JP4395966B2 - Multilayer electric double layer capacitor - Google Patents

Multilayer electric double layer capacitor Download PDF

Info

Publication number
JP4395966B2
JP4395966B2 JP2000060190A JP2000060190A JP4395966B2 JP 4395966 B2 JP4395966 B2 JP 4395966B2 JP 2000060190 A JP2000060190 A JP 2000060190A JP 2000060190 A JP2000060190 A JP 2000060190A JP 4395966 B2 JP4395966 B2 JP 4395966B2
Authority
JP
Japan
Prior art keywords
shared voltage
electric double
double layer
layer capacitor
shared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000060190A
Other languages
Japanese (ja)
Other versions
JP2001250741A (en
Inventor
裕之 渡辺
論 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2000060190A priority Critical patent/JP4395966B2/en
Publication of JP2001250741A publication Critical patent/JP2001250741A/en
Application granted granted Critical
Publication of JP4395966B2 publication Critical patent/JP4395966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated electric double layer capacitor from which its shared voltage can be detected and, accordingly, the remaining serviced lives and exchanging timing of its electric double layers can be estimated. SOLUTION: Bipolar current collecting electrodes 11 having shared voltage detecting tabs 20 for detecting the shared voltage of this capacitor are laminated upon another through a rubber frame 30. At the same time, in order to release the stress concentration which occurs when bending stresses are generated in the tabs 20, the frame 30 is formed to have such a ridge-shaped or curved end face that becomes lower in height as going toward its edge section by using ethylene-propylene rubber.

Description

【0001】
【発明の属する技術分野】
本発明は、積層型電気二重層キャパシタに関する。特に、分担電圧測定を容易に行えるよう改良したものである。
【0002】
【従来の技術】
電気二重層キャパシタ(EDLC)は電解液を含浸したセパレータやゲル電解質、そしてそれを対向して挟む電極及び電気を取り出すための集電極を主な構成物として成るものである。
電気二重層キャパシタは、1つ当たりの耐電圧が25〜30V程度であるため、電気二重層キャパシタを用いて高電圧まで充電するためには電気二重層キャパシタを複数個直列接続する必要がある。
巻き回型電気二重層キャパシタの場合、直列接続は電気回路を付加して行うボー方、積層型電気二重層キャパシタは一対の集電用電極の他に(所用積層数−1)個だけバイポーラ型電極を用いて積層している。
【0003】
【発明が解決しようとする課題】
従来の技術における問題点としては次のものが挙げられる。
直列接続した個々の電気二重層キャパシタは理想的には”充電電圧/直列接続数”だけの電圧分担をすることになる。
しかし、現実には各電気二重層キャパシタ毎に静電容量と内部抵抗にばらつきがあり、そのばらつきが充電と放電を繰り返すたびに少しずつ電圧負担の差を生じさせることになる。
そのため、分担した電圧が高い電気二重層キャパシタセルから順番に劣化が進み、電気二重層キャパシタ単体が持つ寿命を短くする原因となっている。
【0004】
巻き回型電気二重層キャパシタは、各電気二重層キャパシタ毎に補助用電気回路を設けることで電圧モニターを行ったり、充電・放電電圧の制限を行うことが可能であるが、積層型電気二重層キャパシタの場合は封止を行うために、電気二重層キャパシタ端面を熱融着するなどしていたため、分担電圧を測定することが困難であった。
そして、活性炭電極とアルミ集電極が薄型になれば、各電気二重層キャパシタセルからアルミ箔を単純に引き出すと、箔に曲げ応力が加わったときに短絡したり、箔が切断されることがある。
また、計測用端子までの線の引き出しが困難になることも考えられる。
【0005】
【課題を解決するための手段】
上記課題を解決する本発明の請求項1に係る積層型電気二重層キャパシタは、分担電圧を検出するための分担電圧検出用タブを有するバイポーラ型集電極を、ゴム枠を介在させて、積層すると共に、前記分担電圧検出用タブに曲げ応力が発生したときの応力集中を緩和するため、前記ゴム枠は、端面が縁部に近くなる程低くなる山形又は曲面とした積層型電気二重層キャパシタにおいて、前記分担電圧測定用タブと接触するニッケルメッキ銅箔と、該ニッケルメッキ銅箔を半田付けした銅線からなる分担電圧測定用電圧検出部を設けたことを特徴とする。
【0007】
上記課題を解決する本発明の請求項に係る積層型電気二重層キャパシタは、分担電圧を検出するための分担電圧検出用タブを有するバイポーラ型集電極を、ゴム枠を介在させて、積層すると共に、前記分担電圧検出用タブに曲げ応力が発生したときの応力集中を緩和するため、前記ゴム枠は、端面が縁部に近くなる程低くなる山形又は曲面とした積層型電気二重層キャパシタにおいて、前記分担電圧測定用タブに接触するアルミ箔と、該アルミ箔を巻き付けた銅線からなる分担電圧測定用電圧検出部を設けたことを特徴とする。
【0008】
上記課題を解決する本発明の請求項に係る積層型電気二重層キャパシタは、請求項1又は2に記載した前記アルミ箔又はニッケルメッキ銅箔と、前記銅線からなる前記分担電圧測定用電圧検出部を樹脂内に内蔵することで前記バイポーラ型アルミ集電極が短絡することなく、分担電圧を測定可能にする分担電圧測定用ソケットを設けたことを特徴とする。
【0009】
【発明の実施の形態】
本発明は、上述の問題点を解決するため、封止を保持しながら分担電圧が測定できる積層型電気二重層キャパシタを提供するものである。
電気二重層キャパシタとしては、例えば、電解液が四級アンモニウム塩であるテトラエチルアンモニウムテトラフロロボレート、溶媒はプロピレンカーボネートであり濃度は0.97mol/Lとした。
電極はフェノール樹脂繊維を原料とし、平織りした後、賦活処理を施した比表面積1500〜2500m2/gの活性炭繊維布である。
活性炭繊維布は導電性ペーストを用いて集電用アルミ板の片面とバイポーラ用アルミ箔の両面に接着し、集電極とした。
電極間のショートを防ぐための支持電解質は電解液にポリアクリロニトリルを混合し、加熱溶解したゲル電解質を用いた。溶解したゲル電解質は放冷によりゲル化する前にドクターブレードを用いて一定の厚さに成形した。
【0010】
〔実施例1〕
分担電圧測定を可能にするため、従来は四角形の形状を有していたアルミ集電極を、図1〜3に示すような分担電圧測定用タブ20を有する形状のアルミ集電極11,12,13とした。
アルミ集電極11,12,13には、予め活性炭繊維布10が張りつけられており、強度を保つため厚さ50μm〜0.1mmとした。
アルミ集電極11,12,13においては、分担電圧測定用タブ20の配置される位置が異なるが、配置される位置に応じて、後述するように、アルミ集電極11,12,13を積層する場合に、一列となったり、段違いとなるという特徴がある。
尚、アルミ集電極13の分担電圧測定用タブ20には、ボルト避け穴21が設けられている。
【0011】
図1〜3に示す集電極11,12,13は、電極間を保持するため、図4に示すゴム枠30が介装される。
ゴム枠30としては、有機系電解液に対する耐久性を持っており、かつ封止を確保しながら電極間を保持する目的のためエチレンプロピレンゴム製とした。
分担電圧測定用タブ20の長さは、ゴム枠30の端部から2mm程度突き出すものとした。
ここで、アルミ集電極11,12,13の分担電圧測定タブ20に曲げ応力が加わったとき、図5(a)に示す従来のゴム枠30のように端面が角付きであると、ゴム枠30の端部付近のアルミに生ずる応力集中によって切断されるおそれがある。
【0012】
そこで、ゴム枠30としては、図5(b)に示すように、端面が縁部に近くなる程低くなる山形(いわゆるC面)となるゴム枠とし、或いは、図5(c)に示すように、端面が曲面(いわゆるR面)となったゴム枠とすることにより、タブ20に曲げ応力が発生したときの応力集中を緩和できるようにした。
図1〜3のアルミ集電極11,12,13のうち何れか一つを用いて、図6〜8のように分担電圧測定用タブ20が一列になるように電気二重層キャパシタセルを積層した。
【0013】
積層した電気二重層キャパシタの両側には、エンドプレート40を配置し、絶縁カラー50を有する通しボルト60を用いて固定した。図中、70は主回路接続用タブである。
本実施例は、比較的厚い活性炭繊維布電極を用いたバイポーラ型アルミ集電極の場合、電圧検出部の銅線同士の距離が確保できるときに有効となる。
図2のアルミ集電極12のみを用い、バイポーラ型集電極を交互に表裏逆になるよう積層することで、図9の分担電圧測定用タブ20が段違いになるような電気二重層キャパシタを積層した。
積層した電気二重層キャパシタは、実施例3と同様にエンドプレート40と通しボルト60によって固定した。
【0014】
〔実施例2〕
図1,図2に示すアルミ集電極11,12を、図10のように分担電圧測定用タブ20が段違いになるよう配置し、電気二重層キャパシタセルを積層した。
積層した電気二重層キャパシタは、実施例1と同様にエンドプレート40と通しボルト60によって固定した。
本実施例はバイポーラ型アルミ集電極同士の距離が比較的短く、測定用ソケットを設けるときに1列配置では銅線同士の間隔が保てないとき有利である。
【0015】
〔実施例3〕
実施例1で積層した電気二重層キャパシタのアルミ集電極11,12,13に合わせて、図11に示すような測定用ソケット80を製作した。
測定用ソケット80は、図12の断面図に示すような、各溝にアルミ集電極11,12,13のタブ20と接触するように、アルミ箔81を櫛型に配置した。
アルミ箔81は、図13に示すように銅線82に巻き付けられている。
ソケット本体は、ひけや反りを抑えるためにガラスが30wt%だけ混入した硬質ポリエチレン又はプロピレンを射出成形したものである。
【0016】
櫛と櫛の間隔、つまり、櫛型に配置されたアルミ箔81の間隔は、電気二重層キャパシタ各セルにおけるバイポーラ型集電極11,12,13の間隔に対応するよう等間隔とした。
アルミ箔81と接触するソケット櫛部の面はn−ヘキサンでプライマー処理され、アルミ箔81が接着剤で固定できるようにした。
銅線82は横1列でソケット端部まで引き出されており、D−subやアンブエノール又はDIN型といった積層数に合わせた測定用端子85を設けてある。
【0017】
ソケット80は、電気二重層キャパシタを固定する通しボルト60ととも締めできるような構造であり、振動等で外れないようになっている。
本実施例では、銅線82とアルミ箔81は機械的に接触しているため、電気二重層キャパシタに強い振動が加わることで、アルミ箔81と銅線82の接触が外れたり、電気二重層キャパシタ周辺に強い電磁波や高調波がある場合、アルミ箔81と銅線82の接触部分から電圧信号にノイズが加わることが考えられる。
そのような場合には、次のような実施例が考えられる。
【0018】
〔実施例4〕
実施例2と同様な構造を有する測定用ソケットにおいて、分担電圧を検出する部分をニッケルメッキした銅箔83とし、図14に示すように端子取り出し用銅線84と半田付けした。
【0019】
〔実施例5〕
実施例1で段違いに配置した電圧検出用タブ20から電圧を検出するため、図15に示すように電圧検出用タブ20の段違い配置に合わせて櫛を配置したソケット90を製作した。材質は実施例2と同様である。
電圧検出用タブ20の間隔が狭いことに対応するため、測定用端子までの鋼線82は千鳥状配列とした。
【0020】
【発明の効果】
以上、実施例に基づいて具体的に説明したように、本発明によれば、以下に示すような効果が得られる。
1.積層型電気二重層キャパシタの分担電圧を検出することが可能になる。
2.検出用のアルミ集電極タブを取り出した部分に曲げ応力がかかっても応力集中が少ないため、繰り返し荷重がかかってもタブが根元から切断されることがない。
3.電圧測定用ソケットにおける電圧検出部のアルミ箔又はニッケルメッキ銅箔と銅線長さを揃えることができ、ソケットの形状を単純にすることが可能となる。
4.1種類の分担電圧測定用タブ付きバイポーラ型集電極を段違いに積層し、電圧測定用ソケットと組み合わせることで比較的薄い活性炭繊維布を用いてもバイポーラ型集電極同士を短絡させることなく分担電比の測定が可能になる。
5.積層型の電気二重層キャパシタの分担電圧の検出に役立ち、これによって、電気二重層の寿命の推定や、交換時期の推定を行うことができる。
6.バイポーラ型集電極同士を短絡させることなく、各セル分担電圧の測定が可能になる。
7.各セルの分担電圧測定端子を積層型電気二重層キャパシタの端面近くに配置することが可能になる。
8.検出した分担電圧から電圧が異常上昇したセルを検出することで充電、放電を制御するコントロールユニットヘ取り込むことが可能になる。よって、バイポーラ積層型電気二重層キャパシタ内部の電圧異常が発生したときにコントローラを停止させることが可能になる。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る積層型電気二重層キャパシタに用いる分担電圧測定用電極11を示す平面図である。
【図2】本発明の第1の実施例に係る積層型電気二重層キャパシタに用いる分担電圧測定用電極12を示す平面図である。
【図3】本発明の第1の実施例に係る積層型電気二重層キャパシタに用いる分担電圧測定用電極13を示す平面図である。
【図4】本発明の第1の実施例に係る積層型電気二重層キャパシタに用いるゴム枠を示す平面図である。
【図5】ゴム枠の断面図であり、図5(a)は従来のゴム枠の断面図、図5(b)(c)は図4中のA−A’線断面図である。
【図6】図1に示す分担電圧測定用電極11を有する積層型電気二重層キャパシタを示す斜視図である。
【図7】図2に示す分担電圧測定用電極12を有する積層型電気二重層キャパシタを示す斜視図である。
【図8】図3に示す分担電圧測定用電極13を有する積層型電気二重層キャパシタを示す斜視図である。
【図9】図2に示す分担電圧測定用電極12を段違いに配置した積層型電気二重層キャパシタを示す斜視図である。
【図10】図1、図2に示す分担電圧測定用電極11,12を段違いに配置した積層型電気二重層キャパシタを示す斜視図である。
【図11】図11(a)は積層型電気二重層キャパシタを示す斜視図、図11(b)は電圧検出用アダプタの斜視図である。
【図12】図12(a)は図11に示す積層型電気二重層キャパシタの断面図、図12(b)は図11(b)中の電圧検出用アダプタのbcde面の断面図である。
【図13】電圧検出用アルミ箔を銅線に巻き付けた電圧検出部の説明図である。
【図14】電圧検出用ニッケルメッキ銅箔と銅線を半田付けした電圧検出部の説明図である。
【図15】タブを段違いに配置した積層型電気二重層キャパシタ用分担電圧検出アダプタの説明図である。
【符号の説明】
10 活性炭繊維布
11,12,13 分担電圧測定用タブを有する形状のアルミ集電極
20 分担電圧測定用タブ
21 ボルト避け穴
30 ゴム製の枠
40 エンドプレート
50 絶縁カラー
60 通しボルト
70 主回路接続用タブ
80,90 測定用ソケット
81 アルミ箔
82 銅線
83 ニッケルメッキ銅箔
84 銅線
85 測定用端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer electric double layer capacitor. In particular, it is improved so that the shared voltage measurement can be easily performed.
[0002]
[Prior art]
An electric double layer capacitor (EDLC) is mainly composed of a separator impregnated with an electrolyte and a gel electrolyte, electrodes sandwiching the separator, and a collecting electrode for taking out electricity.
Since the electric double layer capacitor has a withstand voltage of about 25 to 30 V, it is necessary to connect a plurality of electric double layer capacitors in series in order to charge to a high voltage using the electric double layer capacitor.
In the case of a wound type electric double layer capacitor, a series connection is a Baud method in which an electric circuit is added, and a laminated type electric double layer capacitor is a bipolar type in addition to a pair of current collecting electrodes (number of laminated layers −1). They are stacked using electrodes.
[0003]
[Problems to be solved by the invention]
Problems in the prior art include the following.
The individual electric double layer capacitors connected in series ideally share the voltage of “charging voltage / number of series connections”.
However, in reality, there are variations in capacitance and internal resistance for each electric double layer capacitor, and this variation causes a slight difference in voltage burden each time charging and discharging are repeated.
Therefore, deterioration progresses in order from the electric double layer capacitor cell having a high shared voltage, which causes a shortened life of the electric double layer capacitor alone.
[0004]
Winding type electric double layer capacitors can be used for voltage monitoring by providing an auxiliary electric circuit for each electric double layer capacitor or for limiting charging / discharging voltage. In the case of a capacitor, the end face of the electric double layer capacitor is heat-sealed in order to perform sealing, so that it is difficult to measure the shared voltage.
And if the activated carbon electrode and the aluminum collector electrode become thin, when the aluminum foil is simply pulled out from each electric double layer capacitor cell, it may be short-circuited or the foil may be cut when bending stress is applied to the foil .
In addition, it may be difficult to draw a line to the measurement terminal.
[0005]
[Means for Solving the Problems]
The multilayer electric double layer capacitor according to claim 1 of the present invention that solves the above-described problems is obtained by laminating a bipolar collector having a shared voltage detection tab for detecting a shared voltage with a rubber frame interposed therebetween. In addition, in order to relieve stress concentration when bending stress is generated in the shared voltage detection tab, the rubber frame is a stacked electric double layer capacitor having a mountain shape or a curved surface that becomes lower as the end surface is closer to the edge . And a shared voltage measuring voltage detecting section comprising a nickel plated copper foil in contact with the shared voltage measuring tab and a copper wire soldered to the nickel plated copper foil .
[0007]
The multilayer electric double layer capacitor according to claim 2 of the present invention that solves the above-described problems is obtained by laminating a bipolar collector having a shared voltage detection tab for detecting a shared voltage with a rubber frame interposed therebetween. In addition, in order to relieve stress concentration when bending stress is generated in the shared voltage detection tab, the rubber frame is a stacked electric double layer capacitor having a mountain shape or a curved surface that becomes lower as the end surface is closer to the edge. A shared voltage measurement voltage detection unit is provided, which includes an aluminum foil that contacts the shared voltage measurement tab and a copper wire wound with the aluminum foil.
[0008]
A multilayer electric double layer capacitor according to a third aspect of the present invention that solves the above-mentioned problems is the voltage for measuring the shared voltage comprising the aluminum foil or the nickel-plated copper foil according to the first or second aspect and the copper wire. A shared voltage measuring socket is provided that allows the shared voltage to be measured without short-circuiting the bipolar aluminum collector electrode by incorporating the detection unit in the resin.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-described problems, the present invention provides a multilayer electric double layer capacitor capable of measuring a shared voltage while maintaining sealing.
As the electric double layer capacitor, for example, tetraethylammonium tetrafluoroborate whose electrolyte is a quaternary ammonium salt, the solvent is propylene carbonate, and the concentration is 0.97 mol / L.
The electrode is an activated carbon fiber cloth having a specific surface area of 1500 to 2500 m 2 / g, which is made of phenol resin fibers as a raw material, plain weave, and then activated.
The activated carbon fiber cloth was bonded to one side of the current collecting aluminum plate and both sides of the bipolar aluminum foil using a conductive paste to form a current collecting electrode.
As a supporting electrolyte for preventing a short circuit between the electrodes, a gel electrolyte obtained by mixing polyacrylonitrile in an electrolytic solution and heating and dissolving it was used. The dissolved gel electrolyte was formed into a certain thickness using a doctor blade before gelation by cooling.
[0010]
[Example 1]
In order to enable shared voltage measurement, an aluminum collector electrode having a rectangular shape in the past is replaced with an aluminum collector electrode 11, 12, 13 having a shared voltage measurement tab 20 as shown in FIGS. It was.
Activated carbon fiber cloth 10 is pasted on aluminum collector electrodes 11, 12, and 13 in advance, and the thickness is set to 50 μm to 0.1 mm in order to maintain strength.
In the aluminum collector electrodes 11, 12, and 13, the positions at which the shared voltage measurement tabs 20 are arranged are different, but the aluminum collector electrodes 11, 12, and 13 are stacked as will be described later, depending on the positions. In some cases, there is a characteristic that it becomes a line or a difference.
The shared voltage measurement tab 20 of the aluminum collector electrode 13 is provided with a bolt avoidance hole 21.
[0011]
1 to 3 is provided with a rubber frame 30 shown in FIG. 4 in order to maintain the gap between the electrodes.
The rubber frame 30 is made of ethylene propylene rubber for the purpose of holding the gap between the electrodes while having durability against the organic electrolyte and ensuring sealing.
The length of the shared voltage measurement tab 20 protrudes from the end of the rubber frame 30 by about 2 mm.
Here, when bending stress is applied to the shared voltage measurement tab 20 of the aluminum collector electrodes 11, 12, and 13, if the end face is rounded like the conventional rubber frame 30 shown in FIG. There is a risk of cutting due to stress concentration occurring in the aluminum near the end of 30.
[0012]
Therefore, as the rubber frame 30, as shown in FIG. 5B, a rubber frame having a mountain shape (so-called C surface) that becomes lower as the end face is closer to the edge, or as shown in FIG. 5C. In addition, by using a rubber frame whose end surface is a curved surface (so-called R surface), stress concentration when bending stress is generated in the tab 20 can be relaxed.
Using one of the aluminum collector electrodes 11, 12, and 13 of FIGS. 1 to 3, the electric double layer capacitor cells were stacked so that the shared voltage measurement tabs 20 were in a line as shown in FIGS. .
[0013]
End plates 40 were disposed on both sides of the stacked electric double layer capacitor, and were fixed using through bolts 60 having an insulating collar 50. In the figure, 70 is a main circuit connection tab.
In the case of a bipolar aluminum collector electrode using a relatively thick activated carbon fiber cloth electrode, this embodiment is effective when the distance between the copper wires of the voltage detector can be secured.
By using only the aluminum collector electrode 12 of FIG. 2 and laminating bipolar collector electrodes alternately so as to be reversed, an electric double layer capacitor was stacked so that the shared voltage measurement tab 20 of FIG. .
The laminated electric double layer capacitor was fixed by the end plate 40 and the through bolt 60 in the same manner as in Example 3.
[0014]
[Example 2]
The aluminum collector electrodes 11 and 12 shown in FIG. 1 and FIG. 2 are arranged so that the shared voltage measuring tabs 20 are stepped as shown in FIG. 10, and the electric double layer capacitor cell is laminated.
The laminated electric double layer capacitor was fixed by the end plate 40 and through bolts 60 in the same manner as in Example 1.
This embodiment is advantageous when the distance between the bipolar aluminum collector electrodes is relatively short, and when the measurement socket is provided, the distance between the copper wires cannot be maintained in a single row arrangement.
[0015]
Example 3
A measuring socket 80 as shown in FIG. 11 was manufactured in accordance with the aluminum collector electrodes 11, 12, and 13 of the electric double layer capacitor laminated in Example 1.
In the measuring socket 80, as shown in the sectional view of FIG. 12, an aluminum foil 81 is arranged in a comb shape so as to be in contact with the tab 20 of the aluminum collector electrodes 11, 12, 13 in each groove.
The aluminum foil 81 is wound around a copper wire 82 as shown in FIG.
The socket body is formed by injection molding hard polyethylene or propylene mixed with 30 wt% of glass in order to suppress sink marks and warpage.
[0016]
The interval between the combs, that is, the interval between the aluminum foils 81 arranged in a comb shape, was made equal to correspond to the interval between the bipolar collector electrodes 11, 12, 13 in each cell of the electric double layer capacitor.
The surface of the socket comb portion that contacts the aluminum foil 81 was primed with n-hexane so that the aluminum foil 81 could be fixed with an adhesive.
The copper wire 82 is drawn out to the end of the socket in one horizontal row, and is provided with a measuring terminal 85 according to the number of layers such as D-sub, ambuenol or DIN type.
[0017]
The socket 80 has a structure that can be tightened together with the through bolt 60 that fixes the electric double layer capacitor, so that it does not come off due to vibration or the like.
In this embodiment, since the copper wire 82 and the aluminum foil 81 are in mechanical contact, strong vibration is applied to the electric double layer capacitor, so that the contact between the aluminum foil 81 and the copper wire 82 is lost, or the electric double layer is When strong electromagnetic waves or harmonics are present around the capacitor, it is considered that noise is added to the voltage signal from the contact portion between the aluminum foil 81 and the copper wire 82.
In such a case, the following embodiments can be considered.
[0018]
Example 4
In the measurement socket having the same structure as in Example 2, the portion for detecting the shared voltage was made of nickel-plated copper foil 83 and soldered to the terminal take-out copper wire 84 as shown in FIG.
[0019]
Example 5
In order to detect the voltage from the voltage detection tabs 20 arranged in different levels in the first embodiment, as shown in FIG. 15, a socket 90 in which combs are arranged in accordance with the step arrangement of the voltage detection tabs 20 was manufactured. The material is the same as in Example 2.
In order to cope with the narrow interval between the voltage detection tabs 20, the steel wires 82 to the measurement terminals were arranged in a staggered arrangement.
[0020]
【The invention's effect】
As described above based on the embodiments, according to the present invention, the following effects can be obtained.
1. It becomes possible to detect the shared voltage of the multilayer electric double layer capacitor.
2. Even if bending stress is applied to the part where the aluminum collecting electrode tab for detection is applied, the stress concentration is small, so that the tab will not be cut from the base even if a repeated load is applied.
3. The length of the copper wire and the aluminum foil or nickel-plated copper foil of the voltage detection part in the voltage measuring socket can be made uniform, and the shape of the socket can be simplified.
4. Bipolar collectors with tabs for one type of shared voltage measurement are stacked in layers and combined with voltage measurement sockets so that even if a relatively thin activated carbon fiber cloth is used, the bipolar collectors are not short-circuited. Measurement of electrical ratio becomes possible.
5). This is useful for detecting the shared voltage of the multilayer electric double layer capacitor, and thereby the life of the electric double layer and the replacement time can be estimated.
6). Each cell voltage can be measured without short-circuiting the bipolar collector electrodes.
7). The shared voltage measurement terminal of each cell can be disposed near the end face of the multilayer electric double layer capacitor.
8). By detecting a cell in which the voltage has abnormally increased from the detected shared voltage, it becomes possible to incorporate it into a control unit that controls charging and discharging. Therefore, the controller can be stopped when a voltage abnormality occurs in the bipolar multilayer electric double layer capacitor.
[Brief description of the drawings]
FIG. 1 is a plan view showing a shared voltage measuring electrode 11 used in a multilayer electric double layer capacitor according to a first embodiment of the present invention.
FIG. 2 is a plan view showing a shared voltage measuring electrode 12 used in the multilayer electric double layer capacitor according to the first embodiment of the present invention.
FIG. 3 is a plan view showing a shared voltage measuring electrode 13 used in the multilayer electric double layer capacitor according to the first embodiment of the present invention.
FIG. 4 is a plan view showing a rubber frame used in the multilayer electric double layer capacitor according to the first embodiment of the present invention.
5A and 5B are cross-sectional views of a rubber frame. FIG. 5A is a cross-sectional view of a conventional rubber frame, and FIGS. 5B and 5C are cross-sectional views taken along line AA ′ in FIG.
6 is a perspective view showing a multilayer electric double layer capacitor having the shared voltage measuring electrode 11 shown in FIG. 1. FIG.
7 is a perspective view showing a multilayer electric double layer capacitor having the shared voltage measuring electrode 12 shown in FIG. 2. FIG.
8 is a perspective view showing a multilayer electric double layer capacitor having the shared voltage measuring electrode 13 shown in FIG. 3. FIG.
9 is a perspective view showing a multilayer electric double layer capacitor in which the shared voltage measuring electrodes 12 shown in FIG. 2 are arranged in different stages. FIG.
10 is a perspective view showing a multilayer electric double layer capacitor in which shared voltage measuring electrodes 11 and 12 shown in FIGS. 1 and 2 are arranged in different stages. FIG.
FIG. 11A is a perspective view showing a multilayer electric double layer capacitor, and FIG. 11B is a perspective view of a voltage detection adapter.
12 (a) is a cross-sectional view of the multilayer electric double layer capacitor shown in FIG. 11, and FIG. 12 (b) is a cross-sectional view of the bcde surface of the voltage detection adapter in FIG. 11 (b).
FIG. 13 is an explanatory diagram of a voltage detection unit in which a voltage detection aluminum foil is wound around a copper wire.
FIG. 14 is an explanatory diagram of a voltage detection unit in which a voltage-detecting nickel-plated copper foil and a copper wire are soldered.
FIG. 15 is an explanatory diagram of a shared voltage detection adapter for a multilayer electric double layer capacitor in which tabs are arranged in different stages.
[Explanation of symbols]
10 Activated carbon fiber fabric 11, 12, 13 Aluminum collector electrode 20 having shared voltage measurement tab 20 Shared voltage measurement tab 21 Bolt avoidance hole 30 Rubber frame 40 End plate 50 Insulation collar 60 Through bolt 70 For main circuit connection Tabs 80 and 90 Measurement socket 81 Aluminum foil 82 Copper wire 83 Nickel-plated copper foil 84 Copper wire 85 Measurement terminal

Claims (3)

分担電圧を検出するための分担電圧検出用タブを有するバイポーラ型集電極を、ゴム枠を介在させて、積層すると共に、前記分担電圧検出用タブに曲げ応力が発生したときの応力集中を緩和するため、前記ゴム枠は、端面が縁部に近くなる程低くなる山形又は曲面とした積層型電気二重層キャパシタにおいて、前記分担電圧測定用タブと接触するニッケルメッキ銅箔と、該ニッケルメッキ銅箔を半田付けした銅線からなる分担電圧測定用電圧検出部を設けたことを特徴とする積層型電気二重層キャパシタ。A bipolar collector having a shared voltage detection tab for detecting a shared voltage is stacked with a rubber frame interposed therebetween, and stress concentration when bending stress is generated in the shared voltage detection tab is reduced. Therefore, in the laminated electric double layer capacitor having a mountain shape or a curved surface, the end face of which is lower as the end face is closer to the edge portion, the nickel plated copper foil in contact with the shared voltage measuring tab, and the nickel plated copper foil A multilayer electric double layer capacitor, characterized in that a shared voltage measurement voltage detection unit made of a copper wire soldered with a capacitor is provided. 分担電圧を検出するための分担電圧検出用タブを有するバイポーラ型集電極を、ゴム枠を介在させて、積層すると共に、前記分担電圧検出用タブに曲げ応力が発生したときの応力集中を緩和するため、前記ゴム枠は、端面が縁部に近くなる程低くなる山形又は曲面とした積層型電気二重層キャパシタにおいて、前記分担電圧測定用タブに接触するアルミ箔と、該アルミ箔を巻き付けた銅線からなる分担電圧測定用電圧検出部を設けたことを特徴とする積層型電気二重層キャパシタ。 A bipolar collector having a shared voltage detection tab for detecting a shared voltage is stacked with a rubber frame interposed therebetween, and stress concentration when bending stress is generated in the shared voltage detection tab is reduced. Therefore, in the laminated electric double layer capacitor having a mountain shape or a curved surface, the end face of which is lower as the end face is closer to the edge portion, the aluminum foil in contact with the shared voltage measuring tab, and the copper wrapped around the aluminum foil A multilayer electric double layer capacitor comprising a shared voltage measurement voltage detection unit comprising a wire. 請求項1又は2に記載した前記アルミ箔又はニッケルメッキ銅箔と、前記銅線からなる前記分担電圧測定用電圧検出部を樹脂内に内蔵することで前記バイポーラ型アルミ集電極が短絡することなく、分担電圧を測定可能にする分担電圧測定用ソケットを設けたことを特徴とする積層型電気二重層キャパシタ。The bipolar aluminum collector electrode is not short-circuited by incorporating the shared voltage measurement voltage detection unit comprising the aluminum foil or nickel-plated copper foil according to claim 1 or 2 and the copper wire into a resin. A multilayer electric double layer capacitor comprising a shared voltage measurement socket that enables measurement of the shared voltage.
JP2000060190A 2000-03-06 2000-03-06 Multilayer electric double layer capacitor Expired - Fee Related JP4395966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060190A JP4395966B2 (en) 2000-03-06 2000-03-06 Multilayer electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060190A JP4395966B2 (en) 2000-03-06 2000-03-06 Multilayer electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2001250741A JP2001250741A (en) 2001-09-14
JP4395966B2 true JP4395966B2 (en) 2010-01-13

Family

ID=18580538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060190A Expired - Fee Related JP4395966B2 (en) 2000-03-06 2000-03-06 Multilayer electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4395966B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458867B1 (en) * 2001-11-06 2004-12-03 주식회사 화승알앤에이 Elastic insulating sheet for electric double layer capacitor and the manufacturing method of the same
JP2003217986A (en) * 2002-01-23 2003-07-31 Meidensha Corp Laminated electric double layer capacitor
JP2004087238A (en) * 2002-08-26 2004-03-18 Nissan Motor Co Ltd Layer built cell
JP5136030B2 (en) * 2007-12-06 2013-02-06 トヨタ自動車株式会社 Power storage device
JP7359098B2 (en) * 2020-07-31 2023-10-11 株式会社豊田自動織機 Energy storage module

Also Published As

Publication number Publication date
JP2001250741A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
US9728343B2 (en) Electrical storage device element and electrical storage device
JP4736580B2 (en) Bipolar battery, battery pack and vehicle equipped with these batteries
JP5061698B2 (en) Power storage device
CN102771007B (en) Power storage device cell, process for producing same, method for storing same, and electricity storage device
JP4135469B2 (en) Polymer battery, battery pack and vehicle
JPWO2011027631A1 (en) battery
KR20100106254A (en) Wiring board, stacked battery device, and vehicle having stacked battery device
US20110086264A1 (en) Electro-chemical device and method for manufacturing the same
JP4800232B2 (en) Electric double layer capacitor
JPH1131486A (en) Flat battery
JP2011082097A (en) Laminated battery, manufacturing method thereof, and mounting method of voltage extraction substrate
KR20120038218A (en) Terminal contacting parts and jig for charging and discharging of secondary battery with the terminal contacting parts
JP4395966B2 (en) Multilayer electric double layer capacitor
JP5289983B2 (en) Electrochemical cell
JP2013201358A (en) Power storage cell and abnormality detecting method for power storage cell
JP2010114364A (en) Electrochemical device, and electrochemical device module
JP2011159642A (en) Electrochemical device
JP7150714B2 (en) BATTERY MODULE AND BATTERY MODULE MANUFACTURING METHOD
KR101141352B1 (en) Electric double layer capacitor and method for manufacturing the same
KR20130088820A (en) Terminal contacting parts and jig for charging and discharging of secondary battery with the terminal contacting parts
CN207817169U (en) A kind of safe lithium battery voltage and temperature acquisition pcb board attachment device
JP2011258798A (en) Electrochemical device
JP2018098075A (en) Power storage element and power storage device
JP3784205B2 (en) Electric double layer capacitor
JP2020148478A (en) Resistance measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees