JPH06336651A - High manganese nonmagnetic cast body - Google Patents

High manganese nonmagnetic cast body

Info

Publication number
JPH06336651A
JPH06336651A JP15438093A JP15438093A JPH06336651A JP H06336651 A JPH06336651 A JP H06336651A JP 15438093 A JP15438093 A JP 15438093A JP 15438093 A JP15438093 A JP 15438093A JP H06336651 A JPH06336651 A JP H06336651A
Authority
JP
Japan
Prior art keywords
thermal expansion
magnetic
less
casting
high manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15438093A
Other languages
Japanese (ja)
Other versions
JP2646061B2 (en
Inventor
Yoshiaki Shingu
良明 新宮
Yasushi Ueda
泰 上田
Hiroto Matsuo
宏人 松尾
Ganji Kawamoto
岩次 川本
Itsuo Yamamori
五夫 山森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Kurimoto Ltd
Original Assignee
NGK Insulators Ltd
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Kurimoto Ltd filed Critical NGK Insulators Ltd
Priority to JP15438093A priority Critical patent/JP2646061B2/en
Publication of JPH06336651A publication Critical patent/JPH06336651A/en
Application granted granted Critical
Publication of JP2646061B2 publication Critical patent/JP2646061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To low suppress the thermal expansion coefficient and magnetic permeability of a high manganese nonmagnetic casting free from the need of heat treatment and to improve its using performance by specifying the content of C, Mn and Cr as essential components. CONSTITUTION:This casting has a compsn. contg., by weight, <=0.2% C, <=1.0% Si, 15 to 35% Mn, <=0.1% P, <=0.05% S and 3.0 to 9.0% Cr, and the balance iron with inevitable impurities, and in which an epsilon martensitic phase is precipitated at least by 10%, the average thermal expansion coefficient alpha in the temp. range of 25 to 100 deg.C is regulated to 12X10<-6>/ deg.C and its permeability is low suppressed as well. In this way, the high manganese casting within 120mm free from the need of heat treatment and used as cast can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は平均熱膨張係数αの小さ
い非磁性材、特に高マンガン非磁性鋳造体に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-magnetic material having a small average coefficient of thermal expansion .alpha.

【0002】[0002]

【従来の技術】最近の技術において、強磁場の環境下に
おいて使用される部材が多く開発され、特に磁場の影響
を受けない非磁性体の開発が盛んである。たとえば核融
合炉の諸施設、磁気浮上式鉄道用の諸部材、モータ、ト
ランス用の部品などで使用される分野が拡張し、成分や
熱処理などの冶金的な研究開発が広く行なわれ、数多く
の発表が見られる。これらの従来技術を見ると、従来、
最も非磁性材として普遍的に使用されてきたオーステナ
イト系のステンレス鋼が、高価なNiを大量に必要とす
ることや、冷間加工することによって変態を誘起してマ
ルテンサイトを析出し非磁性を劣化するおそれが高いこ
とが難点として取り上げられ、これに代って高マンガン
非磁性材が新しく着目を集め、開発のかなりのウエイト
がこの材質に係っているように解される。
2. Description of the Related Art In recent years, many members used under the environment of a strong magnetic field have been developed, and particularly nonmagnetic materials which are not affected by the magnetic field have been actively developed. For example, the fields used for various facilities of fusion reactors, various parts for magnetic levitation railways, motors, parts for transformers, etc. have expanded, and metallurgical research and development of components and heat treatment have been widely conducted, and many You can see the announcement. Looking at these conventional technologies,
Austenitic stainless steel, which has been universally used as the most non-magnetic material, requires a large amount of expensive Ni and induces transformation by cold working to precipitate martensite, thereby making it non-magnetic. The high risk of deterioration is taken up as a difficulty, and in place of this, high-manganese non-magnetic materials have attracted new attention, and it is understood that a considerable weight of development is related to this material.

【0003】高マンガン非磁性材は安価なマンガンを多
量配合することによってステンレス鋼と同様なオーステ
ナイト相が得られ、経済的に有利であるだけでなく、ス
テンレス鋼にあるような冷間加工に伴う変態誘起が見ら
れず安定したオーステナイト相であるから非磁性の劣化
するおそれが小さいことが大きな利点として脚光を浴び
ている。ただ高マンガン非磁性材はステンレス鋼と同
様、普通炭素鋼に比べると平均熱膨張係数αが大きく、
普通鋼のそれが12×10-6/℃程度であるのに対し高
マンガン非磁性材は14〜18×10-6/℃のレベルに
あり、常温以上の環境となる使用条件や、非磁性とは言
え磁気によって多少の渦流電流が生じて発熱するような
場合においては、使用中の膨張によるトラブルが予想さ
れるので大きな制約を設けざるを得ない。これを解決す
るために従来技術の多くが改善を提供して種々の用途に
おける適応性を向上させている。
The high manganese non-magnetic material is not only economically advantageous because an austenite phase similar to that of stainless steel can be obtained by blending a large amount of inexpensive manganese, but it is also associated with cold working as in stainless steel. A stable austenite phase in which no transformation induction is observed and the possibility of non-magnetic deterioration is small is receiving great attention as a great advantage. However, high manganese non-magnetic material has a larger average coefficient of thermal expansion α than ordinary carbon steel, similar to stainless steel,
The high manganese non-magnetic material is at a level of 14-18 × 10 -6 / ° C, whereas that of ordinary steel is about 12 × 10 -6 / ° C. However, in the case where a small amount of eddy current is generated by magnetism and heat is generated, a problem due to expansion during use is expected, so there is no choice but to place a large restriction. To solve this, many of the prior art provide improvements to improve adaptability in various applications.

【0004】高マンガン非磁性材の改善は欠点である高
い平均熱膨張係数αを低下させることと、低温下におけ
る材力の向上がその目的である。これは当該材料が使用
される先が前記のリニアモータカーや核融合炉などの構
造材として振り向けられているから、必然的に低温下の
材力が主要な課題の一つとなるのである。たとえば特公
昭59−31569号公報では、C:0.5%以下、S
i:2%以下、Mn:20〜30%、N:0.05〜
0.04%、残部が不可避的不純物からなり、前記Cと
Mnとの間に特定の不等式が成立するとともに、この成
分の鋼を1220℃以下に加熱して熱間圧延を行ない、
仕上温度を800℃+400℃×C(%)以下とするこ
とを特徴とする低熱膨張高降伏点非磁性鋼の製造方法を
開示している。すなわち、オーステナイト相の安定化を
高めるためにNの一定量含有を必須とし、かつ圧延条件
(温度)を特定することによって、材料を塑性変形して
もそのために透磁率が劣化しない製造方法を提案したも
のである。
The purpose of improving the high-manganese non-magnetic material is to lower the high average coefficient of thermal expansion α, which is a drawback, and to improve the strength of the material at low temperatures. This is because the point at which the material is used is diverted to a structural material such as the linear motor car or the fusion reactor, so that the material strength at low temperature is inevitably one of the major problems. For example, in JP-B-59-31569, C: 0.5% or less, S
i: 2% or less, Mn: 20 to 30%, N: 0.05 to
0.04%, the balance consisting of unavoidable impurities, a specific inequality holds between C and Mn, and the steel of this component is heated to 1220 ° C. or lower to perform hot rolling,
Disclosed is a method for producing a low magnetic expansion high yield point non-magnetic steel, which is characterized in that the finishing temperature is 800 ° C. + 400 ° C. × C (%) or less. That is, in order to enhance the stabilization of the austenite phase, a certain amount of N must be contained, and by specifying the rolling conditions (temperature), a manufacturing method is proposed in which the magnetic permeability does not deteriorate due to plastic deformation of the material. It was done.

【0005】特公昭57−55784号公報において
は、Mn:20〜35%、Cr:1.0〜8.0%を基
本成分とし、これにV:0.1〜1.0%、N:0.2
〜0.4%を含み平均熱膨張係数αが0〜100℃で1
2.5×10-6/℃以下、0.2%耐力が固溶化熱処理
状態で35Kgf/mm2を有している高マンガン非磁性材を
提案している。すなわち、この発明の高マンガン非磁性
材はV、Nの特別添加の成分とその成分の熱処理におけ
る特別な挙動を利用して透磁率μが1.1以下、平均熱
膨張係数αが12.5×10-6/℃以下、耐力が35Kg
f/mm2以上をすべて満足するとしている。その他Al、
Caを含み溶体化処理後水靱処理を施した高マンガン非
磁性材で、−196℃における材力を向上させた特公昭
59−11661号公報、Ni、Nの他に強化成分を少
なくとも1種以上配合して−196℃における靱性を向
上した特公昭49−10892号公報などきわめて多岐
に亘る。
In Japanese Examined Patent Publication No. 57-55784, Mn: 20 to 35% and Cr: 1.0 to 8.0% are used as basic components, and V: 0.1 to 1.0% and N: 0.2
〜0.4% including the average coefficient of thermal expansion α 0 ~ 100 ℃ 1
A high-manganese non-magnetic material having a yield strength of 2.5 × 10 −6 / ° C. or less and a 0.2% proof stress of 35 Kgf / mm 2 in a solution heat treatment state is proposed. That is, the high manganese non-magnetic material of the present invention utilizes the special addition components of V and N and the special behavior of the components in the heat treatment so that the magnetic permeability μ is 1.1 or less and the average thermal expansion coefficient α is 12.5. × 10 -6 / ° C or less, proof stress 35 kg
It is said that all of f / mm 2 and above are satisfied. Other Al,
A high-manganese non-magnetic material containing Ca and subjected to solution toughening treatment after solution treatment, which has improved strength at -196 ° C. Japanese Patent Publication No. 59-11661, Ni, N, and at least one reinforcing component. There are a wide variety of compounds such as Japanese Examined Patent Publication No. Sho 49-10892 in which the toughness at -196 ° C. is improved by blending the above.

【0006】[0006]

【発明が解決しようとする課題】ここに述べた高マンガ
ン非磁性材はいずれも強度、特に低温下における靱性や
延性の向上を目的としている点は、その用途がリニアモ
ータ駆動による磁気浮上方式の鉄道用のガイドウェイ、
核融合炉を収容する鉄筋コンクリート建物、または液体
窒素などの極低温物質の貯溜用の設備部材として適用さ
れるからであることは前に述べたとおりである。この場
合は極低温に遭遇する機会が避けられないことが予想さ
れる上、設備に組み込まれたときには構造材として大き
な負荷に耐えなければならないという条件にあるから、
課題も当然この点に絞られることは理解できる。しか
も、構造材として使用される以上、塑性変形による成形
が通常の条件であり、そのときの誘起変態をどのように
防止するか、そのための熱的な条件、成分的な制約な
ど、数多くの条件を組み合わせた複雑な関係を解決しな
ければならないという困難性が大きい。
All of the high manganese non-magnetic materials described here are intended to improve strength, particularly toughness and ductility at low temperatures, and their application is that of a magnetic levitation system driven by a linear motor. Guideways for railways,
As described above, it is applied as a reinforced concrete building that houses a fusion reactor or as a facility member for storing cryogenic substances such as liquid nitrogen. In this case, it is expected that an opportunity to encounter extremely low temperatures will be unavoidable, and since it is a condition that it must withstand a large load as a structural material when installed in equipment,
It is understandable that the issues are naturally limited to this point. Moreover, as long as it is used as a structural material, forming by plastic deformation is a normal condition, and there are many conditions such as how to prevent induced transformation at that time, thermal conditions for that, constituent restrictions, etc. It is difficult to solve a complicated relationship that combines

