JP2013204144A - Motor rotor support and method for manufacturing the same - Google Patents

Motor rotor support and method for manufacturing the same Download PDF

Info

Publication number
JP2013204144A
JP2013204144A JP2012077895A JP2012077895A JP2013204144A JP 2013204144 A JP2013204144 A JP 2013204144A JP 2012077895 A JP2012077895 A JP 2012077895A JP 2012077895 A JP2012077895 A JP 2012077895A JP 2013204144 A JP2013204144 A JP 2013204144A
Authority
JP
Japan
Prior art keywords
motor rotor
rotor support
less
support according
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012077895A
Other languages
Japanese (ja)
Other versions
JP5480326B2 (en
Inventor
Shinji Tanaka
田中  慎二
Hideki Narita
英記 成田
Makoto SHIKANO
誠 鹿野
Satoshi Nakajima
敏史 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2012077895A priority Critical patent/JP5480326B2/en
Priority to PCT/JP2013/059150 priority patent/WO2013146960A1/en
Publication of JP2013204144A publication Critical patent/JP2013204144A/en
Application granted granted Critical
Publication of JP5480326B2 publication Critical patent/JP5480326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Abstract

PROBLEM TO BE SOLVED: To provide a rotor support for a motor, which is suitable for an axial gap motor, and to provide a method for manufacturing the same.SOLUTION: A support for supporting a magnetic body arranged on the rotor of a motor is constituted of a non-magnetic cast steel which has a composition including, by mass, ≤0.3% of C, 0.1-2.0% of Si, 10-25% of Mn, 10-23% of Cr, and 0.3-0.8% of N, and optionally, one or more of 0.4-1.5% of V, ≤1.5% of Nb in terms of V+Nb, ≤0.02% of Al, ≤5.0% of Ni, ≤3.0% of Mo+1/2W, ≤3.0% of Co, and ≤0.01% of B, and the balance Fe with inevitable impurities. The support suitably has such characteristics that specific magnetic permeability is <1.005 and the 0.2% proof stress is ≥550 MPa at room temperature.

Description

この発明は、モータの回転子に使用され、該回転子に配置される磁性体を支持する支持体およびその製造方法に関するものである。   The present invention relates to a support used for a rotor of a motor and supporting a magnetic body disposed on the rotor, and a manufacturing method thereof.

通常、モータ用磁石には高い性能を発揮するため、例えばネオジムやジスプロシウムのような希土類(レアアース)が添加された希土類磁石が使用されている。
特許文献1には、回転軸に対して平行な方向に磁極を有する複数の永久磁石を備えた回転子を有するアキシャル型モータが開示されている。
また、特許文献2には希土類磁石に代えてフェライト磁石を有する高性能アキシャルギャップモータが提案されている。
Normally, rare earth magnets added with rare earth (rare earth) such as neodymium and dysprosium are used for motor magnets to exhibit high performance.
Patent Document 1 discloses an axial motor having a rotor provided with a plurality of permanent magnets having magnetic poles in a direction parallel to the rotation axis.
Patent Document 2 proposes a high-performance axial gap motor having a ferrite magnet instead of a rare earth magnet.

これらのアキシャル型モータあるいはアキシャルギャップモータには、磁石を配置する回転子があり、磁石は回転子に含まれる支持体によって支えられる。この支持体には、一般にオーステナイト系ステンレス鋼からなる非磁性鋼が使用される。
支持体は、高速で回転する回転子に含まれ、磁石を支えてその位置を適正に保持することが必要である。このため支持体は非磁性の性質だけでなく、適正な強度を有することが必要とされる。
ところで、オーステナイト系ステンレス鋼は、冷間で加工することによって強度が高まるが、加工誘起変態によって非磁性特性が損なわれるという問題がある。このため、通常は、熱間鍛造後の素材から機械加工を行って支持体形状を得る工程が採用されている。
These axial type motors or axial gap motors have a rotor on which magnets are arranged, and the magnets are supported by a support included in the rotor. For this support, nonmagnetic steel made of austenitic stainless steel is generally used.
The support body is included in a rotor that rotates at high speed, and it is necessary to support the magnet and hold its position properly. For this reason, the support is required to have not only non-magnetic properties but also appropriate strength.
By the way, although austenitic stainless steel increases in strength by cold working, there is a problem that non-magnetic properties are impaired by work-induced transformation. For this reason, the process of obtaining a support body shape by machining from the raw material after hot forging is usually employed.

国際公開第2011/046108号International Publication No. 2011/046108 特開2011−010375号公報JP 2011-010375 A

しかし、従来の製造工程では、形状が複雑な製品形状を得るためには熱間鍛造素材から機械切削やワイヤーカットなどによるかなりの時間の加工が必要である。製品形状や大きさにもよるが、加工に2週間もの時間を費やすケースもある。そのため、量産化を考えたとき、これらは非常に大きな問題となる。
これに対し、支持体形状をニアネットシェイプの鋳造により得ることで効率的な生産を行うことが可能になる。しかし、鋳造品は鍛鋼品と比較して強度や延性が低い傾向にあり、鍛鋼品と同じ成分では十分な性能が得られない。
However, in the conventional manufacturing process, in order to obtain a product shape having a complicated shape, it is necessary to process the hot forging material by machining or wire cutting for a considerable time. Depending on the shape and size of the product, there are cases where processing takes as long as two weeks. Therefore, when mass production is considered, these become very big problems.
On the other hand, efficient production can be performed by obtaining the shape of the support body by casting a near net shape. However, cast products tend to have lower strength and ductility than forged steel products, and sufficient performance cannot be obtained with the same components as forged steel products.

本発明は、上記事情を背景としてなされたものであり、非磁性特性で高い強度を有し、効率的な製造が可能な鋳造品からなるモータ回転子支持体およびその製造方法を提供することを目的の一つとする。   The present invention has been made against the background of the above circumstances, and provides a motor rotor support body made of a cast product that has high strength with nonmagnetic properties and can be efficiently manufactured, and a method for manufacturing the same. One of the purposes.

すなわち、本発明のモータ回転子支持体のうち、第1の本発明は、モータの回転子に配置される磁性体を支持する支持体であって、非磁性鋳鋼で構成され、該非磁性鋳鋼が、質量%で、C:0.3%以下、Si:0.1〜2.0%、Mn:10〜25%、Cr:10〜23%、N:0.3〜0.8%と残部がFeと不可避的不純物とからなる組成を有することを特徴とする。   That is, among the motor rotor supports of the present invention, the first present invention is a support that supports a magnetic body disposed on the rotor of the motor, and is composed of nonmagnetic cast steel. , By mass%, C: 0.3% or less, Si: 0.1-2.0%, Mn: 10-25%, Cr: 10-23%, N: 0.3-0.8% and the balance Has a composition comprising Fe and inevitable impurities.

第2の本発明のモータ回転子支持体は、前記第1の本発明において、前記組成に、さらに質量%で、V:0.4〜1.5%、Ni:5.0%以下、Mo+1/2W:3.0%以下、Co:3.00%以下、B:0.01%以下からなる選択元素のうち、一種または二種以上を含有することを特徴とする。   The motor rotor support according to the second aspect of the present invention is the above-described composition according to the first aspect of the present invention, wherein the composition further includes mass%, V: 0.4 to 1.5%, Ni: 5.0% or less, Mo + 1. / 2W: 3.0% or less, Co: 3.00% or less, B: One or two or more of selected elements of 0.01% or less are contained.

第3の本発明のモータ回転子支持体は、前記第2の本発明において、前記選択成分のうち、少なくともVを含有し、さらに質量%で、NbをV+Nbで1.5%以下含有することを特徴とする。   The motor rotor support according to the third aspect of the present invention includes, in the second aspect of the present invention, at least V among the selected components, and further contains, by mass%, Nb at 1.5% or less in terms of V + Nb. It is characterized by.

第4の本発明のモータ回転子支持体は、前記第1〜第3の本発明のいずれかにおいて、前記組成に、さらにAl:0.02%以下を含有することを特徴とする。   The motor rotor support according to the fourth aspect of the present invention is characterized in that, in any of the first to third aspects of the present invention, the composition further contains Al: 0.02% or less.

第5の本発明のモータ回転子支持体は、前記第1〜第4の本発明のいずれかにおいて、不可避不純物中のP、Sが、それぞれ0.03%以下であることを特徴とする。   The motor rotor support of the fifth aspect of the present invention is characterized in that, in any of the first to fourth aspects of the present invention, P and S in the inevitable impurities are each 0.03% or less.

第6の本発明のモータ回転子支持体は、前記第1〜第5の本発明のいずれかにおいて、前記非磁性鋳鋼は、VN、NbNのいずれか又は両方による析出硬化型鋳鋼であることを特徴とする。   In the motor rotor support of the sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, the nonmagnetic cast steel is a precipitation hardening cast steel made of either or both of VN and NbN. Features.

第7の本発明のモータ回転子支持体は、前記第1〜第6の本発明のいずれかにおいて、比透磁率が1.005未満、室温における0.2%耐力が550MPa以上であることを特徴とする   The motor rotor support according to the seventh aspect of the present invention is that, in any one of the first to sixth aspects of the present invention, the relative permeability is less than 1.005, and the 0.2% proof stress at room temperature is 550 MPa or more. Characterize

第8の本発明のモータ回転子支持体は、前記第1〜第7の本発明のいずれかにおいて、前記磁性体として、希土類系磁石または非希土類系磁石を含むことを特徴とする。   The motor rotor support according to the eighth aspect of the present invention is characterized in that, in any of the first to seventh aspects of the present invention, the magnetic body includes a rare earth magnet or a non-rare earth magnet.

第9の本発明のモータ回転子支持体は、前記第8の本発明において、前記非希土類系磁石が、フェライト磁石であることを特徴とする。   The motor rotor support according to the ninth aspect of the present invention is characterized in that, in the eighth aspect of the present invention, the non-rare earth magnet is a ferrite magnet.

第10の本発明のモータ回転子支持体は、前記第1〜第9の本発明のいずれかにおいて、前記磁性体として、圧粉鉄心を含むことを特徴とする。   A motor rotor support according to a tenth aspect of the present invention is characterized in that, in any of the first to ninth aspects of the present invention, the magnetic body includes a dust core.

第11の本発明のモータ回転子支持体は、前記第1〜第10の本発明のいずれかにおいて、前記非磁性鋳鋼が、ニアネットシェイプ鋳造法により製造されたものであることを特徴とする。   The motor rotor support according to an eleventh aspect of the present invention is the motor rotor support according to any one of the first to tenth aspects of the present invention, wherein the nonmagnetic cast steel is manufactured by a near net shape casting method. .

第12の本発明のモータ回転子支持体の製造方法は、第1〜第6の本発明のいずれかに記載の組成材料により素形材を鋳造し、該素形材に固溶化処理または/および時効処理を行うことを特徴とする。   According to a twelfth aspect of the present invention, there is provided a method for manufacturing a motor rotor support, comprising: casting a raw material with the composition material according to any one of the first to sixth aspects of the invention; And an aging treatment.

第13の本発明のモータ回転子支持体の製造方法はは、前記第12の本発明において、前記固溶化処理の条件が1000〜1250℃、保持時間5分以上、前記時効処理の条件が600〜1000℃、保持時間が30分以上であることを特徴とする。   According to a thirteenth aspect of the present invention, there is provided a method for producing a motor rotor support according to the twelfth aspect of the present invention, wherein the solution treatment condition is 1000 to 1250 ° C., the holding time is 5 minutes or more, and the aging treatment condition is 600. -1000 degreeC and holding time are 30 minutes or more, It is characterized by the above-mentioned.

第14の本発明のモータ回転子支持体の製造方法はは、前記第12または第13の本発明において、前記時効処理後に仕上げ加工を行うことを特徴とする。   According to a fourteenth aspect of the present invention, there is provided a motor rotor support manufacturing method according to the twelfth or thirteenth aspect of the present invention, wherein finishing is performed after the aging treatment.

本発明では、上記組成の非磁性鋳鋼によりモータ回転子支持体が構成されている。非磁性鋳鋼は、良好な非磁性特性を有し、かつ鋳鋼においても室温(例えば5℃〜30℃)で高い強度を示す。
本発明における良好な非磁性特性により回転子における磁気に影響を与えることなく磁性体を支持することができる。また、高い強度を有することで磁性体を安定して支持することができる。
In the present invention, the motor rotor support is constituted by the nonmagnetic cast steel having the above composition. Non-magnetic cast steel has good non-magnetic properties and also shows high strength at room temperature (for example, 5 ° C. to 30 ° C.).
The magnetic material can be supported without affecting the magnetism of the rotor due to the good non-magnetic properties in the present invention. Moreover, a magnetic body can be stably supported by having high intensity | strength.

次に、本発明は非磁性鋳鋼における各成分の作用と限定理由を説明する。なお、以下で示す含有量はいずれも質量%で示される。   Next, this invention demonstrates the effect | action and limitation reason of each component in nonmagnetic cast steel. In addition, all content shown below is shown by the mass%.

C:0.3%以下
CはVCやNbCの析出により高強度化に寄与するが、過剰に含有すると延性を低下させるため上限を0.3%とする。なお、同様の理由で、上限を0.25%とするのが望ましい。また、上記作用を得るため、0.01%以上含有するのが望ましい。
C: 0.3% or less C contributes to increasing the strength by precipitation of VC or NbC, but if contained excessively, the ductility is lowered, so the upper limit is made 0.3%. For the same reason, it is desirable to set the upper limit to 0.25%. Moreover, in order to acquire the said effect | action, it is desirable to contain 0.01% or more.

N:0.3〜0.8%
Nは含有によりVNやNbNを生じ、延性を保持したまま高強度化に寄与する。このため0.3%以上含有する。しかしら、過剰に含有すると窒素起因のブローホール生成の原因となるため上限を0.8%とする。なお、同様の理由で下限を0.4%、上限を0.7%とするのが望ましい。
N: 0.3-0.8%
When N is contained, VN and NbN are produced, and contribute to increasing the strength while maintaining ductility. For this reason, it contains 0.3% or more. However, if it is contained excessively, nitrogen causes blowhole generation, so the upper limit is made 0.8%. For the same reason, it is desirable to set the lower limit to 0.4% and the upper limit to 0.7%.

Si:0.1〜2.0%
Siは脱酸材と使用するため0.1%の含有が必要である。しかし、Siはフェライト相形成元素であるため過剰に含有するとフェライト相が析出し、また冷間加工性も悪くなるため上限を2.0%とする。なお、同様の理由で下限を0.3%、上限を1.0%とするのが望ましい。
Si: 0.1 to 2.0%
Since Si is used as a deoxidizing material, it needs to contain 0.1%. However, since Si is a ferrite phase forming element, if it is contained excessively, the ferrite phase is precipitated and the cold workability is also deteriorated, so the upper limit is made 2.0%. For the same reason, it is desirable to set the lower limit to 0.3% and the upper limit to 1.0%.

Mn:10〜25%
Mnはオーステナイト相形成元素であり、N溶解度を高くするのに10%以上の含有が必要である。しかし、過剰に含有すると強度が低下するため上限を25%とする。なお、同様の理由で下限を12%、上限を23%とするのが望ましく、さらに下限を14%、上限を22%とするのが一層望ましい。
Mn: 10-25%
Mn is an austenite phase-forming element and needs to be contained at 10% or more in order to increase the N solubility. However, since an intensity | strength will fall when it contains excessively, an upper limit shall be 25%. For the same reason, it is desirable to set the lower limit to 12% and the upper limit to 23%, and it is even more desirable to set the lower limit to 14% and the upper limit to 22%.

Cr:10〜23%
Crは耐食性確保とN溶解度を高くするために10%以上の含有が必要である。しかし、Crはフェライト形成元素であるため過剰に含有するとフェライト相が析出するため上限を23%とする。なお、同様の理由で下限を12%、上限を22%とするのが望ましく、さらに下限を14%、上限を21%とするのが一層望ましい。
Cr: 10 to 23%
Cr needs to be contained in an amount of 10% or more in order to ensure corrosion resistance and increase N solubility. However, since Cr is a ferrite forming element, if it is excessively contained, the ferrite phase precipitates, so the upper limit is made 23%. For the same reason, it is desirable to set the lower limit to 12% and the upper limit to 22%, and it is more desirable to set the lower limit to 14% and the upper limit to 21%.

V:0.4〜1.5%
VはVNの析出により、延性を保持したままさらに高強度化を達成するために必要な元素であり、所望により含有させる。その効果を得るためには0.4%以上必要である。ただし、過剰に含有すると延性を劣化させるため上限を1.5%とする。なお、同様の理由で下限を0.5%、上限を1.0%とするのが望ましい。
V: 0.4 to 1.5%
V is an element necessary for achieving higher strength while maintaining ductility by precipitation of VN, and is contained as desired. In order to obtain the effect, 0.4% or more is necessary. However, if the content is excessive, the ductility is deteriorated, so the upper limit is made 1.5%. For the same reason, it is desirable to set the lower limit to 0.5% and the upper limit to 1.0%.

Nb:Nb+Vで1.5%以下
Nbを含有するとNbNを生じ、NVとの相乗効果により高強度化に寄与するので、所望によりVとともに含有させる。しかし、過剰に含有すると延靭性を劣化させるため上限をNb+Vで1.5%とする。なお、上記作用を十分に得るためには、Nb+Vで0.5%以上含有することが望ましい。
Nb: Nb + V of 1.5% or less When Nb is contained, NbN is produced, and contributes to high strength by a synergistic effect with NV. However, if the content is excessive, the toughness deteriorates, so the upper limit is made 1.5% Nb + V. In addition, in order to fully obtain the said effect | action, it is desirable to contain 0.5% or more by Nb + V.

Al:0.02%以下
Alは脱酸材として添加されるが、過剰に含有すると窒化物を形成し靭性を低下させるため、上限を0.02%として所望により添加する。
Al: 0.02% or less Al is added as a deoxidizing material. However, if excessively contained, nitrides are formed and the toughness is lowered.

Ni:5.0%以下
Niは、オーステナイト相形成元素であり、所望により含有させる。しかし5.0%を超えると強度が低下することから上限を5.0%とする。なお、所望により含有させる場合、その作用を十分に得るため1.0%以上含有するのが望ましく、1.5%以上含有するのが一層望ましい。また、Niは、スクラップ等により不可避的に混入する場合があり、不可避不純物として1.0%未満含有していてもよい。
Ni: 5.0% or less Ni is an austenite phase forming element, and is contained as desired. However, if it exceeds 5.0%, the strength decreases, so the upper limit is made 5.0%. In addition, when it contains if desired, in order to acquire the effect | action fully, containing 1.0% or more is desirable, and containing 1.5% or more is still more desirable. Ni may be inevitably mixed with scrap or the like, and may be contained in an amount of less than 1.0% as an unavoidable impurity.

Mo+1/2W:3.0%以下
WおよびMoは強度を向上させる成分であるが、過剰に含有すると冷間加工性を悪化させるため、所望によりそれぞれ単独であるいは複合してMo+1/2Wで3%以下の範囲で含有させることができる。なお、所望により含有させる場合、その作用を十分に得るため0.5%以上含有するのが望ましい。
Mo + 1 / 2W: 3.0% or less W and Mo are components that improve the strength, but if included excessively, the cold workability is deteriorated. It can contain in the following ranges. In addition, when it contains if desired, in order to fully obtain the effect | action, it is desirable to contain 0.5% or more.

Co:3.00%以下
Coはオーステナイト相形成元素であるが、高価な成分であるため3.00%を上限に所望により含有することができる。なお、所望により含有させる場合、その作用を十分に得るため0.5%以上含有するのが望ましい。
Co: 3.00% or less Co is an austenite phase forming element. However, since it is an expensive component, it can be contained as desired up to 3.00%. In addition, when it contains if desired, in order to fully obtain the effect | action, it is desirable to contain 0.5% or more.

B:0.01%以下
Bは固溶強化するとともに微細な窒化物による強化も期待でき、強度、靭性を改善するが、過剰に含有すると粗大な窒化物となり靭性を低下させる要因となる。そのため、所望により0.01%以下の範囲で含有することができる。なお、所望により含有させる場合、その作用を十分に得るため0.001%以上含有するのが望ましい。
B: 0.01% or less B strengthens by solid solution and can be expected to be strengthened by fine nitrides, and improves strength and toughness. However, if contained excessively, it becomes coarse nitrides and causes toughness to decrease. Therefore, it can be contained within a range of 0.01% or less if desired. In addition, when making it contain depending on necessity, in order to fully obtain the effect | action, it is desirable to contain 0.001% or more.

不可避的不純物
P、S:0.03%以下
不可避不純物として含まれ得るP、Sは延靭性や熱間加工性に影響を及ぼす。そのため、P、Sは0.03%以下とすることが望ましい。
Inevitable impurities P and S: 0.03% or less P and S that can be included as inevitable impurities affect toughness and hot workability. Therefore, it is desirable that P and S be 0.03% or less.

比透磁率:1.005未満
0.2%耐力:550MPa以上
上記非磁性鋳鋼は、特性において、比透磁率が1.005未満で、室温における0.2%耐力が550MPa以上であるのが望ましい。比透磁率が1.005未満であることにより、回転子における磁気影響を与えない。また、0.2%耐力が550MPa以上であることにより、磁性体を確実に支持することができ、軽量化も容易になる。また、上記非磁性鋼では、伸びが5%以上であるのが望ましい。伸びが低いと、材料が脆くなり使用中に破壊の可能性が高まることになる。伸びは高い方がよく15%以上であることがさらに望ましい。
Relative permeability: less than 1.005 0.2% proof stress: 550 MPa or more The above-mentioned nonmagnetic cast steel desirably has a relative permeability of less than 1.005 and a 0.2% proof stress at room temperature of 550 MPa or more. . When the relative permeability is less than 1.005, no magnetic influence is exerted on the rotor. Further, when the 0.2% proof stress is 550 MPa or more, the magnetic body can be reliably supported, and the weight can be easily reduced. In the nonmagnetic steel, the elongation is desirably 5% or more. If the elongation is low, the material becomes brittle and the possibility of breakage increases during use. The elongation should be higher and more preferably 15% or more.

製造工程
本発明のモータ回転子支持体は、鋳造によって得られる鋳鋼で構成される。
鋳造方法には砂型鋳造、精密鋳造など、一般的に知られる方法を適宜採用できる。ニアネットシェイプで製造することが望ましく、精密鋳造であるロストワックス法やシェルモールド法などが例示される。
Manufacturing Process The motor rotor support of the present invention is made of cast steel obtained by casting.
As a casting method, a generally known method such as sand mold casting or precision casting can be appropriately employed. It is desirable to manufacture by near net shape, and examples thereof include a lost wax method and a shell mold method which are precision casting.

固溶化処理、時効処理
製造された鋳鋼には、固溶化処理、時効処理を施すのが望ましい。なお、要求される強度によっては、固溶化処理のみでもよく、固溶化処理、時効処理のいずれも行わないものも本発明の範囲内である。
Solution treatment and aging treatment It is desirable that the produced cast steel is subjected to solution treatment and aging treatment. Note that depending on the strength required, only the solution treatment may be performed, and it is within the scope of the present invention to perform neither the solution treatment nor the aging treatment.

固溶化処理:1000〜1250℃×5分以上
固溶化処理条件は特に限定されないが、1000〜1250℃、保持時間としては5分以上、冷却方法は水冷、油冷、ファン冷却を含む空冷が例示される。
Solid solution treatment: 1000 to 1250 ° C. × 5 minutes or more Solid solution treatment conditions are not particularly limited, but 1000 to 1250 ° C., holding time is 5 minutes or more, and cooling methods include water cooling, oil cooling, and air cooling including fan cooling. Is done.

時効処理:600〜1000℃×30分以上
また、固溶化処理後、時効処理を施すことで、回転支持体の一層の高強度化を図ることができる。時効処理の条件は特に限定されないが、600〜1000℃×30分以上を例示することができる。
Aging treatment: 600 to 1000 ° C. × 30 minutes or more Further, after the solution treatment, the strength of the rotating support can be further increased by applying the aging treatment. Although the conditions of an aging treatment are not specifically limited, 600-1000 degreeC x 30 minutes or more can be illustrated.

仕上げ加工
鋳鋼品には、仕上げ加工により製品形状とすることができる。仕上げ加工の内容は特に限定されるものではなく、切削加工、研磨加工など、一般的に知られる方法を適宜採用できる。
Finishing The cast steel product can be made into a product shape by finishing. The content of the finishing process is not particularly limited, and a generally known method such as a cutting process or a polishing process can be appropriately employed.

以上のように、この発明によれば、鋳造法で製造可能で、遠心方向においても十分な強度を有するモータ用回転子支持体が得られる効果がある。   As described above, according to the present invention, there is an effect that a rotor support for a motor that can be manufactured by a casting method and has sufficient strength even in the centrifugal direction can be obtained.

本発明の一実施形態のモータ回転子支持体を示す図であり、(a)は正面図、(b)は(a)のI−I線断面図である。It is a figure which shows the motor rotor support body of one Embodiment of this invention, (a) is a front view, (b) is the II sectional view taken on the line of (a). 同じく、永久磁石を配置したモータ回転子支持体を示す図であり、(a)は正面図、(b)は(a)のII−II線断面図である。Similarly, it is a figure which shows the motor rotor support body which has arrange | positioned the permanent magnet, (a) is a front view, (b) is the II-II sectional view taken on the line of (a).

以下に本発明の一実施形態のモータ回転子支持体を図1、2に基づいて説明する。
この実施形態のモータ回転子支持体1は、非磁性鋳鋼で構成されており、好適には比透磁率が1.005未満で、室温における0.2%耐力が550MPa以上、伸びが15%以上の特性を有している。
Below, the motor rotor support body of one Embodiment of this invention is demonstrated based on FIG.
The motor rotor support 1 of this embodiment is made of non-magnetic cast steel, and preferably has a relative permeability of less than 1.005, a 0.2% proof stress at room temperature of 550 MPa or more, and an elongation of 15% or more. It has the characteristics.

モータ回転子支持体1は、全体が薄板の円盤形状に形成され、中心に軸穴2が形成された軸受部3を有している。軸受部3の外周側には間隔を開けてリング状リブ4が形成され、最外周縁に外縁リング5が形成されている。さらに、軸受部3とリング状リブ4と外縁リング5の間に亘って放射状に等角度間隔で16の区画壁6が形成されている。   The motor rotor support 1 has a bearing portion 3 which is formed in a thin disk shape as a whole and has a shaft hole 2 formed in the center. Ring-shaped ribs 4 are formed on the outer peripheral side of the bearing portion 3 at intervals, and an outer edge ring 5 is formed on the outermost peripheral edge. Further, 16 partition walls 6 are formed radially at equiangular intervals between the bearing portion 3, the ring-shaped rib 4 and the outer ring 5.

各区画壁6、6とリング状リブ4、外縁リング5で囲まれる空間は、磁石収納部7に割り当てられている。この磁石収納部7に、軸方向両面に異極となる磁極を有する永久磁石10が収納される。永久磁石10は、周方向において隣接するもの同士が異極となる磁極を有するように配置されている。このモータ回転子支持体1の軸穴2に図示しない回転軸を取り付けて、回転子に備えるモータ回転子支持体として使用することができる。なお、モータ回転子支持体1をそのまま回転子として用いるものであってもよい。
上記では、モータ回転子支持体に支持される磁性体として永久磁石のみを説明したが、その他に強磁性体を支持する構造を有するものであってもよい。
A space surrounded by the partition walls 6, 6, the ring-shaped rib 4, and the outer edge ring 5 is allocated to the magnet storage portion 7. A permanent magnet 10 having magnetic poles having different polarities on both axial surfaces is accommodated in the magnet accommodating portion 7. The permanent magnets 10 are arranged so that adjacent ones in the circumferential direction have magnetic poles having different polarities. A rotation shaft (not shown) can be attached to the shaft hole 2 of the motor rotor support 1 to be used as a motor rotor support provided for the rotor. In addition, you may use the motor rotor support body 1 as a rotor as it is.
In the above description, only the permanent magnet is described as the magnetic body supported by the motor rotor support body. However, the magnetic body may have a structure that supports a ferromagnetic body.

この実施形態のモータ回転子支持体は、特に出力等が限定されるものでないが、特に5kW以上のモータに好適に使用することができ、量産化が可能でコスト的にも廉価に製造でき、特にアキシャルギャップモータの回転子に適した支持体として使用することができる。   The motor rotor support of this embodiment is not particularly limited in output, etc., but can be suitably used particularly for motors of 5 kW or more, can be mass-produced and can be manufactured at low cost, In particular, it can be used as a support suitable for a rotor of an axial gap motor.

次に、上記モータ回転子支持体の製造工程について説明する。
前記した組成に調整するように大気高周波炉など一般的に使用されている溶解炉にて溶解する。脱酸剤もCa−Siなど、一般的に使用されているものを適宜使用できる。
得られた鋼塊は融点よりも十分高い温度で砂型あるいは金型中に鋳造する。
鋳造方法には砂型鋳造、精密鋳造など、一般的に知られる方法を適宜採用できる。精密鋳造はニアネットシェイプ鋳造と同義であり、ロストワックス法が例示される。
Next, the manufacturing process of the motor rotor support will be described.
It melt | dissolves in melting furnaces generally used, such as an atmospheric high frequency furnace so that it may adjust to an above described composition. As the deoxidizer, commonly used ones such as Ca-Si can be appropriately used.
The obtained steel ingot is cast into a sand mold or a mold at a temperature sufficiently higher than the melting point.
As a casting method, a generally known method such as sand mold casting or precision casting can be appropriately employed. Precision casting is synonymous with near net shape casting, and the lost wax method is exemplified.

鋳造に際しては、湯の流れが乱れ、鋳造欠陥を生じないように、湯が支持体形状の外側面部から中心部に流れ込む鋳造方案にすることが望ましい。
湯の流れが滞る箇所には鋳造欠陥が生じないように、押し湯や冷やし金などを配し指向性凝固させることが望ましい。また、押し湯面は鋳込み終了直後に保温剤で覆うのが適用である。
型内には適宜、金属製の冷し金を配して、局所的な凝固遅れに伴う鋳造欠陥発生を防止することも可能である。
In casting, it is desirable to adopt a casting method in which hot water flows from the outer surface portion of the support body into the central portion so that the flow of hot water is not disturbed and casting defects do not occur.
In order to prevent casting defects from occurring at locations where the hot water flow stagnate, it is desirable to arrange hot water, chillers or the like to cause directional solidification. In addition, it is applicable to cover the hot metal surface with a heat insulating material immediately after casting.
It is also possible to appropriately prevent the occurrence of casting defects due to local solidification delay by arranging a metal cooling metal in the mold.

上記鋳造法案を採用することで、複雑な最終形状を有する支持体においても効率よく製造することができる。この点で、従来の鍛造などの塑性加工による一体成型では、最終形状を得るための切削加工、レーザー切断加工等を含めると製造費用的に不利である。   By adopting the above casting method, it is possible to efficiently manufacture even a support having a complicated final shape. In this regard, the conventional integral molding by plastic working such as forging is disadvantageous in terms of manufacturing cost if cutting for obtaining the final shape, laser cutting, or the like is included.

得られた鋳鋼品は、所望により固溶化処理のみ、または固溶化処理および時効処理を施す。
固溶化処理は、1000〜1250℃、保持時間5分以上の条件で行うことができる。
時効処理は、600〜1000℃、保持時間が30分以上の条件で行うことができる。
The obtained cast steel product is subjected to only a solid solution treatment or a solid solution treatment and an aging treatment as desired.
The solution treatment can be performed under conditions of 1000 to 1250 ° C. and a holding time of 5 minutes or more.
The aging treatment can be performed under conditions of 600 to 1000 ° C. and a holding time of 30 minutes or more.

また、やむを得ず残留した鋳造欠陥については、補修溶接により補修することも可能である。溶接材には共材の溶接棒がよいが、オーステナイト系ステンレス鋼用の溶接棒を用いてもよい。補修溶接後は300〜700℃における応力除去焼鈍をしてもよい。   Moreover, it is also possible to repair the casting defect which remained unavoidably by repair welding. A welding rod made of a common material is preferable as the welding material, but a welding rod for austenitic stainless steel may be used. After repair welding, stress relief annealing at 300 to 700 ° C. may be performed.

鋳鋼品は、最終製品形状を得るため仕上げ加工を行うことができる。仕上げ加工は、この形態では切削加工、研磨加工などが例示されるが、本発明としては加工の種別が特に限定されるものではない。   Cast steel products can be finished to obtain the final product shape. Examples of the finishing process include cutting process and polishing process in this embodiment, but the type of the process is not particularly limited in the present invention.

表1に示した成分(残部がFeおよび不可避不純物、Pは0.025%以下、Sは0.005%以下)にて、大気高周波炉により溶解し、湯口、湯道、堰、押し湯などを付随させたニアネットシェイプの砂型に鋳込み、支持体相当の円盤状試験材を製作した。比較として、市販のSUS304系ステンレス鋼(鋼No.28)、市販のSUS316系ステンレス鋼(鋼No.27)の試験材も同様に得た。
製作した円盤状試験材には表2に示す条件で1050〜1150℃、保持時間3時間、水冷の固溶化処理を行った。固溶化処理後、表2に示す条件で時効温度900℃、保持時間1時間の時効処理を行った。固溶化処理ままの試験材も準備し、時効処理有り無しの比較も行った。
The components shown in Table 1 (the balance is Fe and inevitable impurities, P is 0.025% or less, S is 0.005% or less) and dissolved in an atmospheric high-frequency furnace to form a gate, runner, weir, hot water, etc. Was cast into a sand mold with a near net shape, and a disk-shaped test material equivalent to the support was produced. For comparison, test samples of commercially available SUS304 stainless steel (steel No. 28) and commercially available SUS316 stainless steel (steel No. 27) were also obtained.
The manufactured disk-shaped test material was subjected to a water-cooling solution treatment under the conditions shown in Table 2 at 1050 to 1150 ° C., a holding time of 3 hours. After the solution treatment, an aging treatment was performed under the conditions shown in Table 2 at an aging temperature of 900 ° C. and a holding time of 1 hour. Test materials with a solid solution treatment were also prepared and compared with and without an aging treatment.

これらの試験材から、室温において、引張試験、磁気天秤法による比透磁率測定、浸水耐食性の評価を行った。
比較材として、本発明の範囲外の組成を有する試験材も準備した。
なお、引張試験では、引張試験片はJIS Z 2201記載のJIS14A号試験片を用い、JIS Z 2241によって室温における引張特性を測定する試験を実施した。
浸水耐食性評価は、常温の水道水に試験材を10日間浸漬し、目視により明瞭なさびなしを◎、わずかに錆有りを○、全面に錆有りを×として評価した。
From these test materials, at room temperature, a tensile test, a relative permeability measurement by a magnetic balance method, and an evaluation of immersion corrosion resistance were performed.
A test material having a composition outside the scope of the present invention was also prepared as a comparative material.
In addition, in the tensile test, the test which measures the tensile property in room temperature by JISZ2241 was implemented using the JIS14A test piece of JISZ2201 as a tensile test piece.
The immersion corrosion resistance was evaluated by immersing the test material in normal temperature tap water for 10 days, visually observing no clear rust as ◎, slightly rusting as ○, and rusting as x on the entire surface.

試験結果を表2に示す。比較材との比較では本発明の成分範囲から外れた元素によって、強度が低いもの、比透磁率が高いもの、耐食性が十分でないものがあり、本発明例はこれら特性を十分に満足していることがわかる。
また、本発明例は、SUS304系ステンレス鋼やSUS316系ステンレス鋼よりも高い強度を示していることがわかる。
The test results are shown in Table 2. In comparison with the comparative material, depending on the element outside the component range of the present invention, there are those with low strength, high relative permeability, and insufficient corrosion resistance, and the present invention examples sufficiently satisfy these characteristics. I understand that.
Moreover, it turns out that the example of this invention has shown the intensity | strength higher than SUS304 type stainless steel or SUS316 type stainless steel.

以上のことから、本発明の開発材は鋳造で支持体を製作しても十分な強度、非磁性、耐食性を有し、ニアネットシェイプで製造することができることから、従来の製造方法よりも安価な支持体が製造可能である。
また、ロストワックス法などによる精密鋳造法によれば、さらに製品形状に近く鋳肌がきれいな鋳造品が得られることから、複雑な形状の支持体の製造に適しているということができる。
From the above, the developed material of the present invention has sufficient strength, non-magnetism and corrosion resistance even if the support is manufactured by casting, and can be manufactured with a near net shape, so it is less expensive than the conventional manufacturing method. Can be manufactured.
Moreover, according to the precision casting method such as the lost wax method, it is possible to obtain a cast product that is closer to the product shape and has a clean casting surface, and thus can be said to be suitable for manufacturing a support having a complicated shape.

Figure 2013204144
Figure 2013204144

Figure 2013204144
Figure 2013204144

1 モータ回転子支持体
2 軸穴
3 軸受部
4 リング状リブ
5 外縁リング
6 区画壁
7 磁石収納部
10 永久磁石
DESCRIPTION OF SYMBOLS 1 Motor rotor support body 2 Shaft hole 3 Bearing part 4 Ring-shaped rib 5 Outer ring 6 Partition wall 7 Magnet accommodating part 10 Permanent magnet

Claims (14)

モータの回転子に配置される磁性体を支持する支持体であって、非磁性鋳鋼で構成され、該非磁性鋳鋼が、質量%で、C:0.3%以下、Si:0.1〜2.0%、Mn:10〜25%、Cr:10〜23%、N:0.3〜0.8%と残部がFeと不可避的不純物とからなる組成を有することを特徴とするモータ回転子支持体。   A support for supporting a magnetic body disposed on a rotor of a motor, which is made of nonmagnetic cast steel, and the nonmagnetic cast steel is in mass%, C: 0.3% or less, Si: 0.1-2 Motor rotor characterized by having a composition of 0.0%, Mn: 10 to 25%, Cr: 10 to 23%, N: 0.3 to 0.8%, and the balance consisting of Fe and inevitable impurities Support. 前記組成に、さらに質量%で、V:0.4〜1.5%、Ni:5.0%以下、Mo+1/2W:3.0%以下、Co:3.00%以下、B:0.01%以下からなる選択成分のうち、一種または二種以上を含有することを特徴とする請求項1記載のモータ回転子支持体。   In addition to the above composition by mass, V: 0.4 to 1.5%, Ni: 5.0% or less, Mo + 1 / 2W: 3.0% or less, Co: 3.00% or less, B: 0.0. The motor rotor support according to claim 1, wherein the motor rotor support comprises one or two or more of selected components composed of 01% or less. 前記選択成分のうち、少なくともVを含有し、さらに質量%で、NbをV+Nbで1.5%以下含有することを特徴とする請求項1または2に記載のモータ回転子支持体。   3. The motor rotor support according to claim 1, wherein among the selected components, at least V is contained, and further, by mass%, Nb is contained by 1.5% or less in terms of V + Nb. 前記組成に、さらに質量%で、Al:0.02%以下を含有することを特徴とする請求項1〜3のいずれかに記載のモータ回転子支持体。   The motor rotor support according to any one of claims 1 to 3, wherein the composition further contains Al: 0.02% or less in terms of mass%. 不可避不純物中のP、Sが、それぞれ0.03%以下であることを特徴とする請求項1〜4のいずれかに記載のモータ回転子支持体。   The motor rotor support according to any one of claims 1 to 4, wherein P and S in the inevitable impurities are each 0.03% or less. 前記非磁性鋳鋼は、VN、NbNのいずれか又は両方による析出硬化型鋳鋼であることを特徴とする請求項1〜5のいずれかに記載のモータ回転子支持体。   6. The motor rotor support according to claim 1, wherein the nonmagnetic cast steel is a precipitation hardening cast steel made of either or both of VN and NbN. 比透磁率が1.005未満、室温における0.2%耐力が550MPa以上であることを特徴とする請求項1〜6のいずれかに記載のモータ回転子支持体。   The motor rotor support according to claim 1, wherein the relative permeability is less than 1.005, and the 0.2% proof stress at room temperature is 550 MPa or more. 前記磁性体として、希土類系磁石または非希土類系磁石を含むことを特徴とする請求項1〜7のいずれかに記載のモータモータ回転子支持体。   The motor / motor rotor support according to claim 1, wherein the magnetic body includes a rare earth magnet or a non-rare earth magnet. 前記非希土類系磁石が、フェライト磁石であることを特徴とする請求項8記載のモータ回転子支持体。   9. The motor rotor support according to claim 8, wherein the non-rare earth magnet is a ferrite magnet. 前記磁性体として、圧粉鉄心を含むことを特徴とする請求項1〜9のいずれかに記載のモータ回転子支持体。   The motor rotor support according to any one of claims 1 to 9, wherein the magnetic body includes a dust core. 前記非磁性鋳鋼が、ニアネットシェイプ鋳造法により製造されたものであることを特徴とする請求項1〜10のいずれかに記載のモータ回転子支持体。   The motor rotor support according to any one of claims 1 to 10, wherein the nonmagnetic cast steel is manufactured by a near net shape casting method. 請求項1〜6のいずれかに記載の組成材料により素形材を鋳造し、該素形材に固溶化処理または/および時効処理を行うことを特徴とするモータ回転子支持体の製造方法。   A method for producing a motor rotor support, comprising casting a shaped material with the composition material according to claim 1 and subjecting the shaped material to a solution treatment and / or an aging treatment. 前記固溶化処理の条件が1000〜1250℃、保持時間5分以上、
前記時効処理の条件が600〜1000℃、保持時間が30分以上であることを特徴とする請求項12記載のモータ回転子支持体の製造方法。
The solution treatment conditions are 1000 to 1250 ° C., holding time of 5 minutes or more,
The method for producing a motor rotor support according to claim 12, wherein the aging treatment conditions are 600 to 1000 ° C and the holding time is 30 minutes or more.
前記時効処理後に仕上げ加工を行うことを特徴とする請求項12または13に記載のモータ回転子支持体の製造方法。   The method of manufacturing a motor rotor support according to claim 12 or 13, wherein finishing is performed after the aging treatment.
JP2012077895A 2012-03-29 2012-03-29 Motor rotor support and manufacturing method thereof Expired - Fee Related JP5480326B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012077895A JP5480326B2 (en) 2012-03-29 2012-03-29 Motor rotor support and manufacturing method thereof
PCT/JP2013/059150 WO2013146960A1 (en) 2012-03-29 2013-03-27 Motor rotor support and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012077895A JP5480326B2 (en) 2012-03-29 2012-03-29 Motor rotor support and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013204144A true JP2013204144A (en) 2013-10-07
JP5480326B2 JP5480326B2 (en) 2014-04-23

Family

ID=49260208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012077895A Expired - Fee Related JP5480326B2 (en) 2012-03-29 2012-03-29 Motor rotor support and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5480326B2 (en)
WO (1) WO2013146960A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112281049A (en) * 2020-11-23 2021-01-29 浙江宝武钢铁有限公司 Preparation method of non-magnetic high-nitrogen stainless steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155350A (en) * 1981-03-20 1982-09-25 Toshiba Corp Corrosion resistant nonmagnetic steel
JPS62230957A (en) * 1986-03-31 1987-10-09 Aichi Steel Works Ltd Precipitation hardening-type nonmagnetic stainless steel
JPH02185945A (en) * 1989-06-16 1990-07-20 Toshiba Corp Manufacture of dynamo end ring
JPH06336651A (en) * 1993-05-31 1994-12-06 Kurimoto Ltd High manganese nonmagnetic cast body
JPH07191796A (en) * 1993-12-27 1995-07-28 Canon Inc Sight line input system
JPH09322457A (en) * 1996-05-29 1997-12-12 Hitachi Ltd Rotor wedge for electric rotating machine, its manufacture, and electric rotating machine using it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748843B2 (en) * 1994-01-07 1998-05-13 株式会社栗本鐵工所 High manganese non-magnetic casting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155350A (en) * 1981-03-20 1982-09-25 Toshiba Corp Corrosion resistant nonmagnetic steel
JPS62230957A (en) * 1986-03-31 1987-10-09 Aichi Steel Works Ltd Precipitation hardening-type nonmagnetic stainless steel
JPH02185945A (en) * 1989-06-16 1990-07-20 Toshiba Corp Manufacture of dynamo end ring
JPH06336651A (en) * 1993-05-31 1994-12-06 Kurimoto Ltd High manganese nonmagnetic cast body
JPH07191796A (en) * 1993-12-27 1995-07-28 Canon Inc Sight line input system
JPH09322457A (en) * 1996-05-29 1997-12-12 Hitachi Ltd Rotor wedge for electric rotating machine, its manufacture, and electric rotating machine using it

Also Published As

Publication number Publication date
WO2013146960A1 (en) 2013-10-03
JP5480326B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5954865B2 (en) Motor rotor support and manufacturing method thereof
US11114226B2 (en) Ultra-low cobalt iron-cobalt magnetic alloys
JP5267747B2 (en) High strength non-oriented electrical steel sheet
JP6480446B2 (en) Non-oriented electrical steel slab or electrical steel sheet, parts manufactured therefrom, and method for producing non-directional electrical steel slab or electrical steel sheet
US7582171B2 (en) High-strength, soft-magnetic iron-cobalt-vanadium alloy
JP5480326B2 (en) Motor rotor support and manufacturing method thereof
JP5954864B2 (en) Motor rotor support and manufacturing method thereof
JP5480325B2 (en) Motor rotor support and manufacturing method thereof
JP2016065294A (en) Motor rotor support body and production method thereof
JP5406686B2 (en) Non-magnetic steel
JP2017057456A (en) High strength member for motor using non-oriented electromagnetic steel sheet and manufacturing method therefor
JP7260816B2 (en) Rotor for eddy current speed reducer
JP2012177188A (en) Rotor core for permanent magnet motor
JP2006169615A (en) Electrical steel sheet with excellent high-frequency magnetic property, and its manufacturing method
JP2008179864A (en) METHOD FOR MANUFACTURING Ni-BASE ALLOY
WO2023090424A1 (en) Rotary electric machine, non-oriented electrical steel sheet, laminated core, method for manufacturing rotary electric machine, and method for manufacturing laminated core
JP2003253362A (en) Non-magnetic highly corrosion-resistant bearing material and its production method
JP5746987B2 (en) High-strength austenitic steel and industrial products using it
JP4280139B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2011052270A (en) Nonmagnetic austenitic stainless steel, motor component, shaft for motor, and motor
JP5339009B1 (en) Composite magnetic material and composite magnetic member
JP4188761B2 (en) Rotor shaft material and superconducting rotating electric machine using the same
JP2009007596A (en) Alloy for shaft, shaft for motor, and motor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5480326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees