JP2013199396A - Conductive oxide sintered body, thermistor element, and temperature sensor - Google Patents

Conductive oxide sintered body, thermistor element, and temperature sensor Download PDF

Info

Publication number
JP2013199396A
JP2013199396A JP2012067711A JP2012067711A JP2013199396A JP 2013199396 A JP2013199396 A JP 2013199396A JP 2012067711 A JP2012067711 A JP 2012067711A JP 2012067711 A JP2012067711 A JP 2012067711A JP 2013199396 A JP2013199396 A JP 2013199396A
Authority
JP
Japan
Prior art keywords
oxide sintered
conductive oxide
sintered body
examples
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012067711A
Other languages
Japanese (ja)
Other versions
JP6046902B2 (en
Inventor
Yasuyuki Okimura
康之 沖村
Tomonori Yamaguchi
朋紀 山口
Shinji Saka
慎二 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2012067711A priority Critical patent/JP6046902B2/en
Publication of JP2013199396A publication Critical patent/JP2013199396A/en
Application granted granted Critical
Publication of JP6046902B2 publication Critical patent/JP6046902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive oxide sintered body having properties such as B constant of 1,000-2,000 K, a thermistor element using the sintered body, and a temperature sensor using the thermistor element.SOLUTION: A conductive oxide sintered body 10 is represented by general formula: M1M2M3AlO, wherein M1 represents at least one of the group 3 elements except La; M2 represents at least one of the group 2 elements; M3 represents at least one of the groups 4, 5, 6, 7 and 8 elements; a is 0.18<a<0.50; and b is 0.05<b<0.40.

Description

本発明は、導電性を有し、その抵抗値が温度によって変化する導電性酸化物焼結体、これを用いたサーミスタ素子、さらには、これを用いた温度センサに関する。   The present invention relates to a conductive oxide sintered body having conductivity and a resistance value that varies with temperature, a thermistor element using the same, and a temperature sensor using the same.

従来より、導電性を有し、その抵抗値(比抵抗)が温度によって変化する導電性酸化物焼結体、これを用いて温度測定を行うサーミスタ素子、さらには、このサーミスタ素子を用いた温度センサが知られている。例えば、特許文献1には、Laを除く3A族元素(第3族元素)のうち少なくとも1種の元素をM1とし、2A族元素(第2族元素)のうち少なくとも1種の元素をM2とし、4A、5A、6A、7A及び8A族元素(第4、第5、第6、第7及び第8族元素)のうち少なくとも1種の元素をM3としたとき、一般式がM1aM2bM3cAldCrefで、dが0.400≦d≦0.800などの条件を満たす導電性酸化物焼結体が開示されている。この導電性酸化物焼結体は、−40〜900℃の温度範囲の温度勾配定数(B定数)が2000〜3000Kの範囲の特性を有するとされている。 Conventionally, a conductive oxide sintered body that has conductivity and whose resistance value (specific resistance) varies depending on temperature, a thermistor element that performs temperature measurement using the sintered body, and a temperature using this thermistor element Sensors are known. For example, in Patent Document 1, at least one element of Group 3A elements (Group 3 elements) excluding La is M1, and at least one element of Group 2A elements (Group 2 elements) is M2. When at least one of the 4A, 5A, 6A, 7A and 8A group elements (Group 4, 5, 6, 7 and 8 elements) is M3, the general formula is M1 a M2 b in M3 c Al d Cr e O f , d satisfies the condition conductive sintered oxide, such as 0.400 ≦ d ≦ 0.800 is disclosed. This conductive oxide sintered body has a temperature gradient constant (B constant) in the temperature range of −40 to 900 ° C. in the range of 2000 to 3000K.

特開2006−315946号公報JP 2006-315946 A

上述したように、特許文献1に記載の導電性酸化物焼結体は、B定数が2000〜3000Kの特性を有する。このため、これを用いたサーミスタ素子と適切な抵抗値のプルアップ固定抵抗とを直列接続した抵抗分圧回路を定電圧(例えば+5Vdc)に接続することで、例えば、−40〜600℃の温度範囲全体において、サーミスタ素子の温度を感度良く適切に測定することができる。   As described above, the conductive oxide sintered body described in Patent Document 1 has a characteristic that the B constant is 2000 to 3000K. For this reason, by connecting a resistance voltage dividing circuit in which a thermistor element using this and a pull-up fixed resistor having an appropriate resistance value are connected in series to a constant voltage (for example, +5 Vdc), for example, a temperature of −40 to 600 ° C. In the entire range, the temperature of the thermistor element can be appropriately measured with high sensitivity.

ここで、上述の抵抗分圧回路を用いた場合について詳しく検討する。
例えば、B定数が2500Kのサーミスタ素子(基準温度100℃での基準抵抗値1kΩ)、及び、これに適合したプルアップ固定抵抗(1kΩ)で構成した抵抗分圧回路を用いて測温したときの、−40〜600℃の温度範囲における出力電圧の変化のグラフを図3に破線で示す。
また、B定数が2000〜3000Kの範囲よりも低い1000〜2000Kの範囲内である1500Kのサーミスタ素子(基準温度100℃での基準抵抗値1kΩ)、及び、プルアップ固定抵抗(1kΩ)からなる抵抗分圧回路を用いて、同様に測温したときの、−40〜600℃の温度範囲における出力電圧の変化のグラフを図3に実線で示す。
図3に示すグラフのうち、B定数が2500Kのサーミスタ素子を用いた抵抗分圧回路のグラフ(破線)では、約20〜240℃の温度範囲におけるグラフの傾き(即ち、単位温度変化当たりの電圧変化:V/deg)が大きい一方、−40〜20℃及び240〜600℃の温度範囲におけるグラフの傾きが小さい。このことから、B定数が2000〜3000Kの範囲内のサーミスタ素子を用いた抵抗分圧回路では、640deg(−40〜600℃)の温度範囲内のいずれの温度でも、良好な感度(単位温度変化当たりの電圧変化:V/deg)が得られる訳ではない。即ち、温度範囲の下限付近(−40℃付近)及び上限付近(600℃付近)では、感度(上述したグラフの傾き)が低くなることが判る。
Here, the case where the above-described resistance voltage dividing circuit is used will be examined in detail.
For example, when the temperature is measured using a thermistor element having a B constant of 2500 K (reference resistance value of 1 kΩ at a reference temperature of 100 ° C.) and a resistance voltage dividing circuit configured with a pull-up fixed resistor (1 kΩ) conforming thereto. The graph of the change of the output voltage in the temperature range of -40-600 degreeC is shown with a broken line in FIG.
Also, a resistance comprising a 1500 K thermistor element (reference resistance value 1 kΩ at a reference temperature of 100 ° C.) and a pull-up fixed resistance (1 kΩ) in which the B constant is in the range of 1000 to 2000 K lower than the range of 2000 to 3000 K. A graph of the change in the output voltage in the temperature range of −40 to 600 ° C. when the temperature is similarly measured using the voltage dividing circuit is shown by a solid line in FIG. 3.
In the graph shown in FIG. 3, the resistance voltage dividing circuit using a thermistor element having a B constant of 2500 K (broken line) shows the slope of the graph in the temperature range of about 20 to 240 ° C. (that is, the voltage per unit temperature change). While the change: V / deg) is large, the slope of the graph in the temperature range of −40 to 20 ° C. and 240 to 600 ° C. is small. Therefore, in a resistance voltage dividing circuit using a thermistor element having a B constant in the range of 2000 to 3000K, good sensitivity (unit temperature change) at any temperature within the temperature range of 640 deg (−40 to 600 ° C.). (Voltage change per unit: V / deg) is not always obtained. That is, it can be seen that the sensitivity (slope of the above-described graph) decreases near the lower limit (around −40 ° C.) and the upper limit (around 600 ° C.) of the temperature range.