【0007】しかし、実際には非磁性材の使用される領
域はここに例示したような極低温に限られる訳ではな
い。むしろ逆に使用される温度は常温またはその前後で
あるが、使用の態様によって別の課題が重要となる場合
もあり、今後技術的な革新で進むにつれて新たな問題の
解決を迫られることも頻発すると予想される。
However, the region where the non-magnetic material is used is not limited to the extremely low temperature as exemplified here. On the contrary, the temperature used is at or around room temperature, but depending on the mode of use, other issues may be important, and it is often necessary to solve new problems as technological innovation progresses in the future. Is expected.

【0008】すなわち、強力な磁場環境下の部材として
組み込まれる場合には、当然渦電流の発生による発熱を
最小限に抑制するために非磁性材であること、すなわち
透磁率μが少なくとも1.05以下であることが必要で
あることは変らないとしても、これに加えて部材の容量
や肉厚が大きいときには、少量の発熱があっても絶対的
な総熱膨張が無視できないほどの量に達するおそれがあ
ること、そのためには平均熱膨張係数αが通常の鉄系の
何れよりも高いことは許容できず、少なくとも12.0
×10-6/℃以下であるべきこと、部材が大型化、また
は複雑化してもどの部分においても前記の諸性質が等し
く維持されていること、さらにその部材の形状が相当に
複雑であり成形後の手入れや加工仕上の困難な部分が含
まれていること、などの使用条件が付加されると、その
解決すべき課題も従来技術とは相当大きな相違点として
現われてくることは否定できない。
That is, when it is incorporated as a member under a strong magnetic field environment, it is of course a non-magnetic material in order to suppress the heat generation due to the generation of eddy current, that is, the magnetic permeability μ is at least 1.05. Even if it is necessary to be below, in addition to this, when the volume and thickness of the member are large, the absolute total thermal expansion reaches a non-negligible amount even if a small amount of heat is generated. Therefore, it is not acceptable that the average coefficient of thermal expansion α is higher than that of any ordinary iron system.
X10 -6 / ° C or less, the above properties are maintained equal in any part even if the member becomes large or complicated, and the shape of the member is considerably complicated and molding It cannot be denied that the problem to be solved will appear as a considerably different point from the prior art when the usage conditions such as the subsequent maintenance and the difficult processing finish are included are added.

【0009】たとえば、変電用碍子は従来から磁場にお
ける渦電流による金具発熱を防ぐために非磁性金属、た
とえばアルミ鋳物,青銅鋳物などを適用してきたが、電
圧が1000KVを超えると、碍子金具自体の形状も大型化
するため、従来の非鉄金属材料ではブッシング内発熱、
直射日光による金具と磁器との熱膨張量の絶対値の差が
大きくなり、もはや無視できない要素となる。碍子(陶
器)自体の平均熱膨張係数αは8〜9×10-6/℃であ
るから、これを抱持している取り付け金具の平均熱膨張
係数αもまたできるだけこれに近い低い値が望ましいこ
とは当然であるから、金具は非磁性材であり、かつ平均
熱膨張係数αが通常の鋼材以下であることが求められ
る。特に形状が大型であるときには同じ温度に昇温して
も膨張量の絶対値は予想以上に大きくなるから平均熱膨
張係数の重要性はますます増大する。精密に研削仕上し
たセラミックス材を装置へ取り付ける金具などについて
もほぼ同じ状況にある。さらにこれらの部材の形状が大
型である上に相当に複雑であれば、高マンガン非磁性材
特有の溶体化処理と水靱処理を加えると表面に必ず脱炭
層が生成し、その結果避けることのできない透磁率の劣
化が生じる。通常はこの脱炭層は熱処理後に取り除くの
であるが、部材の形状によってはその脱炭層を研削する
ことも機械加工で削除することもできない場合があると
いう問題が現われる。
For example, the transformer insulator has conventionally been made of a non-magnetic metal such as an aluminum casting or a bronze casting in order to prevent heat generation of the metal fitting due to an eddy current in a magnetic field. Since the size of the bushing also increases, the heat generated in the bushing of conventional non-ferrous metal materials
The difference in the absolute value of the thermal expansion amount between the metal fittings and the porcelain due to direct sunlight becomes large, and it becomes a factor that can no longer be ignored. Since the average coefficient of thermal expansion α of the porcelain (ceramic) itself is 8 to 9 × 10 −6 / ° C., it is desirable that the average coefficient of thermal expansion α of the fitting holding the same be as low as possible. As a matter of course, the metal fitting is required to be a non-magnetic material and have an average coefficient of thermal expansion α equal to or lower than that of a normal steel material. Especially when the shape is large, even if the temperature is raised to the same temperature, the absolute value of the amount of expansion becomes larger than expected, so the importance of the average coefficient of thermal expansion increases. The situation is the same for metal fittings that attach precision-ground ceramic materials to equipment. Furthermore, if the shapes of these members are large and fairly complicated, a decarburized layer is always generated on the surface when the solution treatment and water toughness treatment peculiar to high-manganese non-magnetic materials are added, and as a result, it should be avoided. Impossible deterioration of magnetic permeability occurs. Usually, this decarburized layer is removed after heat treatment, but there is a problem that depending on the shape of the member, the decarburized layer may not be ground or removed by machining.

【0010】本発明は以上に述べた課題を解決するため
に、標準以上に優れた低い透磁率のレベルにありながら
平均熱膨張係数が通常の鋼材以下の低いレベルにあり、
溶解条件や熱処理条件によって製品の物性値に大きな変
動が起こり易い特別な添加成分や熱処理に依存すること
なく、大形で複雑な部材であっても容易に適用できる高
マンガン非磁性材の提供を目的とする。
In order to solve the above-mentioned problems, the present invention has an average coefficient of thermal expansion at a level lower than that of ordinary steel while having a level of low magnetic permeability superior to the standard.
Providing high manganese non-magnetic materials that can be easily applied to large and complex members without depending on special additive components and heat treatments, which tend to cause large changes in physical properties of products due to melting and heat treatment conditions. To aim.

【0011】[0011]

【課題を解決するための手段】本発明に係る高マンガン
非磁性鋳造体は、C:0.2%以下、Si:1.0%以
下、Mn:15〜35%、P:0.1%以下、S:0.
05%以下、Cr:3.0〜9.0%を含有し、残部が
鉄および不可避的不純物からなり、25〜100℃の温
度範囲における平均熱膨張係数αが12×10-6/℃以
下であり鋳放しでの使用を条件とすることによって前記
の課題を解決した。また、この場合に鋳放し状態の顕微
鏡組織がεマルテンサイト相を少なくとも10%析出し
ていることを特徴とし、鋳造肉厚が少なくとも120mm
までは前記諸条件が成立することが最も望ましい実施の
態様である。
The high manganese non-magnetic casting according to the present invention has a C: 0.2% or less, Si: 1.0% or less, Mn: 15-35%, P: 0.1%. Hereinafter, S: 0.
05% or less, Cr: 3.0 to 9.0%, with the balance being iron and unavoidable impurities, and having an average thermal expansion coefficient α in the temperature range of 25 to 100 ° C. of 12 × 10 −6 / ° C. or less. Therefore, the above-mentioned problems have been solved by making it as-cast. Further, in this case, the as-cast microstructure is characterized in that at least 10% of ε-martensite phase is precipitated, and the cast wall thickness is at least 120 mm.
It is the most preferable embodiment that the above conditions are satisfied.

【0012】[0012]

【作用】本発明に係る高マンガン非磁性材はその成形手
段を鋳造法によったから、他の成形手段、たとえば引き
抜き、圧延、押し出し、鍛造などの塑性変形を強制する
方法と異なりかなり複雑な形状でも容易に成形できる。
また、塑性変形が伴わないため高マンガン非磁性材独特
の加工硬化が発生しないから、その後の機械加工性が良
好に保たれる。次にこの高マンガン非磁性鋳造体は熱処
理を伴わないから表面鋳肌に脱炭層の発生が少なく、脱
炭層を削り取るための工程も軽減される。部材が大型と
なると、従来の高マンガン非磁性材では溶体化処理の時
間が長くなり脱炭層の厚さも肥大するのが普通である
が、鋳放しでの使用を前提とする本発明ではそのおそれ
が少なくなり、また複雑な形状であっても水靱時の不均
等な急冷による割れの発生と無縁となる。また、溶体化
水靱処理は言うまでもなく組織的に完全なオーステナイ
ト相にすることが目的であるが、これは透磁率と靱性に
重点を置いた思考であり、平均熱膨張係数の立場から見
れば、却って平均熱膨張係数αが増大するので改悪であ
るという逆説も成立する。
The high manganese non-magnetic material according to the present invention uses a casting method as its forming means. Therefore, unlike other forming means, for example, a method for forcing plastic deformation such as drawing, rolling, extrusion, or forging, it has a considerably complicated shape. But it can be easily molded.
Further, since plastic deformation is not involved, work hardening peculiar to the high-manganese non-magnetic material does not occur, so that good machinability thereafter can be maintained. Next, since this high-manganese non-magnetic cast body is not accompanied by heat treatment, a decarburized layer is less likely to occur on the surface casting surface, and the steps for scraping off the decarburized layer are also reduced. When the member becomes large, it is usual that the solution treatment time in the conventional high manganese non-magnetic material becomes long and the thickness of the decarburized layer also increases, but in the present invention which is used as an as-cast material, this may occur. In addition, even if the shape is complicated, it is free from the occurrence of cracks due to uneven quenching during water toughness. Needless to say, the solution-hydrous toughness treatment aims to systematically complete the austenite phase, but this is a thought that emphasizes magnetic permeability and toughness, and from the standpoint of the average coefficient of thermal expansion. On the contrary, the paradox that the average coefficient of thermal expansion α increases, which is a bad thing, also holds.

【0013】成分的にみれば、Mn、Cr以外は特定の
添加成分を必要としないから、溶解条件が単純で成分調
整のミスが少なくて済む。たとえば最初に引用した従来
技術で挙げたNは、通常の高マンガン鋳鋼品の溶製に当
って原料である鋼屑、フェロマンガン、フェロシリコン
などの合金鉄内にもそれぞれ相当量含まれているし、そ
れらがどの程度の割合で凝固後に歩留るかは、精練時の
炉況によって大きく作用され、これを狭い範囲内へ意図
的に収めることは、相当に高度な精練技術を前提とす
る。すなわち、少なくともこの下限付近において他の公
知材料に比べて該発明材が格段に差別化できる作用、効
果をもたらしていると判断することは、かなり微妙であ
ると言わざるを得ない。これに反して本発明では、従来
技術のような特別な添加成分に依存しなくても、十分に
目的とする諸数値を保つことができるという作用を大き
な特徴とするのである。
From the point of view of components, no specific additive components other than Mn and Cr are required, so that the dissolution conditions are simple and there are few mistakes in component adjustment. For example, N mentioned in the prior art cited at the beginning is contained in a considerable amount in steel alloys such as steel scraps, ferromanganese, and ferrosilicon which are raw materials in the melting of ordinary high-manganese cast steel products. However, the rate at which they remain after solidification is greatly affected by the furnace conditions during refining, and intentionally keeping this within a narrow range is premised on a considerably advanced refining technology. . That is, it must be said that it is quite delicate to judge that the invention material has an action and an effect capable of significantly differentiating from other known materials at least near this lower limit. On the contrary, the present invention is characterized by the effect that the desired numerical values can be sufficiently maintained without depending on a special additive component as in the prior art.

【0014】次に各成分的な限定理由を成分別に説明す
る。Cはオーステナイト相の安定化元素であり高マンガ
ン非磁性材には不可欠の成分である。ただ本発明の目的
の一つである厚肉の鋳造品であっても所定の平均熱膨張
係数αを維持するには、0.2%以下でなければならな
い。その理由としてCが0.2%を超えるとεマルテン
サイト相が減少し、平均熱膨張係数の点で不利となるこ
とによる。後に実施例で具体的に述べるように、従来、
オーステナイト相の一部が加工誘起変態などによってα
マルテンサイト相に変ると、平均熱膨張係数αが低下す
るという利点がある一方、透磁率μが増大するという不
利点が伴っていた。しかし、εマルテンサイト相が析出
すれば平均熱膨張係数αの低下という利点がそのまま残
される上、透磁率μについては悪影響を及ぼさないとい
うことが実験によって実証された。すなわち、通常のα
マルテンサイト相は体心立方格子であり磁性体であるの
に対し、εマルテンサイト相は非磁性の六方稠密格子で
ある点が透磁率に及ぼす影響に大きな違いを生む原因と
考えられる。εマルテンサイト相が少なくとも10%含
まれる組織が平均熱膨張係数αの下限を維持する要件で
あり、この組織はC:0.20%以下においてだけ得ら
れるという限定下にあるのである。Mnはオーステナイ
ト相の安定化元素であり非磁性体とし、かつ低平均熱膨
張係数とするためには不可欠の元素であるが、過剰な配
分は鋳造性を低下させ、また添加量の増加に伴うだけの
効果が発現しなくなるので下限は15%、上限は前記の
理由で35%としている。Siは脱酸材として、また溶
湯の流動性を保持して鋳造性を高めるために必要である
が、過剰に配分するときは靱性を低下させる性質がある
ので1.0%以下に制限する。Crは強度、耐食性を向
上させる有効元素であるが、過剰に配分するとフェライ
ト相を形成して透磁率を高くするので、上限を9.0%
に制限した。しかしC、Mnとの相乗作用によって平均
熱膨張係数αを制限値以下に抑制するために少なくとも
3.0%の含有が必須である。Pは0.1%を超えると
溶接部の靱性が甚だしく低下するので、この数値が上限
である。SはMnが脱硫材として作用するとMnSとな
るが、余りに大量に含有するとこのMnSが介在物とし
て多くなり過ぎて、延性の低下を誘発し材質的な劣化を
起こすので、0.05%を上限とする。
Next, the reasons for limiting each component will be described for each component. C is a stabilizing element of the austenite phase and is an essential component in the high manganese non-magnetic material. However, even in the case of a thick cast product, which is one of the objects of the present invention, in order to maintain a predetermined average thermal expansion coefficient α, it must be 0.2% or less. The reason is that if C exceeds 0.2%, the ε-martensite phase decreases, which is disadvantageous in terms of average thermal expansion coefficient. Conventionally, as will be specifically described later in Examples,
Part of the austenite phase is
The change to the martensite phase has the advantage of decreasing the average coefficient of thermal expansion α, but has the disadvantage of increasing the magnetic permeability μ. However, it has been proved by experiments that the precipitation of the ε-martensite phase has the advantage of lowering the average thermal expansion coefficient α and that it does not adversely affect the magnetic permeability μ. That is, the normal α
The martensite phase is a body-centered cubic lattice and is a magnetic substance, whereas the ε-martensite phase is a non-magnetic hexagonal close-packed lattice, which is considered to cause a large difference in the effect on magnetic permeability. A structure containing at least 10% of ε-martensite phase is a requirement for maintaining the lower limit of the average thermal expansion coefficient α, and this structure is limited only when C: 0.20% or less. Mn is an element that stabilizes the austenite phase and is an indispensable element for making it a nonmagnetic material and having a low average thermal expansion coefficient, but excessive distribution lowers castability and is accompanied by an increase in the addition amount. Therefore, the lower limit is 15% and the upper limit is 35% for the above reason. Si is necessary as a deoxidizing material and for maintaining the fluidity of the molten metal to enhance the castability, but since it has the property of lowering the toughness when it is excessively distributed, it is limited to 1.0% or less. Cr is an effective element that improves strength and corrosion resistance, but if it is distributed excessively, it forms a ferrite phase to increase the magnetic permeability, so the upper limit is 9.0%.
Limited to. However, the content of at least 3.0% is essential in order to suppress the average thermal expansion coefficient α to be equal to or less than the limit value by the synergistic action with C and Mn. If the P content exceeds 0.1%, the toughness of the welded portion will be significantly lowered, so this value is the upper limit. Sn becomes MnS when Mn acts as a desulfurizing material, but if it is contained in an excessively large amount, this MnS becomes too much as inclusions, leading to a decrease in ductility and deterioration of the material. And

【0015】[0015]

【実施例】図1はいわゆるシェフラー(Schaeff
ler)による溶着ステンレス鋼の組織状態図であり、
横軸にCr当量、縦軸にNi当量を目盛っている。本発
明における成分範囲の限定は、安定したオーステナイト
相の維持から出発したのではなくて、逆に大きな平均熱
膨張係数を持つオーステナイト相の一部を他の組織に置
換して平均熱膨張係数を低下させるという着想から出発
している。すなわち既存のステンレス鋼の状態図からテ
ストを繰り返し、チャンピオンデータとして図中のB点
を探り当てた。最良であるB点をベースとしてCr当量
とNi当量とを図2のように増減して透磁率μと平均熱
膨張係数α、および機械的な諸性質を実験して表1、表
2、図3、図4をそれぞれ得た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a so-called Schaeff.
FIG. 3 is a structural state diagram of a welded stainless steel according to FIG.
The horizontal axis shows the Cr equivalent and the vertical axis shows the Ni equivalent. The limitation of the component range in the present invention does not start from the maintenance of a stable austenite phase, but on the contrary, a part of the austenite phase having a large average thermal expansion coefficient is replaced with another structure to increase the average thermal expansion coefficient. The idea is to lower it. That is, the test was repeated from the state diagram of the existing stainless steel, and the point B in the diagram was found as champion data. Based on the best point B, Cr equivalent and Ni equivalent are increased or decreased as shown in FIG. 2 to conduct an experiment on the magnetic permeability μ, the average thermal expansion coefficient α, and various mechanical properties. 3 and FIG. 4 were obtained respectively.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】この場合、もちろんNi当量といってもN
i自体は含まれず当量の変数として一番大きな影響を与
えるのはC%である。Crの上昇とともに平均熱膨張係
数αも透磁率μも上昇するので、Cr量を最適の5.5
%と一定に揃え、続いてNi当量、すなわちC%を変え
て平均熱膨張係数αと透磁率μを測定していき、得られ
た数値を纏めたのが各表、各図である。平均熱膨張係数
αはC%の増加とともに上昇しB点(C:0.14%)
における平均熱膨張係数αが10.71×10-6/℃、
K点(C:0.26%)における平均熱膨張係数αが1
1.12×10-6/℃を記録した。他の成分との相関が
あるにしてもC量に関してはK点においてもなお十分に
目的とする平均熱膨張係数αが12×10-6/℃以下の
要求を満足するが、顕微鏡組織の観察からC:0.2%
以下に制限した。すなわち、図5はB点、図6はK点、
図7はM点のそれぞれの顕微鏡写真である。倍率はすべ
て100倍の撮影であり、腐食液はチオ硫酸ソーダ飽和
溶液と異性重亜硫酸カリの混合液である。白地がオース
テナイト相であって図5(B点)についてだけεマルテ
ンサイト相の析出が認められ、その面積の割合は約15
〜20%程度に上っている。しかし、K点においてはこ
のεマルテンサイト相は視野から全く消失しているの
で、他の成分をほぼ揃えている以上、この差は明らかに
C%の差によってのみ生じたものと解釈するのが妥当で
ある。よってC%限定の有力な根拠となった。
In this case, of course, the Ni equivalent is N
i itself is not included and C% has the greatest effect as a variable of the equivalent. Since the average thermal expansion coefficient α and the magnetic permeability μ both increase with the increase of Cr, the Cr amount is set to the optimum 5.5.
%, And then the Ni equivalent, that is, C% was changed, and the average thermal expansion coefficient α and the magnetic permeability μ were measured, and the obtained values are summarized in the tables and figures. The average coefficient of thermal expansion α rises with the increase of C%, and point B (C: 0.14%)
Has an average coefficient of thermal expansion α of 10.71 × 10 −6 / ° C.,
The average thermal expansion coefficient α at the K point (C: 0.26%) is 1
A recording of 1.12 x 10 -6 / ° C was recorded. Even if there is a correlation with other components, the amount of C still satisfies the target average thermal expansion coefficient α of 12 × 10 -6 / ° C or less at the point K, but observation of the microscopic structure To C: 0.2%
Limited to: That is, FIG. 5 shows point B, FIG. 6 shows point K,
FIG. 7 is a micrograph of each of M points. All magnifications were taken at 100 times, and the corrosive liquid was a mixed solution of saturated sodium thiosulfate solution and potassium bisulfite isomer. Precipitation of ε-martensite phase was observed only in FIG. 5 (point B) with a white austenite phase, and the area ratio was about 15
It has risen to about 20%. However, at the point K, this ε-martensite phase has completely disappeared from the visual field. Therefore, since the other components are almost aligned, it can be interpreted that this difference is apparently caused only by the difference in C%. It is reasonable. Therefore, it became a strong basis for C% limitation.

【0019】図8はチャンピオンデータであったB点の
製品肉厚に関する変動を測定し図表に纏めたものであ
る。図によれば鋳放し品の鋳肌表面から製品内部へ進行
するにつれて、結晶粒度の粗大化は避けられないから引
張力や伸びなどの機械的な材力の低下は否定できない
が、耐力はほぼ一定値を保持できる上、平均熱膨張係数
αについてもほぼ同一のレベルに位置しているので、少
なくともこの実験で確認したように、肉厚120mm以
内の大型製品に適用しても十分信頼して使用に供するこ
とができることを示している。因みに一般の高マンガン
非磁性材は水靱処理を必ず施すが、肉厚が大きくなるに
つれて完全に内部までの水靱効果が届かなくって組織の
不均一や歪曲、割れの原因となり易いので、一般的にそ
の肉厚は50mm以下とすることが望ましいとされてい
る。
FIG. 8 is a table in which changes in the product thickness at the point B, which is the champion data, are measured and summarized. According to the figure, as the casting surface of the as-cast product progresses from the surface to the inside of the product, coarsening of the grain size is unavoidable, so a reduction in mechanical strength such as tensile strength and elongation cannot be denied, but the yield strength is almost Since it can hold a constant value and the average coefficient of thermal expansion α is located at almost the same level, at least as confirmed in this experiment, it is sufficiently reliable even when applied to large-sized products with a wall thickness of 120 mm or less. It indicates that it can be used. By the way, general high-manganese non-magnetic materials are always subjected to water toughness treatment, but as the wall thickness increases, the water toughness effect does not reach completely to the inside, and it is easy to cause unevenness, distortion, and cracking of the structure. It is desirable that the wall thickness be 50 mm or less.

【0020】[0020]

【発明の効果】本発明は以上に述べたとおり、高マンガ
ン系の非磁性材であるが、Mn、Cr以外の特殊な添加
成分がなく、微妙な低含有成分の調整という技術的な難
しさが不要であり溶解条件による影響が少なくて済む。
成形は鋳造法によるから鋳造方案さえ適切であれば、か
なり複雑な形状であっても、或いはかなり大型の部材で
あっても正確な寸法で欠陥のない部材を経済的に製造す
ることができる。塑性変形を伴う成形ではないから結晶
粒の方向性が少なく材力の方向による大きな偏差も現わ
れない。塑性変形時の透磁率の低下という課題とも無縁
であり,それだけ成分的な細かい調整から免れる。ま
た、熱処理を不要とするので脱炭層の形成が少なく、そ
の除去のための煩瑣な手仕上や機械加工が最小限に抑え
られる。組織的に見ても平均熱膨張係数の低レベルの維
持に関して明らかに有利である。その割りに透磁率に関
しては従来の非磁性材に比べても優秀であって、たとえ
ば前記のB点で1.005であるから従来標準とされて
いる1.1乃至1.05に対しても桁違いの低い数値を
記録している。一方、鋳造体であり、熱処理不要である
ことから製品肉厚についても他の非磁性材よりも制約が
少なく、少なくとも120mmの製品肉厚を適用しても
信頼できる平均熱膨張係数、透磁率 、耐力を具えてい
る。このような性質は従来技術の高マンガン系の非磁性
材では到底達し得ない限度を超えたものである。
As described above, the present invention is a high-manganese non-magnetic material, but there is no special additive component other than Mn and Cr, and it is technically difficult to adjust a low content component delicately. Is unnecessary and the influence of dissolution conditions is small.
Since the molding is performed by a casting method, it is possible to economically manufacture a defect-free member having an accurate dimension even if the member has a considerably complicated shape or a member having a considerably large size as long as a casting method is suitable. Since the forming is not accompanied by plastic deformation, the directionality of the crystal grains is small and no large deviation due to the direction of the material force appears. It is also free from the problem of reduced magnetic permeability during plastic deformation, and is accordingly free from fine component adjustments. Further, since the heat treatment is unnecessary, the formation of the decarburized layer is small, and the troublesome finishing and machining for removing the decarburized layer are minimized. From a systematic perspective, there is a clear advantage in maintaining a low level of average coefficient of thermal expansion. On the other hand, the magnetic permeability is superior to the conventional non-magnetic material. For example, since the point B is 1.005, the conventional standard is 1.1 to 1.05. It records low figures that are orders of magnitude lower. On the other hand, since it is a cast body and heat treatment is not required, the product thickness is less restricted than other non-magnetic materials, and even if a product thickness of at least 120 mm is applied, a reliable average thermal expansion coefficient, magnetic permeability, It has the strength. Such a property exceeds the limit that cannot be reached by the conventional high manganese non-magnetic material.

【図面の簡単な説明】[Brief description of drawings]

【図1】シェフラーの組織状態図上へ本発明実施例をプ
ロットした図表である。
FIG. 1 is a chart in which an embodiment of the present invention is plotted on a Schaeffler tissue phase diagram.

【図2】実験の経過を説明するフロー図である。FIG. 2 is a flowchart illustrating the progress of the experiment.

【図3】C%と諸性質の変動を示す図表である。FIG. 3 is a chart showing changes in C% and various properties.

【図4】Cr%と諸性質の変動を示す図表である。FIG. 4 is a chart showing changes in Cr% and various properties.

【図5】B点における金属組織の顕微鏡写真である。FIG. 5 is a micrograph of a metal structure at point B.

【図6】K点における金属組織の顕微鏡写真である。FIG. 6 is a micrograph of a metal structure at point K.

【図7】M点における金属組織の顕微鏡写真である。FIG. 7 is a micrograph of a metal structure at point M.

【図8】大肉厚品の鋳肌面から内部へ進行した深さと諸
性質の変動の関連を示す図表である。
FIG. 8 is a chart showing the relationship between the depth of the large-walled thick product that has progressed from the surface of the casting to the inside and changes in various properties.

フロントページの続き (72)発明者 松尾 宏人 愛知県名古屋市瑞穂区川澄町4丁目9番地 (72)発明者 川本 岩次 愛知県名古屋市港区新川町2丁目1番の1 (72)発明者 山森 五夫 愛知県豊田市若林東町宮間15番地4Front page continued (72) Inventor Hiroto Matsuo 4-9 Kawasumi-cho, Mizuho-ku, Nagoya, Aichi (72) Inventor Iwaji Kawamoto 2-1-1 Shinkawa-cho, Minato-ku, Aichi (72) Invention Person Yamamori Gou 15 Wakabayashi Higashi-cho Miyama 15-4 Toyota City, Aichi Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.2%以下、Si:1.0%以
下、Mn:15〜35%、P:0.1%以下、S:0.
05%以下、Cr:3.0〜9.0%を含有し、残部が
鉄および不可避的不純物からなり、25〜100℃の温
度範囲における平均熱膨張係数αが12×10-6/℃以
下であり鋳放し状態で使用することを特徴とする高マン
ガン非磁性鋳造体。
1. C: 0.2% or less, Si: 1.0% or less, Mn: 15 to 35%, P: 0.1% or less, S: 0.
05% or less, Cr: 3.0 to 9.0%, with the balance being iron and unavoidable impurities, and having an average thermal expansion coefficient α in the temperature range of 25 to 100 ° C. of 12 × 10 −6 / ° C. or less. A high-manganese non-magnetic cast body characterized by being used as cast.
【請求項2】 請求項1において、鋳放し状態の顕微鏡
組織がεマルテンサイト相を少なくとも10%析出して
いることを特徴とする高マンガン非磁性鋳造体。
2. The high-manganese nonmagnetic cast body according to claim 1, wherein the as-cast microstructure has at least 10% of ε-martensite phase precipitated.
【請求項3】 請求項1または2において、鋳造肉厚が
少なくとも120mmまでは前記諸条件が成立することを
特徴とする高マンガン非磁性鋳造体。
3. The high manganese non-magnetic cast body according to claim 1, wherein the above conditions are satisfied up to a casting thickness of at least 120 mm.
JP15438093A 1993-05-31 1993-05-31 High manganese non-magnetic casting Expired - Fee Related JP2646061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15438093A JP2646061B2 (en) 1993-05-31 1993-05-31 High manganese non-magnetic casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15438093A JP2646061B2 (en) 1993-05-31 1993-05-31 High manganese non-magnetic casting

Publications (2)

Publication Number Publication Date
JPH06336651A true JPH06336651A (en) 1994-12-06
JP2646061B2 JP2646061B2 (en) 1997-08-25

Family

ID=15582885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15438093A Expired - Fee Related JP2646061B2 (en) 1993-05-31 1993-05-31 High manganese non-magnetic casting

Country Status (1)

Country Link
JP (1) JP2646061B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146959A1 (en) * 2012-03-29 2013-10-03 株式会社日本製鋼所 Motor rotor support and manufacturing method therefor
WO2013146960A1 (en) * 2012-03-29 2013-10-03 株式会社日本製鋼所 Motor rotor support and manufacturing method therefor
JP2019519675A (en) * 2016-05-02 2019-07-11 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company In-situ dissimilar metal welding technology for enhanced wear resistant high manganese steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146959A1 (en) * 2012-03-29 2013-10-03 株式会社日本製鋼所 Motor rotor support and manufacturing method therefor
WO2013146960A1 (en) * 2012-03-29 2013-10-03 株式会社日本製鋼所 Motor rotor support and manufacturing method therefor
JP2013204144A (en) * 2012-03-29 2013-10-07 Japan Steel Works Ltd:The Motor rotor support and method for manufacturing the same
JP2019519675A (en) * 2016-05-02 2019-07-11 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company In-situ dissimilar metal welding technology for enhanced wear resistant high manganese steel

Also Published As

Publication number Publication date
JP2646061B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
KR101889187B1 (en) Nonmagnetic steel having superior hot workability and method for manufacturing the same
JP5668081B2 (en) Austenitic steel with excellent ductility
CN110592487B (en) 700 MPa-grade austenite ferrite dual-phase low-density cast steel and preparation method thereof
CN109097680B (en) Method for manufacturing high-manganese high-aluminum nonmagnetic steel plate smelted by 50t intermediate frequency induction furnace
KR20210134702A (en) Hot working die steel, its heat treatment method and hot working die
CA2353407C (en) Method of making an as-rolled multi-purpose weathering steel plate and product therefrom
JP2009503257A (en) Corrosion resistance, cold formability, machinability high strength martensitic stainless steel
JPS6130017B2 (en)
CA3019483A1 (en) High-strength steel material and production method therefor
US5415711A (en) High-strength spring steels and method of producing the same
WO2000046416A1 (en) Method of making a weathering grade plate and product therefrom
JP5406686B2 (en) Non-magnetic steel
JP7438967B2 (en) High strength austenitic high manganese steel and manufacturing method thereof
JPH06322440A (en) Method for rolling high manganese nonmagnetic steel slab
JP2748843B2 (en) High manganese non-magnetic casting
JPH06336651A (en) High manganese nonmagnetic cast body
JPH0254417B2 (en)
CN104862572B (en) The high-alloy steel and its manufacture method of a kind of high-strength high-elongation ratio
JPH06100935A (en) Production of martensitic stainless steel type seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2018111847A (en) Nonoriented electromagnetic steel sheet
KR910002941B1 (en) Making method of a hot rolled sheet excellant in tension and in tenacity for oil well-pipes
KR100946068B1 (en) High strength hypereutectoid steel and method for manufacturing hypereutectoid steel rod wire using the same
KR20160078533A (en) Medium manganese steel sheet having high-elongation and high-strength and manufacturing method for the same
JPH0313544A (en) High-mn nonmagnetic reinforcing steel bar and its production
KR20100047007A (en) Hot-rolled steel sheet with good formability, and method for producing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees