JP2013201578A - Transmission line response estimator, and broadcast receiver - Google Patents

Transmission line response estimator, and broadcast receiver Download PDF

Info

Publication number
JP2013201578A
JP2013201578A JP2012068323A JP2012068323A JP2013201578A JP 2013201578 A JP2013201578 A JP 2013201578A JP 2012068323 A JP2012068323 A JP 2012068323A JP 2012068323 A JP2012068323 A JP 2012068323A JP 2013201578 A JP2013201578 A JP 2013201578A
Authority
JP
Japan
Prior art keywords
unit
fft
output
signal
fft window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012068323A
Other languages
Japanese (ja)
Inventor
Takashi Seki
隆史 関
Atsushi Mitsuki
淳 三ッ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012068323A priority Critical patent/JP2013201578A/en
Priority to CN201210313270.9A priority patent/CN103326970B/en
Publication of JP2013201578A publication Critical patent/JP2013201578A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Noise Elimination (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transmission line response estimator capable of enlarging a delay time range of transmission line response estimation, and suppressing degradation by multi-pass waves exceeding a time range capable of estimation, and a broadcast receiver.SOLUTION: The transmission line response estimator includes: a blind section for blinding reception signals; an FFT section for transforming blind section output to a frequency domain; a known pattern signal generation section for generating frequency domain signals of a known pattern; a transmission line response calculation section for calculating a transmission line response from FFT section output and known pattern frequency domain signals; an IFFT section for transforming output of the transmission line response calculation section to a time domain; an FFT window control section for generating a plurality of window signals of different widths or different widths and shift amounts for the blind section; a reception quality detection section for detecting reception quality using output of an equalization section for equalizing the reception signals in output of the IFFT section and thereafter; and an FFT window determination section for determining one with the excellent reception quality from a plurality of FFT windows on the basis of the reception quality detected for each of the plurality of different window signals.

Description

本発明の実施形態は、既知パターンが周期的に挿入されたフレーム構成を有する無線システムの受信機に使用される伝送路応答推定器、及び放送受信装置に関する。   Embodiments described herein relate generally to a transmission path response estimator and a broadcast receiving apparatus used in a receiver of a wireless system having a frame configuration in which known patterns are periodically inserted.

無線伝送におけるマルチパス伝送路に基づくマルチパス歪などの補償のために、既知パターンを周期的に伝送して伝送路応答推定を行う無線システムがある。   In order to compensate for multipath distortion and the like based on a multipath transmission path in wireless transmission, there is a wireless system that performs transmission path response estimation by periodically transmitting a known pattern.

中華人民共和国(以下、中国と略記)の地上デジタル放送システムにおいて、伝送フレームは、PN系列などの既知パターンのフレームヘッダ(以下、FH)と、データを伝送するフレームボディ(以下、FB)から構成される。FHの長さ(シンボル数)は420、595、945の3種類が規定され、FBの長さは3780である。このような信号を受信する受信装置において、既知パターンを用いて周波数領域で伝送路応答を推定する技術が、例えば特許文献1に記載されている。   In a digital terrestrial broadcasting system in the People's Republic of China (hereinafter abbreviated as China), a transmission frame is composed of a frame header (hereinafter referred to as FH) having a known pattern such as a PN sequence and a frame body (hereinafter referred to as FB) for transmitting data. Is done. Three types of FH length (number of symbols) are defined, 420, 595, and 945, and the length of FB is 3780. For example, Patent Document 1 discloses a technique for estimating a transmission line response in a frequency domain using a known pattern in a receiving apparatus that receives such a signal.

特許文献1において、伝送路応答を推定する伝送路応答推定器は、受信信号を周波数領域に変換する第1のFFT部と、既知パターン信号を周波数領域に変換する第2のFFT部と、第1のFFT部の出力を第2のFFT部の出力で除算することで伝送路応答を算出する伝送路応答算出部と、伝送路応答算出部の出力信号を時間領域に変換するIFFT部と、IFFT部の出力から遅延時間を推定する遅延時間推定部と、遅延時間推定部で推定された遅延時間に応じてFFT窓位置とFFTサイズを決定するFFTパラメータ決定部とを備えている。第1,第2のFFT部およびIFFT部はFFTパラメータ決定部106で決定されたFFT窓位置とFFTサイズに基づいて処理が実行される。   In Patent Document 1, a channel response estimator that estimates a channel response includes a first FFT unit that converts a received signal into a frequency domain, a second FFT unit that converts a known pattern signal into a frequency domain, A transmission path response calculation section that calculates a transmission path response by dividing the output of the first FFT section by the output of the second FFT section; an IFFT section that converts the output signal of the transmission path response calculation section into a time domain; A delay time estimation unit that estimates a delay time from the output of the IFFT unit, and an FFT parameter determination unit that determines an FFT window position and an FFT size according to the delay time estimated by the delay time estimation unit. The first and second FFT units and IFFT units are processed based on the FFT window position and FFT size determined by the FFT parameter determination unit 106.

そして、伝送路応答推定におけるFFTサイズの最大値は、想定するマルチパス波(遅延波)の時間的な広がり(以下、遅延広がり)で決定される。また、FFT窓位置は遅延した遅延波のFHを含むように設定される。   The maximum value of the FFT size in the channel response estimation is determined by the temporal spread (hereinafter referred to as delay spread) of the assumed multipath wave (delayed wave). The FFT window position is set so as to include the delayed delayed wave FH.

伝送路応答推定の遅延時間範囲を広げようとした場合、FFTサイズを大きくして長時間の遅延(以下、長遅延)のFHまで含めてFFTすることが必要である。従来は、最大2048点のFFTを用いているが、4096点FFTを用いれば伝送路応答推定の遅延時間範囲を拡大することができる。   When trying to widen the delay time range for channel response estimation, it is necessary to increase the FFT size and perform FFT including long delay (hereinafter referred to as long delay) FH. Conventionally, an FFT with a maximum of 2048 points is used, but if a 4096-point FFT is used, the delay time range for channel response estimation can be expanded.

従って、既知パターンが周期的に挿入されたフレーム構成の信号に対して、周波数領域で伝送路応答を推定する回路において、伝送路応答推定の遅延時間範囲を拡大でき、かつ推定可能な時間範囲を超えたマルチパス波による劣化を抑えることができ、さらに雑音の影響を少なくすることもできる伝送路応答推定器の実現が要望される。   Therefore, in a circuit that estimates a channel response in the frequency domain for a frame-structured signal in which known patterns are periodically inserted, the delay time range for channel response estimation can be expanded, and There is a demand for the realization of a transmission path response estimator that can suppress deterioration due to an excess multipath wave and can also reduce the influence of noise.

特開2011−35790号公報JP 2011-35790 A

本発明が解決しようとする課題は、既知パターンが周期的に挿入されたフレーム構成の信号に対して、周波数領域で伝送路応答を推定する回路において、伝送路応答推定の遅延時間範囲を拡大でき、かつ推定可能な時間範囲を超えたマルチパス波による劣化を抑えることができ、さらに雑音の影響を少なくすることもできる伝送路応答推定器、及び放送受信装置を提供することである。   The problem to be solved by the present invention is that the delay time range of channel response estimation can be expanded in a circuit that estimates the channel response in the frequency domain for a frame-structured signal in which known patterns are periodically inserted. It is another object of the present invention to provide a transmission path response estimator and a broadcast receiving apparatus that can suppress deterioration due to multipath waves exceeding an estimable time range and can further reduce the influence of noise.

本発明の一実施形態の等化装置は、既知パターン信号とデータ信号が周期的に伝送されるフレーム構成の信号を受信する受信機の伝送路応答推定器において、受信信号を窓掛けする窓掛け部と、前記窓掛け部の出力を周波数領域に変換するFFT部と、既知パターンの周波数領域信号を生成する既知パターン信号生成部と、前記FFT部の出力と前記既知パターンの周波数領域信号から伝送路応答を算出する伝送路応答算出部と、前記伝送路応答算出部の出力を時間領域に変換するIFFT部と、前記窓掛け部に対して幅、または幅とシフト量の異なる複数のFFT窓を発生して前記窓掛け部に供給し、FFT窓判定された1つのFFT窓を前記窓掛け部に設定するFFT窓制御部と、前記IFFT部の出力にて受信信号を等化する等化部以降の復調出力を用いて受信品質を検出する受信品質検出部と、異なる複数の窓信号それぞれに対して、前記受信品質検出部で検出したそれぞれの受信品質に基づいて複数のFFT窓の中から受信品質の良好な1つを決定し、前記FFT窓制御部に通知するFFT窓判定部と、を具備する。   An equalization apparatus according to an embodiment of the present invention provides a windowing method for windowing a received signal in a transmission path response estimator of a receiver that receives a signal having a frame structure in which a known pattern signal and a data signal are periodically transmitted. Unit, an FFT unit that converts the output of the windowing unit into a frequency domain, a known pattern signal generation unit that generates a frequency domain signal of a known pattern, and an output from the FFT unit and a frequency domain signal of the known pattern A transmission path response calculation section for calculating a path response; an IFFT section for converting the output of the transmission path response calculation section into a time domain; and a plurality of FFT windows having different widths or widths and shift amounts with respect to the windowing section Is generated and supplied to the windowing unit, and an FFT window control unit that sets one FFT window determined as the FFT window to the windowing unit, and equalization of the received signal at the output of the IFFT unit Part A reception quality detection unit that detects reception quality using the demodulated output of the received signal, and receives a plurality of different window signals from a plurality of FFT windows based on the reception quality detected by the reception quality detection unit. An FFT window determination unit that determines one having good quality and notifies the FFT window control unit of the one.

本発明の第1の実施形態の伝送路応答推定器のブロック図。The block diagram of the transmission-line response estimator of the 1st Embodiment of this invention. 第1の実施形態のFFT窓制御の説明図。Explanatory drawing of FFT window control of 1st Embodiment. 本発明の第2の実施形態の伝送路応答推定器のブロック図。The block diagram of the transmission line response estimator of the 2nd Embodiment of this invention. 第2の実施形態のFFT窓制御の説明図。Explanatory drawing of the FFT window control of 2nd Embodiment. 本発明の第3の実施形態の伝送路応答推定器のブロック図。The block diagram of the transmission line response estimator of the 3rd Embodiment of this invention. 本発明の第4の実施形態の伝送路応答推定器のブロック図。The block diagram of the transmission line response estimator of the 4th Embodiment of this invention. 本発明の第5の実施形態の伝送路応答推定器のブロック図。The block diagram of the transmission-line response estimator of the 5th Embodiment of this invention. 本発明の第6の実施形態の伝送路応答推定器のブロック図。The block diagram of the transmission line response estimator of the 6th Embodiment of this invention. 本発明の一実施形態に係る放送受信装置のブロック図。The block diagram of the broadcast receiver which concerns on one Embodiment of this invention. 中国の地上デジタル放送システムにおける伝送フレーム構成(時間領域信号)図。Transmission frame configuration (time domain signal) diagram in a digital terrestrial broadcasting system in China. 4096点FFTを用いたときの課題及びその解決策を説明する図。The figure explaining the subject at the time of using 4096 point FFT, and its solution.

以下、本発明の実施の形態について図面を参照して説明する。
本発明の実施形態を説明する前に、図10を参照して中国の地上デジタル放送システムにおける伝送フレーム構成を説明する。
伝送フレームは、PN系列などの既知パターンのフレームヘッダ(FH)と、データを伝送するフレームボディ(FB)から構成され、FHの長さ(シンボル数)は420、595、945の3種類が規定され、データ部分のFBの長さは3780である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Before describing an embodiment of the present invention, a transmission frame configuration in a digital terrestrial broadcasting system in China will be described with reference to FIG.
A transmission frame is composed of a frame header (FH) of a known pattern such as a PN sequence and a frame body (FB) for transmitting data, and the length (number of symbols) of FH is defined by three types: 420, 595, and 945. The FB length of the data portion is 3780.

本発明の実施形態の特徴は、伝送路応答推定におけるFFT窓の制御に関するものであることから、以下の実施形態では、FFT/IFFTサイズは例えば4096点に固定として、FFT窓の幅や位置の設定のための構成及びその動作について説明する。なお、受信信号の遅延広がりが狭くFFT窓を狭くできる場合は、FFT窓幅の受信信号が収まる範囲でFFTサイズも小さくできることは明らかである。   Since the feature of the embodiment of the present invention relates to the control of the FFT window in the transmission line response estimation, in the following embodiment, the FFT / IFFT size is fixed at, for example, 4096 points, and the width and position of the FFT window are A configuration for setting and its operation will be described. Note that when the delay spread of the received signal is narrow and the FFT window can be narrowed, it is clear that the FFT size can be reduced within a range in which the received signal having the FFT window width can be accommodated.

[第1の実施形態]
図1は本発明の第1の実施形態の伝送路応答推定器のブロック図で、図2は第1の実施形態のFFT窓制御の説明図である。
図1において、伝送路応答推定器10Aは、既知パターン信号とデータ信号が周期的に伝送されるフレーム構成の信号を受信する受信機内に設けられている。具体的には、伝送路応答推定器10Aは、例えば図10の放送受信装置の復調回路5における等化装置4内に等化部19及び誤り訂正部20と共に設けられている。すなわち、伝送路応答推定器10Aは、等化部19及び誤り訂正部20と共に等化装置4(図9参照)を構成している。
[First Embodiment]
FIG. 1 is a block diagram of a transmission path response estimator according to the first embodiment of the present invention, and FIG. 2 is an explanatory diagram of FFT window control according to the first embodiment.
In FIG. 1, a channel response estimator 10A is provided in a receiver that receives a frame-structured signal in which a known pattern signal and a data signal are periodically transmitted. Specifically, the transmission path response estimator 10A is provided together with the equalization unit 19 and the error correction unit 20 in the equalization device 4 in the demodulation circuit 5 of the broadcast reception device in FIG. 10, for example. That is, the channel response estimator 10A constitutes the equalization apparatus 4 (see FIG. 9) together with the equalization unit 19 and the error correction unit 20.

伝送路応答推定器10Aは、窓掛け部11と、第1のFFT部12と、第2のFFT部13と、伝送路応答算出部14と、IFFT部15と、FFT窓幅制御部16と、受信品質検出部17と、FFT窓判定部18と、を備えている。   The transmission path response estimator 10A includes a windowing section 11, a first FFT section 12, a second FFT section 13, a transmission path response calculation section 14, an IFFT section 15, and an FFT window width control section 16. The reception quality detection unit 17 and the FFT window determination unit 18 are provided.

窓掛け部11は受信信号の既知パターンを含む範囲で窓掛けする。
第1のFFT部12は窓掛け部11の出力を周波数領域に変換する。
第2のFFT部13は既知パターン発生部21からの既知パターンを周波数領域に変換する。なお、既知パターン発生部21及び第2のFFT部13は、既知パターンの周波数領域信号を生成する既知パターン信号生成部を構成している。既知パターン信号生成部は予め周波数領域の既知パターンを用意しておくものであってもよい。
The windowing unit 11 performs windowing in a range including a known pattern of the received signal.
The first FFT unit 12 converts the output of the windowing unit 11 into the frequency domain.
The second FFT unit 13 converts the known pattern from the known pattern generation unit 21 into the frequency domain. The known pattern generation unit 21 and the second FFT unit 13 constitute a known pattern signal generation unit that generates a frequency domain signal of a known pattern. The known pattern signal generation unit may prepare a known pattern in the frequency domain in advance.

伝送路応答算出部14は第1のFFT部12の出力と第2のFFT部13の出力から伝送路応答を算出する。
IFFT部15は伝送路応答算出部14の出力を時間領域に変換する。
FFT窓制御部としてのFFT窓幅制御部16は、窓掛け部11に対して幅の異なる複数のFFT窓を発生して窓掛け部11に供給し、FFT窓判定部18で判定した1つのFFT窓を窓掛け部11に設定する。
The transmission line response calculation unit 14 calculates a transmission line response from the output of the first FFT unit 12 and the output of the second FFT unit 13.
The IFFT unit 15 converts the output of the transmission path response calculation unit 14 into the time domain.
The FFT window width control unit 16 serving as the FFT window control unit generates a plurality of FFT windows having different widths with respect to the windowing unit 11, supplies the FFT windows to the windowing unit 11, and determines one FFT window determination unit 18 to determine The FFT window is set in the window hanging portion 11.

受信品質検出部17はIFFT部15の出力にて受信信号を等化する等化部19以降の復調出力を用いて受信品質を検出する。
FFT窓判定部18は異なる複数の窓信号それぞれに対して、受信品質検出部17で検出したそれぞれの受信品質に基づいて複数のFFT窓の中から受信品質の良好な1つを決定し、FFT窓幅制御部16に通知する。
上記の構成において、FFT窓幅制御部16は、幅の異なる複数のFFT窓を発生する機能を備えている。受信信号はFFT窓幅制御部16から供給されるFFT窓が掛けられて、FFT窓幅以外は0として第1のFFT部12に入力される。
The reception quality detection unit 17 detects the reception quality using the demodulated output from the equalization unit 19 after equalizing the reception signal by the output of the IFFT unit 15.
For each of a plurality of different window signals, the FFT window determination unit 18 determines one of the plurality of FFT windows having good reception quality based on the reception quality detected by the reception quality detection unit 17, and performs FFT. The window width control unit 16 is notified.
In the above configuration, the FFT window width control unit 16 has a function of generating a plurality of FFT windows having different widths. The received signal is multiplied by an FFT window supplied from the FFT window width control unit 16 and is input to the first FFT unit 12 as 0 except for the FFT window width.

図2はFFT窓幅の切替えの例を示している。FFT窓幅の最小値は、受信信号のFHが収まるようにFH幅以上にする必要がある。マルチパス波(遅延波)がない場合は、FBによる干渉を防ぐためにできる限り狭くした方が良い。また、マルチパス波がある場合のFFT窓幅の最大値は、伝送路応答推定の遅延時間範囲を規定するものとなる。そこで、FFT窓幅の種類としては、例えば図2に示すように、最小(FH幅付近)、中間、最大(最大FFTサイズ付近)の3種類とする。なお、基準となる既知パターンの一部を伝送路応答推定に使う場合は、最小の窓幅もこれに合わせてさらに狭くすることができる。   FIG. 2 shows an example of switching the FFT window width. The minimum value of the FFT window width needs to be equal to or greater than the FH width so that the FH of the received signal can be accommodated. If there is no multipath wave (delayed wave), it is better to make it as narrow as possible to prevent interference due to FB. Further, the maximum value of the FFT window width when there is a multipath wave defines the delay time range for channel response estimation. Therefore, as the types of FFT window widths, for example, as shown in FIG. 2, there are three types of minimum (near the FH width), middle, and maximum (near the maximum FFT size). When a part of the reference known pattern is used for channel response estimation, the minimum window width can be further narrowed accordingly.

図2は受信信号にマルチパス波がない場合のFFT窓を示しているが、マルチパス波が存在する場合は受信電力から主波と判定した信号を基準としてFFT窓を規定する。   FIG. 2 shows the FFT window when there is no multipath wave in the received signal, but when there is a multipath wave, the FFT window is defined based on the signal determined as the main wave from the received power.

次に、FFT窓の決定方法について説明する。図1において、FFT窓幅制御部16は伝送路応答推定の開始時に幅の異なる複数のFFT窓(例えば窓1,2,3)を順次発生する。等化装置4は、それぞれのFFT窓に対して伝送路応答推定・等化・誤り訂正を行う。受信品質検出部17は、それぞれのFFT窓に対する等化出力または誤り訂正出力を用いて、受信品質を検出する。受信品質の検出には、等化出力と誤り訂正出力の両方を用いてもよい。   Next, a method for determining the FFT window will be described. In FIG. 1, an FFT window width control unit 16 sequentially generates a plurality of FFT windows (for example, windows 1, 2, and 3) having different widths at the start of channel response estimation. The equalizer 4 performs transmission path response estimation / equalization / error correction for each FFT window. The reception quality detection unit 17 detects reception quality using the equalized output or error correction output for each FFT window. For detection of reception quality, both equalized output and error correction output may be used.

受信品質の例としては、等化出力であれば変調誤差比 (MER)、誤り訂正出力であればエラー率がある。FFT窓判定部18は、複数の窓幅のうちの受信品質が良好な1つのFFT窓、特に受信品質が最良となるFFT窓を判定する。FFT窓判定部18の判定が終了した後は、FFT窓幅制御部16は判定されたFFT窓を窓掛け部11に設定することで、設定されたFFT窓を用いて伝送路応答算出部14で伝送路応答推定が行われる。   Examples of reception quality include modulation error ratio (MER) for equalized output and error rate for error correction output. The FFT window determination unit 18 determines one FFT window with good reception quality among the plurality of window widths, in particular, an FFT window with the best reception quality. After the determination by the FFT window determination unit 18 is completed, the FFT window width control unit 16 sets the determined FFT window in the windowing unit 11, thereby using the set FFT window and the transmission path response calculation unit 14. The transmission path response is estimated at.

本実施形態では、上記窓掛け部に対する好適なFFT窓の判定(決定)及び設定は、受信機の電源投入時などの受信開始前に初期的な設定として行われることが好ましい。なお、FFT窓の判定及び設定が行われた後も、受信品質検出を継続し、受信品質が所定値よりも悪くなった場合には、FFT窓判定部18は受信状態が変化したと判定しFFT窓決定を再度行うように構成することもできる。但し、1つの伝送路応答推定器10Aを、等化のための伝送路応答推定とFFT窓の推定との両方に用いているために、両方の推定を安定的に行い、受信状況の変化への追従性を向上させるには、図7の第5の実施形態で述べるように2つの伝送路応答推定器を用いた構成とすることも可能である。  In the present embodiment, it is preferable that determination (determination) and setting of a suitable FFT window for the window hanging unit is performed as an initial setting before starting reception such as when the receiver is turned on. Even after the FFT window is determined and set, the reception quality detection is continued, and if the reception quality becomes worse than a predetermined value, the FFT window determination unit 18 determines that the reception state has changed. It can also be configured to perform the FFT window determination again. However, since one channel response estimator 10A is used for both channel response estimation for equalization and FFT window estimation, both estimations are performed stably, and the reception situation changes. In order to improve the following capability, it is possible to adopt a configuration using two transmission path response estimators as described in the fifth embodiment of FIG.

ここで、背景技術で述べた4096点FFTを用いたときの問題点を説明する。すなわち、4096点FFTのように広い範囲でFFTを行う場合、以下の課題がある。
図11は、受信信号に主波と遅延波の2波が存在する場合を示す。(a)は遅延波の遅延時間が伝送フレーム長(FHとFBの和)の1/2を超えているが4096点のFFT窓内である場合、(b)は4096点のFFT窓を超える場合を示す。なお、主波とこれを遅延した遅延波との関係において、図示斜線を施したFHを有したフレーム同士は同一フレームの主波と遅延波であることを示している。
Here, a problem when the 4096-point FFT described in the background art is used will be described. That is, when performing FFT in a wide range like 4096 point FFT, there are the following problems.
FIG. 11 shows a case where there are two main and delayed waves in the received signal. (A) is when the delay time of the delayed wave exceeds 1/2 of the transmission frame length (the sum of FH and FB) but within the 4096 point FFT window, (b) exceeds the 4096 point FFT window. Show the case. It should be noted that in the relationship between the main wave and the delayed wave obtained by delaying the main wave, the frames having the FHs shown with diagonal lines in the figure indicate that they are the main wave and the delayed wave of the same frame.

(a)のように遅延時間がフレーム期間の1/2を超える場合の問題点は、先行波か遅延波かの区別ができないため、FFT窓を正しく設定することが課題である。
(b)のように遅延時間が伝送路応答推定の範囲(FFT窓幅)を超える場合の問題点は、広い窓を用いた場合、折り返った遅延波が妨害、即ち等化できないパスが妨害になることが課題である。
The problem when the delay time exceeds 1/2 of the frame period as in (a) is that it is impossible to distinguish between the preceding wave and the delayed wave, and it is therefore a problem to set the FFT window correctly.
The problem when the delay time exceeds the transmission path response estimation range (FFT window width) as shown in (b) is that when a wide window is used, the folded delayed wave interferes, that is, the path that cannot be equalized interferes. The challenge is to become.

遅延広がりが伝送フレーム長(FHとFBの和)の1/2を超えると、(a)に示すように遅延プロファイルを用いた判定では先行波か遅延波かの区別ができない。このため(a−1)に示すように遅延波とみなした場合は正しく伝送路推定できるが、(a−2)に示すように誤って先行波とみなした場合は受信特性が大きく劣化する。   When the delay spread exceeds 1/2 of the transmission frame length (the sum of FH and FB), it is impossible to distinguish between the preceding wave and the delayed wave by the determination using the delay profile as shown in (a). For this reason, when it is regarded as a delayed wave as shown in (a-1), the transmission path can be correctly estimated. However, when it is mistakenly regarded as a preceding wave as shown in (a-2), the reception characteristics are greatly deteriorated.

(b)の場合のように遅延広がりが4096点FFT窓を超える場合、広いFFT窓を用いると(b−1)に示すように折り返った遅延波が妨害となって伝送路推定の結果が劣化する。この場合 (b−2)に示すように狭いFFT窓を用いて、折り返った遅延波を含まない範囲で伝送路推定を行うことができる。
また、遅延広がりが小さい場合は、FBや雑音の影響を小さくするために、遅延広がりが収まる範囲で、できる限り狭いFFT窓を使うことが望ましい。
When the delay spread exceeds the 4096 point FFT window as in the case of (b), if a wide FFT window is used, the folded delayed wave becomes a disturbance as shown in (b-1), and the result of the transmission path estimation is to degrade. In this case, as shown in (b-2), it is possible to perform transmission path estimation within a range that does not include a folded delayed wave by using a narrow FFT window.
When the delay spread is small, it is desirable to use an FFT window that is as narrow as possible within a range in which the delay spread falls within the range in order to reduce the influence of FB and noise.

第1の実施形態によれば、遅延時間を判定することなく、遅延広がりが変化した場合でも、受信信号の受信品質が最良となるFFT窓幅に自動的に切替えることができる。また、遅延時間が最大FFT窓を超えて伝送路応答推定できない場合でも、受信品質の結果に基づいて、狭いFFT窓を自動的に選択して折り返しによる劣化を抑えることができる。すなわち、伝送路応答推定の遅延時間範囲を拡大するとともに、伝送路応答推定可能な時間範囲を超えたマルチパス波による劣化を抑えることが可能となる。   According to the first embodiment, even when the delay spread changes without determining the delay time, it is possible to automatically switch to the FFT window width that provides the best reception quality of the received signal. Even when the delay time exceeds the maximum FFT window and the transmission path response cannot be estimated, it is possible to automatically select a narrow FFT window based on the reception quality result and suppress deterioration due to aliasing. That is, it is possible to expand the delay time range for channel response estimation and suppress deterioration due to multipath waves exceeding the time range in which channel response estimation is possible.

[第2の実施形態]
図3は本発明の第2の実施形態の伝送路応答推定器のブロック図で、図4は第2の実施形態のFFT窓制御の説明図である。図3の構成は、図1におけるFFT窓幅制御部16に代えてFFT窓幅・シフト制御部16Aを用いる点で図1とは異なる。以下に、図1及び図2と同じ部分は説明を省略し、異なる部分を説明する。
[Second Embodiment]
FIG. 3 is a block diagram of a transmission path response estimator according to the second embodiment of the present invention, and FIG. 4 is an explanatory diagram of FFT window control according to the second embodiment. The configuration of FIG. 3 is different from FIG. 1 in that an FFT window width / shift control unit 16A is used instead of the FFT window width control unit 16 in FIG. In the following, description of the same parts as those in FIGS. 1 and 2 is omitted, and different parts will be described.

図3の伝送路応答推定器10Bにおいて、FFT窓制御部としてのFFT窓幅・シフト制御部16Aは幅の異なる複数のFFT窓に加えて、位置をシフトさせた複数のFFT窓を発生する。例えば窓幅の異なる複数のFFT窓1,2,3aに加えて、例えば窓3aの位置をシフトさせて同じ幅の位置を変えた2つ以上のFFT窓3b,3cを発生する。   In the transmission path response estimator 10B of FIG. 3, the FFT window width / shift control unit 16A as the FFT window control unit generates a plurality of FFT windows whose positions are shifted in addition to the plurality of FFT windows having different widths. For example, in addition to a plurality of FFT windows 1, 2, 3a having different window widths, for example, two or more FFT windows 3b, 3c in which the position of the window 3a is shifted to change the position of the same width are generated.

図4にFFT窓シフトの一例を示す。遅延広がりが前後非対称の場合でも遅延時間範囲を拡大するために、幅最大のFFT窓3aに対して、時間的に後にシフトしたFFT窓3bと、前にシフトしたFFT窓3cを追加する。図4の例ではFFT窓のシフトは3段階としたが、さらに複数段階にシフトしてもよい。また他の窓1,2についてもシフトさせても良い。   FIG. 4 shows an example of the FFT window shift. In order to expand the delay time range even when the delay spread is asymmetrical in the front-rear direction, an FFT window 3b shifted later in time and an FFT window 3c shifted forward are added to the FFT window 3a having the maximum width. In the example of FIG. 4, the FFT window is shifted in three stages, but may be further shifted in a plurality of stages. The other windows 1 and 2 may also be shifted.

第2の実施形態によれば、遅延時間を判定することなく、受信信号の遅延広がりに応じてFFT窓幅を切替えることができ、遅延広がりが前後非対称の場合にも伝送路応答推定の遅延時間範囲を拡大することができる。また、遅延時間が最大FFT窓を超えて伝送路応答推定できない場合、狭いFFT窓を選択して折り返しによる劣化を抑えることができる。すなわち、伝送路応答推定の遅延時間範囲を拡大するとともに、推定可能な伝送路応答推定の遅延時間範囲を拡大することができる。   According to the second embodiment, the FFT window width can be switched according to the delay spread of the received signal without determining the delay time, and the delay time of the transmission path response estimation even when the delay spread is asymmetrical The range can be expanded. In addition, when the delay time exceeds the maximum FFT window and the transmission path response cannot be estimated, a narrow FFT window can be selected to suppress deterioration due to aliasing. That is, the delay time range for channel response estimation can be expanded, and the delay time range for channel response estimation that can be estimated can be expanded.

[第3の実施形態]
図5は本発明の第3の実施形態の伝送路応答推定器のブロック図である。図5の構成は、図1の構成に対して遅延時間判定部22とFFT窓補正部23を追加したものである。以下に、図1と同じ部分は説明を省略し、異なる部分を説明する。なお、図3の伝送路応答推定器についても、図5と同様に遅延時間判定部22とFFT窓補正部23を備えた構成としてもよい。
[Third Embodiment]
FIG. 5 is a block diagram of a transmission path response estimator according to the third embodiment of the present invention. The configuration of FIG. 5 is obtained by adding a delay time determination unit 22 and an FFT window correction unit 23 to the configuration of FIG. In the following, description of the same parts as in FIG. 1 will be omitted, and different parts will be described. Note that the transmission path response estimator in FIG. 3 may be configured to include the delay time determination unit 22 and the FFT window correction unit 23 as in FIG.

図5の伝送路応答推定器10Cにおいて、遅延広がり判定部としての遅延時間判定部22は、FFT窓判定後のFFT窓幅の範囲内で、IFFT部15の出力である時間領域の伝送路応答推定値から遅延広がりを推定する。FFT窓補正部23は、遅延時間判定部22で推定された遅延広がりがFFT窓幅制御部16で設定されているFFT窓よりも狭い場合、遅延時間判定部22の出力に合わせて窓掛けの窓幅を補正し、FFT窓をさらに狭くする。   In the channel response estimator 10C of FIG. 5, the delay time determination unit 22 as the delay spread determination unit is within the range of the FFT window width after the FFT window determination, and the time domain transmission channel response that is the output of the IFFT unit 15. The delay spread is estimated from the estimated value. When the delay spread estimated by the delay time determination unit 22 is narrower than the FFT window set by the FFT window width control unit 16, the FFT window correction unit 23 performs windowing according to the output of the delay time determination unit 22. The window width is corrected and the FFT window is further narrowed.

第3の実施形態によれば、FFT入力におけるFBの干渉を抑えて伝送路応答推定の精度を改善することができる。   According to the third embodiment, it is possible to improve the accuracy of channel response estimation by suppressing FB interference at the FFT input.

[第4の実施形態]
図6は本発明の第4の実施形態の伝送路応答推定器のブロック図である。図6の構成は、図1の構成に対して遅延時間判定部2とFFT窓補正部23と相関検出部24とを追加したものである。以下に、図1と同じ部分は説明を省略し、異なる部分を説明する。なお、図3の伝送路応答推定器についても、図6と同様に遅延時間判定部22とFFT窓補正部23と相関検出部24を備えた構成としてもよい。
図6の伝送路応答推定器10Dにおいて、相関検出部24は、時間領域で受信信号と既知パターンとの相関により遅延プロファイルを検出する。遅延広がり判定部としての遅延時間判定部22は、FFT窓判定後のFFT窓幅の範囲内で、相関検出部24の出力から遅延広がりを推定する。FFT窓補正部23は、遅延時間判定部22で推定された遅延広がりがFFT窓幅制御部16で設定されているFFT窓よりも狭い場合、遅延時間判定部22の出力に合わせて窓掛けの窓幅を補正し、FFT窓をさらに狭くする。
[Fourth Embodiment]
FIG. 6 is a block diagram of a transmission path response estimator according to the fourth embodiment of the present invention. The configuration of FIG. 6 is obtained by adding a delay time determination unit 2, an FFT window correction unit 23, and a correlation detection unit 24 to the configuration of FIG. In the following, description of the same parts as in FIG. 1 will be omitted, and different parts will be described. Note that the transmission path response estimator in FIG. 3 may also include a delay time determination unit 22, an FFT window correction unit 23, and a correlation detection unit 24, as in FIG.
In the channel response estimator 10D of FIG. 6, the correlation detection unit 24 detects a delay profile based on the correlation between the received signal and the known pattern in the time domain. The delay time determination unit 22 as the delay spread determination unit estimates the delay spread from the output of the correlation detection unit 24 within the range of the FFT window width after the FFT window determination. If the delay spread estimated by the delay time determination unit 22 is narrower than the FFT window set by the FFT window width control unit 16, the FFT window correction unit 23 performs windowing according to the output of the delay time determination unit 22. The window width is corrected and the FFT window is further narrowed.

第4の実施形態によれば、FFT入力におけるFBの干渉を抑えて伝送路応答推定の精度を改善することができる。また、相関検出部により伝送路応答推定とは独立に遅延プロファイルを検出しているため、FFT窓判定後のFFT窓幅の範囲内であれば、受信信号の遅延広がりの変化に追従してFFT窓を設定することができる。   According to the fourth embodiment, it is possible to improve the accuracy of channel response estimation by suppressing FB interference at the FFT input. In addition, since the delay profile is detected by the correlation detection unit independently of the channel response estimation, the FFT follows the change in the delay spread of the received signal within the range of the FFT window width after the FFT window determination. A window can be set.

[第5の実施形態]
図7は本発明の第5の実施形態の伝送路応答推定器のブロック図である。
図7において、等化装置4は、等化部19と、誤り訂正部20と、既知パターン発生部21と、伝送路応答推定器10Eと、を備えている。伝送路応答推定器10Eは、FFT窓制御用の伝送路応答推定器10E−1と、データ等化用の伝送路応答推定器10E−2と、を備えている。
[Fifth Embodiment]
FIG. 7 is a block diagram of a transmission path response estimator according to the fifth embodiment of the present invention.
In FIG. 7, the equalization apparatus 4 includes an equalization unit 19, an error correction unit 20, a known pattern generation unit 21, and a transmission path response estimator 10E. The transmission path response estimator 10E includes a transmission path response estimator 10E-1 for FFT window control and a transmission path response estimator 10E-2 for data equalization.

図7の伝送路応答推定器10Eは、図5の伝送路応答推定器の構成に対してFFT窓制御用の伝送路応答推定器10E−1とデータ等化用の伝送路応答推定器10E−2を独立に設けたものである。図1、図3、図6の各伝送路応答推定器についても、図7と同様にFFT窓制御用とデータ等化用の2系統の伝送路応答推定器を備えた構成としてもよい。   The transmission path response estimator 10E in FIG. 7 is different from the transmission path response estimator in FIG. 5 in that the transmission path response estimator 10E-1 for FFT window control and the transmission path response estimator 10E- for data equalization are used. 2 are provided independently. Each of the transmission path response estimators of FIGS. 1, 3, and 6 may also be configured to include two transmission path response estimators for FFT window control and data equalization as in FIG.

FFT窓制御用の伝送路応答推定器10E−1は、窓掛け部11と、第1のFFT部12と、第2のFFT部13と、伝送路応答算出部14と、IFFT部15と、等化部19aと、FFT窓幅制御部16と、受信品質検出部17と、FFT窓判定部18と、遅延時間判定部22と、FFT窓補正部23と、を備えている。等化部19aの機能は、等化部19の機能と同様である。   The transmission path response estimator 10E-1 for FFT window control includes a windowing section 11, a first FFT section 12, a second FFT section 13, a transmission path response calculation section 14, an IFFT section 15, An equalization unit 19a, an FFT window width control unit 16, a reception quality detection unit 17, an FFT window determination unit 18, a delay time determination unit 22, and an FFT window correction unit 23 are provided. The function of the equalization unit 19a is the same as the function of the equalization unit 19.

データ等化用の伝送路応答推定器10E−2は、窓掛け部11aと、第1のFFT部12aと、第2のFFT部13aと、伝送路応答算出部14aと、IFFT部15aと、を備えている。窓掛け部11aと、第1のFFT部12aと、第2のFFT部13aと、伝送路応答算出部14aと、IFFT部15aの各々の機能は、窓掛け部11と、第1のFFT部12と、第2のFFT部13と、伝送路応答算出部14と、IFFT部15との機能と同様である。   A transmission path response estimator 10E-2 for data equalization includes a windowing section 11a, a first FFT section 12a, a second FFT section 13a, a transmission path response calculation section 14a, an IFFT section 15a, It has. The functions of the windowing unit 11a, the first FFT unit 12a, the second FFT unit 13a, the transmission line response calculation unit 14a, and the IFFT unit 15a are respectively the windowing unit 11 and the first FFT unit. 12, the second FFT unit 13, the transmission line response calculation unit 14, and the IFFT unit 15.

この構成により、データ受信と同時にFFT窓の判定を行うことができる。FFT窓の判定を適当な一定周期で行うことにより、受信信号の遅延プロファイルの変化に追従してFFT窓を設定することができる。データ等化用の伝送路応答推定器10E−2で等化処理を行うに際してこれと並行して、FFT窓制御用の伝送路応答推定器10E−1でFFT窓の幅や位置を演算しておけるので、受信信号の遅延プロファイルの変化に追従してFFT窓を常に更新でき、適切な受信復調を実現することができる。   With this configuration, the FFT window can be determined simultaneously with data reception. By performing the FFT window determination at an appropriate fixed period, the FFT window can be set following the change in the delay profile of the received signal. In parallel with the equalization processing performed by the data channel equalization transmission path estimator 10E-2, the FFT window control transmission path response estimator 10E-1 calculates the width and position of the FFT window. Therefore, the FFT window can always be updated following changes in the delay profile of the received signal, and appropriate reception demodulation can be realized.

なお、伝送路応答推定器を複数用意してFFT窓の判定時間を早くすることや、複数の伝送路応答推定部を時分割多重して動作させるなど、各種変形が可能なことは明らかである。   In addition, it is clear that various modifications are possible, such as preparing a plurality of transmission path response estimators to speed up the FFT window determination time, and operating a plurality of transmission path response estimation units by time division multiplexing. .

第5の実施形態によれば、受信信号の遅延プロファイルの変化に追従してFFT窓を設定することができ、常に受信信号の変化に追従したFFT窓で伝送路応答を推定して、適切な復調を行うことができる。移動する受信機に搭載して特に有用である。   According to the fifth embodiment, the FFT window can be set following the change in the delay profile of the received signal, and the transmission path response is always estimated by the FFT window following the change in the received signal. Demodulation can be performed. It is particularly useful when mounted on a moving receiver.

[第6の実施形態]
図8は本発明の第6の実施形態の伝送路応答推定器のブロック図である。
図8の伝送路応答推定器10Fは、図5の伝送路応答推定器の構成に対して伝送路応答推定の入力部分にFBレプリカ生成部25とFBキャンセル部26を追加したものである。図1、図3、図6、図7の各伝送路応答推定器についても、図8と同様にFBレプリカ生成部25とFBキャンセル部26を追加した構成としてもよい。
[Sixth Embodiment]
FIG. 8 is a block diagram of a transmission path response estimator according to the sixth embodiment of the present invention.
The transmission path response estimator 10F of FIG. 8 is obtained by adding an FB replica generation unit 25 and an FB cancellation unit 26 to the input part of the transmission path response estimation in the configuration of the transmission path response estimator of FIG. Each of the transmission path response estimators of FIGS. 1, 3, 6, and 7 may have a configuration in which an FB replica generation unit 25 and an FB cancellation unit 26 are added similarly to FIG.

遅延時間を拡大するためにFFTサイズを大きくした場合、遅延広がりが大きくなるとFBの干渉量が大きくなり伝送路応答推定の精度が劣化する。この対策として、伝送路応答推定結果を用いて受信信号を復調・再変調してデータ部(FB)のレプリカ(以下、FBレプリカ)を作成し、FFT入力の前の段階で受信信号からFB部分をキャンセルする技術が知られている。   When the FFT size is increased in order to increase the delay time, the amount of FB interference increases as the delay spread increases, and the accuracy of transmission path response estimation deteriorates. As a countermeasure, the received signal is demodulated and re-modulated using the transmission path response estimation result to create a replica of the data part (FB) (hereinafter referred to as FB replica), and the FB part from the received signal before the FFT input. A technique for canceling is known.

以下に動作を説明する。
図8において、動作開始時はFBキャンセル部26のFBキャンセルオフの状態でFHを含む受信信号から伝送路応答を推定する。推定された伝送路応答を用いて、FBレプリカ生成部25は受信信号を復調・再変調し、FB部分のレプリカを生成する。生成されたFBレプリカはFBキャンセル部26に供給され、受信信号からFBレプリカ信号を引くことでFBをキャンセルする。以降はFBキャンセルの出力を用いて伝送路応答を推定する。以上の動作により、FBによる干渉の影響を抑えて、精度の高い伝送路応答推定を行うことができる。
The operation will be described below.
In FIG. 8, at the start of operation, the transmission path response is estimated from the received signal including FH in the FB cancellation off state of the FB cancellation unit 26. Using the estimated transmission path response, the FB replica generation unit 25 demodulates and remodulates the received signal to generate a replica of the FB part. The generated FB replica is supplied to the FB cancellation unit 26, and the FB is canceled by subtracting the FB replica signal from the received signal. Thereafter, the transmission path response is estimated using the output of the FB cancellation. With the above operation, it is possible to perform transmission path response estimation with high accuracy while suppressing the influence of interference due to FB.

第5の実施形態によれば、本実施形態の伝送路推定を用いた場合、長遅延のマルチパスに対して伝送路推定が可能であり、遅延時間が伝送路推定の範囲を超えた場合でも伝送路推定の劣化を最小限に抑えることが可能である。   According to the fifth embodiment, when the transmission path estimation of this embodiment is used, transmission path estimation is possible for a long delay multipath, and even when the delay time exceeds the transmission path estimation range. It is possible to minimize degradation of transmission path estimation.

FB部は伝送路推定に対して雑音となるが、伝送路が正しく推定できればFBキャンセルにより雑音が減り、さらにFBキャンセル出力を用いた伝送路推定の精度が改善する。一方、折り返しなどで誤った伝送路推定を行うと、FBキャンセルにより逆に雑音が付加されて、さらにFBキャンセル出力を用いた伝送路推定が劣化する。本発明実施形態の伝送路推定はパスを誤検出しない効果があるので、FBキャンセルとの組合せが効果的であると言える。   The FB section becomes noise for the transmission path estimation, but if the transmission path can be correctly estimated, the noise is reduced by the FB cancellation, and the accuracy of the transmission path estimation using the FB cancellation output is improved. On the other hand, if erroneous transmission path estimation is performed by loopback or the like, noise is added by FB cancellation, and transmission path estimation using the FB cancellation output further deteriorates. Since the transmission path estimation according to the embodiment of the present invention has an effect of not erroneously detecting a path, it can be said that the combination with the FB cancellation is effective.

[第7の実施形態]
図9は本発明の実施形態に係る放送受信装置のブロック図である。図9は上記の第1乃至第6の実施形態の伝送路応答推定器を搭載した、一実施形態の放送受信装置のブロック図である。
[Seventh Embodiment]
FIG. 9 is a block diagram of a broadcast receiving apparatus according to an embodiment of the present invention. FIG. 9 is a block diagram of a broadcast receiving apparatus according to an embodiment equipped with the transmission path response estimators according to the first to sixth embodiments.

放送受信装置100は、放送信号を選局受信するチューナ1と、第1乃至6の実施形態で述べた伝送路応答推定器10A乃至10Fのいずれか1つを有し、チューナ1からの受信信号を等化し、復調データを出力する復調回路5と、該復調データをデコードし、映像信号及び音声信号を再生するデコーダ6と、再生した映像信号及び音声信号を出力する表示部7と、を備えている。   The broadcast receiving apparatus 100 includes any one of the tuner 1 that selects and receives a broadcast signal and the transmission path response estimators 10A to 10F described in the first to sixth embodiments. And a demodulator circuit 5 that outputs demodulated data, a decoder 6 that decodes the demodulated data and reproduces a video signal and an audio signal, and a display unit 7 that outputs the reproduced video signal and audio signal. ing.

復調回路5は、例えば、チューナ1からのIF信号をディジタル信号に変換するA/D変換部2と、ディジタルIF信号をベースバンド帯域のI,Q信号に変換する直交検波部3と、伝送路応答推定器10A乃至10Fのいずれか1つを含み、伝送路応答推定した結果に基づいて受信信号を等化する等化装置4と、を備えている。等化装置4は、伝送路応答推定器10A乃至10Fのいずれか1つのほかに、等化部19と、誤り訂正部20とを備えている。また、デコーダ3は、例えば、映像デコーダと、音声デコーダと、を備えている。   The demodulation circuit 5 includes, for example, an A / D converter 2 that converts an IF signal from the tuner 1 into a digital signal, an orthogonal detector 3 that converts the digital IF signal into baseband I and Q signals, and a transmission line And an equalizer 4 that includes any one of the response estimators 10A to 10F and equalizes the received signal based on the result of channel response estimation. The equalization apparatus 4 includes an equalization unit 19 and an error correction unit 20 in addition to any one of the transmission path response estimators 10A to 10F. The decoder 3 includes, for example, a video decoder and an audio decoder.

このような一実施形態の放送受信装置によれば、伝送路応答推定器10A乃至10Fのいずれか1つを備えているので、伝送路応答推定の遅延時間範囲を拡大でき、かつ推定可能な時間範囲を超えたマルチパス波による劣化を抑えることができ、しかも雑音の影響を少なくすることもできる。   According to the broadcast receiving apparatus of such an embodiment, since any one of the transmission path response estimators 10A to 10F is provided, the delay time range of the transmission path response estimation can be expanded and the time that can be estimated Deterioration due to multipath waves exceeding the range can be suppressed, and the influence of noise can be reduced.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10A〜10F…伝送路応答推定器、11…窓掛け部、12…第1のFFT部、13…第2のFFT部、14…伝送路応答算出部、15…IFFT部、16…FFT窓幅制御部(FFT窓制御部)、16A…FFT窓幅・シフト制御部(FFT窓制御部)、17…受信品質検出部、18…FFT窓判定部、19…等化部、20…誤り訂正部、21…既知パターン発生部、22…遅延時間判定部(遅延広がり判定部)、23…FFT窓補正部、24…相関検出部、25…FBレプリカ生成部、26…FBキャンセル部。   DESCRIPTION OF SYMBOLS 10A-10F ... Transmission path response estimator, 11 ... Windowing part, 12 ... 1st FFT part, 13 ... 2nd FFT part, 14 ... Transmission path response calculation part, 15 ... IFFT part, 16 ... FFT window width Control unit (FFT window control unit), 16A ... FFT window width / shift control unit (FFT window control unit), 17 ... Reception quality detection unit, 18 ... FFT window determination unit, 19 ... Equalization unit, 20 ... Error correction unit , 21 ... known pattern generation unit, 22 ... delay time determination unit (delay spread determination unit), 23 ... FFT window correction unit, 24 ... correlation detection unit, 25 ... FB replica generation unit, 26 ... FB cancellation unit.

Claims (5)

既知パターン信号とデータ信号が周期的に伝送されるフレーム構成の信号を受信する受信機の伝送路応答推定器において、
受信信号を窓掛けする窓掛け部と、
前記窓掛け部の出力を周波数領域に変換するFFT部と、
既知パターンの周波数領域信号を生成する既知パターン信号生成部と、
前記FFT部の出力と前記既知パターンの周波数領域信号から伝送路応答を算出する伝送路応答算出部と、
前記伝送路応答算出部の出力を時間領域に変換するIFFT部と、
前記窓掛け部に対して幅、または幅とシフト量の異なる複数のFFT窓を発生して前記窓掛け部に供給し、FFT窓判定された1つのFFT窓を前記窓掛け部に設定するFFT窓制御部と、
前記IFFT部の出力にて受信信号を等化する等化部以降の復調出力を用いて受信品質を検出する受信品質検出部と、
異なる複数の窓信号それぞれに対して、前記受信品質検出部で検出したそれぞれの受信品質に基づいて複数のFFT窓の中から受信品質の良好な1つを決定し、前記FFT窓制御部に通知するFFT窓判定部と、
を具備したことを特徴とする伝送路応答推定器。
In a receiver channel response estimator that receives a frame-structured signal in which a known pattern signal and a data signal are periodically transmitted,
A windowing portion for windowing the received signal;
An FFT unit for converting the output of the windowing unit into a frequency domain;
A known pattern signal generator for generating a frequency domain signal of a known pattern;
A transmission line response calculation unit for calculating a transmission line response from the output of the FFT unit and the frequency domain signal of the known pattern;
An IFFT unit for converting the output of the transmission line response calculation unit into a time domain;
An FFT that generates a plurality of FFT windows having different widths or widths and shift amounts with respect to the windowing portion, supplies the FFT windows to the windowing portion, and sets one FFT window determined as the FFT window as the windowing portion. A window control unit;
A reception quality detection unit that detects reception quality using a demodulated output after the equalization unit that equalizes the reception signal at the output of the IFFT unit;
For each of a plurality of different window signals, one of the plurality of FFT windows having a good reception quality is determined based on the reception quality detected by the reception quality detection unit and notified to the FFT window control unit An FFT window determination unit to perform,
A transmission path response estimator characterized by comprising:
既知パターン信号とデータ信号が周期的に伝送されるフレーム構成の信号を受信する受信機の伝送路応答推定器において、
受信信号を窓掛けする窓掛け部と、
前記窓掛け部の出力を周波数領域に変換するFFT部と、
既知パターンの周波数領域信号を生成する既知パターン信号生成部と、
前記FFT部の出力と前記既知パターンの周波数領域信号から伝送路応答を算出する伝送路応答算出部と、
前記伝送路応答算出部の出力を時間領域に変換するIFFT部と、
前記窓掛け部に対して幅、または幅とシフト量の異なる複数のFFT窓を発生して前記窓掛け部に供給し、FFT窓判定された1つのFFT窓を前記窓掛け部に設定するFFT窓制御部と、
前記IFFT部の出力にて受信信号を等化する等化部以降の復調出力を用いて受信品質を検出する受信品質検出部と、
前記IFFT部の出力を用いて受信信号の遅延広がりを判定する遅延広がり判定部と、
異なる複数の窓信号それぞれに対して、前記受信品質検出部で検出したそれぞれの受信品質に基づいて複数のFFT窓の中から受信品質の良好な1つを決定し、前記FFT窓制御部に通知するFFT窓判定部と、
前記FFT窓判定部で決定したFFT窓の範囲内で、前記遅延広がり判定部が判定した受信信号の遅延広がりの出力に基づいて、前記窓掛け部に設定するFFT窓を補正するFFT窓補正部と、
を具備することを特徴とする伝送路応答推定器。
In a receiver channel response estimator that receives a frame-structured signal in which a known pattern signal and a data signal are periodically transmitted,
A windowing portion for windowing the received signal;
An FFT unit for converting the output of the windowing unit into a frequency domain;
A known pattern signal generator for generating a frequency domain signal of a known pattern;
A transmission line response calculation unit for calculating a transmission line response from the output of the FFT unit and the frequency domain signal of the known pattern;
An IFFT unit for converting the output of the transmission line response calculation unit into a time domain;
An FFT that generates a plurality of FFT windows having different widths or widths and shift amounts with respect to the windowing portion, supplies the FFT windows to the windowing portion, and sets one FFT window determined as the FFT window as the windowing portion. A window control unit;
A reception quality detection unit that detects reception quality using a demodulated output after the equalization unit that equalizes the reception signal at the output of the IFFT unit;
A delay spread determining section that determines a delay spread of a received signal using an output of the IFFT section;
For each of a plurality of different window signals, one of the plurality of FFT windows having a good reception quality is determined based on the reception quality detected by the reception quality detection unit and notified to the FFT window control unit An FFT window determination unit to perform,
An FFT window correction unit that corrects the FFT window set in the windowing unit based on the output of the delay spread of the received signal determined by the delay spread determination unit within the range of the FFT window determined by the FFT window determination unit. When,
A transmission path response estimator.
既知パターン信号とデータ信号が周期的に伝送されるフレーム構成の信号を受信する受信機の伝送路応答推定器において、
受信信号を窓掛けする窓掛け部と、
前記窓掛け部の出力を周波数領域に変換するFFT部と、
既知パターンの周波数領域信号を生成する既知パターン信号生成部と、
前記FFT部の出力と前記既知パターンの周波数領域信号から伝送路応答を算出する伝送路応答算出部と、
前記伝送路応答算出部の出力を時間領域に変換するIFFT部と、
前記窓掛け部に対して幅、または幅とシフト量の異なる複数のFFT窓を発生し、FFT窓判定された1つのFFT窓を前記窓掛け部に設定するFFT窓制御部と、
前記IFFT部の出力にて受信信号を等化する等化部以降の復調出力を用いて受信品質を検出する受信品質検出部と、
受信信号と前記既知パターンとの時間領域の相関を求める相関検出部と、
前記相関検出部の出力を用いて受信信号の遅延広がりを判定する遅延広がり判定部と、
異なる複数の窓信号それぞれに対して、前記受信品質検出部で検出したそれぞれの受信品質に基づいて複数のFFT窓の中から受信品質の良好な1つを決定し、前記FFT窓制御部に通知するFFT窓判定部と、
前記FFT窓判定部で決定したFFT窓の範囲内で、前記遅延広がり判定部が判定した受信信号の遅延広がりの出力に基づいて、前記窓掛け部に設定するFFT窓を補正するFFT窓補正部と、
を具備することを特徴とする伝送路応答推定器。
In a receiver channel response estimator that receives a frame-structured signal in which a known pattern signal and a data signal are periodically transmitted,
A windowing portion for windowing the received signal;
An FFT unit for converting the output of the windowing unit into a frequency domain;
A known pattern signal generator for generating a frequency domain signal of a known pattern;
A transmission line response calculation unit for calculating a transmission line response from the output of the FFT unit and the frequency domain signal of the known pattern;
An IFFT unit for converting the output of the transmission line response calculation unit into a time domain;
An FFT window control unit that generates a plurality of FFT windows having different widths or widths and shift amounts with respect to the windowing unit, and sets one FFT window determined as the FFT window as the windowing unit,
A reception quality detection unit that detects reception quality using a demodulated output after the equalization unit that equalizes the reception signal at the output of the IFFT unit;
A correlation detector for obtaining a time domain correlation between the received signal and the known pattern;
A delay spread determination unit that determines a delay spread of a received signal using an output of the correlation detection unit;
For each of a plurality of different window signals, one of the plurality of FFT windows having a good reception quality is determined based on the reception quality detected by the reception quality detection unit and notified to the FFT window control unit An FFT window determination unit to perform,
An FFT window correction unit that corrects the FFT window set in the windowing unit based on the output of the delay spread of the received signal determined by the delay spread determination unit within the range of the FFT window determined by the FFT window determination unit. When,
A transmission path response estimator.
受信信号と前記IFFT部の出力を用いて、データ部のレプリカ信号を生成するレプリカ生成部と、
前記レプリカ生成部の出力を用いて前記受信信号からデータ部を除去するキャンセル部とを具備し、
前記キャンセル部の出力を用いて伝送路応答推定を行うことを特徴とする請求項1乃至3のいずれか1つに記載の伝送路応答推定器。
A replica generation unit that generates a replica signal of a data unit using the received signal and the output of the IFFT unit;
A cancellation unit for removing the data part from the received signal using the output of the replica generation unit,
The transmission path response estimator according to claim 1, wherein transmission path response estimation is performed using an output of the cancel unit.
放送信号を選局受信するチューナと、
請求項1乃至4のいずれか1つに記載の伝送路応答推定器を備え、前記チューナからの受信信号を等化して復調データを出力する復調回路と、
前記復調データをデコードし、映像信号及び音声信号を再生するデコーダと、
前記映像信号及び音声信号を出力する表示部と、
を具備したことを特徴とする放送受信装置。
A tuner that selectively receives broadcast signals;
A demodulation circuit comprising the transmission path response estimator according to any one of claims 1 to 4, and equalizing a reception signal from the tuner and outputting demodulated data;
A decoder that decodes the demodulated data and reproduces a video signal and an audio signal;
A display unit for outputting the video signal and the audio signal;
A broadcast receiving apparatus comprising:
JP2012068323A 2012-03-23 2012-03-23 Transmission line response estimator, and broadcast receiver Pending JP2013201578A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012068323A JP2013201578A (en) 2012-03-23 2012-03-23 Transmission line response estimator, and broadcast receiver
CN201210313270.9A CN103326970B (en) 2012-03-23 2012-08-29 Transmission path response estimator and broadcast receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068323A JP2013201578A (en) 2012-03-23 2012-03-23 Transmission line response estimator, and broadcast receiver

Publications (1)

Publication Number Publication Date
JP2013201578A true JP2013201578A (en) 2013-10-03

Family

ID=49195507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068323A Pending JP2013201578A (en) 2012-03-23 2012-03-23 Transmission line response estimator, and broadcast receiver

Country Status (2)

Country Link
JP (1) JP2013201578A (en)
CN (1) CN103326970B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122725A (en) * 2013-11-21 2015-07-02 三菱電機株式会社 Equalization device, equalization method and receiving apparatus
JP2022061602A (en) * 2020-10-07 2022-04-19 アンリツ株式会社 Receiver, mobile terminal test device including the receiver, and mobile terminal test method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151396A (en) * 2003-11-19 2005-06-09 Toshiba Corp Reception apparatus and reception control method
JP2006203323A (en) * 2005-01-18 2006-08-03 Nippon Telegr & Teleph Corp <Ntt> Transfer coefficient estimate circuit and transfer coefficient estimate method
JP2008042575A (en) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd Reception device
JP2011035790A (en) * 2009-08-04 2011-02-17 Toshiba Corp Transmission path response estimator
JP2012050007A (en) * 2010-08-30 2012-03-08 Toshiba Corp Ofdm reception apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10062303C2 (en) * 2000-12-14 2002-11-28 Layers Ag 7 Method for operating an ad hoc network for wireless data transmission of synchronous and asynchronous messages
US7215715B2 (en) * 2001-02-06 2007-05-08 Maxim Integrated Products, Inc. System and method of signal wave shaping for spectrum control of an OFDM signal
JP2006013693A (en) * 2004-06-23 2006-01-12 Toppan Printing Co Ltd Content distributing device and method of transmitting decoding key therein and program
CN102035788B (en) * 2004-08-05 2013-04-03 松下电器产业株式会社 Radio transmission device, radio reception device, radio transmission method, and radio reception method
CN102164110B (en) * 2010-02-24 2014-02-19 富士通株式会社 Method and system for balancing frequency domain
CN102195918B (en) * 2010-03-17 2014-10-01 扬智科技股份有限公司 Method and device for eliminating spectrum inversion, and receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151396A (en) * 2003-11-19 2005-06-09 Toshiba Corp Reception apparatus and reception control method
JP2006203323A (en) * 2005-01-18 2006-08-03 Nippon Telegr & Teleph Corp <Ntt> Transfer coefficient estimate circuit and transfer coefficient estimate method
JP2008042575A (en) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd Reception device
JP2011035790A (en) * 2009-08-04 2011-02-17 Toshiba Corp Transmission path response estimator
JP2012050007A (en) * 2010-08-30 2012-03-08 Toshiba Corp Ofdm reception apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122725A (en) * 2013-11-21 2015-07-02 三菱電機株式会社 Equalization device, equalization method and receiving apparatus
JP2022061602A (en) * 2020-10-07 2022-04-19 アンリツ株式会社 Receiver, mobile terminal test device including the receiver, and mobile terminal test method
JP7214698B2 (en) 2020-10-07 2023-01-30 アンリツ株式会社 Receiving Device, Mobile Terminal Testing Device Equipped with Receiving Device, and Mobile Terminal Testing Method

Also Published As

Publication number Publication date
CN103326970A (en) 2013-09-25
CN103326970B (en) 2016-08-03

Similar Documents

Publication Publication Date Title
US7684503B2 (en) OFDM reception apparatus and OFDM reception method
JP4728227B2 (en) OFDM receiving apparatus and OFDM receiving method
JP4961918B2 (en) OFDM receiving apparatus and OFDM receiving method
JP4516489B2 (en) Receiver
US8363539B2 (en) OFDM receiver and OFDM receiving method
JP2007202081A (en) Ofdm demodulator and ofdm demodulation method
US20110268169A1 (en) Equalization apparatus and broadcasting receiving apparatus
JP4545209B2 (en) Orthogonal frequency division multiplexed signal receiving apparatus and receiving method thereof
JP2007158721A (en) Receiver, and symbol section extraction method
JP2013201578A (en) Transmission line response estimator, and broadcast receiver
JP5951102B2 (en) Communication line quality estimation apparatus and receiver
JP2011199391A (en) Response estimator of transmission line
JP2007288450A (en) Demodulating device and method
JP2007158877A (en) Digital broadcasting receiver for performing digital communication in traveling body, digital broadcast receiving method and integrated circuit about digital broadcasting reception
JP2010268044A (en) Receiving device
JP2009290579A (en) Ofdm receiver
JP5812827B2 (en) Receiver
JP5518261B2 (en) Equalizer and equalization method
JP5398652B2 (en) OFDM receiver
JP2008092227A (en) Wireless communication device
JP2006345429A (en) Receiver associated with digital communication/broadcast, reception method, reception circuit, and program
JP4929323B2 (en) OFDM receiver
JP2010063031A (en) Reliability information generating device, reliability information generating method and receiving apparatus
JP5543033B2 (en) Receiving apparatus and receiving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140916