JP2013201358A - Power storage cell and abnormality detecting method for power storage cell - Google Patents

Power storage cell and abnormality detecting method for power storage cell Download PDF

Info

Publication number
JP2013201358A
JP2013201358A JP2012069772A JP2012069772A JP2013201358A JP 2013201358 A JP2013201358 A JP 2013201358A JP 2012069772 A JP2012069772 A JP 2012069772A JP 2012069772 A JP2012069772 A JP 2012069772A JP 2013201358 A JP2013201358 A JP 2013201358A
Authority
JP
Japan
Prior art keywords
electrode
positive electrode
negative electrode
storage container
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012069772A
Other languages
Japanese (ja)
Inventor
Naoko Katsuta
直子 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2012069772A priority Critical patent/JP2013201358A/en
Publication of JP2013201358A publication Critical patent/JP2013201358A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage cell whose abnormality can be easily detected during use.SOLUTION: A power storage container houses a power storage structure including a nonaqueous electrolyte, a positive electrode, and a negative electrode. A positive electrode terminal connected to the positive electrode is led out of the power storage container. A negative electrode terminal connected to the negative electrode is led out of the power storage container. In the power storage cell, a reference electrode is arranged which is electrically connected to neither the positive electrode nor the negative electrode. A reference terminal is connected to the reference electrode and led out of the power storage container.

Description

本発明は、非水電解液を用いた蓄電セル及びその異常検出方法に関する。   The present invention relates to a storage cell using a non-aqueous electrolyte and an abnormality detection method thereof.

電気二重層キャパシタやリチウムイオン二次電池等の非水電解液を用いた蓄電セルの製造時に、内部抵抗に起因する電圧降下の評価や、電圧保持検査等により、不良品を検出する。良品と判定された蓄電セルであっても、製品ごとに寿命が異なる。このため、使用によって寿命に達した蓄電セルを検出することが望まれる。特に、蓄電セル内に水分が含まれていると、電解液と水分とが反応することによって、蓄電セルの容量低下や、充放電特性の低下が生ずる。   When manufacturing a storage cell using a non-aqueous electrolyte such as an electric double layer capacitor or a lithium ion secondary battery, defective products are detected by evaluating a voltage drop due to internal resistance, a voltage holding test, or the like. Even if the storage cell is determined to be a non-defective product, the product life varies depending on the product. For this reason, it is desirable to detect a storage cell that has reached the end of its life as a result of use. In particular, when moisture is contained in the storage cell, the capacity of the storage cell and charge / discharge characteristics are reduced due to the reaction between the electrolytic solution and moisture.

正極板、負極板、及びセパレータを積層して捲回したのち、粘着性の巻き止めテープで巻き止めた蓄電セルが公知である。巻き止めテープの粘着層に、pH応答性高分子が含まれている。蓄電セル内に水分が侵入すると、電解液の酸性度が上昇し、pH応答性高分子が収縮する。これにより、正極板、負極板、及びセパレータの積層構造から巻き止めテープが剥がれて、電極間の距離が長くなる。電極間の距離の増大によって、蓄電セルの内部抵抗が大きくなる。この内部抵抗の増大を検出することにより、水分の侵入の有無を判定することができる。   A storage cell in which a positive electrode plate, a negative electrode plate, and a separator are laminated and wound, and then wound with an adhesive winding stopper is known. A pH-responsive polymer is contained in the adhesive layer of the anti-winding tape. When moisture enters the storage cell, the acidity of the electrolytic solution increases and the pH-responsive polymer contracts. Accordingly, the anti-winding tape is peeled off from the laminated structure of the positive electrode plate, the negative electrode plate, and the separator, and the distance between the electrodes is increased. As the distance between the electrodes increases, the internal resistance of the storage cell increases. By detecting this increase in internal resistance, it is possible to determine whether moisture has entered.

特開2009−16199号公報JP 2009-16199 A

従来の方法では、製品出荷時に、蓄電セルの良否を判定することはできるが、使用状態における蓄電セルの劣化状態の判定には不向きである。使用状態における蓄電セルの劣化状態を判定する技術が望まれている。
本発明の目的は、使用中に、容易に異常検出を行うことが可能な蓄電セル、蓄電モジュールを提供することである。
In the conventional method, it is possible to determine the quality of the storage cell at the time of product shipment, but it is not suitable for determining the deterioration state of the storage cell in the usage state. A technique for determining a deterioration state of a storage cell in a use state is desired.
An object of the present invention is to provide a power storage cell and a power storage module that can easily detect an abnormality during use.

本発明の一観点によると、
蓄電容器と、
前記蓄電容器内に収容され、非水電解液、正極、及び負極を含む蓄電構造体と、
前記正極に接続され、前記蓄電容器の外側まで導出された正極端子と、
前記負極に接続され、前記蓄電容器の外側まで導出された負極端子と、
前記蓄電容器内に収容され、前記正極及び前記負極のいずれとも電気的に接続されていない参照極と、
前記参照極に接続され、前記蓄電容器の外側まで導出された参照端子と
を有する蓄電セルが提供される。
According to one aspect of the invention,
A storage container;
A power storage structure housed in the power storage container and including a non-aqueous electrolyte, a positive electrode, and a negative electrode;
A positive electrode terminal connected to the positive electrode and led out to the outside of the storage container;
A negative electrode terminal connected to the negative electrode and led out to the outside of the storage container;
A reference electrode housed in the storage container and not electrically connected to either the positive electrode or the negative electrode;
There is provided a power storage cell having a reference terminal connected to the reference electrode and led out to the outside of the power storage container.

本発明の他の観点によると、
蓄電容器と、
前記蓄電容器内に収容され、非水電解液、正極、及び負極を含む蓄電構造体と、
前記正極に接続され、前記蓄電容器の外側まで導出された正極端子と、
前記負極に接続され、前記蓄電容器の外側まで導出された負極端子と、
前記蓄電容器内に収容され、前記正極及び前記負極のいずれとも電気的に接続されていない一対の参照極と、
前記参照極に接続され、前記蓄電容器の外側まで導出された参照端子と
を有する蓄電セルの前記一対の参照極の間の電圧を測定する工程と、
前記一対の参照極の間の電圧と、判定閾値とを比較する工程と、
前記一対の参照極の間の電圧が前記判定閾値を超えたとき、前記蓄電セルを異常と判定し、前記一対の参照極の間の電圧が前記判定閾値以下のとき、前記蓄電セルを正常と判定する工程と
を有する蓄電セルの異常判定方法が提供される。
According to another aspect of the invention,
A storage container;
A power storage structure housed in the power storage container and including a non-aqueous electrolyte, a positive electrode, and a negative electrode;
A positive electrode terminal connected to the positive electrode and led out to the outside of the storage container;
A negative electrode terminal connected to the negative electrode and led out to the outside of the storage container;
A pair of reference electrodes housed in the storage container and not electrically connected to either the positive electrode or the negative electrode;
Measuring a voltage between the pair of reference electrodes of a storage cell having a reference terminal connected to the reference electrode and led to the outside of the storage container;
Comparing a voltage between the pair of reference electrodes and a determination threshold;
When the voltage between the pair of reference electrodes exceeds the determination threshold, the storage cell is determined to be abnormal, and when the voltage between the pair of reference electrodes is equal to or less than the determination threshold, the storage cell is determined to be normal. There is provided a method for determining abnormality of a power storage cell having a determining step.

本発明のさらに他の観点によると、
蓄電容器と、
前記蓄電容器内に収容され、非水電解液、正極、及び負極を含む蓄電構造体と、
前記正極に接続され、前記蓄電容器の外側まで導出された正極端子と、
前記負極に接続され、前記蓄電容器の外側まで導出された負極端子と、
前記蓄電容器内に収容され、前記正極及び前記負極のいずれとも電気的に接続されていない参照極と、
前記参照極に接続され、前記蓄電容器の外側まで導出された参照端子と
を有する蓄電セルの前記参照極を基準とした時の前記正極または前記負極の電位を測定する工程と、
測定された前記電位と、判定閾値とを比較する工程と、
測定された前記電位が前記判定閾値を超えたとき、前記蓄電セルを異常と判定し、測定された前記電位が前記判定閾値以下のとき、前記蓄電セルを正常と判定する工程と
を有する蓄電セルの異常判定方法が提供される。
According to yet another aspect of the invention,
A storage container;
A power storage structure housed in the power storage container and including a non-aqueous electrolyte, a positive electrode, and a negative electrode;
A positive electrode terminal connected to the positive electrode and led out to the outside of the storage container;
A negative electrode terminal connected to the negative electrode and led out to the outside of the storage container;
A reference electrode housed in the storage container and not electrically connected to either the positive electrode or the negative electrode;
Measuring the potential of the positive electrode or the negative electrode with reference to the reference electrode of a storage cell having a reference terminal connected to the reference electrode and led to the outside of the storage container;
Comparing the measured potential with a determination threshold;
A storage cell having a step of determining that the storage cell is abnormal when the measured potential exceeds the determination threshold, and determining that the storage cell is normal when the measured potential is less than or equal to the determination threshold An abnormality determination method is provided.

一対の参照端子の間の電圧、または参照端子を基準とした正極または負極の電位を測定することにより、蓄電セルの異常発生を検知することができる。   By measuring the voltage between the pair of reference terminals or the potential of the positive electrode or the negative electrode with reference to the reference terminal, it is possible to detect the occurrence of an abnormality in the storage cell.

図1Aは、実施例1による蓄電セルの蓄電容器内の構成要素の斜視図であり、図1Bは、実施例1による蓄電セルの平面図である。1A is a perspective view of components in a power storage container of a power storage cell according to the first embodiment, and FIG. 1B is a plan view of the power storage cell according to the first embodiment. 図2Aは、図1Bの一点鎖線2A−2Aにおける断面図であり、図2Bは、蓄電構造体及び参照極の断面図である。2A is a cross-sectional view taken along one-dot chain line 2A-2A in FIG. 1B, and FIG. 2B is a cross-sectional view of the power storage structure and the reference electrode. 図3は、実施例1による蓄電セルの構造を有する評価試料の正規化静電容量の時間変動を示すグラフである。FIG. 3 is a graph showing temporal variation in normalized capacitance of an evaluation sample having the structure of a storage cell according to Example 1. 図4は、実施例1による蓄電セルの構造を有する評価試料の正極と負極との間に2.7Vの電圧を印加した状態で測定した参照極間の電圧の時間変動を示すグラフである。FIG. 4 is a graph showing the time variation of the voltage between the reference electrodes measured in a state where a voltage of 2.7 V is applied between the positive electrode and the negative electrode of the evaluation sample having the structure of the storage cell according to Example 1. 図5は、実施例1による蓄電セルの構造を有する評価試料を放電させた状態で測定した参照極間の電圧の時間変動を示すグラフである。FIG. 5 is a graph showing the time variation of the voltage between the reference electrodes measured in a state where the evaluation sample having the structure of the storage cell according to Example 1 was discharged. 図6は、実施例1による蓄電セルを用いた蓄電モジュールの断面図である。FIG. 6 is a cross-sectional view of a power storage module using the power storage cell according to the first embodiment. 図7A及び図7Bは、実施例1の変形例による蓄電セルの平面図である。7A and 7B are plan views of a storage cell according to a modification of the first embodiment. 図8は、実施例1の変形例による蓄電セルの平面図である。FIG. 8 is a plan view of a storage cell according to a modification of the first embodiment. 図9は、実施例1の変形例による蓄電セルの蓄電容器内の構成要素の斜視図である。FIG. 9 is a perspective view of the components in the storage container of the storage cell according to the modification of the first embodiment. 図10Aは、実施例2による蓄電セルの蓄電容器内の構成要素の斜視図であり、図10Bは、実施例2による蓄電セルの平面図である。FIG. 10A is a perspective view of components in the storage container of the storage cell according to the second embodiment, and FIG. 10B is a plan view of the storage cell according to the second embodiment. 図11は、実施例2による蓄電セルと同一の構造を有する試料の正極及び負極の電位を、両者の間に2.5Vの電圧を印加した状態で、参照極を基準として測定した結果を示すグラフである。FIG. 11 shows the results of measuring the potentials of the positive electrode and the negative electrode of a sample having the same structure as that of the electricity storage cell according to Example 2, with a voltage of 2.5 V applied between them as a reference. It is a graph. 図12は、実施例2による蓄電セルと同一の構造を有する試料の正極及び負極の電位を、両者の間に2.7Vの電圧を印加した状態で、参照極を基準として測定した結果を示すグラフである。FIG. 12 shows the results of measuring the potentials of the positive electrode and the negative electrode of a sample having the same structure as that of the electricity storage cell according to Example 2, with a voltage of 2.7 V being applied between them as a reference. It is a graph.

[実施例1]
図1Aに、実施例1による蓄電セルの蓄電容器内の構成要素の斜視図を示す。蓄電容器内に、蓄電構造体20及び参照極30が収容されている。蓄電構造体20は、交互に積層された板状の複数の正極22及び複数の負極23を含む。正極22と負極23との間に、セパレータ21が挿入されている。積層方向をz方向とするxyz直交座標系を定義する。
[Example 1]
FIG. 1A is a perspective view of components in a storage container of a storage cell according to the first embodiment. The electricity storage structure 20 and the reference electrode 30 are accommodated in the electricity storage container. The power storage structure 20 includes a plurality of plate-like positive electrodes 22 and a plurality of negative electrodes 23 that are alternately stacked. A separator 21 is inserted between the positive electrode 22 and the negative electrode 23. An xyz orthogonal coordinate system in which the stacking direction is the z direction is defined.

積層方向(z方向)と直交する仮想平面(xy面)内において、正極22と負極23とが重なっている領域を蓄電領域27ということとする。xy面内方向において、セパレータ21は、蓄電領域27を内包する。正極22の各々は、蓄電領域27からセパレータ21の外側まで導出された相互接続部24を含む。同様に、負極23の各々も相互接続部25を含む。相互接続部24、25は、蓄電領域27から同一の方向(y軸の正の方向)に導出されている。複数の正極22の相互接続部24は、x方向に関して同じ位置に配置される。複数の負極23の相互接続部25も、x方向に関して同じ位置に配置される。相互接続部24と相互接続部25とは、x方向に関して異なる位置に配置される。正極22の相互接続部24同士が、セパレータ21の外側で相互に重なり、負極23の相互接続部25同士が、セパレータ21の外側で相互に重なる。   A region where the positive electrode 22 and the negative electrode 23 overlap each other in a virtual plane (xy plane) orthogonal to the stacking direction (z direction) is referred to as a power storage region 27. In the xy in-plane direction, the separator 21 includes the power storage region 27. Each of the positive electrodes 22 includes an interconnection 24 that extends from the power storage region 27 to the outside of the separator 21. Similarly, each negative electrode 23 includes an interconnect 25. Interconnections 24 and 25 are led out from power storage region 27 in the same direction (positive direction of the y-axis). The interconnect parts 24 of the plurality of positive electrodes 22 are arranged at the same position in the x direction. The interconnecting portions 25 of the plurality of negative electrodes 23 are also arranged at the same position in the x direction. The interconnect part 24 and the interconnect part 25 are arranged at different positions in the x direction. The interconnect portions 24 of the positive electrode 22 overlap each other outside the separator 21, and the interconnect portions 25 of the negative electrode 23 overlap each other outside the separator 21.

参照極30は、一対の参照電極板30A、30Bを含む。参照電極板30A及び30Bは、z方向に関して蓄電構造体20を挟む位置に配置されている。すなわち、参照電極板30Aと30Bとは、それぞれ蓄電構造体20の一方の端及び他方の端に配置される。参照電極板30A、30Bの一部は、正極22及び負極23の蓄電領域27と重なる。一方の参照電極板30Aと蓄電構造体20との間、及び他方の参照電極板30Aと蓄電構造体20との間に、それぞれセパレータ21が配置されている。   The reference electrode 30 includes a pair of reference electrode plates 30A and 30B. The reference electrode plates 30A and 30B are arranged at positions that sandwich the power storage structure 20 in the z direction. That is, the reference electrode plates 30A and 30B are arranged at one end and the other end of the electricity storage structure 20, respectively. Part of the reference electrode plates 30 </ b> A and 30 </ b> B overlaps with the power storage region 27 of the positive electrode 22 and the negative electrode 23. Separator 21 is disposed between one reference electrode plate 30A and power storage structure 20 and between the other reference electrode plate 30A and power storage structure 20.

参照電極板30A、30Bは、それぞれ接続部31A、31Bを含む。接続部31A、31Bは、蓄電領域27から、相互接続部24、25とは反対方向(y軸の負の方向)に導出されている。また、接続部31Aと31Bとは、x方向に関して異なる位置に配置される。   Reference electrode plates 30A and 30B include connection portions 31A and 31B, respectively. Connection portions 31A and 31B are led out from power storage region 27 in a direction opposite to interconnection portions 24 and 25 (a negative direction of the y-axis). Further, the connecting portions 31A and 31B are arranged at different positions in the x direction.

図1Bに、実施例1による蓄電セルの平面図を示す。蓄電容器33内に、正極22、負極23、セパレータ21、及び参照極30が収容されている。正極22と負極23とが重なる蓄電領域27は、xy面内に関してセパレータ21に内包される。正極端子35が正極22の相互接続部24に接続されている。負極端子36が、負極23の相互接続部25に接続されている。参照端子37A、37Bが、それぞれ参照電極板30A、30Bの接続部31A、31Bに接続されている。正極端子35、負極端子36、参照端子37A、37Bは、蓄電容器33の外側まで導出されている。正極端子35及び負極端子36は、同一方向(y軸の正の方向)に導出されている。参照端子37A及び参照端子37Bも、同一方向(y軸の負の方向)に導出されている。   FIG. 1B shows a plan view of the storage cell according to the first embodiment. A positive electrode 22, a negative electrode 23, a separator 21, and a reference electrode 30 are accommodated in the electricity storage container 33. The electricity storage region 27 where the positive electrode 22 and the negative electrode 23 overlap is included in the separator 21 in the xy plane. A positive terminal 35 is connected to the interconnect 24 of the positive electrode 22. A negative terminal 36 is connected to the interconnect 25 of the negative electrode 23. Reference terminals 37A and 37B are connected to connection portions 31A and 31B of reference electrode plates 30A and 30B, respectively. The positive terminal 35, the negative terminal 36, and the reference terminals 37 </ b> A and 37 </ b> B are led out to the outside of the storage container 33. The positive electrode terminal 35 and the negative electrode terminal 36 are led out in the same direction (positive direction of the y axis). The reference terminal 37A and the reference terminal 37B are also led out in the same direction (the negative direction of the y axis).

図2Aに、図1Bの一点鎖線2А−2Aにおける断面図を示す。アルミラミネートフィルム33Aと33Bとで、蓄電容器33が構成される。蓄電構造体20及び参照極30が、アルミラミネートフィルム33Aと33Bとで挟まれている。参照極30は、正極22及び負極23のいずれとも電気的に分離されている。アルミラミネートフィルム33Aと
33Bとが、外周部において相互に熱溶着されている。正極22と負極23とが交互に積層されている。図2Aでは、セパレータ21(図1A、図1B)の記載が省略されている。
2A is a cross-sectional view taken along one-dot chain line 2A-2A in FIG. 1B. A power storage container 33 is constituted by the aluminum laminate films 33A and 33B. The power storage structure 20 and the reference electrode 30 are sandwiched between aluminum laminate films 33A and 33B. The reference electrode 30 is electrically separated from both the positive electrode 22 and the negative electrode 23. Aluminum laminate films 33A and 33B are heat-welded to each other at the outer peripheral portion. The positive electrodes 22 and the negative electrodes 23 are alternately stacked. In FIG. 2A, the description of the separator 21 (FIGS. 1A and 1B) is omitted.

正極22の相互接続部24がz方向に積み重ねられて、正極端子35に接続されている。相互接続部24と正極端子35との接続には、例えば超音波溶接が用いられる。参照電極板30Bの接続部31Bが、参照端子37Bに超音波溶接されている。正極端子35及び参照端子37Bは、アルミラミネートフィルム33Aと33Bとの間を通って蓄電容器33の外側まで引き出されている。   The interconnections 24 of the positive electrode 22 are stacked in the z direction and connected to the positive electrode terminal 35. For example, ultrasonic welding is used to connect the interconnecting portion 24 and the positive terminal 35. The connection portion 31B of the reference electrode plate 30B is ultrasonically welded to the reference terminal 37B. The positive electrode terminal 35 and the reference terminal 37 </ b> B are drawn to the outside of the electricity storage container 33 through between the aluminum laminate films 33 </ b> A and 33 </ b> B.

図2Bに、蓄電構造体20と参照極30との断面図を示す。正極22は、正極集電体40と、その両面に配置された正極用の分極性電極41とを含む。負極23は、負極集電体45と、その両面に配置された負極用の分極性電極46とを含む。正極集電体40及び負極集電体45には、例えばアルミニウム箔が用いられる。正極用の分極性電極41は、例えば、活性炭粒子が混錬されたバインダを含むスラリーを、正極集電体40の表面に塗布した後、加熱して定着させることにより形成される。負極用の分極性電極46も同様の方法で形成される。   FIG. 2B shows a cross-sectional view of the power storage structure 20 and the reference electrode 30. The positive electrode 22 includes a positive electrode current collector 40 and a polarizable electrode 41 for a positive electrode disposed on both surfaces thereof. The negative electrode 23 includes a negative electrode current collector 45 and polarizable electrodes 46 for the negative electrode disposed on both surfaces thereof. For the positive electrode current collector 40 and the negative electrode current collector 45, for example, an aluminum foil is used. The polarizable electrode 41 for the positive electrode is formed, for example, by applying a slurry containing a binder kneaded with activated carbon particles to the surface of the positive electrode current collector 40 and then heating and fixing the slurry. The polarizable electrode 46 for the negative electrode is formed by the same method.

正極22と負極23との間に、セパレータ21が配置されている。セパレータ21には、例えばセルロース紙が用いられる。このセルロース紙に、非水電解液が含浸されている。非水電解液の溶媒には、分極性有機溶剤、例えばプロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート等が用いられる。電解質(支持塩)として、4級アンモニウム塩、例えばTEABF(テトラエチルアンモニウムテトラフルオロボレート)、TEMABF(トリエチルメチルアンモニウムテトラフルオロボレート)、SBPBF(スピロビピロリジニウムテトラフルオロボレート)等が用いられる。セパレータ21は、正極用の分極性電極41と負極用の分極性電極46との短絡、及び正極集電体40と負極集電体45との短絡を防止する。正極22、負極23、及び非水電解液が、電気二重層キャパシタを構成する。 A separator 21 is disposed between the positive electrode 22 and the negative electrode 23. For the separator 21, for example, cellulose paper is used. This cellulose paper is impregnated with a non-aqueous electrolyte. As the solvent for the non-aqueous electrolyte, a polarizable organic solvent such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate or the like is used. As the electrolyte (supporting salt), a quaternary ammonium salt such as TEABF 4 (tetraethylammonium tetrafluoroborate), TEMABF 4 (triethylmethylammonium tetrafluoroborate), SBPBF 4 (spirobipyrrolidinium tetrafluoroborate) or the like is used. . The separator 21 prevents a short circuit between the polarizable electrode 41 for the positive electrode and the polarizable electrode 46 for the negative electrode, and a short circuit between the positive electrode current collector 40 and the negative electrode current collector 45. The positive electrode 22, the negative electrode 23, and the non-aqueous electrolyte constitute an electric double layer capacitor.

参照電極板30A、30Bの各々も、正極22及び負極23と同一の層構造を有する。すなわち、集電体48と、その両面に配置された分極性電極49とを含む。   Each of the reference electrode plates 30A and 30B also has the same layer structure as the positive electrode 22 and the negative electrode 23. That is, it includes a current collector 48 and polarizable electrodes 49 arranged on both sides thereof.

図3〜図5を参照して、実施例1による蓄電セルの劣化状態を判定する方法について説明する。蓄電セルの劣化試験を行うために、実施例1による蓄電セルと同一の構造を有する4つの評価試料を作製した。   With reference to FIGS. 3-5, the method to determine the deterioration state of the electrical storage cell by Example 1 is demonstrated. In order to conduct a deterioration test of the storage cell, four evaluation samples having the same structure as the storage cell according to Example 1 were prepared.

図3に、4つの評価試料の静電容量の時間変動を示す。劣化試験の雰囲気温度は70℃とし、正極22と負極23との間に、2.7Vの電圧を印加した。横軸は劣化試験の経過時間を単位「時間」で表す。縦軸は、静電容量の初期値をCi、現在値をCとしたときのC/Ci、すなわち静電容量の初期値に対する現在値の比率を表す。図3の三角記号、四角記号、菱形記号、及び丸記号は、それぞれ試料S1、S2、S3、S4の測定結果を示す。試料S3、S4の静電容量は、それぞれ400時間、600時間を経過した後に、急激に低下している。静電容量が急激に低下し始めた時点で何らかの異常が発生したと考えられる。ただし、蓄電セルの動作中に、静電容量を測定することは困難である。   FIG. 3 shows the time variation of the capacitance of the four evaluation samples. The atmospheric temperature in the deterioration test was 70 ° C., and a voltage of 2.7 V was applied between the positive electrode 22 and the negative electrode 23. The horizontal axis represents the elapsed time of the degradation test in the unit “time”. The vertical axis represents C / Ci where the initial value of capacitance is Ci and the current value is C, that is, the ratio of the current value to the initial value of capacitance. The triangle symbol, square symbol, rhombus symbol, and circle symbol in FIG. 3 indicate the measurement results of the samples S1, S2, S3, and S4, respectively. The electrostatic capacities of the samples S3 and S4 are rapidly decreased after 400 hours and 600 hours, respectively. It is considered that some abnormality occurred when the capacitance began to drop rapidly. However, it is difficult to measure the capacitance during operation of the storage cell.

図4及び図5に、4つの評価試料の参照極間の電圧の時間変動を示す。図4は、雰囲気温度を70℃とし、正極22と負極23との間に2.7Vの電圧を印加して劣化試験を行ったときの測定結果を示し、図5は、放電時の測定結果を示す。横軸は劣化試験の経過時間を単位「時間」で表し、縦軸は参照極間の電圧を単位「V」で表す。図4及び図5の三角記号、四角記号、菱形記号、及び丸記号は、それぞれ試料S1、S2、S3、S4の測
定結果を示す。
4 and 5 show the time variation of the voltage between the reference electrodes of the four evaluation samples. FIG. 4 shows a measurement result when a deterioration test is performed by applying a voltage of 2.7 V between the positive electrode 22 and the negative electrode 23 at an atmospheric temperature of 70 ° C., and FIG. 5 shows a measurement result at the time of discharge. Indicates. The horizontal axis represents the elapsed time of the deterioration test in the unit “time”, and the vertical axis represents the voltage between the reference electrodes in the unit “V”. The triangle symbol, square symbol, rhombus symbol, and circle symbol in FIGS. 4 and 5 indicate the measurement results of the samples S1, S2, S3, and S4, respectively.

評価試料に異常が発生していない場合には、参照極間の電圧は0.2V以下である。試料S3、S4において異常が発生すると、参照極間の電圧が0.2を超えて上昇している。参照極間の電圧が上昇する時期は、静電容量が急激に低下する時期と重なる。また、正極22と負極23との間に2.7Vの電圧を印加している状態と、放電状態とで、参照極間の電圧変動はほぼ同一の傾向を示す。参照極30は正極22及び負極23のいずれとも電気的に接続されていないため、蓄電セルの動作中にも、参照極間の電圧を測定することが可能である。   When no abnormality occurs in the evaluation sample, the voltage between the reference electrodes is 0.2 V or less. When an abnormality occurs in the samples S3 and S4, the voltage between the reference electrodes rises exceeding 0.2. The time when the voltage between the reference electrodes rises overlaps with the time when the capacitance suddenly drops. Further, the voltage fluctuation between the reference electrodes shows almost the same tendency in the state in which a voltage of 2.7 V is applied between the positive electrode 22 and the negative electrode 23 and in the discharge state. Since the reference electrode 30 is not electrically connected to either the positive electrode 22 or the negative electrode 23, the voltage between the reference electrodes can be measured even during the operation of the storage cell.

参照極間の電圧が0.2Vを超えたら、何らかの異常が発生した可能性が高いと考えられる。なお、異常の有無の判定閾値は、同一製品群の複数の試料について評価実験を行うことにより、決定することが可能である。動作中の蓄電セルの参照極間の電圧を測定することにより、蓄電セルの異常を検出することができる。測定された電圧が判定閾値を超えている場合、その蓄電セルは異常であると判定される。測定された電圧が判定閾値以下である場合、その蓄電セルは正常であると判定される。   If the voltage between the reference electrodes exceeds 0.2V, it is highly likely that some abnormality has occurred. Note that the determination threshold for the presence or absence of abnormality can be determined by performing an evaluation experiment on a plurality of samples in the same product group. By measuring the voltage between the reference electrodes of the storage cell in operation, an abnormality of the storage cell can be detected. When the measured voltage exceeds the determination threshold value, it is determined that the storage cell is abnormal. When the measured voltage is less than or equal to the determination threshold, it is determined that the storage cell is normal.

上記実施例1では、参照極30が蓄電構造体20(図2A)の外側に配置されているため、参照極30は、蓄電セルの充放電特性に影響を与えることはない。   In the first embodiment, the reference electrode 30 is disposed outside the power storage structure 20 (FIG. 2A), and therefore the reference electrode 30 does not affect the charge / discharge characteristics of the power storage cell.

図6に、実施例1による蓄電セルを用いた蓄電モジュールの断面図を示す。蓄電セル50と伝熱板51とが交互に積み重ねられている。積み重ね方向の両端に加圧板52が配置されている。一方の加圧板52から他方の加圧板52まで複数のタイロッド53が架け渡されている。タイロッド53と加圧板52とにより、蓄電セル50及び伝熱板51に積み重ね方向の圧縮力が印加される。相互に隣り合う蓄電セル50の正極端子35と負極端子36とを接続することにより、複数の蓄電セル50が直列接続されている。伝熱板51は蓄電セル50を冷却するための伝熱経路となる。   FIG. 6 shows a cross-sectional view of a power storage module using the power storage cell according to the first embodiment. The storage cells 50 and the heat transfer plates 51 are alternately stacked. Pressure plates 52 are disposed at both ends in the stacking direction. A plurality of tie rods 53 are bridged from one pressure plate 52 to the other pressure plate 52. A compression force in the stacking direction is applied to the storage cell 50 and the heat transfer plate 51 by the tie rod 53 and the pressure plate 52. By connecting the positive electrode terminal 35 and the negative electrode terminal 36 of the energy storage cells 50 adjacent to each other, the plurality of energy storage cells 50 are connected in series. The heat transfer plate 51 serves as a heat transfer path for cooling the storage cell 50.

蓄電セル50の各々の参照端子37A、37Bが、異常検出回路54に接続されている。異常検出回路54は、蓄電セル50ごとに、参照端子37Aと37Bとの間の電圧と、予め定められた判定閾値とを比較する。参照端子37Aと37Bとの間の電圧が判定閾値を超えると、警報を発出する。   Each reference terminal 37 </ b> A, 37 </ b> B of the storage cell 50 is connected to the abnormality detection circuit 54. The abnormality detection circuit 54 compares the voltage between the reference terminals 37 </ b> A and 37 </ b> B with a predetermined determination threshold for each power storage cell 50. When the voltage between the reference terminals 37A and 37B exceeds the determination threshold, an alarm is issued.

図7A、図7B、図8に、実施例1の変形例による蓄電セルの平面図を示す。図7Aに示した変形例では、正極端子35、負極端子36、及び参照端子37A、37Bが、蓄電容器33から同一方向(y軸の正の方向)に導出されている。この変形例では、蓄電セルを図6に示したように積み重ねたとき、積層体の1つの側面からのみ電気的な接続を行えばよい。参照端子37A、37Bは、正極端子35及び負極端子36より小さい。このため、作製時に、作業者は、正極端子22及び負極端子23を、参照端子37A、37Bから容易に区別することができる。   7A, 7B, and 8 are plan views of power storage cells according to modifications of the first embodiment. In the modification shown in FIG. 7A, the positive electrode terminal 35, the negative electrode terminal 36, and the reference terminals 37A and 37B are led out from the storage container 33 in the same direction (positive direction of the y axis). In this modification, when the storage cells are stacked as shown in FIG. 6, electrical connection only needs to be made from one side surface of the stacked body. The reference terminals 37A and 37B are smaller than the positive terminal 35 and the negative terminal 36. For this reason, the operator can easily distinguish the positive terminal 22 and the negative terminal 23 from the reference terminals 37A and 37B at the time of manufacture.

図7Bに示した変形例では、さらに、参照端子37A、37Bの、蓄電容器33の外側の部分の形状が、正極端子35及び負極端子36の、蓄電容器33の外側の部分の形状と異なる。作業者は、正極端子22及び負極端子23を、参照端子37A、37Bから明確に区別することができる。このため、誤接続の発生頻度を、より少なくすることが可能になる。   In the modification shown in FIG. 7B, the shapes of the reference terminals 37 </ b> A and 37 </ b> B outside the electricity storage container 33 are different from the shapes of the positive electrode terminal 35 and the negative electrode terminal 36 outside the electricity storage container 33. An operator can clearly distinguish the positive terminal 22 and the negative terminal 23 from the reference terminals 37A and 37B. For this reason, it is possible to reduce the frequency of erroneous connection.

図8に示した変形例では、正極端子35と負極端子36とが、蓄電容器33から相互に反対方向に導出されている。さらに、一方の参照端子37Aと他方の参照端子37Bとが、相互に反対方向に導出されている。このように、正極端子35と負極端子36とが、蓄
電容器33から相互に反対方向に導出される端子配置を有する蓄電セルにおいても、参照極30を配置することが可能である。
In the modification shown in FIG. 8, the positive terminal 35 and the negative terminal 36 are led out from the storage container 33 in opposite directions. Furthermore, one reference terminal 37A and the other reference terminal 37B are led out in directions opposite to each other. In this way, the reference electrode 30 can also be arranged in a storage cell having a terminal arrangement in which the positive electrode terminal 35 and the negative electrode terminal 36 are led out from the storage container 33 in opposite directions.

図9に、実施例1の他の変形例による蓄電セルの蓄電容器内の構成要素の斜視図を示す。以下、図1Aに示した実施例1との相違点について説明し、同一の構成については説明を省略する。実施例1では、参照電極板30A、30Bが、蓄電構造体20の外側に配置されていた。   In FIG. 9, the perspective view of the component in the electrical storage container of the electrical storage cell by the other modification of Example 1 is shown. Hereinafter, differences from the first embodiment shown in FIG. 1A will be described, and description of the same configuration will be omitted. In the first embodiment, the reference electrode plates 30 </ b> A and 30 </ b> B are disposed outside the power storage structure 20.

図9に示した変形例では、参照電極板30A及び参照電極板30Bが、正極22と負極23との間に挿入されている。この変形例でも、参照電極板30A、30Bは、正極22及び負極23のいずれからも電気的に分離されている。具体的には、参照電極板30Aと、その両側の正極22、負極23との間に、それぞれセパレータ21が挿入されている。さらに、参照電極板30Bと、その両側の正極22、負極23との間にも、それぞれセパレータ21が挿入されている。   In the modification shown in FIG. 9, the reference electrode plate 30 </ b> A and the reference electrode plate 30 </ b> B are inserted between the positive electrode 22 and the negative electrode 23. Also in this modification, the reference electrode plates 30 </ b> A and 30 </ b> B are electrically separated from both the positive electrode 22 and the negative electrode 23. Specifically, the separators 21 are respectively inserted between the reference electrode plate 30A and the positive electrode 22 and the negative electrode 23 on both sides thereof. Further, separators 21 are inserted between the reference electrode plate 30B and the positive electrode 22 and the negative electrode 23 on both sides thereof.

蓄電セルの静電容量が急激に低下した状態のときには、正極22の分極性電極41(図2B)及び負極23の分極性電極46(図2B)と、電解液との界面に異常が発生していると考えられる。このときに、参照極間の電圧に異常が発生するのは、参照極30の分極性電極49(図2B)と電解液との界面にも、同様の異常が発生しているためと考えられる。参照電極板30A、30Bを、蓄電構造体20の内部に挿入すると、正極22及び負極23の分極性電極41、46に生じた異常と同一の異常が、参照極30の分極性電極49に生じやすい。このため、蓄電セルの異常を、より早期に検出することができる。   When the capacitance of the storage cell is rapidly reduced, an abnormality occurs at the interface between the polarizable electrode 41 (FIG. 2B) of the positive electrode 22 and the polarizable electrode 46 (FIG. 2B) of the negative electrode 23 and the electrolyte. It is thought that. At this time, it is considered that the abnormality occurs in the voltage between the reference electrodes because the same abnormality occurs at the interface between the polarizable electrode 49 (FIG. 2B) of the reference electrode 30 and the electrolytic solution. . When the reference electrode plates 30 </ b> A and 30 </ b> B are inserted into the electricity storage structure 20, the same abnormality as that generated in the polarizable electrodes 41 and 46 of the positive electrode 22 and the negative electrode 23 occurs in the polarizable electrode 49 of the reference electrode 30. Cheap. For this reason, abnormality of an electrical storage cell can be detected earlier.

[実施例2]
図10Aに、実施例2による蓄電セルの蓄電容器内の構成要素の斜視図を示す。以下、図1Aに示した実施例1との相違点について説明し、同一の構成については説明を省略する。実施例1では、参照極30が、一対の参照電極板30A、30Bを含んでいた。実施例2では、参照極30が、1枚の参照電極板のみを含む。1枚の参照極30は、蓄電構造体20の外側に配置されている。参照極30は、xy面内に関して蓄電領域27から導出された接続部31を含む。なお、図9に示したように、参照極30を蓄電構造体20の内部に挿入してもよい。
[Example 2]
FIG. 10A is a perspective view of components in the storage container of the storage cell according to the second embodiment. Hereinafter, differences from the first embodiment shown in FIG. 1A will be described, and description of the same configuration will be omitted. In the first embodiment, the reference electrode 30 includes a pair of reference electrode plates 30A and 30B. In Example 2, the reference electrode 30 includes only one reference electrode plate. One reference electrode 30 is disposed outside the power storage structure 20. The reference electrode 30 includes a connection portion 31 derived from the power storage region 27 with respect to the xy plane. Note that, as illustrated in FIG. 9, the reference electrode 30 may be inserted into the power storage structure 20.

図10Bに、実施例2による蓄電セルの平面図を示す。1枚の参照極30が接続部31を含む。接続部31に、参照端子37が接続されている。参照端子37は、蓄電容器33の外側まで引き出されている。実施例2においては、参照極30が1枚しか配置されていないため、参照極間の電圧を定義できない。図11及び図12を参照して、実施例2による蓄電セルの異常判定方法について説明する。評価用の試料として、図3〜図5に示した4つの評価試料S1、S2、S3、S4を用いた。評価試料の1つの参照極を使用しないことにより、実施例2による構造と実質的に同一の構造の蓄電セルの異常判定を行った。   FIG. 10B is a plan view of the storage cell according to the second embodiment. One reference electrode 30 includes a connection portion 31. A reference terminal 37 is connected to the connection portion 31. The reference terminal 37 is pulled out to the outside of the electricity storage container 33. In Example 2, since only one reference electrode 30 is arranged, the voltage between the reference electrodes cannot be defined. With reference to FIG.11 and FIG.12, the abnormality determination method of the electrical storage cell by Example 2 is demonstrated. As evaluation samples, the four evaluation samples S1, S2, S3, and S4 shown in FIGS. 3 to 5 were used. By not using one reference electrode of the evaluation sample, the abnormality determination of the storage cell having the substantially same structure as the structure according to Example 2 was performed.

図11及び図12に、参照極30の電位を基準とした正極22及び負極23の電位の時間変動を示す。いずれの場合も、劣化試験の雰囲気温度は70℃とした。図11及び図12は、それぞれ正極22と負極23との間に2.5V及び2.7Vの電圧を印加したときの正極22及び負極23の電位を示す。図11及び図12の三角記号、四角記号、菱形記号、及び丸記号は、それぞれ試料S1、S2、S3、S4の測定結果を示す。   11 and 12 show temporal fluctuations of the potentials of the positive electrode 22 and the negative electrode 23 with respect to the potential of the reference electrode 30. FIG. In any case, the atmospheric temperature of the deterioration test was set to 70 ° C. 11 and 12 show the potentials of the positive electrode 22 and the negative electrode 23 when voltages of 2.5 V and 2.7 V are applied between the positive electrode 22 and the negative electrode 23, respectively. The triangular symbol, square symbol, rhombus symbol, and circle symbol in FIGS. 11 and 12 indicate the measurement results of the samples S1, S2, S3, and S4, respectively.

試料S3、S4においては、図3に示した静電容量が急激に低下した時期とほぼ同時期に、参照極30の電位に対して正極22及び負極23の電位が上昇している。異常発生前の正極22及び負極23の電位と、異常発生後の正極22及び負極23の電位との間に、判定閾値を設定することにより、異常の発生を検出することができる。参照極30は、正
極22及び負極23のいずれとも電気的に接続されていないため、蓄電セルの動作中であっても異常の判定を行うことができる。
In the samples S3 and S4, the potentials of the positive electrode 22 and the negative electrode 23 are increased with respect to the potential of the reference electrode 30 almost simultaneously with the time when the capacitance shown in FIG. The occurrence of abnormality can be detected by setting a determination threshold between the potential of the positive electrode 22 and the negative electrode 23 before the occurrence of abnormality and the potential of the positive electrode 22 and the negative electrode 23 after occurrence of abnormality. Since the reference electrode 30 is not electrically connected to any of the positive electrode 22 and the negative electrode 23, it is possible to determine abnormality even during operation of the storage cell.

参照極30の電位を基準として、動作中の蓄電セルの正極22または負極23の電位を測定することにより、蓄電セルの異常を検出することができる。測定された電位が判定閾値を超えている場合、その蓄電セルは異常であると判定される。測定された電位が判定閾値以下である場合、その蓄電セルは正常であると判定される。   By measuring the potential of the positive electrode 22 or the negative electrode 23 of the operating storage cell with the reference electrode 30 as a reference, an abnormality of the storage cell can be detected. When the measured potential exceeds the determination threshold value, it is determined that the storage cell is abnormal. When the measured potential is equal to or lower than the determination threshold, the power storage cell is determined to be normal.

上記実施例1及び実施例2では、蓄電セルを電気二重層キャパシタで構成したが、その他の蓄電構造、例えばリチウムイオンキャパシタ、リチウムイオン二次電池等の異常判定にも、参照極を利用することができる。また、上記実施例1及び実施例2では、蓄電構造体20をアルミラミネートフィルム33A、33B(図2A)で密閉した積層型の蓄電セルについて説明した。上記実施例1及び実施例2の参照極は、その他に、正極及び負極を金属性の缶に収容した缶型の蓄電セルにも適用することが可能である。   In Example 1 and Example 2 described above, the storage cell is configured with an electric double layer capacitor. However, the reference electrode is also used for determining the abnormality of other storage structures such as lithium ion capacitors and lithium ion secondary batteries. Can do. Moreover, in the said Example 1 and Example 2, the electrical storage structure 20 was demonstrated about the laminated | stacked electrical storage cell which sealed the aluminum laminate films 33A and 33B (FIG. 2A). In addition, the reference electrode of Example 1 and Example 2 can also be applied to a can-type storage cell in which a positive electrode and a negative electrode are housed in a metallic can.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

20 蓄電構造体
21 セパレータ
22 正極
23 負極
24 正極の相互接続部
25 負極の相互接続部
27 蓄電領域
30 参照極
30A、30B 参照電極板
31A、31B 接続部
33 蓄電容器
35 正極端子
36 負極端子
37A、37B 参照端子
40 正極集電体
41 正極用分極性電極
45 負極集電体
46 負極用分極性電極
48 集電体
49 分極性電極
50 蓄電セル
51 伝熱板
52 加圧板
53 タイロッド
54 異常検出回路
20 Power Storage Structure 21 Separator 22 Positive Electrode 23 Negative Electrode Interconnection 25 Positive Electrode Interconnection 27 Negative Electrode Interconnection 27 Electricity Storage Area 30 Reference Electrode 30A, 30B Reference Electrode Plate 31A, 31B Connection 33 Electricity Storage Container 35 Positive Electrode Terminal 36 Negative Electrode 37A, 37B Reference terminal 40 Positive electrode current collector 41 Positive electrode polarizable electrode 45 Negative electrode current collector 46 Negative electrode polarizable electrode 48 Current collector 49 Polarized electrode 50 Storage cell 51 Heat transfer plate 52 Pressure plate 53 Tie rod 54 Abnormality detection circuit

Claims (12)

蓄電容器と、
前記蓄電容器内に収容され、非水電解液、正極、及び負極を含む蓄電構造体と、
前記正極に接続され、前記蓄電容器の外側まで導出された正極端子と、
前記負極に接続され、前記蓄電容器の外側まで導出された負極端子と、
前記蓄電容器内に収容され、前記正極及び前記負極のいずれとも電気的に接続されていない参照極と、
前記参照極に接続され、前記蓄電容器の外側まで導出された参照端子と
を有する蓄電セル。
A storage container;
A power storage structure housed in the power storage container and including a non-aqueous electrolyte, a positive electrode, and a negative electrode;
A positive electrode terminal connected to the positive electrode and led out to the outside of the storage container;
A negative electrode terminal connected to the negative electrode and led out to the outside of the storage container;
A reference electrode housed in the storage container and not electrically connected to either the positive electrode or the negative electrode;
A storage cell having a reference terminal connected to the reference electrode and led out to the outside of the storage container.
前記正極及び前記負極は、それぞれ板状の形状を有し、
前記蓄電構造体は、交互に積層された前記正極と前記負極とを含む請求項1に記載の蓄電セル。
Each of the positive electrode and the negative electrode has a plate shape,
The electrical storage cell according to claim 1, wherein the electrical storage structure includes the positive electrode and the negative electrode that are alternately stacked.
前記参照極は、前記正極と前記負極との積層方向に関して、前記蓄電構造体の外側に配置されている請求項2に記載の蓄電セル。   The power storage cell according to claim 2, wherein the reference electrode is disposed outside the power storage structure in a stacking direction of the positive electrode and the negative electrode. 前記参照極は、前記蓄電構造体を構成する相互に隣り合う正極と負極との間に配置されており、
さらに、前記参照極と前記正極との間、及び前記参照極と前記負極との間にそれぞれ配置されたセパレータを有する請求項2に記載の蓄電セル。
The reference electrode is disposed between a positive electrode and a negative electrode adjacent to each other that constitute the power storage structure,
Furthermore, the electrical storage cell of Claim 2 which has a separator each arrange | positioned between the said reference electrode and the said positive electrode, and between the said reference electrode and the said negative electrode.
前記参照極は、相互に電気的に分離された一対の参照電極板を含み、前記参照電極板の各々に、前記参照端子が接続されている請求項2乃至4のいずれか1項に記載の蓄電セル。   5. The reference electrode according to claim 2, wherein the reference electrode includes a pair of reference electrode plates electrically separated from each other, and the reference terminal is connected to each of the reference electrode plates. 6. Power storage cell. 前記一対の参照電極板は、前記正極と前記負極との積層方向に関して、前記蓄電構造体を挟むように配置されている請求項5に記載の蓄電セル。   The power storage cell according to claim 5, wherein the pair of reference electrode plates are arranged so as to sandwich the power storage structure in a stacking direction of the positive electrode and the negative electrode. 前記参照端子の、前記蓄電容器の外側の部分の形状が、前記正極端子及び前記負極端子の、前記蓄電容器の外側の部分の形状と異なる請求項2乃至6のいずれか1項に記載の蓄電セル。   The electricity storage according to any one of claims 2 to 6, wherein a shape of an outer portion of the reference terminal of the electricity storage container is different from a shape of an outer portion of the electricity storage container of the positive electrode terminal and the negative electrode terminal. cell. 前記正極端子、前記負極端子、及び前記参照端子が、前記蓄電容器から同一の方向に向かって導出されている請求項2乃至7のいずれか1項に記載の蓄電セル。   The power storage cell according to any one of claims 2 to 7, wherein the positive terminal, the negative terminal, and the reference terminal are led out from the power storage container in the same direction. 前記正極端子及び前記負極端子が前記蓄電容器から導出されている方向と、前記参照端子が前記蓄電容器から導出されている方向とは、相互に逆向きである請求項2乃至7のいずれか1項に記載の蓄電セル。   8. The direction in which the positive electrode terminal and the negative electrode terminal are led out from the power storage container and the direction in which the reference terminal is led out from the power storage container are opposite to each other. The electricity storage cell according to item. 前記正極及び前記負極の各々は、集電体と、前記集電体の両面に配置された分極性電極とを含む層構造を有し、
前記参照極は、前記正極及び前記負極と同一の層構造を有する請求項1乃至9のいずれか1項に記載の蓄電セル。
Each of the positive electrode and the negative electrode has a layer structure including a current collector and polarizable electrodes disposed on both surfaces of the current collector,
The electrical storage cell according to claim 1, wherein the reference electrode has the same layer structure as the positive electrode and the negative electrode.
蓄電容器と、
前記蓄電容器内に収容され、非水電解液、正極、及び負極を含む蓄電構造体と、
前記正極に接続され、前記蓄電容器の外側まで導出された正極端子と、
前記負極に接続され、前記蓄電容器の外側まで導出された負極端子と、
前記蓄電容器内に収容され、前記正極及び前記負極のいずれとも電気的に接続されていない一対の参照極と、
前記参照極に接続され、前記蓄電容器の外側まで導出された参照端子と
を有する蓄電セルの前記一対の参照極の間の電圧を測定する工程と、
前記一対の参照極の間の電圧と、判定閾値とを比較する工程と、
前記一対の参照極の間の電圧が前記判定閾値を超えたとき、前記蓄電セルを異常と判定し、前記一対の参照極の間の電圧が前記判定閾値以下のとき、前記蓄電セルを正常と判定する工程と
を有する蓄電セルの異常判定方法。
A storage container;
A power storage structure housed in the power storage container and including a non-aqueous electrolyte, a positive electrode, and a negative electrode;
A positive electrode terminal connected to the positive electrode and led out to the outside of the storage container;
A negative electrode terminal connected to the negative electrode and led out to the outside of the storage container;
A pair of reference electrodes housed in the storage container and not electrically connected to either the positive electrode or the negative electrode;
Measuring a voltage between the pair of reference electrodes of a storage cell having a reference terminal connected to the reference electrode and led to the outside of the storage container;
Comparing a voltage between the pair of reference electrodes and a determination threshold;
When the voltage between the pair of reference electrodes exceeds the determination threshold, the storage cell is determined to be abnormal, and when the voltage between the pair of reference electrodes is equal to or less than the determination threshold, the storage cell is determined to be normal. An abnormality determination method for a power storage cell including a step of determining.
蓄電容器と、
前記蓄電容器内に収容され、非水電解液、正極、及び負極を含む蓄電構造体と、
前記正極に接続され、前記蓄電容器の外側まで導出された正極端子と、
前記負極に接続され、前記蓄電容器の外側まで導出された負極端子と、
前記蓄電容器内に収容され、前記正極及び前記負極のいずれとも電気的に接続されていない参照極と、
前記参照極に接続され、前記蓄電容器の外側まで導出された参照端子と
を有する蓄電セルの前記参照極を基準とした時の前記正極または前記負極の電位を測定する工程と、
測定された前記電位と、判定閾値とを比較する工程と、
測定された前記電位が前記判定閾値を超えたとき、前記蓄電セルを異常と判定し、測定された前記電位が前記判定閾値以下のとき、前記蓄電セルを正常と判定する工程と
を有する蓄電セルの異常判定方法。
A storage container;
A power storage structure housed in the power storage container and including a non-aqueous electrolyte, a positive electrode, and a negative electrode;
A positive electrode terminal connected to the positive electrode and led out to the outside of the storage container;
A negative electrode terminal connected to the negative electrode and led out to the outside of the storage container;
A reference electrode housed in the storage container and not electrically connected to either the positive electrode or the negative electrode;
Measuring the potential of the positive electrode or the negative electrode with reference to the reference electrode of a storage cell having a reference terminal connected to the reference electrode and led to the outside of the storage container;
Comparing the measured potential with a determination threshold;
A storage cell having a step of determining that the storage cell is abnormal when the measured potential exceeds the determination threshold, and determining that the storage cell is normal when the measured potential is less than or equal to the determination threshold Anomaly judgment method.
JP2012069772A 2012-03-26 2012-03-26 Power storage cell and abnormality detecting method for power storage cell Pending JP2013201358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069772A JP2013201358A (en) 2012-03-26 2012-03-26 Power storage cell and abnormality detecting method for power storage cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069772A JP2013201358A (en) 2012-03-26 2012-03-26 Power storage cell and abnormality detecting method for power storage cell

Publications (1)

Publication Number Publication Date
JP2013201358A true JP2013201358A (en) 2013-10-03

Family

ID=49521331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069772A Pending JP2013201358A (en) 2012-03-26 2012-03-26 Power storage cell and abnormality detecting method for power storage cell

Country Status (1)

Country Link
JP (1) JP2013201358A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137078A (en) * 2017-02-21 2018-08-30 Tdk株式会社 Storage battery
WO2019160334A1 (en) * 2018-02-19 2019-08-22 주식회사 엘지화학 Secondary battery and battery pack comprising same
WO2019160333A1 (en) * 2018-02-19 2019-08-22 주식회사 엘지화학 Terminal case having improved secondary battery state estimation function
CN110176556A (en) * 2018-02-19 2019-08-27 株式会社Lg化学 For estimating the equipment of the state of secondary cell and including the battery pack of the equipment
WO2022227821A1 (en) * 2021-04-27 2022-11-03 Oppo广东移动通信有限公司 Battery assembly and control method therefor, and electronic device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137078A (en) * 2017-02-21 2018-08-30 Tdk株式会社 Storage battery
EP3671941A4 (en) * 2018-02-19 2020-11-25 Lg Chem, Ltd. Secondary battery and battery pack comprising same
CN110176561B (en) * 2018-02-19 2023-01-13 株式会社Lg新能源 Terminal housing having improved secondary battery state estimating function and battery pack having the same
CN110176561A (en) * 2018-02-19 2019-08-27 株式会社Lg化学 Terminal shell and its battery pack with improved secondary cell state estimation function
CN110176556A (en) * 2018-02-19 2019-08-27 株式会社Lg化学 For estimating the equipment of the state of secondary cell and including the battery pack of the equipment
CN110176645A (en) * 2018-02-19 2019-08-27 株式会社Lg化学 Secondary cell and battery pack including the secondary cell
KR20190099687A (en) * 2018-02-19 2019-08-28 주식회사 엘지화학 Terminal case having the improved functionof estimating state of secondary battery
KR20190099688A (en) * 2018-02-19 2019-08-28 주식회사 엘지화학 Pouch type secondary battery
KR20190099686A (en) * 2018-02-19 2019-08-28 주식회사 엘지화학 Apparatus for estimating state of secondary battery
JP2020528642A (en) * 2018-02-19 2020-09-24 エルジー・ケム・リミテッド Terminal case with improved secondary battery status estimation function
JP2020528644A (en) * 2018-02-19 2020-09-24 エルジー・ケム・リミテッド Rechargeable battery and battery pack containing it
US11705587B2 (en) 2018-02-19 2023-07-18 Lg Energy Solution, Ltd. Terminal case having the improved function of estimating state of secondary battery
WO2019160333A1 (en) * 2018-02-19 2019-08-22 주식회사 엘지화학 Terminal case having improved secondary battery state estimation function
JP7027636B2 (en) 2018-02-19 2022-03-02 エルジー エナジー ソリューション リミテッド Terminal case with improved secondary battery status estimation function
JP7027630B2 (en) 2018-02-19 2022-03-02 エルジー エナジー ソリューション リミテッド Secondary battery and battery pack containing it
EP3671939A4 (en) * 2018-02-19 2020-11-25 Lg Chem, Ltd. Device for estimating state of secondary battery, and battery pack comprising same
KR102373359B1 (en) 2018-02-19 2022-03-10 주식회사 엘지에너지솔루션 Terminal case having the improved functionof estimating state of secondary battery
KR102374743B1 (en) * 2018-02-19 2022-03-14 주식회사 엘지에너지솔루션 Pouch type secondary battery
KR102429307B1 (en) * 2018-02-19 2022-08-03 주식회사 엘지에너지솔루션 Apparatus for estimating state of secondary battery
US11454676B2 (en) 2018-02-19 2022-09-27 Lg Energy Solution, Ltd. Apparatus for estimating state of secondary battery, and battery pack including the same
EP3671942A4 (en) * 2018-02-19 2020-11-18 Lg Chem, Ltd. Terminal case having improved secondary battery state estimation function
US11545705B2 (en) 2018-02-19 2023-01-03 Lg Energy Solution, Ltd. Secondary battery and battery pack including the same
WO2019160334A1 (en) * 2018-02-19 2019-08-22 주식회사 엘지화학 Secondary battery and battery pack comprising same
CN110176556B (en) * 2018-02-19 2023-04-18 株式会社Lg新能源 Apparatus for estimating state of secondary battery and battery pack including the same
WO2022227821A1 (en) * 2021-04-27 2022-11-03 Oppo广东移动通信有限公司 Battery assembly and control method therefor, and electronic device

Similar Documents

Publication Publication Date Title
US10312028B2 (en) Electrochemical energy storage devices and manufacturing methods
JP2013201358A (en) Power storage cell and abnormality detecting method for power storage cell
KR20200035594A (en) Non-destructive method for detecting disconnection of battery cell using pressing force
JP4800232B2 (en) Electric double layer capacitor
US7198654B1 (en) Separator sheet and method for manufacturing electric double layer capacitor using the same
US9083013B2 (en) Electrochemical device
KR100720994B1 (en) Method for manufacturing of ultra-thin electric double layer capacitor
US20140272542A1 (en) Electrochemical energy storage device with molecular seive storage cell
JP2010114364A (en) Electrochemical device, and electrochemical device module
KR101800051B1 (en) Short measuring apparatus of unit cell
JP6572710B2 (en) Terminal structure, power storage device and power storage module
JP7192581B2 (en) Voltage measurement method
US20210396810A1 (en) Method for measuring cell performance
JP4395966B2 (en) Multilayer electric double layer capacitor
JP2020148478A (en) Resistance measurement method
JP2017117526A (en) Method of manufacturing battery pack
KR101787148B1 (en) Short measuring apparatus of unit cell
JP2013157296A (en) Power storage cell, power storage module, and abnormality monitoring device of power storage cell
JP6209429B2 (en) Electrochemical capacitor
KR20190053342A (en) Super capacitor and manufacturing method thereof
US20240021888A1 (en) Battery module having electrolytic solution leakage detection function and battery pack including the same
JP5281341B2 (en) Electrolytic solution and electric double layer capacitor using the same
KR20240100254A (en) Power storage module
KR20240045914A (en) Apparatus and method for diagnosing battery cell
JP6409389B2 (en) Power storage device abnormality detection method and power storage device abnormality detection device