これに対し、実線のグラフでは、−40〜20℃及び240〜600℃の温度範囲におけるグラフの傾きが、その温度範囲における破線のグラフの傾きよりも大きい。このことから、B定数が2000〜3000Kの範囲より低い1000〜2000Kの特性を有するサーミスタ素子を用いれば、−40〜600℃の温度範囲全体での平均感度は低下するが、温度範囲の下限付近(−40℃付近)及び上限付近(600℃付近)でも、感度を相対的に高くできる。即ち、B定数が1000〜2000Kの特性を有するサーミスタ素子を用いる方が好ましい場合もあることが判る。   On the other hand, in the solid line graph, the inclination of the graph in the temperature range of −40 to 20 ° C. and 240 to 600 ° C. is larger than the inclination of the broken line graph in the temperature range. For this reason, if a thermistor element having a characteristic of 1000 to 2000 K lower than the range of 2000 to 3000 K is used as the B constant, the average sensitivity in the entire temperature range of −40 to 600 ° C. is lowered, but near the lower limit of the temperature range. Sensitivity can be relatively increased even near (−40 ° C.) and near the upper limit (around 600 ° C.). That is, it can be seen that it may be preferable to use a thermistor element having a characteristic of B constant of 1000 to 2000K.

本発明は、かかる課題に鑑みてなされたものであって、B定数が1000〜2000Kの特性を有する導電性酸化物焼結体、これを用いたサーミスタ素子、さらには、これを用いた温度センサを提供するものである。   The present invention has been made in view of such problems, and is a conductive oxide sintered body having a B constant of 1000 to 2000K, a thermistor element using the same, and a temperature sensor using the same. Is to provide.

本発明の一態様は、Laを除く第3族元素のうち少なくとも1種の元素をM1とし、第2族元素のうち少なくとも1種の元素をM2とし、第4族、第5族、第6族、第7族及び第8族元素のうち少なくとも1種の元素をM3としたとき、一般式M11-aM2aM31-bAlb3で表記され、aが0.18<a<0.50であり、bが0.05<b<0.40である導電性酸化物焼結体である。 In one embodiment of the present invention, at least one element of Group 3 elements excluding La is M1, and at least one element of Group 2 elements is M2, and Group 4, Group 5, When at least one element selected from the group, group 7 and group 8 is M3, it is represented by the general formula M1 1-a M2 a M3 1-b Al b O 3 , and a is 0.18 <a It is a conductive oxide sintered body where <0.50 and b is 0.05 <b <0.40.

上述の導電性酸化物焼結体は、−40〜600℃の温度範囲におけるB定数が1000〜2000Kの特性を有するものとなる。   The conductive oxide sintered body described above has a characteristic that the B constant in the temperature range of −40 to 600 ° C. is 1000 to 2000K.

さらに、上述の導電性酸化物焼結体であって、前記元素M3は、Mn、Fe、Crのうち少なくともMnを含む導電性酸化物焼結体とすると良い。   Furthermore, in the conductive oxide sintered body described above, the element M3 may be a conductive oxide sintered body containing at least Mn among Mn, Fe, and Cr.

上述の導電性酸化物焼結体では、元素M3がMn、Fe、Crのうち少なくともMnを含むので、上記範囲のB定数が安定して得られ易いほか、導電性酸化物焼結体の耐熱性が確保され、長期間高温環境下に晒されても変質し難い導電性酸化物焼結体とすることができる。   In the conductive oxide sintered body described above, since the element M3 contains at least Mn among Mn, Fe, and Cr, the B constant in the above range can be easily obtained stably, and the heat resistance of the conductive oxide sintered body can be obtained. Therefore, it is possible to obtain a conductive oxide sintered body that ensures the property and hardly changes even when exposed to a high temperature environment for a long time.

さらに、上述のいずれかの導電性酸化物焼結体であって、前記元素M1は、Y、Yb、Ndのうち少なくともいずれかを含む導電性酸化物焼結体とすると良い。   Furthermore, in any one of the conductive oxide sintered bodies described above, the element M1 may be a conductive oxide sintered body containing at least one of Y, Yb, and Nd.

上述の導電性酸化物焼結体では、元素M1がY、Yb、Ndのうち少なくともいずれかを含むので、−40〜600℃の温度範囲におけるB定数が1000〜2000Kの特性を有する導電性酸化物焼結体を安定して得ることができる。   In the conductive oxide sintered body described above, since the element M1 contains at least one of Y, Yb, and Nd, the conductive oxidation having the characteristic that the B constant in the temperature range of −40 to 600 ° C. is 1000 to 2000K. A sintered product can be obtained stably.

さらに、上述のいずれかの導電性酸化物焼結体であって、前記元素M2は、Sr、Ca、Mgのうち少なくともいずれかを含む導電性酸化物焼結体とすると良い。   Furthermore, in any one of the conductive oxide sintered bodies described above, the element M2 may be a conductive oxide sintered body containing at least one of Sr, Ca, and Mg.

上述の導電性酸化物焼結体では、元素M2がSr、Ca、Mgのうち少なくともいずれかを含むので、−40〜600℃の温度範囲におけるB定数が1000〜2000Kの特性を有する導電性酸化物焼結体を安定して得ることができる。   In the conductive oxide sintered body described above, since the element M2 contains at least one of Sr, Ca, and Mg, the conductive oxidation having the characteristic that the B constant in the temperature range of −40 to 600 ° C. is 1000 to 2000K. A sintered product can be obtained stably.

さらに、本発明の他の一態様は、前述のいずれかの導電性酸化物焼結体を用いてなるサーミスタ素子である。   Furthermore, another aspect of the present invention is a thermistor element using any one of the above-described conductive oxide sintered bodies.

上述のサーミスタ素子では、前述のいずれかの導電性酸化物焼結体を用いている。このため、−40〜600℃の温度範囲におけるB定数が1000〜2000Kのサーミスタ素子とすることができ、上述の温度範囲の下限(−40℃)付近及び上限(600℃)付近での感度を向上させたサーミスタ素子とすることができる。   In the thermistor element described above, any one of the conductive oxide sintered bodies described above is used. For this reason, it can be set as the thermistor element whose B constant in the temperature range of -40-600 degreeC is 1000-2000K, and the sensitivity in the lower limit (-40 degreeC) vicinity and upper limit (600 degreeC) vicinity of the above-mentioned temperature range is obtained. An improved thermistor element can be obtained.

さらに、本発明の他の一態様は、前述のサーミスタ素子を用いてなる温度センサである。   Furthermore, another embodiment of the present invention is a temperature sensor using the thermistor element described above.

上述の温度センサは、前述のサーミスタ素子を用いているので、−40〜600℃の温度範囲におけるB定数が1000〜2000Kの温度センサとすることができ、上述の温度範囲の下限(−40℃)付近及び上限(600℃)付近での感度を向上させた温度センサとすることができる。   Since the above-described temperature sensor uses the above-described thermistor element, the B constant in the temperature range of −40 to 600 ° C. can be a temperature sensor of 1000 to 2000 K, and the lower limit (−40 ° C. ) And a temperature sensor with improved sensitivity near the upper limit (600 ° C.).

実施形態にかかるサーミスタ素子(導電性酸化物焼結体)を説明する説明図である。It is explanatory drawing explaining the thermistor element (electroconductive oxide sintered compact) concerning embodiment. 実施形態にかかる温度センサを説明する説明図である。It is explanatory drawing explaining the temperature sensor concerning embodiment. サーミスタ素子を含む抵抗分圧回路を用いて測温したときの、−40〜600℃の温度範囲における出力電圧の変化を示すグラフである。It is a graph which shows the change of the output voltage in the temperature range of -40-600 degreeC when measuring temperature using the resistance voltage dividing circuit containing a thermistor element.

(実施例1)
次に、本発明の実施形態のうち実施例1について説明する。
まず、実施例1にかかる導電性酸化物焼結体10の製造について説明する。原料粉末として、Y23、SrCO3、MnO2、Al23、Cr23(いずれも純度99%以上の市販品)を用いて、組成式Y1-aSra(Mn,Cr)1-bAlb3としたときのa,bが、表1に示すモル数となるように、それぞれ秤量し、これらの原料粉末を湿式混合して乾燥することにより原料粉末混合物を調整した。なお、括弧内のMnとCrの比率については、表1に示す割合で調整した。次いで、この原料粉末混合物を大気雰囲気下1400℃で2Hr仮焼し、平均粒径1〜2μmの仮焼粉末を得た。その後、樹脂ポットと高純度アルミナ玉石とを用い、エタノールを分散媒として、湿式混合粉砕を行った。
Example 1
Next, Example 1 of the embodiment of the present invention will be described.
First, the production of the conductive oxide sintered body 10 according to Example 1 will be described. As raw material powders, Y 2 O 3, SrCO 3 , MnO 2, Al 2 O 3, Cr 2 O 3 ( both having a purity of 99% or more commercially available) using a composition formula Y 1-a Sr a (Mn , Cr) 1-b Al b O 3 When a and b are the number of moles shown in Table 1, they are weighed, and these raw material powders are wet-mixed and dried to obtain a raw material powder mixture. It was adjusted. The ratio of Mn and Cr in parentheses was adjusted at the ratio shown in Table 1. Subsequently, this raw material powder mixture was calcined for 2 hours at 1400 ° C. in an air atmosphere to obtain a calcined powder having an average particle diameter of 1 to 2 μm. Thereafter, wet mixing and pulverization were performed using a resin pot and high-purity alumina cobblestone using ethanol as a dispersion medium.

次いで、得られたスラリーを80℃で2Hr乾燥し、サーミスタ合成粉末を得た。その後このサーミスタ合成粉末100重量部に対し、ポリビニルブチラールを主成分とするバインダーを20重量部添加して混合、乾燥する。さらに、250μmメッシュの篩を通して造粒し、造粒粉末を得た。なお、使用しうるバインダーとしては、上述のポリビニルブチラールに特に限定されず、例えばポリビニルアルコール、アクリル系バインダー等が挙げられる。バインダーの配合量は上述の仮焼粉末全量に対し、通常5〜20重量部、好ましくは10〜20重量部とする。また、バインダーと混合するにあたり、サーミスタ合成粉末の平均粒子径は2.0μm以下としておくのが好ましく、これによって均一に混合することができる。   Next, the obtained slurry was dried at 80 ° C. for 2 hours to obtain a thermistor synthetic powder. Thereafter, 20 parts by weight of a binder mainly composed of polyvinyl butyral is added to 100 parts by weight of the thermistor synthetic powder, mixed and dried. Furthermore, it granulated through the sieve of a 250 micrometer mesh, and the granulated powder was obtained. In addition, as a binder which can be used, it is not specifically limited to the above-mentioned polyvinyl butyral, For example, polyvinyl alcohol, an acrylic binder, etc. are mentioned. The amount of the binder is usually 5 to 20 parts by weight, preferably 10 to 20 parts by weight, based on the total amount of the calcined powder. Moreover, when mixing with a binder, it is preferable that the average particle diameter of the thermistor synthetic powder is 2.0 μm or less, whereby uniform mixing is possible.

上述した造粒粉末を用いて、金型成形法にて20MPaで一軸プレス成形したのち、冷間静水圧プレス(CIP)法にて150MPaで成形し、直径9mm、高さ10mmの円柱状の成形体を得た。その後、この成形体を、大気雰囲気下1500℃で2時間保持して焼成し、導電性酸化物焼結体を得た。次いで、各導電性酸化物焼結体を研磨し、直径6mm、高さ5mmの円柱状とし、その両端面に白金電極をスクリーン印刷法により形成した。   Using the granulated powder described above, uniaxial press molding at 20 MPa by a mold molding method, followed by molding at 150 MPa by a cold isostatic pressing (CIP) method, cylindrical molding with a diameter of 9 mm and a height of 10 mm Got the body. Then, this molded object was baked by hold | maintaining at 1500 degreeC for 2 hours by an atmospheric condition, and the electroconductive oxide sintered compact was obtained. Next, each conductive oxide sintered body was polished to form a cylindrical shape having a diameter of 6 mm and a height of 5 mm, and platinum electrodes were formed on both end faces by a screen printing method.

得られた導電性酸化物焼結体を用いて、大気雰囲気下で直流四端子法により温度−40℃及び600℃での抵抗値(R(−40)、R(600))をそれぞれ測定し、この抵抗値から比抵抗ρ(−40)及びρ(600)を算出し、さらにB定数(B(−40〜600))を以下の式(1)に従って求めた。
B(−40〜600)=ln[ρ(600)/ρ(−40)]/[1/T(600)−1/T(−40)] ・・・(1)
なお、T(−40)=233K、T(600)=873Kである。
これらの結果について表1に示す。
Using the obtained conductive oxide sintered body, resistance values (R (−40) and R (600)) at temperatures of −40 ° C. and 600 ° C. were measured by a direct current four-terminal method in an air atmosphere. The specific resistances ρ (−40) and ρ (600) were calculated from the resistance values, and the B constant (B (−40 to 600)) was calculated according to the following formula (1).
B (−40 to 600) = ln [ρ (600) / ρ (−40)] / [1 / T (600) −1 / T (−40)] (1)
Note that T (−40) = 233K and T (600) = 873K.
These results are shown in Table 1.


Figure 2013199396
Figure 2013199396

(実施例2〜7,比較例1〜6)
また、本発明者らは、上述した実施例1の導電性酸化物焼結体とは、同じ元素を用いるが組成式中に記載のモル比(a,b)の組合せがそれぞれ異なる実施例2〜7及び比較例1〜6の導電性酸化物焼結体を用意した。
なお、これら実施例2〜7及び比較例1〜6の各導電性酸化物焼結体は、実施例1と同様の原料粉末を表1の実施例2〜7及び比較例1〜6の各欄のモル比(a,b)に応じて秤量した後、実施例1と同様にして作製する。
但し、これら実施例2〜7及び比較例1〜6のうち、比較例2,4,6では、十分に焼き締まらずに緻密な導電性酸化物焼結体が得られなかった(本明細書及び表1において「未焼結」と表示する)。
(Examples 2-7, Comparative Examples 1-6)
In addition, the present inventors use the same elements as the conductive oxide sintered body of Example 1 described above, but have different combinations of molar ratios (a, b) described in the composition formula. To 7 and Comparative Examples 1 to 6 were prepared.
In addition, each conductive oxide sintered compact of these Examples 2-7 and Comparative Examples 1-6 is the same raw material powder as Example 1, and each of Examples 2-7 of Table 1 and Comparative Examples 1-6. After weighing according to the molar ratio (a, b) in the column, it is produced in the same manner as in Example 1.
However, among these Examples 2 to 7 and Comparative Examples 1 to 6, in Comparative Examples 2, 4 and 6, a dense conductive oxide sintered body was not obtained without being sufficiently baked (this specification) And “unsintered” in Table 1).

実施例2〜7、及び、比較例1,3,5の各導電性酸化物焼結体とも、実施例1の導電性酸化物焼結体と同様にして抵抗値(R(−40),R(600))を測定して、比抵抗(ρ(−40),ρ(600))を算出し、さらにB定数(B(−40〜600))を算出した。
これらの結果について表1に示す。
In each of the conductive oxide sintered bodies of Examples 2 to 7 and Comparative Examples 1, 3, and 5, the resistance value (R (−40), R (600)) was measured, specific resistance (ρ (−40), ρ (600)) was calculated, and B constant (B (−40 to 600)) was calculated.
These results are shown in Table 1.

表1によれば、組成式Y1-aSra(Mn,Cr)1-bAlb3で表記される実施例1〜7及び比較例1〜6の導電性酸化物焼結体に関し、a=0.20とした実施例1,2及び比較例2のうち、b=0.25,0.30とした実施例1,2の導電性酸化物焼結体のB定数は、B(−40〜600)=1922K及び1960Kであり、1000〜2000Kの範囲内となる。一方、b=0.00とした比較例2は「未焼結」であった。
また、a=0.25とした実施例3〜5及び比較例3のうち、b=0.50とした導電性酸化物焼結体の比較例3のB定数は、2000Kを超えた大きな値となった。これに対し、b=0.25,0.30,0.38とした導電性酸化物焼結体の実施例3〜5のB定数は、いずれもB(−40〜600)=1000〜2000Kの範囲内となった。
また、a=0.30とした実施例6,7及び比較例4,5のうち、b=0.50とした導電性酸化物焼結体の比較例5のB定数は、2000Kを超えた値となったのに対し、b=0.15,0.30とした導電性酸化物焼結体の実施例6,7のB定数は、いずれもB(−40〜600)=1000〜2000Kの範囲内となった。なお、b=0.00とした比較例4は「未焼結」であった。
According to Table 1, the conductive oxide sintered bodies of Examples 1 to 7 and Comparative Examples 1 to 6 represented by the composition formula Y 1-a Sr a (Mn, Cr) 1-b Al b O 3 Among the Examples 1 and 2 and Comparative Example 2 in which a = 0.20, the B constant of the conductive oxide sintered bodies of Examples 1 and 2 in which b = 0.25 and 0.30 is (−40 to 600) = 1922K and 1960K, which are in the range of 1000 to 2000K. On the other hand, Comparative Example 2 in which b = 0.00 was “unsintered”.
In addition, among Examples 3 to 5 and Comparative Example 3 in which a = 0.25, the B constant of Comparative Example 3 of the conductive oxide sintered body in which b = 0.50 is a large value exceeding 2000K. It became. On the other hand, the B constants of Examples 3 to 5 of the conductive oxide sintered bodies with b = 0.25, 0.30, and 0.38 are all B (−40 to 600) = 1000 to 2000K. It was within the range.
In addition, among Examples 6 and 7 and Comparative Examples 4 and 5 in which a = 0.30, the B constant of Comparative Example 5 of the conductive oxide sintered body in which b = 0.50 exceeded 2000K. The B constants of Examples 6 and 7 of the conductive oxide sintered bodies with b = 0.15 and 0.30 were all B (−40 to 600) = 1000 to 2000K. It was within the range. Note that Comparative Example 4 in which b = 0.00 was “unsintered”.

なお、aの値を上述した実施例2(a=0.20)よりも小さくした比較例1(a=0.15)の導電性酸化物焼結体のB定数は、2000Kを超えている。このことから、aを0.18以下とした導電性酸化物焼結体のB定数は、2000Kを超えた値になってしまうことが判る。
また、実施例7(a=0.30)よりも大きくした比較例6(a=0.60)のものは未焼結であった。このことから、aを0.50以上とした導電性酸化物焼結体は、十分に焼き締まらないことが判る。
Note that the B constant of the conductive oxide sintered body of Comparative Example 1 (a = 0.15) in which the value of a is smaller than that of Example 2 (a = 0.20) described above exceeds 2000K. . From this, it can be seen that the B constant of the conductive oxide sintered body having a of 0.18 or less is a value exceeding 2000K.
Moreover, the thing of the comparative example 6 (a = 0.60) made larger than Example 7 (a = 0.30) was unsintered. From this, it can be seen that the conductive oxide sintered body having a of 0.50 or more is not sufficiently baked.

また、bについて見ると、b=0.00とした比較例2,4の各導電性酸化物焼結体はいずれも「未焼結」であった。このことから、構成元素としてアルミニウムを含まない導電性酸化物焼結体は、aによらず十分に焼き締まらないことが判る。
さらに、bの値について、実施例4(b=0.30)よりも大きくした比較例3(b=0.50)の導電性酸化物焼結体、及び、実施例7(b=0.30)よりも大きくした比較例5(b=0.50)の導電性酸化物焼結体はいずれも、B定数が2000Kを超えた値となる。このことから、bを0.40以上とした導電性酸化物焼結体のB定数は、2000Kを超えた値になってしまうことが判る。
Further, regarding b, each of the conductive oxide sintered bodies of Comparative Examples 2 and 4 in which b = 0.00 was “unsintered”. From this, it can be seen that the conductive oxide sintered body not containing aluminum as a constituent element is not sufficiently baked regardless of a.
Furthermore, about the value of b, the electroconductive oxide sintered compact of the comparative example 3 (b = 0.50) made larger than Example 4 (b = 0.30), and Example 7 (b = 0.0). In any of the conductive oxide sintered bodies of Comparative Example 5 (b = 0.50) larger than 30), the B constant exceeds 2000K. From this, it can be seen that the B constant of the conductive oxide sintered body having b of 0.40 or more is a value exceeding 2000K.

以上により、aを0.18<a<0.50とし、bを0.05<b<0.40とした実施例1〜7の各導電性酸化物焼結体は、−40〜600℃の温度範囲のB定数がB(−40〜600)=1000〜2000Kの範囲内となることが判る。   From the above, each conductive oxide sintered body of Examples 1 to 7 in which a is 0.18 <a <0.50 and b is 0.05 <b <0.40 is −40 to 600 ° C. It can be seen that the B constant in the temperature range is in the range of B (−40 to 600) = 1000 to 2000K.

(実施例8〜10)
また、上述の実施例1〜7(及び比較例1〜6)では、一般式Y1-aSraM31-bAlb3で表記した導電性酸化物焼結体のうち、元素M3をMn及びCrとした例を示した。これに対し、実施例8〜10では、元素M3をMnのみ、或いは、Mn及びFeとした導電性酸化物焼結体について調査した。
なお、実施例8,9では、実施例1で用いた原料粉末のうちCr23を用いずに、また実施例10では、Cr23に代えてFe23を用いて、各原料粉末を表1の実施例8〜10の各欄のモル比(a,b)に応じて秤量し、実施例1と同様にして作製した。なお、実施例8〜10ではいずれも緻密な導電性酸化物焼結体となった。
上述の実施例8〜10の各導電性酸化物焼結体について、実施例1と同様、比抵抗(ρ(−40),ρ(600))を算出した上でB定数(B(−40〜600))を算出した(表1参照)。
(Examples 8 to 10)
In Examples 1 to 7 (and Comparative Examples 1 to 6) described above, among the conductive oxide sintered bodies represented by the general formula Y 1-a Sr a M3 1-b Al b O 3 , the element M3 The example which made Mn and Cr into was shown. On the other hand, in Examples 8 to 10, a conductive oxide sintered body in which the element M3 was Mn alone or Mn and Fe was investigated.
In Examples 8 and 9, Cr 2 O 3 was not used among the raw material powders used in Example 1, and in Example 10, Fe 2 O 3 was used instead of Cr 2 O 3. The raw material powder was weighed according to the molar ratio (a, b) in each column of Examples 8 to 10 in Table 1, and produced in the same manner as Example 1. In Examples 8 to 10, all became dense conductive oxide sintered bodies.
About each conductive oxide sintered compact of the above-mentioned Examples 8-10, after calculating a specific resistance ((rho) (-40), (rho) (600)) similarly to Example 1, B constant (B (-40) ~ 600)) was calculated (see Table 1).

表1によれば、一般式Y1-aSraM31-bAlb3における元素M3に、Mn及びCrを用いた前述の実施例1〜7に加え、元素M3にMnのみ、或いは、Mn及びFeを用いた実施例8〜10の各導電性酸化物焼結体もまた、B定数がB(−40〜600)=1000〜2000Kの範囲内となることが判る。このことから、元素M3にMn、Fe、Crのうち少なくともMnを含み、aを0.18<a<0.50とし、かつ、bを0.05<b<0.40とした実施例1〜10の各導電性酸化物焼結体は、いずれもB定数がB(−40〜600)=1000〜2000Kとなることが判る。 According to Table 1, the general formula Y 1-a Sr a M3 1 -b Al b O 3 in an element M3, in addition to Examples 1 to 7 described above with Mn and Cr, the element M3 Mn only, or It can be seen that the conductive oxide sintered bodies of Examples 8 to 10 using Mn and Fe also have a B constant in the range of B (−40 to 600) = 1000 to 2000K. From this, Example 1 in which M3 contains at least Mn among Mn, Fe, and Cr, a is 0.18 <a <0.50, and b is 0.05 <b <0.40. It can be seen that each of the conductive oxide sintered bodies of 10 to 10 has a B constant of B (−40 to 600) = 1000 to 2000K.

(実施例11〜13)
また、前述の実施例1〜7では、一般式M11-aSra(Mn,Cr)1-bAlb3で表記した導電性酸化物焼結体のうち、元素M1をYとした例を示した。これに対し、実施例11〜13では、元素M1をNdのみ、或いは、Y及びYbとした導電性酸化物焼結体について調査した。
なお、原料粉末として、実施例11では、実施例1で用いた原料粉末のうちY23に代えてNd23を用いて、また、実施例12,13では、実施例1で用いた原料粉末の他にYb23を用いた。そして、各原料粉末を表1の実施例11〜13の各欄のモル比(a,b)に応じて秤量し、実施例1と同様にして作製した。なお、実施例11〜13ではいずれも緻密な導電性酸化物焼結体となった。
実施例11〜13の各導電性酸化物焼結体について、実施例1と同様、比抵抗(ρ(−40),ρ(600))を算出し、さらにB定数(B(−40〜600))を算出した(表1参照)。
(Examples 11 to 13)
In Examples 1 to 7, the element M1 is Y in the conductive oxide sintered body represented by the general formula M1 1-a Sr a (Mn, Cr) 1-b Al b O 3 . An example is shown. On the other hand, in Examples 11 to 13, a conductive oxide sintered body in which the element M1 is only Nd or Y and Yb was investigated.
As the raw material powder, in Example 11, Nd 2 O 3 was used instead of Y 2 O 3 in the raw material powder used in Example 1, and in Examples 12 and 13, it was used in Example 1. Yb 2 O 3 was used in addition to the raw material powder. Each raw material powder was weighed according to the molar ratio (a, b) in each column of Examples 11 to 13 in Table 1, and produced in the same manner as Example 1. In Examples 11 to 13, all became dense conductive oxide sintered bodies.
For each of the conductive oxide sintered bodies of Examples 11 to 13, the specific resistance (ρ (−40), ρ (600)) is calculated in the same manner as in Example 1, and the B constant (B (−40 to 600) is calculated. )) Was calculated (see Table 1).

表1によれば、一般式M11-aSra(Mn,Cr)1-bAlb3における元素M1に、Yを用いた前述の実施例1〜7の導電性酸化物焼結体に加え、元素M1にNd、或いは、Y及びYbを用いた実施例11〜13の各導電性酸化物焼結体もまた、B定数がB(−40〜600)=1000〜2000Kの範囲内となった。このことから、元素M1にY、Yb、Ndのうち少なくともいずれかを含み、aを0.18<a<0.50とし、かつ、bを0.05<b<0.40とした実施例1〜7及び実施例11〜13の各導電性酸化物焼結体は、いずれもB定数がB(−40〜600)=1000〜2000Kとなることが判る。 According to Table 1, the general formula M1 1-a Sr a (Mn , Cr) 1-b Al b in O 3 in the element M1, a conductive oxide sintered body of Examples 1 to 7 described above with Y In addition, the conductive oxide sintered bodies of Examples 11 to 13 using Nd or Y and Yb as the element M1 also have a B constant in the range of B (−40 to 600) = 1000 to 2000K. It became. Therefore, an example in which the element M1 contains at least one of Y, Yb, and Nd, a is 0.18 <a <0.50, and b is 0.05 <b <0.40. It can be seen that each of the conductive oxide sintered bodies of 1 to 7 and Examples 11 to 13 has a B constant of B (−40 to 600) = 1000 to 2000K.

(実施例14〜16)
また、前述の実施例1〜7では、一般式Y1-aM2a(Mn,Cr)1-bAlb3で表記した導電性酸化物焼結体のうち、元素M2をSrとした例を示した。これに対し、実施例14〜16では、元素M2をCaのみ、或いは、SrとCa又はMgとした導電性酸化物焼結体について調査した。
なお、原料粉末として、実施例14では、実施例1で用いた原料粉末のうちSrCO3に代えてCaCO3を用いて、また、実施例15,16では、実施例1で用いた原料粉末の他にCaCO3(或いは、実施例16ではMgO)を用いた。そして、各原料粉末を表1の実施例14〜16の各欄のモル比(a,b)に応じて秤量し、実施例1と同様にして作製した。なお、実施例14〜16ではいずれも緻密な導電性酸化物焼結体となった。
実施例14〜16の各導電性酸化物焼結体について、実施例1と同様、比抵抗(ρ(−40),ρ(600))を算出し、さらにB定数(B(−40〜600))を算出した(表1参照)。
(Examples 14 to 16)
In Example 1-7 described above, the general formula Y 1-a M2 a (Mn , Cr) 1-b Al b O 3 of conductive oxide sintered body was expressed in, the element M2 was Sr An example is shown. On the other hand, in Examples 14 to 16, a conductive oxide sintered body in which the element M2 is only Ca, or Sr and Ca or Mg was investigated.
As the raw material powder, in Example 14, CaCO 3 was used instead of SrCO 3 among the raw material powders used in Example 1, and in Examples 15 and 16, the raw material powder used in Example 1 was used. In addition, CaCO 3 (or MgO in Example 16) was used. Each raw material powder was weighed according to the molar ratio (a, b) in each column of Examples 14 to 16 in Table 1, and produced in the same manner as in Example 1. In Examples 14 to 16, all became dense conductive oxide sintered bodies.
For each of the conductive oxide sintered bodies of Examples 14 to 16, the specific resistance (ρ (−40), ρ (600)) was calculated in the same manner as in Example 1, and the B constant (B (−40 to 600) was further calculated. )) Was calculated (see Table 1).

表1によれば、一般式Y1-aM2a(Mn,Cr)1-bAlb3における元素M2に、Srを用いた前述の実施例1〜7の導電性酸化物焼結体に加え、元素M2にCaのみ、SrとCa或いはMgとを用いた実施例14〜16の各導電性酸化物焼結体もまた、B定数がB(−40〜600)=1000〜2000Kの範囲内となった。このことから、元素M2がSr、Ca、Mgのうち少なくともいずれかを含み、aを0.18<a<0.50とし、かつ、bを0.05<b<0.40とした実施例1〜7及び実施例14〜16の各導電性酸化物焼結体は、いずれもB定数がB(−40〜600)=1000〜2000Kとなることが判る。 According to Table 1, the general formula Y 1-a M2 a (Mn , Cr) 1-b Al b in O 3 in the element M2, conductive oxide sintered body of Examples 1 to 7 described above with Sr In addition, each conductive oxide sintered body of Examples 14 to 16 using only Ca, Sr and Ca or Mg as the element M2 also has a B constant of B (−40 to 600) = 1000 to 2000K. It was within the range. Therefore, an example in which the element M2 includes at least one of Sr, Ca, and Mg, a is 0.18 <a <0.50, and b is 0.05 <b <0.40. It can be seen that each of the conductive oxide sintered bodies of 1 to 7 and Examples 14 to 16 has a B constant of B (−40 to 600) = 1000 to 2000K.

以上の結果から、一般式M11-aM2aM31-bAlb3(但し、元素M1がLaを除く第3族元素のうち少なくとも1種、元素M2が第2族元素のうち少なくとも1種の元素、及び、元素M3が第4族、第5族、第6族、第7族及び第8族元素のうち少なくとも1種)で表記され、aが0.18<a<0.50を、bが0.05<b<0.40を満たす本実施形態(実施例1〜16)の各導電性酸化物焼結体10は、−40〜600℃の温度範囲におけるB定数がB(−40〜600)=1000〜2000Kの特性を有するものとなる。
なお、元素M3としてMn、Fe、Crのうち少なくともMnを含むと良い。加えて、元素M1がY、Yb、Ndのうち少なくともいずれかを含むと良い。さらに、元素M2がSr、Ca、Mgのうち少なくともいずれかを含むと良い。
From the above results, the general formula M1 1-a M2 a M3 1-b Al b O 3 (where the element M1 is at least one of the Group 3 elements excluding La and the element M2 is at least of the Group 2 elements) One element and the element M3 are represented by at least one element selected from Group 4, Group 5, Group 6, Group 7, and Group 8 elements, and a is 0.18 <a <0. 50, each conductive oxide sintered body 10 of this embodiment (Examples 1 to 16) satisfying b <0.05 <b <0.40 has a B constant in a temperature range of −40 to 600 ° C. B (−40 to 600) = 1000 to 2000K.
Note that at least Mn is preferably included as the element M3 among Mn, Fe, and Cr. In addition, the element M1 may include at least one of Y, Yb, and Nd. Furthermore, the element M2 may contain at least one of Sr, Ca, and Mg.

次いで、本実施形態にかかるサーミスタ素子1について、図1を参照しつつ説明する。
このサーミスタ素子1は、前述した実施例1〜16にかかる導電性酸化物焼結体10と、この導電性酸化物焼結体10から延出する、Pt−Rh合金製の一対の電極線11,12とを有する(図1参照)。
このため、−40〜600℃の温度範囲におけるB定数がB(−40〜600)=1000〜2000Kのサーミスタ素子1とすることができ、温度範囲の下限(−40℃)付近及び上限(600℃)付近での感度を向上させたサーミスタ素子1とすることができる。
Next, the thermistor element 1 according to the present embodiment will be described with reference to FIG.
This thermistor element 1 includes a conductive oxide sintered body 10 according to Examples 1 to 16 described above, and a pair of electrode wires 11 made of a Pt—Rh alloy extending from the conductive oxide sintered body 10. , 12 (see FIG. 1).
For this reason, it can be set as the thermistor element 1 whose B constant in the temperature range of -40-600 degreeC is B (-40-600) = 1000-2000K, and the lower limit (-40 degreeC) vicinity and upper limit (600 of temperature range) Thermistor element 1 with improved sensitivity in the vicinity of [° C.] can be obtained.

次いで、上述のサーミスタ素子1を用いた温度センサ100について、図2を参照しつつ説明する。
この温度センサ100は、サーミスタ素子1と、このサーミスタ素子1を内部に収容する筐体110とを有する(図2参照)。このうち、筐体110は、円筒形状の本体部111と、この本体部111から突出する、本体部111よりも径小な円筒形状の突出部112とからなる。この突出部112は、内側にサーミスタ素子1を配置しており、突出部112の周囲の温度を測温することができる。
なお、本実施形態(実施例1〜16)にかかる温度センサ100は、例えば、図2に示すように、車両のエンジン(図示しない)から排出されてエキゾーストパイプEP内を流れる排気ガスEGの温度を計測するのに用いる。この場合、筐体110の突出部112をエキゾーストパイプEPの内側に配置しつつ、筐体110の本体部111をエキゾーストパイプの壁に固定する(図2参照)。
Next, a temperature sensor 100 using the above-described thermistor element 1 will be described with reference to FIG.
The temperature sensor 100 includes a thermistor element 1 and a casing 110 that houses the thermistor element 1 (see FIG. 2). Among these, the housing 110 includes a cylindrical main body 111 and a cylindrical protrusion 112 having a diameter smaller than that of the main body 111 and protruding from the main body 111. The protrusion 112 has the thermistor element 1 disposed on the inside thereof, and can measure the temperature around the protrusion 112.
Note that the temperature sensor 100 according to the present embodiment (Examples 1 to 16) is, for example, as shown in FIG. 2, the temperature of the exhaust gas EG discharged from the vehicle engine (not shown) and flowing through the exhaust pipe EP. Used to measure In this case, the main body 111 of the housing 110 is fixed to the wall of the exhaust pipe while the protruding portion 112 of the housing 110 is disposed inside the exhaust pipe EP (see FIG. 2).

本実施形態(実施例1〜16)にかかる温度センサ100は、前述のサーミスタ素子1を用いているので、−40〜600℃の温度範囲におけるB定数がB(−40〜600)=1000〜2000Kの温度センサ100とすることができ、温度範囲の下限(−40℃)付近及び上限(600℃)付近での感度を向上させた温度センサ100とすることができる。   Since the temperature sensor 100 according to the present embodiment (Examples 1 to 16) uses the thermistor element 1, the B constant in the temperature range of −40 to 600 ° C. is B (−40 to 600) = 1000. The temperature sensor 100 of 2000K can be obtained, and the temperature sensor 100 with improved sensitivity near the lower limit (−40 ° C.) and the upper limit (600 ° C.) of the temperature range can be obtained.

以上において、本発明を実施形態(実施例1〜16)に即して説明したが、本発明は上記実施例等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施例1〜16の導電性酸化物焼結体を作製する際、原料粉末として各元素を含む化合物を例示したが、例示した化合物のほか、各元素の酸化物、炭酸塩、水酸化物、硝酸塩等の化合物を用いても良い。なお、特に酸化物、炭酸塩を用いるのが好ましい。
また、Laを除く第3族元素のうち少なくとも1種の元素からなるM1として、実施例ではY、Y及びYb、あるいは、Ndを用いた例を示したが、これ以外のLaを除く第3族元素を用いたり、Y、Yb及びNdを共に用いても良い。さらに、第2族元素のうち少なくとも1種の元素からなるM2として、実施例ではSr、Ca、Sr及びCa、あるいは、Sr及びMgを用いた例を示した。しかし、これ以外の第2族元素を用いたり、Sr、Ca及びMgを共に用いても良い。さらには、第4族、第5族、第6族、第7族及び第8族元素のうち少なくとも1種の元素からなるM3として、実施例では、Mn、Mn及びCr、あるいは、Mn及びFeを用いた例を示した。しかし、これ以外の第4族、第5族、第6族、第7族及び第8族元素を用いたり、Mn、Cr及びFeを共に用いても良い。
また、導電性酸化物焼結体の焼結性、B定数など、導電性酸化物焼結体、サーミスタ素子或いは温度センサに要求される特性を損なわない範囲で、導電性酸化物焼結体に、Na,K,Ga,Si,C,Cl,S等の他の成分を含有していても良い。
In the above, the present invention has been described with reference to the embodiments (Examples 1 to 16). However, the present invention is not limited to the above-described Examples and the like, and can be appropriately changed without departing from the gist thereof. Needless to say, it can be applied.
For example, when the conductive oxide sintered bodies of Examples 1 to 16 were produced, the compounds containing each element were exemplified as the raw material powder. In addition to the exemplified compounds, oxides of each element, carbonate, hydroxide Compounds such as products and nitrates may also be used. In particular, oxides and carbonates are preferably used.
Further, in the examples, Y, Y and Yb, or Nd is used as M1 composed of at least one element among the Group 3 elements excluding La. A group element may be used, or Y, Yb, and Nd may be used together. Further, in the examples, Sr, Ca, Sr and Ca, or Sr and Mg are used as M2 composed of at least one element among the Group 2 elements. However, other Group 2 elements may be used, or Sr, Ca and Mg may be used together. Furthermore, as M3 which consists of at least 1 sort (s) of elements in Group 4, Group 5, Group 6, Group 7 and Group 8, Mn, Mn and Cr, or Mn and Fe in the examples An example using is shown. However, other elements such as Group 4, Group 5, Group 6, Group 7 and Group 8 may be used, or Mn, Cr and Fe may be used together.
In addition, within the range that does not impair the characteristics required for the conductive oxide sintered body, thermistor element or temperature sensor, such as the sinterability and B constant of the conductive oxide sintered body, , Na, K, Ga, Si, C, Cl, S, etc. may be contained.

1 サーミスタ素子
10 導電性酸化物焼結体
100 温度センサ
1 Thermistor element 10 Conductive oxide sintered body 100 Temperature sensor

Claims (6)

Laを除く第3族元素のうち少なくとも1種の元素をM1とし、
第2族元素のうち少なくとも1種の元素をM2とし、
第4族、第5族、第6族、第7族及び第8族元素のうち少なくとも1種の元素をM3としたとき、
一般式M11-aM2aM31-bAlb3で表記され、
aが0.18<a<0.50であり、
bが0.05<b<0.40である
導電性酸化物焼結体。
At least one element of Group 3 elements excluding La is M1,
At least one element of group 2 elements is M2,
When at least one element among Group 4, Group 5, Group 6, Group 7 and Group 8 elements is M3,
Represented by the general formula M1 1-a M2 a M3 1-b Al b O 3 ,
a is 0.18 <a <0.50,
A conductive oxide sintered body in which b is 0.05 <b <0.40.
請求項1に記載の導電性酸化物焼結体であって、
前記元素M3は、
Mn、Fe、Crのうち少なくともMnを含む
導電性酸化物焼結体。
The conductive oxide sintered body according to claim 1,
The element M3 is
A conductive oxide sintered body containing at least Mn among Mn, Fe and Cr.
請求項1または請求項2に記載の導電性酸化物焼結体であって、
前記元素M1は、
Y、Yb、Ndのうち少なくともいずれかを含む
導電性酸化物焼結体。
The conductive oxide sintered body according to claim 1 or 2, wherein
The element M1 is
A conductive oxide sintered body containing at least one of Y, Yb, and Nd.
請求項1〜請求項3のいずれか1項に記載の導電性酸化物焼結体であって、
前記元素M2は、
Sr、Ca、Mgのうち少なくともいずれかを含む
導電性酸化物焼結体。
The conductive oxide sintered body according to any one of claims 1 to 3, wherein
The element M2 is
A conductive oxide sintered body containing at least one of Sr, Ca, and Mg.
請求項1〜請求項4のいずれか1項に記載の導電性酸化物焼結体を用いてなるサーミスタ素子。 The thermistor element which uses the electroconductive oxide sintered compact of any one of Claims 1-4. 請求項5に記載のサーミスタ素子を用いてなる温度センサ。 A temperature sensor using the thermistor element according to claim 5.
JP2012067711A 2012-03-23 2012-03-23 Thermistor element and temperature sensor Active JP6046902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067711A JP6046902B2 (en) 2012-03-23 2012-03-23 Thermistor element and temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067711A JP6046902B2 (en) 2012-03-23 2012-03-23 Thermistor element and temperature sensor

Publications (2)

Publication Number Publication Date
JP2013199396A true JP2013199396A (en) 2013-10-03
JP6046902B2 JP6046902B2 (en) 2016-12-21

Family

ID=49519930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067711A Active JP6046902B2 (en) 2012-03-23 2012-03-23 Thermistor element and temperature sensor

Country Status (1)

Country Link
JP (1) JP6046902B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3079032A1 (en) * 2015-04-06 2016-10-12 NGK Spark Plug Co., Ltd. Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
JP2016196392A (en) * 2015-04-06 2016-11-24 日本特殊陶業株式会社 Sintered electroconductive oxide, and thermistor element and temperature sensor employing the same
WO2020090309A1 (en) * 2018-10-30 2020-05-07 株式会社芝浦電子 Thermistor sintered body and temperature sensor element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221519A (en) * 2002-11-18 2004-08-05 Ngk Spark Plug Co Ltd Sintered compact for thermistor element and manufacturing method therefor,thermistor element and temperature sensor
JP2010521394A (en) * 2007-03-15 2010-06-24 エプコス アクチエンゲゼルシャフト Ceramic material and electronic ceramic component including the ceramic material
JP2011222737A (en) * 2010-04-09 2011-11-04 Ngk Spark Plug Co Ltd Thermistor element and temperature sensor
JP2012049330A (en) * 2010-08-26 2012-03-08 Tdk Corp Thermistor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221519A (en) * 2002-11-18 2004-08-05 Ngk Spark Plug Co Ltd Sintered compact for thermistor element and manufacturing method therefor,thermistor element and temperature sensor
JP2010521394A (en) * 2007-03-15 2010-06-24 エプコス アクチエンゲゼルシャフト Ceramic material and electronic ceramic component including the ceramic material
JP2011222737A (en) * 2010-04-09 2011-11-04 Ngk Spark Plug Co Ltd Thermistor element and temperature sensor
JP2012049330A (en) * 2010-08-26 2012-03-08 Tdk Corp Thermistor element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7016001685; I. BALASZ and E. BURZO: 'Structural and magnetic properties of Al doped Y2CaMn3O9 perovskites' Journal of Optoelectronics and Advanced Materials vol.8, No.2, 2006, p.473-475 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3079032A1 (en) * 2015-04-06 2016-10-12 NGK Spark Plug Co., Ltd. Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
JP2016196392A (en) * 2015-04-06 2016-11-24 日本特殊陶業株式会社 Sintered electroconductive oxide, and thermistor element and temperature sensor employing the same
US9790098B2 (en) 2015-04-06 2017-10-17 Ngk Spark Plug Co., Ltd. Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
WO2020090309A1 (en) * 2018-10-30 2020-05-07 株式会社芝浦電子 Thermistor sintered body and temperature sensor element

Also Published As

Publication number Publication date
JP6046902B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2006109792A1 (en) Sintered electroconductive oxide, thermister element using sintered electroconductive oxide, and temperature sensor using thermister element
JP5851591B2 (en) Oxide sintered body and wiring board using the same
JP4527347B2 (en) Sintered body for thermistor
JP2006315946A (en) Sintered electroconductive oxide compact, thermister element using the compact, and temperature sensor using the element
US8771559B2 (en) Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same
JP6046902B2 (en) Thermistor element and temperature sensor
JP6010473B2 (en) Conductive oxide sintered body, thermistor element and temperature sensor
JP6491074B2 (en) Conductive oxide sintered body, thermistor element and temperature sensor using the same
KR101908775B1 (en) Sintered electrically conductive oxide, thermistor element employing the oxide, and temperature sensor employing the thermistor
JP5546996B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP5421267B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP2004221519A (en) Sintered compact for thermistor element and manufacturing method therefor,thermistor element and temperature sensor
JP4996196B2 (en) THERMISTOR ELEMENT, TEMPERATURE SENSOR USING SAME, AND METHOD FOR PRODUCING THERMISTOR ELEMENT
JP2010225903A (en) Composition for thermistor, thermistor element, and method of manufacturing the same
JP7281301B2 (en) temperature sensor
KR20060006005A (en) A ceramic mixture having negative temperature co-efficient, a thermistor containing the ceramic mixture and a process for preparing thereof
JP5309586B2 (en) Thermistor composition
JP6440641B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
KR101647354B1 (en) Ceramic composition of thermistor for temperature sensor
JP2018131347A (en) Electroconductive oxide sintered body, and thermister device and temperature sensor using the same
JP2004172640A (en) Sintered body for thermistor element and its manufacturing method, and temperature sensor
JP2016039276A (en) Thermistor element, method of manufacturing thermistor element, and temperature sensor using thermistor sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161118

R150 Certificate of patent or registration of utility model

Ref document number: 6046902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250