JP2010225903A - Composition for thermistor, thermistor element, and method of manufacturing the same - Google Patents

Composition for thermistor, thermistor element, and method of manufacturing the same Download PDF

Info

Publication number
JP2010225903A
JP2010225903A JP2009072308A JP2009072308A JP2010225903A JP 2010225903 A JP2010225903 A JP 2010225903A JP 2009072308 A JP2009072308 A JP 2009072308A JP 2009072308 A JP2009072308 A JP 2009072308A JP 2010225903 A JP2010225903 A JP 2010225903A
Authority
JP
Japan
Prior art keywords
thermistor
composition
sio
group
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009072308A
Other languages
Japanese (ja)
Inventor
Yoji Ueda
要治 植田
Fumio Nishino
文雄 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateyama Kagaku Kogyo Co Ltd
Original Assignee
Tateyama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateyama Kagaku Kogyo Co Ltd filed Critical Tateyama Kagaku Kogyo Co Ltd
Priority to JP2009072308A priority Critical patent/JP2010225903A/en
Publication of JP2010225903A publication Critical patent/JP2010225903A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for a thermistor that can perform accurate temperature detection from a low temperature to a high temperature and has high stability even under a severe temperature condition of an exhaust gas sensor etc., to provide a thermistor element, and to provide a method of manufacturing the same. <P>SOLUTION: The composition for the thermistor consisting of oxides of a typical metallic element and a transition metal element is represented by formula of (M1<SB>x</SB>M2<SB>1-x</SB>)-(M3<SB>y</SB>M4<SB>1-y</SB>)O<SB>3</SB>, where x is 0.6 to 0.9 and the blending quantity of Sm, Dy in x is 0.1 to 0.2 against that of Y, and y=0.2 to 0.6 and the amount of Al in y is 0 to 0.5 against that of Mn. Here, M1 is Y, Sm and/or Dy, M2 is Ca, Sr and/or Ba, M3 is Cr, and M4 is Mn and/or Al. The thermistor element is composed of a mixed sintered body containing two or more kinds of mixture of Mg<SB>2</SB>SiO<SB>4</SB>, oxide of Ca and/or Al or mixed oxide in a perovskite structure of (M1<SB>x</SB>M2<SB>1-x</SB>)-(M3<SB>y</SB>M4<SB>1-y</SB>)O<SB>3</SB>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、遷移金属酸化物等の粉末を焼成して成るセラミックスであり、比較的高温での温度検知を行うサーミスタ用組成物とサーミスタ素子及びその製造方法に関する。   The present invention relates to a thermistor composition, a thermistor element, and a method of manufacturing the thermistor, which are ceramics obtained by firing powders of transition metal oxides and the like and detect temperature at a relatively high temperature.

従来、特に高温における安定性の高い負の温度係数を持つサーミスタ用組成物及びその組成物から製造したサーミスタ素子として、特許文献1,2に開示されているようなものがあった。これらのサーミスタ素子は、おもに自動車の排ガス温度センサとして用いられ、室温から1000℃程度の高温に至るまでの温度検知を行うものである。   Conventionally, as a thermistor composition having a negative temperature coefficient having high stability particularly at a high temperature and a thermistor element manufactured from the composition, there are those disclosed in Patent Documents 1 and 2. These thermistor elements are mainly used as exhaust gas temperature sensors for automobiles, and perform temperature detection from room temperature to a high temperature of about 1000 ° C.

その他、高温までの測定が可能なセンサとしては、白金測温抵抗体、熱電対等が用いられている。   In addition, as a sensor capable of measuring up to a high temperature, a platinum resistance temperature detector, a thermocouple, or the like is used.

特開平7−99103号公報JP 7-99103 A 特開平10−321408号公報Japanese Patent Laid-Open No. 10-321408

しかし、上記特許文献1,2に開示されたサーミスタ素子の組成は組成元素の種類が多く、製造が難しい上、焼成温度が1400〜1600℃の高温にする必要があり、焼成コスト及びセンサ素子としてのコストが高くなるものであった。   However, the composition of the thermistor element disclosed in Patent Documents 1 and 2 has many kinds of composition elements, and is difficult to manufacture. Further, it is necessary to set the firing temperature to a high temperature of 1400 to 1600 ° C. The cost of was high.

更に上記各温度センサは、温度検知に対する出力感度が低く、精度が悪いので使いづらい上、温度検出回路側での増幅回路が別途必要であり、装置全体としては高価になるものであった。   Further, each of the above temperature sensors has a low output sensitivity to temperature detection and is inaccurate, so that it is difficult to use and requires an additional amplifier circuit on the temperature detection circuit side, which makes the entire apparatus expensive.

NTCサーミスタにおいては、高温レンジのものは従来、温度係数(B定数)の高いものであり、低温・高温側の検知精度が鈍る。それにより測定レンジが限定される可能性があった。また、NTCサーミスタにおいては、長期熱的安定度を確保する為に、製造プロセス中の最終工程等でエージング、或いはアニーリングを実施して、予め抵抗値をドリフトさせて安定化させるという工程を有し、この抵抗値ドリフトを換算して目標の抵抗値に収束させるという複雑な工程があり、このためコストもかかるものであった。   In the NTC thermistor, those in the high temperature range are conventionally high in the temperature coefficient (B constant), and the detection accuracy on the low temperature / high temperature side is dull. This could limit the measurement range. In addition, NTC thermistors have a process of drifting and stabilizing the resistance value in advance by performing aging or annealing in the final process during the manufacturing process in order to ensure long-term thermal stability. There is a complicated process of converting the resistance value drift to converge to the target resistance value, which is also expensive.

また、使用される温度が高温の場合については、サーミスタ素子を製造するにあたり、使用温度範囲よりも極めて高温領域にて焼成する必要があり、製造経費等の低減が困難となっていた。   In the case where the temperature used is high, it is necessary to fire in a temperature range extremely higher than the operating temperature range when manufacturing the thermistor element, and it is difficult to reduce the manufacturing cost.

また、その他の白金測温抵抗体においてはPt貴金属の材料高騰により、購入価格が高く変動が著しいといった問題がある。K熱電対の場合では繰返しの使用に弱く、センサ出力の劣化が大きいといった欠点があった。またR熱電対は機械的強度にも優れないという欠点がある。   In addition, other platinum resistance thermometers have a problem that the purchase price is high and the fluctuation is remarkable due to the rise in the material of Pt noble metal. In the case of the K thermocouple, there is a drawback that it is weak to repeated use and the deterioration of the sensor output is large. Further, the R thermocouple has a drawback that it is not excellent in mechanical strength.

この発明は、前記従来の技術に鑑みて成されたもので、簡単な構成で、排ガスセンサ等の過酷な温度条件においても、低温度から高温にわたり正確な温度検知が可能で、且つ安定性が高いサーミスタ用組成物とサーミスタ素子及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional technology. With a simple configuration, even under severe temperature conditions such as an exhaust gas sensor, accurate temperature detection is possible from a low temperature to a high temperature, and the stability is high. An object of the present invention is to provide a high thermistor composition, a thermistor element, and a method for producing the same.

この発明は、典型金属元素及び遷移金属元素の酸化物で構成されたサーミスタ用組成物であって、配合組成は下記の通りであり、
(M1M21−x)・(M3M41−y)O
x=0.6〜0.9且つ、x中のSm、Dyの配合量はYに対して0.1〜0.2
y=0.2〜0.6且つ、y中のAl量はMnに対して0〜0.5
前記M1は元素周期律表でBe、Raを除く2A族から選ばれた1種以上の典型金属元素及び、3A族の遷移金属元素Yを示し、前記M2は6A、7A、3B族元素から選択される少なくとも1種以上の元素であり、前記M3はCrであり、前記M4はMn及び/又はAlであり、結合材としてMgSiOの混合物または、Ca及び/又はAlの酸化物或いは、これらの混合酸化物を2種類以上含むサーミスタ用組成物である。
The present invention is a thermistor composition comprising a typical metal element and an oxide of a transition metal element, the compounding composition is as follows,
(M1 x M2 1-x ) · (M3 y M4 1-y ) O 3
x = 0.6 to 0.9 and the blending amount of Sm and Dy in x is 0.1 to 0.2 with respect to Y.
y = 0.2 to 0.6, and the amount of Al in y is 0 to 0.5 with respect to Mn.
In the periodic table, M1 represents one or more typical metal elements selected from Group 2A excluding Be and Ra, and Group 3A transition metal element Y, and M2 is selected from Group 6A, 7A, and 3B elements. At least one element selected from the group consisting of M3 and Cr, and M4 and Mn and / or Al. As a binder, a mixture of Mg 2 SiO 4 or an oxide of Ca and / or Al, or A thermistor composition containing two or more of these mixed oxides.

また、前記M1、M2は、
M1:Y、Sm、及び/又はDy
M2:Ca、Sr、及び/又はBa
である。さらに、混合するMgSiOの添加範囲は、0.05〜5.0%である。
The M1 and M2 are
M1: Y, Sm, and / or Dy
M2: Ca, Sr, and / or Ba
It is. Furthermore, the addition range of mixing Mg 2 SiO 4 is 0.05 to 5.0%.

さらに、前記組成物は焼成により得られ、さらに0.8〜1.3μm粒径に粉砕されたものである。   Further, the composition is obtained by firing and further pulverized to a particle size of 0.8 to 1.3 μm.

またこの発明は、典型金属元素及び遷移金属元素の酸化物で構成されたサーミスタ用組成物であって、配合組成は下記の通りであり、
(M1M21−x)・(M3M41−y)O
x=0.6〜0.9且つ、x中のSm、Dyの配合量はYに対して0.1〜0.2
y=0.2〜0.6且つ、y中のAl量はMnに対して0〜0.5
前記M1は元素周期律表でBe、Raを除く2A族から選ばれた1種以上の典型金属元素及び、3A族の遷移金属元素Yを示し、前記M2は6A、7A、3B族元素から選択される少なくとも1種以上の元素であり、前記M3はCrであり、前記M4はMn及び/又はAlであり、且つ、前記組成の(M1M21−x)・(M3M41−y)Oのペロプスカイト構造に、MgSiOの混合物、又はCa及び/又はAlの酸化物、或いは混合酸化物を2種類以上含む混合焼結体からなるサーミスタ素子である。
Further, the present invention is a thermistor composition composed of oxides of typical metal elements and transition metal elements, the composition of which is as follows:
(M1 x M2 1-x ) · (M3 y M4 1-y ) O 3
x = 0.6 to 0.9 and the blending amount of Sm and Dy in x is 0.1 to 0.2 with respect to Y.
y = 0.2 to 0.6, and the amount of Al in y is 0 to 0.5 with respect to Mn.
In the periodic table, M1 represents one or more typical metal elements selected from Group 2A excluding Be and Ra, and Group 3A transition metal element Y, and M2 is selected from Group 6A, 7A, and 3B elements. And M3 is Cr, M4 is Mn and / or Al, and (M1 x M2 1-x ) · (M3 y M4 1-y ) A thermistor element composed of a mixed sintered body containing a mixture of Mg 2 SiO 4 , Ca and / or Al oxide, or two or more kinds of mixed oxides in an O 3 perovskite structure.

また、前記M1、M2は
M1:Y、Sm、及び/又はDy
M2:Ca、Sr、及び/又はBa
である。
The M1 and M2 are M1: Y, Sm, and / or Dy.
M2: Ca, Sr, and / or Ba
It is.

さらに、前記(M1M21−x)・(M3M41−y)O+(MgSiO)に、(CaAl)又は3A族のYを用いて前記混合組成を希釈して成り、この希釈範囲は、(CaAl)で5〜40%、3A族のYで5〜9%である。 Further, the mixed composition is diluted with (CaAl 2 O 3 ) or 3A group Y in (M1 x M2 1-x ) · (M3 y M4 1-y ) O 3 + (Mg 2 SiO 4 ). This dilution range is 5 to 40% for (CaAl 2 O 3 ) and 5 to 9% for 3A group Y.

また、前記(M1M21−x)・(M3M41−y)Oに添加するMgSiOは、フォルステライト型の結晶構造を示し、CaAlはスピネル型の結晶構造の形で含まれており、素子として最終的に混晶型である。 Further, Mg 2 SiO 4 added to the (M1 x M2 1-x ) · (M3 y M4 1-y ) O 3 shows a forsterite type crystal structure, and CaAl 2 O 3 shows a spinel type crystal structure. As a device, it is finally a mixed crystal type.

またこの発明は、前記サーミスタ素子を製造する製造方法において、前記サーミスタ組成物の仮焼成温度は1350〜1450℃の範囲で行うサーミスタ素子の製造方法である。   Moreover, this invention is the manufacturing method of the said thermistor element, The provision temperature of the said thermistor composition is a manufacturing method of the thermistor element performed in 1350-1450 degreeC.

さらに、水酸化マグネシウムを用いて、結合材としてのMgSiOのMgを添加するものである。また、前記仮焼成により得られたサーミスタ組成物を、0.8〜1.3μm粒径のサイズとなるように、粉砕して、所定形状に焼成するものである。 Furthermore, Mg of Mg 2 SiO 4 as a binder is added using magnesium hydroxide. Further, the thermistor composition obtained by the preliminary firing is pulverized so as to have a particle size of 0.8 to 1.3 μm and fired into a predetermined shape.

また、前記組成物に、MgSiOを添加し、1200〜1300℃で焼成してサーミスタ素子を形成するものである。 In addition, Mg 2 SiO 4 is added to the composition and fired at 1200 to 1300 ° C. to form a thermistor element.

この発明は、簡単な構成で、排ガスセンサ等の過酷な温度条件においても、低温度から高温にわたり正確な温度検知が可能で、且つ安定性が高いサーミスタ用組成物とサーミスタ素子及びその製造方法を提供することができる。   The present invention provides a thermistor composition, a thermistor element, and a method of manufacturing the thermistor that have a simple configuration and that can accurately detect a temperature from a low temperature to a high temperature even under severe temperature conditions such as an exhaust gas sensor. Can be provided.

また、焼成温度が比較的低く、焼成が容易であり、温度特性も良好で、熱履歴後の抵抗値と初期抵抗値との変化も極めて小さいものである。   Also, the firing temperature is relatively low, firing is easy, the temperature characteristics are good, and the change between the resistance value after the heat history and the initial resistance value is extremely small.

この発明の一実施形態のサーミスタ組成物の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the thermistor composition of one Embodiment of this invention.

以下この発明の実施の形態について説明する。この実施形態のサーミスタ用組成物は、典型金属元素及び遷移金属元素の酸化物で構成されたサーミスタ用組成物であって、配合組成は下記の通りである。   Embodiments of the present invention will be described below. The thermistor composition of this embodiment is a thermistor composition composed of oxides of typical metal elements and transition metal elements, and the blending composition is as follows.

(M1M21−x)・(M3M41−y)O
x=0.6〜0.9且つ、x中のSm、Dyの配合量はYに対して0.1〜0.2
y=0.2〜0.6且つ、y中のAl量はMnに対して0〜0.5
前記M1は、元素周期律表でBe、Raを除く2A族から選ばれた1種以上の典型金属元素及び、3A族の遷移金属元素Yを示し、前記M2は6A、7A、3B族元素から選択される少なくとも1種以上の元素である。例えば、M1はY、Sm、及び/又はDyであり、M2は、Ca、Sr、及び/又はBaである。また、前記M3はCrであり、前記M4はMn及び/又はAlである。
(M1 x M2 1-x ) · (M3 y M4 1-y ) O 3
x = 0.6 to 0.9 and the blending amount of Sm and Dy in x is 0.1 to 0.2 with respect to Y.
y = 0.2 to 0.6, and the amount of Al in y is 0 to 0.5 with respect to Mn.
The M1 represents one or more typical metal elements selected from the 2A group excluding Be and Ra in the periodic table, and the transition metal element Y of the 3A group, and the M2 includes 6A, 7A, and 3B group elements. At least one element selected. For example, M1 is Y, Sm, and / or Dy, and M2 is Ca, Sr, and / or Ba. The M3 is Cr, and the M4 is Mn and / or Al.

さらに、結合材として、MgSiOの混合物または、Ca及び/又はAlの酸化物、或いはこれらの混合酸化物を2種類以上含む。混合するMgSiOの添加範囲は、例えば、0.05〜5.0%である。焼成により得られた組成物は、例えば、0.8〜1.3μm粒径に粉砕する。 Further, the binder includes a mixture of Mg 2 SiO 4 , an oxide of Ca and / or Al, or a mixed oxide of these two or more. The addition range of Mg 2 SiO 4 to be mixed is, for example, 0.05 to 5.0%. The composition obtained by firing is pulverized to a particle size of 0.8 to 1.3 μm, for example.

この実施形態のサーミスタ素子は、上記組成物を粉砕したものを、成型して焼成した混合焼結体からなるものである。   The thermistor element of this embodiment consists of a mixed sintered body obtained by molding and firing the pulverized composition.

さらに、この実施形態のサーミスタ素子は、前記(M1M21x)・(M3M41y)O+(MgSiO)に、(CaAl)又は3A族のYを用いて前記混合組成を希釈して成り、この希釈範囲は、(CaAl)で5〜40%、3A族のYで5〜9%である。 Further, in the thermistor element of this embodiment, the (M1 x M2 1x ) · (M3 y M4 1y ) O 3 + (Mg 2 SiO 4 ) is replaced with (CaAl 2 O 3 ) or 3A group Y. The mixture composition is diluted, and this dilution range is 5 to 40% for (CaAl 2 O 3 ) and 5 to 9% for 3A group Y.

前記(M1M21−x)・(M3M41−y)Oに添加するMgSiOは、フォルステライト型の結晶構造を示し、CaAlはスピネル型の結晶構造の形で含まれており、サーミスタ素子としては最終的に混晶型となる。 Mg 2 SiO 4 added to the (M1 x M2 1-x ) · (M3 y M4 1-y ) O 3 shows a forsterite type crystal structure, and CaAl 2 O 3 has a spinel type crystal structure. The thermistor element finally becomes a mixed crystal type.

この実施形態のサーミスタ組成物の製造方法について、図1を基に説明する。サーミスタ組成物の組成割合は、下記の実施例の表1の組成欄に示すものであり、その割合になるように各成分を秤量する。まず、希釈元の原料として
純度が99.9%以上で、平均粒径が1μmのYと、
純度が99.0%以上で、平均粒径が1μmのCaCOと、
純度が99.0%以上で、平均粒径が1μmのCr2Oと、
純度が99.0%以上で、平均粒径が1μmのMnOを、
(Y1−x・Ca)(Cr1−y・Mn)Oと表したとき、x,yを表1の組成欄に示す割合に秤量、混合を行い、その後1400℃にて2時間の仮焼成を行う。仮焼成を行った粉末は、湿式にて粉砕を行う。これにより、粒径1μmの原料粉末を得る。
The manufacturing method of the thermistor composition of this embodiment is demonstrated based on FIG. The composition ratio of the thermistor composition is shown in the composition column of Table 1 of the following Examples, and each component is weighed so as to be the ratio. First, Y 2 O 3 having a purity of 99.9% or more and an average particle size of 1 μm as a raw material for dilution,
CaCO 3 having a purity of 99.0% or more and an average particle diameter of 1 μm;
Cr2O 3 having a purity of 99.0% or more and an average particle diameter of 1 μm;
MnO 2 having a purity of 99.0% or more and an average particle diameter of 1 μm,
When expressed as (Y 1−x · Ca x ) (Cr 1−y · Mn y ) O 3 , x and y are weighed and mixed in the proportions shown in the composition column of Table 1 and then 2 at 1400 ° C. Temporary calcination is performed. The pre-baked powder is pulverized wet. Thereby, a raw material powder having a particle diameter of 1 μm is obtained.

さらに、第1の希釈成分として、純度が99.9%以上で、平均粒径が1μmのYを利用する。第2の希釈成分として、CaAlは、純度が99.99%以上で、平均粒径が0.3μmのものを用い、さらに、純度が99.0%以上で、平均粒径が1μmのCaCOを焼成後、CaAlの化学式の比率となるように秤量し、混合処理して、その後1400℃にて2時間の仮焼成を行う。仮焼成を行った粉末は、湿式により粉砕を行い、例えば0.8〜1.3μm粒径、平均粒径1μmの合成粉末を得る。 Further, Y 2 O 3 having a purity of 99.9% or more and an average particle diameter of 1 μm is used as the first dilution component. As the second dilution component, CaAl 2 O 4 having a purity of 99.99% or more and an average particle size of 0.3 μm is used. Further, the purity is 99.0% or more and the average particle size is 1 μm. After the CaCO 3 is fired, it is weighed so as to have a ratio of the chemical formula of CaAl 2 O 4 , mixed, and then temporarily fired at 1400 ° C. for 2 hours. The pre-baked powder is pulverized by a wet process to obtain, for example, a synthetic powder having a particle diameter of 0.8 to 1.3 μm and an average particle diameter of 1 μm.

次に、結合材としてMgSiOを混ぜる。MgSiOは、純度が99.0%以上で、平均粒径が1μmのMg(OH)と、純度が99.99%以上で、平均粒径が1μmのSiOを、焼成後にMgSiOの化学式となるように秤量、十分に混合を行う。これにより、結合材粉末を得る。 Next, Mg 2 SiO 4 is mixed as a binder. Mg 2 SiO 4 is composed of Mg (OH) 2 having a purity of 99.0% or more and an average particle diameter of 1 μm, and SiO 2 having a purity of 99.99% or more and an average particle diameter of 1 μm after firing. Weigh and mix well so that the chemical formula 4 is obtained. Thereby, a binder powder is obtained.

結合材としてMgSiOを用いることで、高温まで安定なMgSiO4結合材を低温にて合成することが可能となる。 By using Mg 2 SiO 4 as the binder, it is possible to synthesize a MgSiO 4 binder that is stable up to a high temperature at a low temperature.

これらの、希釈元の原料粉末、第1の希釈成分、第2の希釈成分、結合材を混合し有機ビヒクル(例えばPVB)を20〜30%の濃度になるように、アルコール中に分散させてスラリー化する。このスラリーを、リード線となる白金線を任意の間隔を設けて2本平行に配列させ、ディスペンス等で塗布して2本の白金線を間隔を設けた形で包み込むようにしてビード形状のサーミスタ素子に成型する。或いは、任意の間隔に配置した金型に、スラリーを充填して一定の圧力でプレスする事によりサーミスタ素子を形成する。   These raw material powder, the first diluted component, the second diluted component, and the binder are mixed and the organic vehicle (for example, PVB) is dispersed in alcohol so as to have a concentration of 20 to 30%. Slurry. This slurry is a bead-shaped thermistor in which two platinum wires as lead wires are arranged in parallel at an arbitrary interval and coated with a dispense or the like so as to wrap the two platinum wires in a spaced manner. Mold into the element. Alternatively, a thermistor element is formed by filling a metal mold arranged at an arbitrary interval with slurry and pressing it at a constant pressure.

この後、MgSiOを添加し、1200〜1300℃、例えば1250℃で大気中で焼成し、サーミスタ素子を形成する
この実施形態のサーミスタ素子においては、1000℃以上の高温領域においても、1000時間以上特性の劣化が無く安定性が高い。さらに、室温〜1000℃の熱履歴等を与えた場合でも、熱履歴後の抵抗値と初期抵抗値との変化(ΔR)が極めて小さく、安定な素子を得ることができる。
Thereafter, Mg 2 SiO 4 is added and fired in the atmosphere at 1200 to 1300 ° C., for example, 1250 ° C. to form the thermistor element. In the thermistor element of this embodiment, even in a high temperature region of 1000 ° C. or higher, High stability without deterioration of characteristics over time. Furthermore, even when a thermal history of room temperature to 1000 ° C. is given, a change (ΔR) between the resistance value and the initial resistance value after the thermal history is extremely small, and a stable element can be obtained.

作られるサーミスタ素子の特性は、抵抗値と抵抗温度係数(抵抗値の温度依存性:2点の温度間の温度係数/B定数)、抵抗値は5kΩ〜100kΩ範囲、B定数(例25℃/85℃)は1800K〜2800Kであり、-40℃の時の抵抗値は300kΩ〜1MΩ、そして仮に1000℃の時の抵抗値が30Ω〜100Ωの範囲である。これは温度センサを構成する温度検出回路にて十分実用的な抵抗値範囲に対応する事が出来る。   The characteristics of the thermistor element are as follows: resistance value and resistance temperature coefficient (temperature dependence of resistance value: temperature coefficient between two temperatures / B constant), resistance value ranging from 5 kΩ to 100 kΩ, B constant (eg 25 ° C / 85 ° C.) is 1800K to 2800K, the resistance value at -40 ° C. is 300 kΩ to 1 MΩ, and the resistance value at 1000 ° C. is 30Ω to 100Ω. This can correspond to a sufficiently practical resistance value range in the temperature detection circuit constituting the temperature sensor.

さらに、この発明のサーミスタ素子において、素子完成時にアニーリングを実施した場合、ΔR≦3.0%となり、完成品としての抵抗値を整合し易いものである。   Further, in the thermistor element of the present invention, when annealing is performed when the element is completed, ΔR ≦ 3.0%, and the resistance value as a completed product can be easily matched.

(M1M21-x)・(M3M41-y)O3に、材料自体の結晶層が低温から高温まで相変態しない状態で安定に存在するMgSiOを添加する事により、安定性の他、低温焼成無機助剤としての効果も発揮する。具体的には、サーミスタ素子焼成時に、低温にてMgSiOが合成され、材料が結合される事となり、サーミスタ素子を低温にて焼結可能となる。 By adding Mg 2 SiO 4, which exists stably in a state where the crystal layer of the material itself does not undergo phase transformation from low temperature to high temperature, to (M1 x M2 1-x ) · (M3 y M4 1-y ) O 3 , In addition to stability, it also exhibits an effect as a low temperature firing inorganic auxiliary. Specifically, when the thermistor element is fired, Mg 2 SiO 4 is synthesized and the materials are bonded at a low temperature, and the thermistor element can be sintered at a low temperature.

この発明のサーミスタ用組成物とサーミスタ素子及びその製造方法は、上記実施形態に限定されるものではなく、上記条件の範囲で適宜組成元素やその割合を変更し得るものである。   The composition for the thermistor, the thermistor element, and the manufacturing method thereof according to the present invention are not limited to the above-described embodiment, and the composition elements and the ratio thereof can be appropriately changed within the range of the above conditions.

以下、この発明のサーミスタ用組成物によるチップサーミスタの実施例について、試験結果を示す。まず、この発明の一実施例のサーミスタ用組成物の製造方法は前記の通りであり、各実施例のサーミスタ組成物の組成割合は、表1の組成欄に示す割合に秤量した。素子サイズは、1.5mmφの円盤状に形成され、その中に0.06mmの白金線を0.5mm間隔で配置したものである。また、抵抗値のばらつきを示すΔRの測定は、1000℃の高温にさらした後、25℃、85℃、300℃に校正されたオイル槽に浸漬して測定した。   Hereinafter, test results are shown for examples of chip thermistors using the thermistor composition of the present invention. First, the manufacturing method of the composition for the thermistors of one Example of this invention is as above-mentioned, The composition ratio of the thermistor composition of each Example was weighed in the ratio shown in the composition column of Table 1. The element size is formed in a disk shape of 1.5 mmφ, in which 0.06 mm platinum wires are arranged at intervals of 0.5 mm. Further, ΔR indicating the variation in resistance value was measured by immersing in an oil tank calibrated at 25 ° C., 85 ° C., and 300 ° C. after exposure to a high temperature of 1000 ° C.

まず、サーミスタの製造に際して、希釈元の原料として
純度が99.9%以上で、平均粒径が1μmのY2O3と、
純度が99.0%以上で、平均粒径が1μmのCaCO3と、
純度が99.0%以上で、平均粒径が1μmのCr2O3と、
純度が99.0%以上で、平均粒径が1μmのMnO2を、表1の組成欄に示す割合に秤量、混合を行い、その後1400℃にて2時間の仮焼成を行った。仮焼成を行った粉末は、湿式にて粉砕を行い、粒径1μmの合成原料粉末を得た。
First, when manufacturing the thermistor, Y2O3 having a purity of 99.9% or more and an average particle size of 1 μm as a raw material for dilution,
CaCO3 having a purity of 99.0% or more and an average particle diameter of 1 μm;
Cr2O3 having a purity of 99.0% or more and an average particle diameter of 1 μm;
MnO 2 having a purity of 99.0% or more and an average particle size of 1 μm was weighed and mixed in the proportions shown in the composition column of Table 1, and then calcined at 1400 ° C. for 2 hours. The pre-baked powder was pulverized wet to obtain a synthetic raw material powder having a particle size of 1 μm.

次に、第1の希釈成分として、純度が99.9%以上で、平均粒径が1μmのYを利用い、第2の希釈成分として、CaAlは、純度が99.99%以上で、平均粒径が0.3μmのものを用いた。さらに、純度が99.0%以上で、平均粒径が1μmのCaCOを焼成後、CaAlの化学式の比率となるように秤量し、混合を行い、その後1400℃にて2時間の仮焼成を行った。仮焼成を行った粉末は、湿式により粉砕を行い、例えば0.8〜1.3μm粒径、平均粒径1μmの合成粉末を得た。 Next, Y 2 O 3 having a purity of 99.9% or more and an average particle diameter of 1 μm is used as the first dilution component, and CaAl 2 O 4 has a purity of 99. 9% as the second dilution component. 99% or more and an average particle diameter of 0.3 μm were used. Further, after calcining CaCO 3 having a purity of 99.0% or more and an average particle diameter of 1 μm, it was weighed so as to have a ratio of the chemical formula of CaAl 2 O 4 , mixed, and then heated at 1400 ° C. for 2 hours. Pre-baking was performed. The pre-baked powder was pulverized by a wet process to obtain, for example, a synthetic powder having a particle diameter of 0.8 to 1.3 μm and an average particle diameter of 1 μm.

この後、結合材としてMgSiOを混ぜた。MgSiOは、純度が99.0%以上で、平均粒径が1μmのMg(OH)と、純度が99.99%以上で、平均粒径が1μmのSiOを、焼成後にMgSiOの化学式となるように秤量し、十分に混合を行い、結合材粉末を得た。 Thereafter, Mg 2 SiO 4 was mixed as a binder. Mg 2 SiO 4 is composed of Mg (OH) 2 having a purity of 99.0% or more and an average particle diameter of 1 μm, and SiO 2 having a purity of 99.99% or more and an average particle diameter of 1 μm after firing. 4 was weighed so as to have the chemical formula 4 and sufficiently mixed to obtain a binder powder.

次に、第2の希釈成分として、CaAlは、純度が99.99%以上で、平均粒径が0.3μmのAlと、純度が99.0%以上で、平均粒径が1μmのCaCOを、焼成後にCaAlの化学式となるように秤量し混合して、その後1400℃にて2時間の仮焼成を行った。仮焼成を行った粉末を湿式粉砕し、粒径1μmの合成粉末を得た。 Next, as the second dilution component, CaAl 2 O 4 has a purity of 99.99% or more and Al 2 O 3 having an average particle size of 0.3 μm, and a purity of 99.0% or more and the average particle size. CaCO 3 having a diameter of 1 μm was weighed and mixed so as to have a chemical formula of CaAl 2 O 4 after firing, and then pre-fired at 1400 ° C. for 2 hours. The pre-fired powder was wet pulverized to obtain a synthetic powder having a particle size of 1 μm.

次に、結合材としてMgSiOは、純度が99.0%以上で、平均粒径が1μmのMg(OH)と、純度が99.99%以上で、平均粒径が1μmのSiOを、焼成後にMgSiOの化学式となるように秤量、十分に混合を行い、結合材粉末を得た。 Next, Mg 2 SiO 4 as a binder is Mg (OH) 2 having a purity of 99.0% or more and an average particle size of 1 μm, and SiO having a purity of 99.99% or more and an average particle size of 1 μm. 2 was weighed and sufficiently mixed so as to have the chemical formula of Mg 2 SiO 4 after firing to obtain a binder powder.

この後、以上の希釈元の原料、第1の希釈成分、第2の希釈成分、結合材を混合しPVBを25%の濃度になるように、アルコールに分散しスラリー化した。   Thereafter, the raw material of the dilution source, the first diluted component, the second diluted component, and the binder were mixed and dispersed in alcohol so as to have a concentration of PVB of 25% to form a slurry.

このスラリーをリード線となる白金線を所定間隔で2本平行に配列させた所にディスペンス等で塗布して、2本の白金線を間隔空けた形で包み込むようにしてビード形状のサーミスタ素子形状に形成した。そして、この成型品を、1250℃の大気中で焼成しサーミスタ素子を得た。   A bead-shaped thermistor element shape is formed by applying this slurry to a place where two platinum wires as lead wires are arranged in parallel at a predetermined interval with a dispense, etc., and wrapping the two platinum wires in a spaced manner. Formed. The molded product was fired in the atmosphere at 1250 ° C. to obtain a thermistor element.

以上の工程により形成したサーミスタ素子の各実施例の成分ごとの性能を表1に示す。また、比較例も4例示す。さらに、焼成温度を変えた実施例を3例と比較例を2例、表2に示す。

Figure 2010225903
Figure 2010225903
Table 1 shows the performance of each component of the thermistor element formed by the above steps. Also, four comparative examples are shown. Further, Table 3 shows three examples and two comparative examples with different firing temperatures.
Figure 2010225903
Figure 2010225903

以上のように、この発明のサーミスタ用組成物とサーミスタ素子によれば、低温焼成により、高性能で信頼性の高く、室温から1000℃以上の高温での測定も可能なサーミスタ素子を得ることができる。さらに、その製造も容易なものである。

As described above, according to the thermistor composition and the thermistor element of the present invention, it is possible to obtain a thermistor element that is high-performance and highly reliable and can be measured at room temperature to 1000 ° C. or higher by low-temperature firing. it can. Furthermore, its manufacture is also easy.

Claims (12)

典型金属元素及び遷移金属元素の酸化物で構成されたサーミスタ用組成物であって、配合組成は下記の通りであり、
(M1M21−x)・(M3M41−y)O
x=0.6〜0.9且つ、x中のSm、Dyの配合量はYに対して0.1〜0.2
y=0.2〜0.6且つ、y中のAl量はMnに対して0〜0.5
前記M1は元素周期律表でBe、Raを除く2A族から選ばれた1種以上の典型金属元素及び、3A族の遷移金属元素Yを示し、
前記M2は6A、7A、3B族元素から選択される少なくとも1種以上の元素であり、
前記M3はCrであり、
前記M4はMn及び/又はAlであり、
結合材としてMgSiOの混合物または、Ca及び/又はAlの酸化物或いは、これらの混合酸化物を2種類以上含むことを特徴とするサーミスタ用組成物。
It is a composition for a thermistor composed of oxides of typical metal elements and transition metal elements, and the composition is as follows:
(M1 x M2 1-x ) · (M3 y M4 1-y ) O 3
x = 0.6 to 0.9 and the blending amount of Sm and Dy in x is 0.1 to 0.2 with respect to Y.
y = 0.2 to 0.6, and the amount of Al in y is 0 to 0.5 with respect to Mn.
M1 represents one or more typical metal elements selected from Group 2A excluding Be and Ra in the Periodic Table of Elements and Group 3A transition metal element Y;
M2 is at least one element selected from group 6A, 7A, and 3B elements;
M3 is Cr;
M4 is Mn and / or Al,
A thermistor composition comprising a mixture of Mg 2 SiO 4 , an oxide of Ca and / or Al, or two or more of these mixed oxides as a binder.
前記M1、M2は、
M1:Y、Sm、及び/又はDy
M2:Ca、Sr、及び/又はBa
であることを特徴とする請求項1記載のサーミスタ用組成物。
M1 and M2 are
M1: Y, Sm, and / or Dy
M2: Ca, Sr, and / or Ba
The thermistor composition according to claim 1, wherein
混合するMgSiOの添加範囲は、0.05〜5.0%であることを特徴とする請求項1又は2記載のサーミスタ用組成物。 The composition for the thermistor according to claim 1 or 2, wherein an addition range of Mg 2 SiO 4 to be mixed is 0.05 to 5.0%. 前記組成物は焼成により得られ、さらに0.8〜1.3μm粒径に粉砕されたものである請求項2又は3記載のサーミスタ用組成物。   4. The thermistor composition according to claim 2, wherein the composition is obtained by firing and further pulverized to a particle size of 0.8 to 1.3 [mu] m. 典型金属元素及び遷移金属元素の酸化物で構成されたサーミスタ用組成物であって、配合組成は下記の通りであり、
(M1M21−x)・(M3M41−y)O
x=0.6〜0.9且つ、x中のSm、Dyの配合量はYに対して0.1〜0.2
y=0.2〜0.6且つ、y中のAl量はMnに対して0〜0.5
前記M1は元素周期律表でBe、Raを除く2A族から選ばれた1種以上の典型金属元素及び、3A族の遷移金属元素Yを示し、
前記M2は6A、7A、3B族元素から選択される少なくとも1種以上の元素であり、
前記M3はCrであり、
前記M4はMn及び/又はAlであり、
且つ、前記組成の(M1M21−x)・(M3M41−y)Oのペロプスカイト構造に、MgSiOの混合物、又はCa及び/又はAlの酸化物、或いは混合酸化物を2種類以上含む混合焼結体からなることを特徴とするサーミスタ素子。
It is a composition for a thermistor composed of oxides of typical metal elements and transition metal elements, and the composition is as follows:
(M1 x M2 1-x ) · (M3 y M4 1-y ) O 3
x = 0.6 to 0.9 and the blending amount of Sm and Dy in x is 0.1 to 0.2 with respect to Y.
y = 0.2 to 0.6, and the amount of Al in y is 0 to 0.5 with respect to Mn.
M1 represents one or more typical metal elements selected from Group 2A excluding Be and Ra in the Periodic Table of Elements and Group 3A transition metal element Y;
M2 is at least one element selected from group 6A, 7A, and 3B elements;
M3 is Cr;
M4 is Mn and / or Al,
In addition, a perovskite structure of (M1 x M2 1-x ) · (M3 y M4 1-y ) O 3 having the above composition, a mixture of Mg 2 SiO 4 , oxides of Ca and / or Al, or mixed oxidation A thermistor element comprising a mixed sintered body containing two or more kinds of objects.
前記M1、M2は
M1:Y、Sm、及び/又はDy
M2:Ca、Sr、及び/又はBa
であることを特徴とする請求項5記載のサーミスタ素子。
M1 and M2 are M1: Y, Sm, and / or Dy.
M2: Ca, Sr, and / or Ba
The thermistor element according to claim 5, wherein:
前記(M1M21−x)・(M3M41−y)O+(MgSiO)に、(CaAl)又は3A族のYを用いて前記混合組成を希釈して成り、この希釈範囲は、(CaAl)で5〜40%、3A族のYで5〜9%であることを特徴とする請求項5記載のサーミスタ素子。 (M1 x M2 1-x ) · (M3 y M4 1-y ) O 3 + (Mg 2 SiO 4 ) and (CaAl 2 O 3 ) or 3A group Y is used to dilute the mixed composition. 6. The thermistor element according to claim 5, wherein the dilution range is 5 to 40% for (CaAl 2 O 3 ) and 5 to 9% for Y of group 3A. 前記(M1M21−x)・(M3M41−y)Oに添加するMgSiOは、フォルステライト型の結晶構造を示し、CaAlはスピネル型の結晶構造の形で含まれており、素子として最終的に混晶型であることを特徴とする請求項5記載のサーミスタ素子。 Mg 2 SiO 4 added to the (M1 x M2 1-x ) · (M3 y M4 1-y ) O 3 shows a forsterite type crystal structure, and CaAl 2 O 3 has a spinel type crystal structure. 6. The thermistor element according to claim 5, wherein the element is finally a mixed crystal type. 前記サーミスタ素子を製造する製造方法において、前記サーミスタ組成物の仮焼成温度は1350〜1450℃の範囲で行うことを特徴とする請求項5記載のサーミスタ素子の製造方法。   6. The method of manufacturing a thermistor element according to claim 5, wherein the thermistor composition is calcined at a temperature in the range of 1350 to 1450 [deg.] C. 水酸化マグネシウムを用いて、結合材としてのMgSiOのMgを添加する請求項9記載のサーミスタ素子の製造方法。 The method for manufacturing a thermistor element according to claim 9, wherein Mg of Mg 2 SiO 4 as a binder is added using magnesium hydroxide. 前記仮焼成により得られたサーミスタ組成物を、0.8〜1.3μm粒径のサイズとなるように、粉砕して、所定形状に焼成する請求項9記載のサーミスタ素子の製造方法。   The thermistor element manufacturing method according to claim 9, wherein the thermistor composition obtained by the preliminary firing is pulverized so as to have a particle size of 0.8 to 1.3 μm and fired into a predetermined shape. MgSiOを添加し、1200〜1300℃で焼成してサーミスタ素子を形成する請求項9記載のサーミスタ素子の製造方法。

The method for producing a thermistor element according to claim 9, wherein Mg 2 SiO 4 is added and thermistor element is formed by firing at 1200 to 1300 ° C.

JP2009072308A 2009-03-24 2009-03-24 Composition for thermistor, thermistor element, and method of manufacturing the same Pending JP2010225903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009072308A JP2010225903A (en) 2009-03-24 2009-03-24 Composition for thermistor, thermistor element, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009072308A JP2010225903A (en) 2009-03-24 2009-03-24 Composition for thermistor, thermistor element, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010225903A true JP2010225903A (en) 2010-10-07

Family

ID=43042769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009072308A Pending JP2010225903A (en) 2009-03-24 2009-03-24 Composition for thermistor, thermistor element, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010225903A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235432A1 (en) * 2017-06-20 2018-12-27 株式会社芝浦電子 Thermistor sintered body and thermistor element
CN111386581A (en) * 2018-10-31 2020-07-07 株式会社芝浦电子 Thermistor sintered compact and temperature sensor element
CN112088411A (en) * 2018-10-30 2020-12-15 株式会社芝浦电子 Thermistor sintered compact and temperature sensor element
JP2021170612A (en) * 2020-04-17 2021-10-28 株式会社芝浦電子 Thermistor sintered compact and temperature sensor element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235432A1 (en) * 2017-06-20 2018-12-27 株式会社芝浦電子 Thermistor sintered body and thermistor element
JPWO2018235432A1 (en) * 2017-06-20 2019-06-27 株式会社芝浦電子 Thermistor sintered body and thermistor element
CN110024053A (en) * 2017-06-20 2019-07-16 株式会社芝浦电子 Thermistor sintering body and thermistor element
US10643768B2 (en) 2017-06-20 2020-05-05 Shibaura Electronics Co., Ltd. Thermistor sintered body and thermistor element
CN110024053B (en) * 2017-06-20 2021-03-09 株式会社芝浦电子 Thermistor sintered compact and thermistor element
CN112088411A (en) * 2018-10-30 2020-12-15 株式会社芝浦电子 Thermistor sintered compact and temperature sensor element
CN111386581A (en) * 2018-10-31 2020-07-07 株式会社芝浦电子 Thermistor sintered compact and temperature sensor element
JP2021170612A (en) * 2020-04-17 2021-10-28 株式会社芝浦電子 Thermistor sintered compact and temperature sensor element

Similar Documents

Publication Publication Date Title
US8771559B2 (en) Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same
CN110024053B (en) Thermistor sintered compact and thermistor element
CN103354142B (en) Motor protection negative temperature coefficient NTC themistor and manufacture method thereof
JP2010225903A (en) Composition for thermistor, thermistor element, and method of manufacturing the same
JP4527347B2 (en) Sintered body for thermistor
JPH0799103A (en) Porcelain composition for thermistor, and thermistor element
JP3254595B2 (en) Porcelain composition for thermistor
JP5275261B2 (en) Ceramic material and electronic ceramic component including the ceramic material
JP6491074B2 (en) Conductive oxide sintered body, thermistor element and temperature sensor using the same
JP2009173484A (en) Metal oxide sintered compact for thermistor, thermistor element, and method for producing metal oxide sintered compact for thermistor
JP4307152B2 (en) Sintered body for thermistor element, manufacturing method thereof, thermistor element, temperature sensor
WO2021065541A1 (en) Temperature sensor element and method for manufacturing temperature sensor element
US8617433B2 (en) Conductive sintered oxide, thermistor element including the same, and temperature sensor including the same
JP6046902B2 (en) Thermistor element and temperature sensor
JP3331447B2 (en) Method for producing porcelain composition for thermistor
JP4990072B2 (en) Thermistor for high temperature
JP2004193572A (en) Sintered compact for thermistor, thermistor element, and temperature sensor
KR101647354B1 (en) Ceramic composition of thermistor for temperature sensor
JP5158487B2 (en) Metal oxide sintered body for thermistor, thermistor element, and method for producing metal oxide sintered body for thermistor
CN102701731B (en) Novel thermosensitive ceramic material used for temperature detector
JP6440641B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JP5309586B2 (en) Thermistor composition
JP5158488B2 (en) Metal oxide sintered body for thermistor, thermistor element, and method for producing metal oxide sintered body for thermistor
JP2002329602A (en) Method of manufacturing negative temperature coefficient thermistor device
JP2004217500A (en) Sintered compact for thermistor element and method for producing the same, thermistor element and temperature sensor