28〜40mL/分である。 In step (I), the slurry water is stirred while dropping the phosphoric acid compound into the slurry water to obtain a mixed slurry liquid having a pH of 9 to 11. In this way, the precursor of the lithium manganese phosphate positive electrode active material (phosphorus) is obtained by adding the phosphoric acid compound dropwise to the slurry liquid that is in a saturated state but containing an excessive amount of the lithium compound, and stirring while adding little by little. It is possible to effectively suppress agglomeration of dispersed particles of trilithium acid (Li 3 PO 4 ) and to effectively refine the particles. The dropping rate of the phosphoric acid compound into the slurry water is preferably 15 to 50 mL / min, more preferably 20 to 45 mL / min, and further preferably 28 to 40 mL / min.

工程(I)で得られる混合スラリー液は、リチウム化合物として水酸化リチウムを用い、かつリン酸化合物としてリン酸を用いる場合、水酸化リチウム100質量部に対し、リン酸を115〜155質量部含有するのが好ましく、123〜147質量部含有するのがより好ましく、131〜139質量部含有するのが好ましい。   The mixed slurry obtained in step (I) contains 115 to 155 parts by mass of phosphoric acid with respect to 100 parts by mass of lithium hydroxide when lithium hydroxide is used as the lithium compound and phosphoric acid is used as the phosphoric acid compound. It is preferable to contain, 123 to 147 parts by mass, more preferably 131 to 139 parts by mass.

工程(II)では、上記工程(I)で得られた混合スラリー液に対して窒素をパージすることにより該混合スラリー液での反応を完了させて、前駆体スラリー液を得る。工程(II)における圧力は、好ましくは0.1〜0.2MPaであり、より好ましくは0.1〜0.15MPaである。また、混合スラリー液の温度は、好ましくは20〜80℃であり、より好ましくは20〜60℃である。反応時間は、好ましくは5〜60分であり、より好ましくは15〜45分である。   In the step (II), the mixed slurry liquid obtained in the above step (I) is purged with nitrogen to complete the reaction in the mixed slurry liquid to obtain a precursor slurry liquid. The pressure in the step (II) is preferably 0.1 to 0.2 MPa, more preferably 0.1 to 0.15 MPa. Moreover, the temperature of a mixed slurry liquid becomes like this. Preferably it is 20-80 degreeC, More preferably, it is 20-60 degreeC. The reaction time is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.

上記工程(I)及び工程(II)を経ることにより得られる前駆体スラリー液を用い、上記遷移金属(M)化合物を添加して反応混合物(X)を得ればよい。これら遷移金属化合物の合計添加量は、前駆体スラリー液中に含有されるリン酸マンガンリチウム正極活物質前駆体(Li3PO4)1モルに対し、好ましくは0.99〜1.01モルであり、より好ましくは0.995〜1.005モルである。 What is necessary is just to add the said transition metal (M) compound and obtain reaction mixture (X) using the precursor slurry liquid obtained by passing through the said process (I) and process (II). The total addition amount of these transition metal compounds is preferably 0.99 to 1.01 moles per mole of lithium manganese phosphate positive electrode active material precursor (Li 3 PO 4 ) contained in the precursor slurry liquid. And more preferably 0.995 to 1.005 mol.

上記得られた反応混合物(X)を水熱反応に付する工程を経ることにより、リン酸マンガンリチウム正極活物質を得る。本発明では、かかる水熱反応に付する工程において、水熱反応の開始時から終了時までの間に反応混合物(X)の温度が60〜210℃の範囲内であるときの、水熱反応の開始時からの経過時間(分)と反応混合物(X)の温度(℃)との積を積算した値が、16000(分・℃)以下である。水熱反応の開始時からの経過時間(分)と反応混合物(X)の温度(℃)との積を積算した値とは、反応混合物(X)の温度が60〜210℃の範囲内で変化する際における温度履歴の指標となるものであり、得られるリン酸マンガンリチウム正極活物質の性能は、この温度履歴の指標となる値に大いに左右されることが、本発明者らによって判明したものである。すなわち、単に反応混合物(X)の温度や、昇温又は冷却の時間を制御するのみでは、得られるリン酸マンガンリチウム正極活物質の性能を高めるのに不十分であり、本発明者らは、このように特定の条件下における経過時間(分)と反応混合物(X)の温度(℃)との積を積算した値を制御することが、得られるリン酸マンガンリチウム正極活物質の性能の向上に連動することを見出したものである。   The lithium manganese phosphate positive electrode active material is obtained through a step of subjecting the obtained reaction mixture (X) to a hydrothermal reaction. In the present invention, the hydrothermal reaction when the temperature of the reaction mixture (X) is in the range of 60 to 210 ° C. from the start to the end of the hydrothermal reaction in the hydrothermal reaction. The value obtained by integrating the product of the elapsed time (min) from the start of the reaction and the temperature (° C.) of the reaction mixture (X) is 16000 (min · ° C.) or less. The value obtained by integrating the product of the elapsed time (minutes) from the start of the hydrothermal reaction and the temperature (° C.) of the reaction mixture (X) means that the temperature of the reaction mixture (X) is within the range of 60 to 210 ° C. The present inventors have found that the performance of the lithium manganese phosphate positive electrode active material obtained is an index of the temperature history when changing, and the performance of the obtained lithium manganese phosphate positive electrode active material greatly depends on the value of the index of the temperature history. Is. That is, simply controlling the temperature of the reaction mixture (X) and the temperature raising or cooling time is insufficient to enhance the performance of the resulting lithium manganese phosphate positive electrode active material. Thus, controlling the value obtained by integrating the product of the elapsed time (minutes) and the temperature (° C.) of the reaction mixture (X) under specific conditions improves the performance of the resulting lithium manganese phosphate positive electrode active material It is found that it is linked to.

なお、反応混合物(X)の温度が60〜210℃の範囲内であれば、少なくとも水熱反応を有効に進行及び完了させることができ、かかる温度範囲内における温度履歴であれば、得られるリン酸マンガンリチウム正極活物質の性能への影響を推し量るのに最適であると想到したことによる。   If the temperature of the reaction mixture (X) is in the range of 60 to 210 ° C., at least the hydrothermal reaction can be effectively advanced and completed. This is due to the idea that it is optimal for estimating the influence on the performance of the lithium manganese oxide positive electrode active material.

水熱反応の開始時から終了時までの間に反応混合物(X)の温度が60〜210℃の範囲内であるときの、水熱反応の開始時からの経過時間(分)と反応混合物(X)の温度(℃)との積を積算した値は、より高い電池物性を発現させる観点から、好ましくは10000〜16000(分・℃)であり、より好ましくは11000〜15500(分・℃)である。   When the temperature of the reaction mixture (X) is in the range of 60 to 210 ° C. from the start to the end of the hydrothermal reaction, the elapsed time (minutes) from the start of the hydrothermal reaction and the reaction mixture ( The value obtained by integrating the product of X) with the temperature (° C.) is preferably 10,000 to 16000 (min · ° C.), more preferably 11000 to 15500 (min · ° C.), from the viewpoint of developing higher battery properties. It is.

水熱反応の開始時から終了時までの間に、昇温及び冷却を行うのが好ましい。これにより、反応混合物(X)の温度を60〜210℃の範囲内で変移させ、良好に水熱反応を進行及び完了させつつ、経過時間(分)と反応混合物(X)の温度(℃)との積を適度な値とすることが容易となる。水熱反応の開始時から終了時までの間における反応混合物(X)の最高温度は、好ましくは130〜210℃であり、より好ましくは150〜200℃である。すなわち、反応混合物(X)の温度が、かかる最高温度に到達するよう昇温を行うことが望ましい。   It is preferable that the temperature is raised and cooled between the start and end of the hydrothermal reaction. Thereby, the temperature of the reaction mixture (X) is changed within the range of 60 to 210 ° C., and the hydrothermal reaction proceeds and completes well, while the elapsed time (min) and the temperature of the reaction mixture (X) (° C.). It becomes easy to make the product of and an appropriate value. The maximum temperature of the reaction mixture (X) from the start to the end of the hydrothermal reaction is preferably 130 to 210 ° C, more preferably 150 to 200 ° C. That is, it is desirable to raise the temperature of the reaction mixture (X) so that the maximum temperature is reached.

また、昇温速度は、より電池物性を高め得るリン酸マンガンリチウム正極活物質を得る観点から、好ましくは2〜30℃/分であり、より好ましくは5〜20℃/分である。   Moreover, from the viewpoint of obtaining a lithium manganese phosphate positive electrode active material that can further improve battery physical properties, the rate of temperature rise is preferably 2 to 30 ° C./min, and more preferably 5 to 20 ° C./min.

次いで、冷却を行うことが好ましい。冷却を行うことにより、反応混合物(X)の温度を好適な最高温度まで到達させながら、経過時間(分)と反応混合物(X)の温度(℃)との積を良好な値とすることが容易となる。水熱反応の開始時から終了時までの間における反応混合物(X)の最低温度は、好ましくは20〜55℃であり、より好ましくは30〜50℃である。また、冷却速度は、好ましくは0.4〜2.0℃/分であり、より好ましくは0.6〜2.0℃/分である。   Next, it is preferable to perform cooling. By performing the cooling, the product of the elapsed time (minutes) and the temperature (° C.) of the reaction mixture (X) is set to a good value while the temperature of the reaction mixture (X) is reached to a suitable maximum temperature. It becomes easy. The minimum temperature of the reaction mixture (X) from the start to the end of the hydrothermal reaction is preferably 20 to 55 ° C, more preferably 30 to 50 ° C. The cooling rate is preferably 0.4 to 2.0 ° C./min, and more preferably 0.6 to 2.0 ° C./min.

水熱反応の開始時から終了時までの間において、反応混合物(X)の温度が60〜210℃である時間は、経過時間(分)と反応混合物(X)の温度(℃)との積を容易に所望の値とする観点から、170〜290分であるのが好ましく、180〜250分であるのがより好ましい。また、水熱反応の開始時から終了時までの間において、反応混合物(X)の温度が80〜210℃である時間は、経過時間(分)と反応混合物(X)の温度(℃)との積を容易に所望の値とする観点から、70〜200分であるのが好ましく、80〜190分であるのがより好ましい。   The time during which the temperature of the reaction mixture (X) is 60 to 210 ° C. from the start to the end of the hydrothermal reaction is the product of the elapsed time (minutes) and the temperature (° C.) of the reaction mixture (X). From the viewpoint of easily obtaining a desired value, it is preferably 170 to 290 minutes, and more preferably 180 to 250 minutes. In addition, during the period from the start to the end of the hydrothermal reaction, the time during which the temperature of the reaction mixture (X) is 80 to 210 ° C. is the elapsed time (min) and the temperature (° C.) of the reaction mixture (X). From the viewpoint of easily obtaining a desired value, it is preferably 70 to 200 minutes, and more preferably 80 to 190 minutes.

さらに、水熱反応の開始時から終了時までの間において、反応混合物(X)の温度が、一旦最高温度に到達してから最低温度に至るまでの時間は、120〜270分であるのが好ましく、130〜250分であるのがより好ましい。   Furthermore, during the period from the start to the end of the hydrothermal reaction, the time until the temperature of the reaction mixture (X) once reaches the maximum temperature and reaches the minimum temperature is 120 to 270 minutes. Preferably, it is 130 to 250 minutes.

水熱反応は耐圧容器中で行うのが好ましく、例えば、130〜200℃で反応を行う場合の圧力は0.3〜1.5MPaとなるのが好ましく、140〜180℃で反応を行う場合の圧力は0.4〜1.0MPaとなるのが好ましい。また、遷移金属(M)化合物の酸化を有効に防止する観点からは、蒸気加熱式オートクレーブを用いるのが好ましい。オートクレーブ内に飽和蒸気を導入して加熱を開始する際、オートクレーブ内の空気を飽和蒸気で押し出す(置換する)操作を行い、オートクレーブ内に残留する酸素をさらに低減することが好ましい。   The hydrothermal reaction is preferably performed in a pressure vessel. For example, the pressure when the reaction is performed at 130 to 200 ° C is preferably 0.3 to 1.5 MPa, and the reaction is performed at 140 to 180 ° C. The pressure is preferably 0.4 to 1.0 MPa. From the viewpoint of effectively preventing the oxidation of the transition metal (M) compound, it is preferable to use a steam heating autoclave. When the saturated steam is introduced into the autoclave and heating is started, it is preferable to further reduce the oxygen remaining in the autoclave by performing an operation to push out (replace) the air in the autoclave with the saturated steam.

水熱反応終了後、生成したリン酸マンガンリチウムをろ過により採取し、洗浄するのが好ましい。洗浄は、ケーキ洗浄機能を有したろ過装置を用いて水で行うのが好ましい。得られた結晶は、必要により乾燥する。乾燥手段は、噴霧乾燥、真空乾燥、凍結乾燥等が挙げられる。かかる製造方法により、リン酸マンガンリチウム正極活物質を粒子として得ることができる。   After completion of the hydrothermal reaction, the produced lithium manganese phosphate is preferably collected by filtration and washed. Washing is preferably performed with water using a filtration device having a cake washing function. The obtained crystals are dried if necessary. Examples of the drying means include spray drying, vacuum drying, freeze drying and the like. By this production method, the lithium manganese phosphate positive electrode active material can be obtained as particles.

さらに、得られたリン酸マンガンリチウム正極活物質の粒子表面に、導電性炭素を用いてカーボンを担持させてもよい。かかる導電性炭素としては、カーボンブラックが好ましく、具体的には、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられる。なかでも、良好な導電性を付与する観点から、アセチレンブラック、ケッチェンブラックが好ましい。また、これら導電性炭素の形状としては、リン酸鉄マンガンリチウム正極活物質の粒子表面に良好にカーボンを担持させてより高い電池物性を発現させる観点から、中空形状を呈するもの、又は空隙を含む形状を呈するものであるのが好ましい。カーボンを担持させる際、焼成してもよい。焼成条件は、不活性ガス雰囲気下又は還元条件下に400℃以上、好ましくは400〜800℃で10分〜3時間、好ましくは0.5〜1.5時間行うのが好ましい。   Furthermore, carbon may be supported on the particle surface of the obtained lithium manganese phosphate positive electrode active material using conductive carbon. Such conductive carbon is preferably carbon black, and specific examples thereof include acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Of these, acetylene black and ketjen black are preferred from the viewpoint of imparting good conductivity. In addition, as the shape of these conductive carbons, those having a hollow shape or voids are included from the viewpoint of favorably supporting carbon on the particle surface of the lithium iron manganese lithium positive electrode active material to express higher battery properties. It preferably has a shape. You may bake when carrying | supporting carbon. The firing conditions are 400 ° C. or higher, preferably 400 to 800 ° C. for 10 minutes to 3 hours, preferably 0.5 to 1.5 hours under an inert gas atmosphere or reducing conditions.

本発明の製造方法により得られるリン酸マンガンリチウム正極活物質は、高い電池物性を発現し得る十分な表面積を有する粒子である。例えば、本発明の製造方法により得られるリン酸マンガンリチウム正極活物質のBET表面積は、好ましくは21〜50m2/gであり、より好ましくは22〜50m2/gである。 The lithium manganese phosphate positive electrode active material obtained by the production method of the present invention is a particle having a sufficient surface area capable of expressing high battery properties. For example, the BET surface area of the lithium manganese phosphate positive electrode active material obtained by the production method of the present invention is preferably 21 to 50 m 2 / g, more preferably 22 to 50 m 2 / g.

このようにして得られた本発明のリン酸鉄マンガンリチウム正極活物質を用いてリチウムイオン電池を製造する方法は特に限定されず、公知の方法をいずれも使用できる。例えば、かかるリン酸鉄マンガンリチウム正極活物質を結着剤や溶剤等の添加剤とともに混合して塗工液を得る。この際、必要に応じて、さらに導電助剤を添加して混合してもよい。かかる結着剤としては、特に限定されず、公知の剤をいずれも使用できる。具体的には、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー等が挙げられる。また、かかる導電助剤としては、特に限定されず、公知の剤をいずれも使用できる。具体的には、アセチレンブラック、ケッチェンブラック、天然黒鉛、人工黒鉛、繊維状炭素等が挙げられる。次いで、かかる塗工液をアルミ箔等の正極集電体上に塗布し、乾燥させて正極とする。   A method for producing a lithium ion battery using the thus obtained lithium iron manganese phosphate positive electrode active material of the present invention is not particularly limited, and any known method can be used. For example, such a lithium iron manganese phosphate positive electrode active material is mixed with additives such as a binder and a solvent to obtain a coating solution. At this time, if necessary, a conductive additive may be further added and mixed. The binder is not particularly limited, and any known agent can be used. Specific examples include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, and ethylene propylene diene polymer. Moreover, it does not specifically limit as this conductive support agent, Any well-known agent can be used. Specific examples include acetylene black, ketjen black, natural graphite, artificial graphite, and fibrous carbon. Next, such a coating solution is applied onto a positive electrode current collector such as an aluminum foil and dried to obtain a positive electrode.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material structure is not particularly limited, and a known material structure can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 sort of.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[実施例1]
《リン酸マンガンリチウム正極活物質の製造》
LiOH・H2O 4.9kgと水 11.7kgを混合してスラリー水を得た。次いで、得られたスラリー水を、25℃の温度に保持しながら撹拌速度400rpmにて撹拌し、ここに70%のリン酸水溶液 5.09kgを35mL/分で滴下して混合スラリー液を得た。次に、得られた混合スラリー液に対し、400rpmの速度で30分撹拌しながら窒素をパージして、混合スラリー液での反応を完了させ、溶存酸素濃度0.5mg/Lに調整された前駆体スラリー液を得た。
次いで、前駆体スラリー液を蒸気加熱式オートクレーブ内に設置した合成容器に投入して、水熱反応を開始した。オートクレーブ内は、隔膜分離装置により溶存酸素濃度0.5mg/L未満とした水を加熱して得た飽和蒸気を用いて、170℃で1時間加熱した後、冷却水によりオートクレーブを急冷した。加熱中も容器内の混合スラリー液の攪拌を続け、水熱反応を終了させた。かかる水熱反応の開始時から終了時までの間に反応混合物の温度が60〜210℃の範囲内であったときの、水熱反応の開始時からの経過時間(分)と反応混合物の温度(℃)との積を積算した値は、14921(分・℃)であった。
生成した結晶をろ過し、次いで水により洗浄した。洗浄した結晶を60℃×1Torrの条件で真空乾燥して、リン酸マンガンリチウム一次粒子を粉末として得た。得られたリン酸マンガンリチウム一次粒子10gと、グルコース2.7gを混合して遊星ボールミル(P−5、フリッチュ社製)に備えられた容器に投入し、これにエタノール90gと水10gを混合して得た溶媒を添加した。次いで、球径(1mm)を有するボールを100g用い、回転速度400rpmにて1時間混合した。得られた混合物をろ過し、エバポレーターを用いて溶媒を留去した後、還元雰囲気下で600℃で1hr焼成してリン酸マンガンリチウム正極活物質を得た。
得られたリン酸マンガンリチウム正極活物質(LiFe0.15Mn0.85PO4)のBET表面積は、島津製作所社製DesorbIIIにより測定したところ、24m2/gであった。
[Example 1]
<< Manufacture of lithium manganese phosphate cathode active material >>
4.9 kg of LiOH · H 2 O and 11.7 kg of water were mixed to obtain slurry water. Subsequently, the obtained slurry water was stirred at a stirring speed of 400 rpm while maintaining the temperature at 25 ° C., and then 5.09 kg of a 70% phosphoric acid aqueous solution was dropped at 35 mL / min to obtain a mixed slurry liquid. . Next, the obtained slurry mixture was purged with nitrogen while stirring at a speed of 400 rpm for 30 minutes to complete the reaction with the slurry mixture, and the precursor adjusted to a dissolved oxygen concentration of 0.5 mg / L. A body slurry liquid was obtained.
Next, the precursor slurry was put into a synthesis vessel installed in a steam heating autoclave to start a hydrothermal reaction. The inside of the autoclave was heated at 170 ° C. for 1 hour using saturated steam obtained by heating water with a dissolved oxygen concentration of less than 0.5 mg / L by a diaphragm separator, and then the autoclave was rapidly cooled with cooling water. The stirring of the mixed slurry in the container was continued during the heating, and the hydrothermal reaction was terminated. The elapsed time (minutes) from the start of the hydrothermal reaction and the temperature of the reaction mixture when the temperature of the reaction mixture was in the range of 60 to 210 ° C. from the start to the end of the hydrothermal reaction. The value obtained by integrating the product with (° C.) was 14921 (min · ° C.).
The formed crystals were filtered and then washed with water. The washed crystal was vacuum-dried under conditions of 60 ° C. × 1 Torr to obtain lithium manganese phosphate primary particles as a powder. 10 g of the obtained lithium manganese phosphate primary particles and 2.7 g of glucose were mixed and put into a container provided in a planetary ball mill (P-5, manufactured by Fritsch), and 90 g of ethanol and 10 g of water were mixed therewith. The solvent obtained was added. Next, 100 g of balls having a spherical diameter (1 mm) were used and mixed for 1 hour at a rotational speed of 400 rpm. The obtained mixture was filtered, the solvent was distilled off using an evaporator, and then calcined at 600 ° C. for 1 hr in a reducing atmosphere to obtain a lithium manganese phosphate positive electrode active material.
BET surface area of the obtained lithium manganese phosphate positive electrode active material (Li Fe 0.15 Mn 0.85 PO 4 ) was measured in the Shimadzu Corporation DesorbIII, was 24m 2 / g.

《リチウムイオン電池の製造》
得られたリン酸マンガンリチウム正極活物質、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:20:5の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
<Manufacture of lithium ion batteries>
The obtained lithium manganese phosphate positive electrode active material, ketjen black (conducting agent), and polyvinylidene fluoride (binding agent) were mixed at a weight ratio of 75: 20: 5, and this was mixed with N-methyl-2- Pyrrolidone was added and sufficiently kneaded to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.

次いで、上記の正極を用いてコイン型リチウムイオン電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウムイオン電池(CR−2032)を製造した。 Next, a coin-type lithium ion battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere having a dew point of −50 ° C. or lower to produce a coin type lithium ion battery (CR-2032).

製造したリチウムイオン電池を用いて定電流密度での充放電試験を行った。このときの充電条件は電流0.1CA(17mAg)、電圧4.5Vの定電流定電圧充電とし、放電条件を電流0.1CA、終止電圧2.0Vの定電流放電とした。温度は全て30℃とした。そして、放電容量及び平均放電電圧の値に基づき、重量エネルギー密度(Wh/g)を算出したところ、606Wh/gであった。   A charge / discharge test at a constant current density was performed using the manufactured lithium ion battery. The charging conditions at this time were constant current and constant voltage charging with a current of 0.1 CA (17 mAg) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 2.0 V. All temperatures were 30 ° C. The weight energy density (Wh / g) calculated based on the discharge capacity and the average discharge voltage was 606 Wh / g.

[実施例2]
LiOH・H2O 4.9kgの代わりにLi2CO3 4.31kgを用いた以外、実施例1と同様にして前駆体スラリー液の調製し、これを用いて実施例1と同様にして水熱反応を開始・終了させ、リン酸マンガンリチウム正極活物質を製造した。かかる水熱反応の開始時から終了時までの間に反応混合物の温度が60〜210℃の範囲内であったときの、水熱反応の開始時からの経過時間(分)と反応混合物の温度(℃)との積を積算した値は、12441(分・℃)であった。
得られたリン酸マンガンリチウム正極活物質(LiFe0.15Mn0.85PO4)のBET表面積は、実施例1と同様にして測定したところ、22m2/gであった。次いで、実施例1と同様にしてコイン型リチウムイオン電池(CR−2032)を製造し、定電流密度での充放電試験を行い、同様にして重量エネルギー密度(Wh/g)を算出したところ、580Wh/gであった。
[Example 2]
A precursor slurry liquid was prepared in the same manner as in Example 1 except that 4.31 kg of Li 2 CO 3 was used instead of 4.9 kg of LiOH.H 2 O, and water was prepared in the same manner as in Example 1 using this. The thermal reaction was started and terminated to produce a lithium manganese phosphate positive electrode active material. The elapsed time (minutes) from the start of the hydrothermal reaction and the temperature of the reaction mixture when the temperature of the reaction mixture was in the range of 60 to 210 ° C. from the start to the end of the hydrothermal reaction. The value obtained by integrating the product with (° C.) was 12441 (min · ° C.).
When the BET surface area of the obtained lithium manganese phosphate positive electrode active material ( Li 2 Fe 0.15 Mn 0.85 PO 4 ) was measured in the same manner as in Example 1, it was 22 m 2 / g. Next, a coin-type lithium ion battery (CR-2032) was produced in the same manner as in Example 1, a charge / discharge test at a constant current density was performed, and the weight energy density (Wh / g) was calculated in the same manner. It was 580 Wh / g.

[比較例1]
《リン酸マンガンリチウム正極活物質の製造》
オートクレーブにおいて170℃で1時間加熱した後、冷却水による急冷を行わなかった以外、実施例1と同様にして前駆体スラリー液の調製し、これを用いて実施例1と同様にして水熱反応を開始・終了させ、リン酸マンガンリチウム正極活物質を製造した。かかる水熱反応の開始時から終了時までの間に反応混合物の温度が60〜210℃の範囲内であったときの、水熱反応の開始時からの経過時間(分)と反応混合物の温度(℃)との積を積算した値は、18410(分・℃)であった。
得られたリン酸マンガンリチウム正極活物質(LiFe0.15Mn0.85PO4)のBET表面積は、実施例1と同様にして測定したところ、20m2/gであった。
[Comparative Example 1]
<< Manufacture of lithium manganese phosphate cathode active material >>
After heating at 170 ° C. for 1 hour in an autoclave, a precursor slurry liquid was prepared in the same manner as in Example 1 except that no rapid cooling with cooling water was performed, and a hydrothermal reaction was performed in the same manner as in Example 1 using this. The lithium manganese phosphate positive electrode active material was manufactured. The elapsed time (minutes) from the start of the hydrothermal reaction and the temperature of the reaction mixture when the temperature of the reaction mixture was in the range of 60 to 210 ° C. from the start to the end of the hydrothermal reaction. The value obtained by integrating the product with (° C.) was 18410 (min · ° C.).
BET surface area of the obtained lithium manganese phosphate positive electrode active material (Li Fe 0.15 Mn 0.85 PO 4 ) , measured in the same manner as in Example 1, was 20 m 2 / g.

《リチウムイオン電池の製造》
次いで、実施例1と同様にしてコイン型リチウムイオン電池(CR−2032)を製造し、定電流密度での充放電試験を行い、同様にして重量エネルギー密度(Wh/g)を算出したところ、575Wh/gであった。
<Manufacture of lithium ion batteries>
Next, a coin-type lithium ion battery (CR-2032) was produced in the same manner as in Example 1, a charge / discharge test at a constant current density was performed, and the weight energy density (Wh / g) was calculated in the same manner. It was 575 Wh / g.

[比較例2]
オートクレーブにおいて170℃で1時間加熱した後、冷却水による急冷を行わなかった以外、実施例2と同様にして前駆体スラリー液の調製し、これを用いて実施例2と同様にして水熱反応を開始・終了させ、リン酸マンガンリチウム正極活物質を製造した。かかる水熱反応の開始時から終了時までの間に反応混合物の温度が60〜210℃の範囲内であったときの、水熱反応の開始時からの経過時間(分)と反応混合物の温度(℃)との積を積算した値は、18323(分・℃)であった。
得られたリン酸マンガンリチウム正極活物質(LiFe0.15Mn0.85PO4)のBET表面積は、実施例1と同様にして測定したところ、18m2/gであった。次いで、実施例1と同様にしてコイン型リチウムイオン電池(CR−2032)を製造し、定電流密度での充放電試験を行い、同様にして重量エネルギー密度(Wh/g)を算出したところ、522Wh/gであった。
[Comparative Example 2]
After heating at 170 ° C. for 1 hour in an autoclave, a precursor slurry liquid was prepared in the same manner as in Example 2 except that the quenching with cooling water was not performed. The lithium manganese phosphate positive electrode active material was manufactured. The elapsed time (minutes) from the start of the hydrothermal reaction and the temperature of the reaction mixture when the temperature of the reaction mixture was in the range of 60 to 210 ° C. from the start to the end of the hydrothermal reaction. The value obtained by integrating the product with (° C.) was 18323 (min · ° C.).
The BET surface area of the obtained lithium manganese phosphate positive electrode active material ( Li 2 Fe 0.15 Mn 0.85 PO 4 ) was 18 m 2 / g as measured in the same manner as in Example 1. Next, a coin-type lithium ion battery (CR-2032) was produced in the same manner as in Example 1, a charge / discharge test at a constant current density was performed, and the weight energy density (Wh / g) was calculated in the same manner. It was 522 Wh / g.

Claims (2)

合成容器が設置されてなる蒸気加熱式オートクレーブを用い、少なくともマンガン化合物を含む遷移金属化合物、リチウム化合物、及びリン酸化合物を混合し、得られた反応混合物を水熱反応に付する工程を含むリン酸マンガンリチウム正極活物質の製造方法であって、
水熱反応に付する工程において、反応混合物を合成容器に投入した時点である水熱反応の開始時から、反応混合物を合成容器から取り出す時点である水熱反応の終了時までの間において、
圧力が0.3〜1.5MPaであり、
速度2〜30℃/分で昇温、及び速度0.4〜2.0℃/分で冷却を行い、
反応混合物の温度が60〜210℃の範囲内であるときの、水熱反応の開始時からの経過時間(分)と反応混合物の温度(℃)との積を積算した値が、16000(分・℃)以下であり、
反応混合物の温度が60〜210℃である時間が、170〜290分であり、
水熱反応の開始時から終了時までの間における反応混合物の最高温度が、130〜210℃であるリン酸マンガンリチウム正極活物質の製造方法。
Phosphorus including a step of mixing a transition metal compound containing at least a manganese compound, a lithium compound, and a phosphate compound using a steam heating autoclave in which a synthesis vessel is installed, and subjecting the resulting reaction mixture to a hydrothermal reaction. A method for producing a lithium manganese oxide positive electrode active material,
In the process of hydrothermal reaction, from the start of the hydrothermal reaction, which is the time when the reaction mixture is charged into the synthesis container, to the end of the hydrothermal reaction, which is the time when the reaction mixture is removed from the synthesis container,
The pressure is 0.3 to 1.5 MPa,
The temperature is increased at a rate of 2 to 30 ° C / min, and the cooling is performed at a rate of 0.4 to 2.0 ° C / min.
When the temperature of the reaction mixture is in the range of 60 to 210 ° C., a value obtained by integrating the product of the elapsed time (min) from the start of the hydrothermal reaction and the temperature of the reaction mixture (° C.) is 16000 (min・ ℃) or less,
The time when the temperature of the reaction mixture is 60-210 ° C. is 170-290 minutes,
The manufacturing method of the lithium manganese phosphate positive electrode active material whose maximum temperature of the reaction mixture between the start time of hydrothermal reaction and the end time is 130-210 degreeC.
水熱反応の開始時から終了時までの間において、反応混合物の温度が最高温度に到達してから最低温度に至るまでの時間が、120〜270分である請求項1に記載のリン酸マンガンリチウム正極活物質の製造方法。   2. The manganese phosphate according to claim 1, wherein the time from when the temperature of the reaction mixture reaches the maximum temperature to the minimum temperature is 120 to 270 minutes from the start to the end of the hydrothermal reaction. A method for producing a lithium positive electrode active material.
JP2013209917A 2013-10-07 2013-10-07 Method for producing lithium manganese phosphate positive electrode active material Active JP5798606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013209917A JP5798606B2 (en) 2013-10-07 2013-10-07 Method for producing lithium manganese phosphate positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013209917A JP5798606B2 (en) 2013-10-07 2013-10-07 Method for producing lithium manganese phosphate positive electrode active material

Publications (2)

Publication Number Publication Date
JP2015076155A JP2015076155A (en) 2015-04-20
JP5798606B2 true JP5798606B2 (en) 2015-10-21

Family

ID=53000877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013209917A Active JP5798606B2 (en) 2013-10-07 2013-10-07 Method for producing lithium manganese phosphate positive electrode active material

Country Status (1)

Country Link
JP (1) JP5798606B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231544A (en) * 2022-08-09 2022-10-25 湖北万润新能源科技股份有限公司 Preparation method of manganese ammonium phosphate and lithium ion battery anode material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015613A1 (en) * 2005-04-05 2006-10-12 Süd-Chemie AG Crystalline ion-conducting nanomaterial and process for its preparation
JP5381192B2 (en) * 2009-03-16 2014-01-08 Tdk株式会社 Method for producing active material for lithium ion secondary battery
JP5510036B2 (en) * 2009-05-28 2014-06-04 Tdk株式会社 Active material, method for producing active material, and lithium ion secondary battery
KR101810259B1 (en) * 2010-03-19 2017-12-18 도다 고교 가부시끼가이샤 Method for producing lithium manganese iron phosphate particulate powder, lithium manganese iron phosphate particulate powder and non-aqueous electrolyte secondary battery using that particulate powder
JP2012185979A (en) * 2011-03-04 2012-09-27 Sumitomo Osaka Cement Co Ltd Method for manufacturing electrode active material
EP2522625B1 (en) * 2011-05-13 2014-06-04 Shin-Etsu Chemical Co., Ltd. Preparation of particulate positive electrode material for lithium ion cells

Also Published As

Publication number Publication date
JP2015076155A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
JP5890886B1 (en) Lithium manganese iron phosphate positive electrode active material and method for producing the same
JP5478693B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6042515B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6042511B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5820521B1 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP6023295B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6042514B2 (en) Positive electrode active material for secondary battery and method for producing the same
US11646405B2 (en) Positive electrode active substance for secondary cell and method for producing same
TWI676592B (en) Positive electrode active material for secondary battery and method for producing same
JP5700345B2 (en) Method for producing lithium manganese phosphate positive electrode active material precursor
JP5890885B1 (en) Positive electrode active material for lithium secondary battery and method for producing the same
WO2016143171A1 (en) Positive electrode active substance for secondary cell and method for producing same
JP5771300B1 (en) Lithium manganese phosphate positive electrode active material and method for producing the same
JP6042512B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2018041683A (en) Method for manufacturing olivine type lithium phosphate-based positive electrode material
JP6307127B2 (en) Method for producing lithium phosphate positive electrode active material
WO2016151891A1 (en) Secondary battery positive-electrode active material and method for producing same
JP5798606B2 (en) Method for producing lithium manganese phosphate positive electrode active material
JP5688128B2 (en) Lithium manganese phosphate positive electrode active material and method for producing the same
JP5820522B1 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP5688126B2 (en) Method for producing lithium manganese phosphate positive electrode active material
JP6042513B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP6126033B2 (en) Method for producing olivine-type silicate compound
JP5876558B1 (en) Positive electrode active material for olivine type lithium ion secondary battery and method for producing the same
JP2013206562A (en) Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing cathode material for lithium-ion secondary battery

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150821

R150 Certificate of patent or registration of utility model

Ref document number: 5798606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250