JP2013197014A - Electrode and method for manufacturing the same - Google Patents

Electrode and method for manufacturing the same Download PDF

Info

Publication number
JP2013197014A
JP2013197014A JP2012065202A JP2012065202A JP2013197014A JP 2013197014 A JP2013197014 A JP 2013197014A JP 2012065202 A JP2012065202 A JP 2012065202A JP 2012065202 A JP2012065202 A JP 2012065202A JP 2013197014 A JP2013197014 A JP 2013197014A
Authority
JP
Japan
Prior art keywords
electrode
ink
current collector
active material
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012065202A
Other languages
Japanese (ja)
Inventor
Masahiro Ueno
雅弘 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2012065202A priority Critical patent/JP2013197014A/en
Publication of JP2013197014A publication Critical patent/JP2013197014A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To finely form an active material on an electric body and efficiently secure an electronic conduction path between the active materials or the active material and a collector.SOLUTION: After ink 10 including an electrode material is coated on one surface in a thickness direction of a collector 11, centrifugal force in a direction from the one surface in the thickness direction toward the other surface is applied to the collector 11 to which the ink 10 has been coated. At this time, electrode active materials having the largest density and particle diameter in the ink 10 are preferentially deposited finely on the collector, thereby improving contact between the active materials and contact between the active material and the collector 11. Also, a binding material melts in a solvent and enters a gap between the finely deposited active materials, thereby improving adhesion between the active materials and adhesion between the active material and the collector 11 without damaging the contact between the active materials or the active material and the collector 11. Therefore, it is possible to provide an electrode of a battery with fewer energy loss.

Description

本発明は、電極およびその製造方法に関するものである。   The present invention relates to an electrode and a manufacturing method thereof.

リチウムイオン二次電池は、そのエネルギー密度の高さから軽量かつ占有面積の少なさに優位性を持ち、ニッケル-カドミウム電池やニッケル-水素電池に比べてメモリー効果の少ない利点を備える事から、携帯電話やノートパソコンなどのポータブルデバイスに幅広く用いられている。また、近年では環境に対する影響から、これまで自動車に用いられてきた石油などの化石燃料に代わる動力源としても用いられる事が多くなってきた。さらに、最近では電力供給の一部を担う定置型蓄電池に対する期待も高い。   Lithium-ion secondary batteries are superior in light weight and small footprint due to their high energy density, and have the advantage of less memory effect than nickel-cadmium batteries and nickel-hydrogen batteries. Widely used in portable devices such as phones and notebook computers. Moreover, in recent years, it has been increasingly used as a power source to replace fossil fuels such as oil that have been used in automobiles because of its environmental impact. In addition, recently, there is a high expectation for stationary storage batteries that bear a part of power supply.

一般的に用いられているリチウムイオン二次電池の構成部材は、電極、電解液、セパレーター、集電体、外装体から成り、さらに電極は正極活物質又は負極活物質、導電助材、結着材で構成されている。以降、これらの構成材料を所定の混合比率で混合したものを総じて正極材料および負極材料、正極材料と負極材料を総じて電極材料と呼称する。活物質はリチウムイオン二次電池の正極および負極においてリチウムイオンの挿入脱離が可能な材料であり、挿入脱離の際に電子の授受を伴う事で電流を流す役割を担う。正極活物質材料としてはLiCoO、LiNiOなどの層状化合物、LiMnに代表されるスピネル型構造化合物、LiFePOに代表されるオリビン型構造化合物などが挙げられる。一方、負極活物質材料には、球状黒鉛や鱗片状黒鉛、ハードカーボンなどに代表される炭素系材料やシリコン系材料、LiTi12などのチタン酸化物系材料が代表として挙げられる。導電助材は活物質・活物質間および活物質・集電体間の電子移動を円滑に進めるために電極内部に配置される。導電助材としては、主に導電炭素系材料が挙げられる。結着材は活物質、導電助材および集電体の密着を高める為に電極内部に配置される。結着材の種類は大きく水系溶媒を用いるものと非水系溶媒を用いるものに分かれ、スチレンブタジエンラバーやポリフッ化ビニリデンなどがその代表例として挙げられる。 Commonly used components of lithium ion secondary batteries consist of electrodes, electrolytes, separators, current collectors, and exterior bodies, and the electrodes are positive electrode active materials or negative electrode active materials, conductive aids, binders. It is composed of materials. Hereinafter, a mixture of these constituent materials at a predetermined mixing ratio is collectively referred to as a positive electrode material and a negative electrode material, and a positive electrode material and a negative electrode material are collectively referred to as an electrode material. The active material is a material that can insert and desorb lithium ions in the positive electrode and the negative electrode of the lithium ion secondary battery, and plays a role of flowing current by accompanying the exchange of electrons at the time of insertion and desorption. The positive electrode active material layer compound such as LiCoO 2, LiNiO 2, spinel structure compounds represented by LiMn 2 O 4, and the like olivine compound represented by LiFePO 4. On the other hand, representative examples of the negative electrode active material include carbon-based materials such as spherical graphite, flaky graphite, and hard carbon, silicon-based materials, and titanium oxide-based materials such as Li 4 Ti 5 O 12 . The conductive auxiliary material is disposed inside the electrode in order to smoothly move electrons between the active material and the active material and between the active material and the current collector. Examples of the conductive aid include conductive carbon-based materials. The binder is disposed inside the electrode in order to enhance the adhesion between the active material, the conductive additive and the current collector. The types of binders are broadly divided into those using an aqueous solvent and those using a non-aqueous solvent, and typical examples thereof include styrene butadiene rubber and polyvinylidene fluoride.

集電体は、活物質にリチウムイオンが挿入脱離する際に伴う電子の移動を、活物質又は導電助剤に対して授受し、回路内に電流を生じさせる役割を担う。   The current collector plays a role in generating an electric current in the circuit by giving and receiving the movement of electrons accompanying insertion and desorption of lithium ions to and from the active material to the active material or the conductive assistant.

外装体は、電解液の液漏れ防止および水分に弱いリチウムイオン二次電池を外気から保護する事を目的として、主として金属缶とアルミラミネートフィルムの2種類が用いられる。取分け放熱性が良好で形状の自由度も高いアルミラミネートフィルムが有利である。   As the exterior body, two types of a metal can and an aluminum laminate film are mainly used for the purpose of preventing electrolyte leakage and protecting a lithium ion secondary battery that is sensitive to moisture from the outside air. In particular, an aluminum laminate film having good heat dissipation and a high degree of freedom in shape is advantageous.

セパレーターは正極と負極の接触による電池の短絡を防止する事を目的として、正極・負極間に配置され、且つ電解液がその中に保持されリチウムイオンを通す事が可能なように多孔質材料が用いられている。一般的に材料の空孔率は30%から50%程度のものが用いられている。さらに、電解液に耐性のある材料で形成される必要がある。このようなセパレーターの材料としては、ポリエチレンやポリプロピレンなどのポリオレフィン系材料が使用されている。   The separator is disposed between the positive electrode and the negative electrode for the purpose of preventing the battery from being short-circuited due to the contact between the positive electrode and the negative electrode, and the porous material is formed so that the electrolytic solution is held therein and allows lithium ions to pass therethrough. It is used. Generally, the material has a porosity of about 30% to 50%. Furthermore, it must be formed of a material that is resistant to the electrolyte. As such a separator material, a polyolefin-based material such as polyethylene or polypropylene is used.

上記、電池の構成部材の中で電池の充放電特性に影響を及ぼす要因として、集電体上に形成された電極材料の充填状態がある。電極材料内の活物質、導電助材、結着材は所望の割合で均一に混合され、印刷法などの手法を用いて集電体上に形成されるのが一般的であり、この際に使用される結着材は[0003]に記載のような絶縁体材料が用いられる。そのため、電極材料の混練の均一性が高すぎると、活物質と導電助材の粒子の周りに均一に絶縁体である結着材が配置され、活物質・導電助材・集電体間の電子移動が妨げられる為、その電極材料を集電体上に形成し、電池の電極として使用すると所望の充放電特性を得る事ができない。そこで、集電体上に電極材料を形成した後に、電極材料をプレスする事で、活物質・導電助材・集電体間の接触を向上させる工程を入れるのが一般的である。特に、導電性の乏しい活物質を扱う場合には上記のプレス工程を実施することで、活物質と導電助材の接触性を向上する事が電池の充放電特性を大きく左右する。   Among the constituent members of the battery described above, a factor affecting the charge / discharge characteristics of the battery is a filling state of the electrode material formed on the current collector. In general, the active material, the conductive additive, and the binder in the electrode material are uniformly mixed in a desired ratio and formed on the current collector using a technique such as a printing method. As the binder used, an insulator material as described in [0003] is used. Therefore, if the uniformity of the kneading of the electrode material is too high, a binder that is an insulator is disposed uniformly around the particles of the active material and the conductive additive, and between the active material, the conductive additive, and the current collector. Since the movement of electrons is hindered, when the electrode material is formed on a current collector and used as a battery electrode, desired charge / discharge characteristics cannot be obtained. Therefore, after forming the electrode material on the current collector, it is common to add a step of improving the contact between the active material, the conductive auxiliary material, and the current collector by pressing the electrode material. In particular, when an active material with poor conductivity is handled, improving the contact property between the active material and the conductive aid greatly affects the charge / discharge characteristics of the battery by performing the above pressing step.

一方、活物質そのものが高い導電性を有する場合には、活物質自体が緻密に集電体上に形成され、その隙間に結着材が充填されていれば良く、導電助材と活物質の接触効果は[0007]に記載のような導電性の乏しい活物質を用いる場合に比べて小さい。   On the other hand, when the active material itself has high conductivity, the active material itself may be densely formed on the current collector, and the gap may be filled with a binder. The contact effect is small compared to the case of using an active material with poor conductivity as described in [0007].

いずれにしても、活物質同士の接触および活物質−集電体間の接触の確保、即ち電子伝導路の確保は電池特性を得る上で非常に重要である。電子伝導路を効率的に確保する手段として、例えば活物質の周りにコロイド状の黒鉛系導電助材を形成する方法が提案されている。(特許文献1)この方法によれば、活物質同士または活物質−集電体間が接触していれば電子伝導路が強く確保されるため効果的であるが、活物質間または活物質−集電体間に結着材が均一に付着した場合には、電子伝導路が失われてしまう。   In any case, ensuring the contact between the active materials and the contact between the active material and the current collector, that is, ensuring the electron conduction path, is very important in obtaining battery characteristics. As a means for efficiently ensuring an electron conduction path, for example, a method of forming a colloidal graphite-based conductive additive around an active material has been proposed. (Patent Document 1) According to this method, if the active materials are in contact with each other or between the active material and the current collector, the electron conduction path is strongly secured, which is effective. If the binder is uniformly deposited between the current collectors, the electron conduction path is lost.

また、集電体上に中空または突起状の金属層を形成し、活物質−集電体間の接触を向上する方法も提案されている。(特許文献2)この方法によれば、集電体表面積が向上するために、活物質−集電体間の接触性の向上には効果的であるが、[0009]と同様に活物質間または活物質−集電体間に結着材が均一に付着した場合には、電子伝導路が失われてしまう。また、微細な金属層の隙間に活物質を含んだインクを均一に塗工する事は困難である。   In addition, a method of improving the contact between the active material and the current collector by forming a hollow or protruding metal layer on the current collector has been proposed. (Patent Document 2) According to this method, since the surface area of the current collector is improved, it is effective in improving the contact property between the active material and the current collector. Alternatively, when the binder is uniformly attached between the active material and the current collector, the electron conduction path is lost. In addition, it is difficult to uniformly apply an ink containing an active material in a gap between fine metal layers.

また、結着材を改良し、電極材料と集電体の結着を向上する方法も提案されている。(特許文献3)この方法によれば、活物質同士または活物質−集電体の結着力は向上するが、[0009]と同様に活物質間または活物質−集電体間に結着材が均一に付着した場合には、電子伝導路が失われてしまう。   A method of improving the binding between the electrode material and the current collector by improving the binding material has also been proposed. (Patent Document 3) According to this method, the binding force between the active materials or between the active material and the current collector is improved, but the binding material between the active materials or between the active material and the current collector as in [0009]. If the film is uniformly deposited, the electron conduction path is lost.

特開平6−013081JP-A-6-013081 特許第3221306号Patent No. 3221306 特開平11−067215JP 11-067215

そこで、本発明は、上述の問題を解決する為になされたものであり、電極を構成する材料の密度(ここでは真密度の事を示す)および粒子直径の差を利用し、混練した電極材料を含むインクを集電体上に塗工した後、溶媒を乾燥する工程の前にインクを塗工した集電体に遠心力をかけることで集電体上に緻密に活物質を形成する事を目的とする。   Therefore, the present invention has been made to solve the above-mentioned problems, and kneaded electrode materials utilizing the difference in the density of the material constituting the electrode (showing true density here) and the particle diameter. After the ink containing the ink is coated on the current collector, the active material is densely formed on the current collector by applying centrifugal force to the current collector coated with the ink before the step of drying the solvent. With the goal.

請求項1に記載の本発明は、電極活物質、導電助材、結着材を含む材料を混合してなる電極材料を溶媒に分散しインクを作製する工程と、集電体の厚さ方向の一方の面に前記インクを塗工する工程と、前記インクを塗工した集電体に対して前記厚さ方向の一方の面から他方の面に向かう方向の遠心力をかける工程と、前記遠心力をかける工程が終了したのち、前記インクを塗工した集電体を乾燥する工程とを含む事を特徴とする電極の製造方法である。   The present invention described in claim 1 includes a step of dispersing an electrode material obtained by mixing a material containing an electrode active material, a conductive additive, and a binder in a solvent to produce ink, and a thickness direction of the current collector Applying the ink to one surface of the ink, applying a centrifugal force in a direction from one surface of the thickness direction to the other surface of the current collector coated with the ink, And a step of drying the current collector coated with the ink after the step of applying a centrifugal force is completed.

請求項2に記載の本発明は、請求項1記載の電極の製造方法であって、前記遠心力をかける工程は、回転軸を中心とした内周面を有し前記回転軸回りに回転可能に構成された回転体を用意し、前記インクを塗工した集電体の前記一方の面を前記回転軸に向けた状態で前記一方の面と反対側に位置する他方の面を前記内周面に貼付した状態で前記回転体を前記回転軸回りに回転することでなされる事を特徴とする電極の製造方法である。   The present invention according to claim 2 is the electrode manufacturing method according to claim 1, wherein the step of applying the centrifugal force has an inner peripheral surface centered on the rotation axis and is rotatable around the rotation axis. And the other surface located on the opposite side to the one surface with the one surface of the current collector coated with the ink facing the rotation shaft. It is an electrode manufacturing method characterized in that it is made by rotating the rotating body around the rotation axis in a state of being attached to a surface.

請求項3に記載の本発明は、請求項2に記載の電極の製造方法であって、前記遠心力をかける工程において、前記回転体の回転速度が100乃至10000rpm(round/min)である事を特徴とする電極の製造方法。   According to a third aspect of the present invention, in the electrode manufacturing method according to the second aspect, in the step of applying the centrifugal force, the rotational speed of the rotating body is 100 to 10,000 rpm (round / min). An electrode manufacturing method characterized by the above.

請求項4に記載の本発明は、請求項1または2に記載された電極の製造方法を用いて製造する事を特徴とする電極である。   According to a fourth aspect of the present invention, there is provided an electrode manufactured using the method for manufacturing an electrode according to the first or second aspect.

請求項5に記載の本発明は、請求項4に記載の電極であって、電極表面から集電体側に向けて段階的に前記電極活物質の濃度が高くなるグラデーション構造をとる事を特徴とする。   A fifth aspect of the present invention is the electrode according to the fourth aspect, wherein the electrode active material has a gradation structure in which the concentration of the electrode active material increases stepwise from the electrode surface toward the current collector side. To do.

請求項6に記載の本発明は、請求項4または5に記載の電極を用いて製造することを特徴とする電池である。   A sixth aspect of the present invention is a battery manufactured using the electrode according to the fourth or fifth aspect.

請求項7に記載の本発明は、請求項5に記載の電池を電源又は動力源として作動する事を特徴とする機器である。   A seventh aspect of the present invention is an apparatus that operates using the battery according to the fifth aspect as a power source or a power source.

本発明の電極の製造方法は、電極材料を含んだインクを集電体の厚さ方向の一方の面に塗工した後、溶媒を乾燥する工程の前に、インクを塗工した集電体に対して厚さ方向の一方の面から他方の面に向かう方向の遠心力をかけることで、電極材料を含んだインクに遠心力をかけることができる。この時、インク内部では最も密度及び粒子直径の大きい電極活物質が優先的に集電体上に緻密に堆積し、活物質同士の接触および活物質と集電体の接触を容易に向上することが可能である。また、結着材は溶媒に溶解している為、緻密に堆積した活物質の隙間に入り込み、乾燥工程によって溶媒を揮発した際に結着材が活物質同士または活物質と集電体の接触を損なうことなく、活物質間、活物質−集電体間の接着を向上することが可能である。このため、よりエネルギー損失の少ない電池の電極を提供することが可能である。   The method for producing an electrode according to the present invention comprises: applying an ink containing an electrode material to one surface in the thickness direction of the current collector; and then applying the ink before the step of drying the solvent. The centrifugal force can be applied to the ink containing the electrode material by applying a centrifugal force in a direction from one surface in the thickness direction to the other surface. At this time, the electrode active material having the largest density and particle diameter is preferentially deposited densely on the current collector, and the contact between the active materials and the contact between the active material and the current collector can be easily improved. Is possible. In addition, since the binder is dissolved in the solvent, the binder enters the gap between the densely deposited active materials, and when the solvent is volatilized by the drying process, the binder is contacted between the active materials or between the active material and the current collector. It is possible to improve the adhesion between the active materials and between the active material and the current collector without impairing the resistance. For this reason, it is possible to provide a battery electrode with less energy loss.

本発明の電極の製造工程を説明する為の概略断面図であり、(a)は集電体の厚さ方向の一方の面にインクが塗布された状態を示す図、(b)はインクが塗布された集電体に遠心力をかける状態を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing for demonstrating the manufacturing process of the electrode of this invention, (a) is a figure which shows the state in which the ink was applied to one surface of the thickness direction of a collector, (b) is ink. It is a figure which shows the state which applies centrifugal force to the apply | coated electrical power collector.

以下、本発明の実施の一例を、図1を用いながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG.

まず、電極材料を溶媒に分散しインクを作製する。電極材料は特に制限されないが、例えば正極材料であれば、活物質にLiCoO、LiNiO,LiMn、LiFePO4、、TiOなどを含む、リチウムを挿入脱離する事が可能な材料又はその組合せで構成されるもの、導電助材にはアセチレンブラックやケッチェンブラックに代表される球状炭素、カーボンナノファイバーに代表される繊維状炭素繊維など、高い電子伝導性を持ち、充放電反応には寄与せず、電気化学的に安定な材料又はその組合せで構成されるもの、結着材にはポリエチレン、ポリフッ化ビニリデン、スチレンブタジエンラバー、エチレンブタジエンラバー、ポリテトラフルオロエチレン、エポキシ樹脂などに挙げられる材料の中から電極材料を混合する際の溶媒種に応じて適宜選択されるもの、これらを電池特性が得られる所望の混合比で構成されたものを使用する事ができるが、特に、結着材の量が多いと絶縁層が形成されやすく電池特性が悪化するため、結着材は10wt%以内とする事が好ましい。一方、負極材料に関しても、例えば活物質にハードカーボン、アモルファスカーボン、黒鉛、LiTi12、シリコン、SiO2、TiOなどを含むリチウムを挿入脱離する事が可能な材料またはその組合せで構成されるもの、導電助材および結着材には正極材料と同様の例示材料またはその組合せで構成されるものが挙げられ、これらを電池特性が得られる所望の混合比で構成されるものを使用する事ができ、正極材料と同様に結着材は10wt%以内とする事が好ましい。また、電極材料を分散する溶媒に関しても特に制限するものではなく、水、水に増粘材としてカルボキシメチルセルロースを適宜混合したもの、n−メチル−2−ピロリドン、アセトニトリルなどが挙げられるが、電極材料に応じて適宜選択する事ができる。 First, an electrode material is dispersed in a solvent to prepare an ink. The electrode material is not particularly limited. For example, in the case of a positive electrode material, lithium that includes LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4, V 2 O 5 , TiO 2 or the like as an active material may be inserted and released. It has a high electronic conductivity such as spherical carbon represented by acetylene black and ketjen black, and fibrous carbon fiber represented by carbon nanofiber. , One that does not contribute to the charge / discharge reaction and is composed of an electrochemically stable material or a combination thereof, and the binder is polyethylene, polyvinylidene fluoride, styrene butadiene rubber, ethylene butadiene rubber, polytetrafluoroethylene, Appropriately selected from the materials listed in the epoxy resin, etc. according to the solvent type when mixing the electrode material Those having a desired mixing ratio for obtaining battery characteristics can be used, but in particular, if the amount of the binder is large, an insulating layer is easily formed, and the battery characteristics deteriorate. The binder is preferably within 10 wt%. On the other hand, regarding the negative electrode material, for example, a material capable of inserting and desorbing lithium including hard carbon, amorphous carbon, graphite, Li 4 Ti 5 O 12 , silicon, SiO 2, TiO 2 or the like as an active material, or a combination thereof The conductive auxiliary material and the binder include those composed of the same exemplary materials as the positive electrode material or combinations thereof, and those composed of a desired mixing ratio that provides battery characteristics. As with the positive electrode material, the binder is preferably within 10 wt%. Further, the solvent for dispersing the electrode material is not particularly limited, and examples thereof include water, water appropriately mixed with carboxymethylcellulose as a thickener, n-methyl-2-pyrrolidone, acetonitrile, and the like. It can be selected appropriately according to the situation.

本発明では、電極材料の密度および粒子直径の差を利用し、電極活物質を優先的に集電体上に緻密に堆積する事を特徴としているため、活物質、導電助剤、結着材の密度および粒子直径の関係が重要となる。一般的な活物質の粒子直径は、活物質内のイオン拡散を少しでも早めるために1μmから50μmの範囲で形成されるものが多い。一方、導電助剤は活物質粒子の隙間を細かくつなぎ、電子の通り道を形成する必要があるので、一般的に数十nmから数μmのものが用いられることが多い。結着材は溶媒に完全に溶解するため、活物質や導電助剤の隙間を埋めるように配置される。密度に関しては、正極材料や負極材料によって様々であるが、例えば一般的に用いられる正極活物質としてLiCoOが5.1g/cc、LiMnが4.2g/cc、同じく一般的に用いられる負極活物質として黒鉛が2.2g/ccから2.3g/ccであるのに対して、導電助剤である炭素系材料が1.8g/ccから2g/ccと、活物質の方が導電助剤に比べ高い密度である場合がほとんどである。このため、遠心力を掛けた場合には、必ず活物質が優先的に集電体側に緻密に堆積する。 The present invention is characterized by preferentially depositing the electrode active material preferentially on the current collector by utilizing the difference in density and particle diameter of the electrode material, so that the active material, the conductive auxiliary agent, the binder The relationship between the density and the particle diameter is important. The particle diameter of a general active material is often formed in a range of 1 μm to 50 μm in order to accelerate ion diffusion in the active material as much as possible. On the other hand, the conductive auxiliary agent needs to connect the gaps between the active material particles finely to form a path for electrons, and therefore, in general, a conductive auxiliary agent of several tens to several μm is often used. Since the binder is completely dissolved in the solvent, the binder is disposed so as to fill a gap between the active material and the conductive additive. The density varies depending on the positive electrode material and the negative electrode material. For example, LiCoO 2 is 5.1 g / cc and LiMn 2 O 4 is 4.2 g / cc as commonly used positive electrode active materials. As the negative electrode active material, graphite is from 2.2 g / cc to 2.3 g / cc, whereas the carbon-based material that is a conductive aid is from 1.8 g / cc to 2 g / cc. In most cases, the density is higher than that of the conductive assistant. For this reason, when a centrifugal force is applied, the active material always preferentially deposits densely on the current collector side.

また、電極材料の溶媒への分散方法は特に制限されないが、例えばプラネタリーミキサー、ビーズミル、ボールミル、超音波分散機、ディスパーなどを用いて良い。   The method for dispersing the electrode material in the solvent is not particularly limited. For example, a planetary mixer, a bead mill, a ball mill, an ultrasonic disperser, a disper, or the like may be used.

次に、インク10を集電体11の厚さ方向の一方の面に塗工する(図1(a))。集電体11の材質は用いる電極材料によって適宜選択することができる。例えば、正極側の集電体11にはアルミニウムを含有した材料、負極側の集電層には銅又はニッケルを含有した材料を用いる事が好適である。アルミニウムは正極の電位に耐えられる材料であり且つ安価で一般的なリチウムイオン二次電池の正極材料として使用されている。一方、銅又はニッケルは負極の電位に耐えられる材料であり、且つリチウムとの合金を形成しないため、正極と同様にリチウムイオン二次電池の一般的な負極材料として使用されている。また、集電体11は全て金属材料で形成されている必要はなく、プラスチックなどの基材の上に金属箔を形成したものを用いても良い。基材にプラスチックを用いることで集電体11の重量が軽減し、電池の単位重量あたりのエネルギーを効率的に取り出すことができる。   Next, the ink 10 is applied to one surface in the thickness direction of the current collector 11 (FIG. 1A). The material of the current collector 11 can be appropriately selected depending on the electrode material used. For example, it is preferable to use a material containing aluminum for the current collector 11 on the positive electrode side and a material containing copper or nickel for the current collector layer on the negative electrode side. Aluminum is a material that can withstand the potential of the positive electrode, and is used as a positive electrode material for an inexpensive and general lithium ion secondary battery. On the other hand, copper or nickel is a material that can withstand the potential of the negative electrode and does not form an alloy with lithium. Therefore, copper or nickel is used as a general negative electrode material for lithium ion secondary batteries in the same manner as the positive electrode. Further, the current collector 11 is not necessarily formed of a metal material, and a metal foil formed on a base material such as plastic may be used. By using plastic as the base material, the weight of the current collector 11 is reduced, and the energy per unit weight of the battery can be efficiently extracted.

また、インク10の集電体11への塗工方法としては、所望する形状、寸法に併せて適宜選択する事ができる。例えばインクジェット法やダイコート法、スクリーン印刷法などが挙げられる。   In addition, the method of applying the ink 10 to the current collector 11 can be selected as appropriate in accordance with the desired shape and dimensions. Examples thereof include an ink jet method, a die coating method, and a screen printing method.

次に、インク10を塗工した集電体11に対して厚さ方向の一方の面から他方の面に向かう方向の遠心力(遠心加速度)をかける。これにより、電極材料を含んだインク10に遠心力がかかる。本実施の形態では、インク10を塗工した集電体11を内部が空洞の回転体12の内壁に貼付し回転をかける(図1(b))。
より詳細に説明すると、回転軸1202を中心とした内周面1204を有し回転軸回りに回転可能に構成された回転体12を用意する。インク10を塗工した集電体11の一方の面を回転軸1202に向けた状態で一方の面と反対側に位置する他方の面を内周面1204に貼付した状態で回転体12を回転軸回りに回転する。
一般的に、溶媒内の粒子の沈降速度は、粒子の直径および密度、溶液の密度、溶液の粘度、遠心加速度によって定められ、遠心加速度は回転半径、回転速度(一分間当たり回転数)によって規定され、式(1)で算出される。このため、回転速度は電極材料によって適宜選択する必要がある。また、式(1)において沈降速度に大きな影響を与えるのが、2乗項で示されている粒子の直径および回転速度であり、例えば先述のように、一般的な活物質の粒子直径は、活物質内のイオン拡散を少しでも早めるために1μmから50μmの範囲で形成されるものが多い。また、電極の膜厚は正極材料と負極材料によってそれぞれ異なるが数十μmから100μm程度で形成されるのが一般的である。一方、電極の製造に掛ける時間はより短縮される方が製造コストの面で有利であり、粒子を沈降する時間は数分以内とすることが望ましい。これらの事から、想定される最も小さな直径の活物質(例えば1μm)を、形成された電極の表面側から集電体側まで数分以内で沈降させるためには、少なくとも1000rpmの回転速度が必要となる。一方、同様の粒子に対して10000rpm以上では、粒子が沈降するまでの速度が数秒以内であり、ほとんど製造時間に影響を与えない。また、想定される最も大きな直径の活物質(例えば50μm)を、形成された電極の表面側から集電体側まで数分以内で沈降させるためには、少なくとも100rpmの回転速度が必要となる。一方、同様の粒子に対して1000rpm以上では、粒子が沈降するまでの速度が数秒以内であり、ほとんど製造時間に影響を与えない。これらの事から、回転速度はおよそ100rpmから10000rpmの範囲が妥当である。
Next, a centrifugal force (centrifugal acceleration) in a direction from one surface in the thickness direction to the other surface is applied to the current collector 11 coated with the ink 10. Thereby, a centrifugal force is applied to the ink 10 containing the electrode material. In the present embodiment, the current collector 11 coated with the ink 10 is applied to the inner wall of the rotator 12 having a hollow inside and rotated (FIG. 1B).
More specifically, the rotating body 12 having an inner peripheral surface 1204 around the rotating shaft 1202 and configured to be rotatable around the rotating shaft is prepared. The rotating body 12 is rotated in a state where one surface of the current collector 11 coated with the ink 10 is directed to the rotation shaft 1202 and the other surface located opposite to the one surface is attached to the inner peripheral surface 1204. Rotate around the axis.
In general, the sedimentation speed of particles in a solvent is determined by the diameter and density of the particles, the density of the solution, the viscosity of the solution, and the centrifugal acceleration, which is defined by the radius of rotation and the rotational speed (number of rotations per minute). And is calculated by equation (1). For this reason, it is necessary to appropriately select the rotation speed depending on the electrode material. Further, in the formula (1), it is the particle diameter and the rotation speed indicated by the square term that have a great influence on the sedimentation speed. For example, as described above, the particle diameter of a general active material is: In order to accelerate ion diffusion in the active material as much as possible, many are formed in the range of 1 μm to 50 μm. Further, although the film thickness of the electrode varies depending on the positive electrode material and the negative electrode material, it is generally formed with a thickness of about several tens to 100 μm. On the other hand, it is more advantageous in terms of manufacturing cost to shorten the time required for manufacturing the electrode, and it is desirable that the time for settling the particles is within several minutes. From these facts, a rotational speed of at least 1000 rpm is required in order to allow the active material having the smallest diameter (for example, 1 μm) to settle within a few minutes from the surface side of the formed electrode to the current collector side. Become. On the other hand, at a speed of 10,000 rpm or more for similar particles, the speed until the particles settle is within several seconds and hardly affects the production time. In addition, in order to settle an active material (for example, 50 μm) having the largest diameter from the surface side of the formed electrode to the current collector side within a few minutes, a rotational speed of at least 100 rpm is required. On the other hand, at 1000 rpm or more for similar particles, the speed until the particles settle is within a few seconds and hardly affects the production time. From these facts, it is reasonable that the rotation speed is in the range of about 100 rpm to 10,000 rpm.

Figure 2013197014
Figure 2013197014

v:粒子の沈降速度(cm/sec)、d:粒子の直径(cm)、σ:粒子の密度(g/cc)、ρ:溶液の密度(g/cc)、η:溶液の粘度(g・cm−1・sec−1)、r:回転半径(cm)、N:回転速度(一分間当たりの回転数)(rpm) v: particle sedimentation rate (cm / sec), d: particle diameter (cm), σ: particle density (g / cc), ρ: solution density (g / cc), η: solution viscosity (g · Cm -1 · sec -1 ), r: rotational radius (cm), N: rotational speed (number of revolutions per minute) (rpm)

次に、インク10を塗工した集電体11を乾燥する。乾燥方法としては、熱風乾燥、真空乾燥、赤外線乾燥などから適宜選択することができる。   Next, the current collector 11 coated with the ink 10 is dried. The drying method can be appropriately selected from hot air drying, vacuum drying, infrared drying and the like.

以上より、本発明の電極の製造方法を実施する事ができる。なお、本発明の電極の製造方法は上記実施の形態に限定されず、各工程において類推する事のできるほかの公知の方法をも含むものとする。   As mentioned above, the manufacturing method of the electrode of this invention can be implemented. In addition, the manufacturing method of the electrode of this invention is not limited to the said embodiment, The other well-known method which can be estimated in each process shall also be included.

まず、電極材料には活物質として密度が2.2g/cc、粒子直径が20μmのメソカーボンマイクロビーズ、導電助材として密度が1.8g/cc、粒子直径が100nmのアセチレンブラック、結着材としてスチレンブタジエンラバーをそれぞれ90対2対8の割合で用い、水とカルボキシメチルセルロースを98対2の割合で混合したものを溶媒とした。溶媒に対する電極材料の混合量は溶媒中の固形分比率が50%となるように調整した。これらの材料を、ディスパーを用いて回転速度1000rpmで3時間攪拌することで分散処理を実施し、粘度が50g・cm−1・sec−1のインク10を作製した。 First, the electrode material is a mesocarbon microbead having a density of 2.2 g / cc as an active material and a particle diameter of 20 μm, an acetylene black having a density of 1.8 g / cc and a particle diameter of 100 nm as a conductive material, and a binder. As a solvent, styrene butadiene rubber was used at a ratio of 90: 2: 8, and water and carboxymethyl cellulose were mixed at a ratio of 98: 2. The amount of the electrode material mixed with the solvent was adjusted so that the solid content ratio in the solvent was 50%. These materials were stirred for 3 hours using a disper at a rotation speed of 1000 rpm to carry out a dispersion treatment, and ink 10 having a viscosity of 50 g · cm −1 · sec −1 was produced.

次に、ダイコート法を用いて集電体11の厚さ方向の一方の面にインク10を塗工した。集電体11には厚さ20μmの銅箔を用意した。インク10の塗工厚みは約70μmとした。   Next, the ink 10 was applied to one surface in the thickness direction of the current collector 11 using a die coating method. For the current collector 11, a copper foil having a thickness of 20 μm was prepared. The coating thickness of the ink 10 was about 70 μm.

次に、インク10を塗工した集電体11の他方の面を内径150cmの回転体12の内周面1204に貼付し回転をかけた。回転数は500rpmとして、10秒間回転処理を実施した。   Next, the other surface of the current collector 11 coated with the ink 10 was attached to the inner peripheral surface 1204 of the rotating body 12 having an inner diameter of 150 cm and rotated. The rotation speed was 500 rpm and the rotation process was performed for 10 seconds.

次に、熱風乾燥によって塗工したインク10から溶媒を除去した。乾燥条件は80℃で3時間とした。   Next, the solvent was removed from the coated ink 10 by hot air drying. The drying condition was 80 ° C. for 3 hours.

以上より、活物質が集電体11側に緻密に堆積し、且つ電極表面から集電体側にかけ段階的に活物質の濃度を増すグラデーション構造をとる負極を作製する事ができた。   From the above, it was possible to produce a negative electrode having a gradation structure in which the active material was densely deposited on the current collector 11 side and the concentration of the active material gradually increased from the electrode surface to the current collector side.

電極材料には活物質として密度が5.1g/cc、粒子直径が10μmのLiCoO、導電助材として密度が1.8g/cc、粒子直径が100nmのアセチレンブラック、結着材としてポリフッ化ビニリデンをそれぞれ95対2対3の割合で用い、溶媒はn−メチル−2−ピロリドンを選択した。溶媒に対する電極材料の混合量は溶媒中の固形分比率が65%となるように調整した。これらの材料を、プラネタリーミキサーを用いて5時間攪拌することで分散処理を実施し、70g・cm−1・sec−1のインク10を作製した。 The electrode material is LiCoO 2 having a density of 5.1 g / cc as an active material and a particle diameter of 10 μm, acetylene black having a density of 1.8 g / cc and a particle diameter of 100 nm as a conductive additive, and polyvinylidene fluoride as a binder. Were used in a ratio of 95: 2: 3, respectively, and n-methyl-2-pyrrolidone was selected as the solvent. The amount of the electrode material mixed with the solvent was adjusted so that the solid content ratio in the solvent was 65%. These materials were stirred for 5 hours using a planetary mixer to perform a dispersion treatment, and an ink 10 of 70 g · cm −1 · sec −1 was produced.

次に、ダイコート法を用いて集電体11の厚さ方向の一方の面にインク10を塗工した。集電体11には厚さ15μmのアルミニウム箔を用意した。インク10の塗工厚みは約110μmとした。   Next, the ink 10 was applied to one surface in the thickness direction of the current collector 11 using a die coating method. The current collector 11 was prepared with an aluminum foil having a thickness of 15 μm. The coating thickness of the ink 10 was about 110 μm.

次に、インク10を塗工した集電体11の他方の面を内径150cmの回転体12の内周面1204に貼付し回転をかけた。回転数は500rpmとして、60秒間回転処理を実施した。   Next, the other surface of the current collector 11 coated with the ink 10 was attached to the inner peripheral surface 1204 of the rotating body 12 having an inner diameter of 150 cm and rotated. The rotation speed was 500 rpm and the rotation process was performed for 60 seconds.

次に、熱風乾燥によって塗工したインク10から溶媒を除去した。乾燥条件は80℃で3時間とした。   Next, the solvent was removed from the coated ink 10 by hot air drying. The drying condition was 80 ° C. for 3 hours.

以上より、活物質が集電体11側に緻密に堆積し、且つ電極表面から集電体側にかけ段階的に活物質が濃度を増すグラデーション構造をとる正極を作製する事ができた。
[比較例1]
As described above, a positive electrode having a gradation structure in which the active material is densely deposited on the current collector 11 side and the concentration of the active material gradually increases from the electrode surface to the current collector side can be produced.
[Comparative Example 1]

〔0039〕項と同様に、電極材料には活物質として密度が5.1g/cc、粒子直径が10μmのLiCoO、導電助材として密度が1.8g/cc、粒子直径が100nmのアセチレンブラック、結着材としてポリフッ化ビニリデンをそれぞれ95対2対3の割合で用い、溶媒はn−メチル−2−ピロリドンを選択した。溶媒に対する電極材料の混合量は溶媒中の固形分比率が65%となるように調整した。これらの材料を、プラネタリーミキサーを用いて5時間攪拌することで分散処理を実施し、70g・cm−1・sec−1のインクを作製し、〔0040〕項のようにダイコート法を用いて集電体上にインクを塗工した。集電体には厚さ15μmのアルミニウム箔を用意した。インクの塗工厚みは約110μmとした。 As in the paragraph [0039], the electrode material is LiCoO 2 having a density of 5.1 g / cc as an active material and a particle diameter of 10 μm, and acetylene black having a density of 1.8 g / cc and a particle diameter of 100 nm as a conductive additive. Polyvinylidene fluoride was used as the binder at a ratio of 95: 2 to 3, respectively, and n-methyl-2-pyrrolidone was selected as the solvent. The amount of the electrode material mixed with the solvent was adjusted so that the solid content ratio in the solvent was 65%. These materials were stirred for 5 hours using a planetary mixer to carry out a dispersion treatment to produce an ink of 70 g · cm −1 · sec −1 , using a die coating method as described in [0040]. Ink was applied on the current collector. An aluminum foil having a thickness of 15 μm was prepared as a current collector. The ink coating thickness was about 110 μm.

次に、インクを塗工した集電体を内径150cmの回転体の内壁に貼付し回転をかけた。回転数は10rpmとして、60秒間回転処理を実施し、〔0042〕項と同様に熱風乾燥によって塗工したインクから溶媒を除去した。乾燥条件は80℃で3時間とした。   Next, the current collector coated with ink was applied to the inner wall of a rotating body having an inner diameter of 150 cm and rotated. The rotational speed was 10 rpm, and a rotation process was performed for 60 seconds, and the solvent was removed from the coated ink by hot air drying in the same manner as in [0042]. The drying condition was 80 ° C. for 3 hours.

以上の工程で作製した正極は、活物質が集電体側に緻密に堆積することなく、且つ電極表面から集電体側にかけほぼ均一な組成であった。
[比較例2]
The positive electrode produced by the above steps had an almost uniform composition from the electrode surface to the current collector side without the active material being densely deposited on the current collector side.
[Comparative Example 2]

〔0039〕項と同様に、電極材料には活物質として密度が5.1g/cc、粒子直径が10μmのLiCoO、導電助材として密度が1.8g/cc、粒子直径が100nmのアセチレンブラック、結着材としてポリフッ化ビニリデンをそれぞれ95対2対3の割合で用い、溶媒はn−メチル−2−ピロリドンを選択した。溶媒に対する電極材料の混合量は溶媒中の固形分比率が65%となるように調整した。これらの材料を、プラネタリーミキサーを用いて5時間攪拌することで分散処理を実施し、70g・cm−1・sec−1のインクを作製し、〔0040〕項のようにダイコート法を用いて集電体上にインクを塗工した。集電体には厚さ15μmのアルミニウム箔を用意した。インクの塗工厚みは約110μmとした。 As in the paragraph [0039], the electrode material is LiCoO 2 having a density of 5.1 g / cc as an active material and a particle diameter of 10 μm, and acetylene black having a density of 1.8 g / cc and a particle diameter of 100 nm as a conductive additive. Polyvinylidene fluoride was used as the binder at a ratio of 95: 2: 3, respectively, and n-methyl-2-pyrrolidone was selected as the solvent. The amount of the electrode material mixed with the solvent was adjusted so that the solid content ratio in the solvent was 65%. These materials were stirred for 5 hours using a planetary mixer to carry out a dispersion treatment to produce an ink of 70 g · cm −1 · sec −1 , using a die coating method as described in [0040]. Ink was applied on the current collector. An aluminum foil having a thickness of 15 μm was prepared as a current collector. The ink coating thickness was about 110 μm.

次に、インクを塗工した集電体を内径150cmの回転体の内壁に貼付し回転をかけた。回転数は10000rpmとして、60秒間回転処理を実施し、〔0042〕項と同様に熱風乾燥によって塗工したインクから溶媒を除去した。乾燥条件は80℃で3時間とした。   Next, the current collector coated with ink was applied to the inner wall of a rotating body having an inner diameter of 150 cm and rotated. The rotational speed was set at 10,000 rpm, and a rotation process was carried out for 60 seconds, and the solvent was removed from the coated ink by hot air drying in the same manner as in [0042]. The drying condition was 80 ° C. for 3 hours.

以上の工程で作製した正極は、〔0046〕と同様に活物質が集電体側に緻密に堆積し、且つ電極表面から集電体側にかけ段階的に活物質の濃度を増すグラデーション構造をとっていた。   The positive electrode produced by the above process has a gradation structure in which the active material is densely deposited on the current collector side and the concentration of the active material is gradually increased from the electrode surface to the current collector side, as in [0046]. .

本発明の電池の製造方法は、リチウムイオン二次電池分野のみならず、二種類の電極の接触を防止する機構を必要とする全ての分野に適用可能であり、例えば、燃料電池や太陽電池の分野にも適用する事ができる。
また、実施の形態では、回転体12の内周面1204が円筒面である場合について説明したが、回転体12の断面を正多角形とし、複数の平面からなる内周面1204としてもよい。この場合には、内周面1204を構成する各平面を、集電体11が貼付できる大きさに設定すればよい。
The battery manufacturing method of the present invention can be applied not only to the field of lithium ion secondary batteries, but also to all fields that require a mechanism for preventing contact between two types of electrodes, for example, for fuel cells and solar cells. It can also be applied to fields.
In the embodiment, the case where the inner peripheral surface 1204 of the rotator 12 is a cylindrical surface has been described. However, the cross section of the rotator 12 may be a regular polygon and may be an inner peripheral surface 1204 composed of a plurality of planes. In this case, each plane constituting the inner peripheral surface 1204 may be set to a size that allows the current collector 11 to be attached.

10…インク
11…集電体
12…回転体
10 ... Ink 11 ... Current collector 12 ... Rotating body

Claims (7)

電極活物質、導電助材、結着材を含む材料を混合してなる電極材料を溶媒に分散しインクを作製する工程と、
集電体の厚さ方向の一方の面に前記インクを塗工する工程と、
前記インクを塗工した集電体に対して前記厚さ方向の一方の面から他方の面に向かう方向の遠心力をかける工程と、
前記遠心力をかける工程が終了したのち、前記インクを塗工した集電体を乾燥する工程と、
を含む事を特徴とする電極の製造方法。
A step of preparing an ink by dispersing an electrode material obtained by mixing an electrode active material, a conductive additive, and a material containing a binder in a solvent;
Applying the ink to one surface in the thickness direction of the current collector;
Applying a centrifugal force in a direction from one surface in the thickness direction to the other surface of the current collector coated with the ink;
After the step of applying the centrifugal force is completed, drying the current collector coated with the ink;
The manufacturing method of the electrode characterized by including.
請求項1記載の電極の製造方法であって、
前記遠心力をかける工程は、回転軸を中心とした内周面を有し前記回転軸回りに回転可能に構成された回転体を用意し、前記インクを塗工した集電体の前記一方の面を前記回転軸に向けた状態で前記一方の面と反対側に位置する他方の面を前記内周面に貼付した状態で前記回転体を前記回転軸回りに回転することでなされる、
事を特徴とする電極の製造方法。
A method for producing an electrode according to claim 1,
The step of applying the centrifugal force includes preparing a rotating body having an inner peripheral surface around the rotating shaft and configured to be rotatable around the rotating shaft, and applying the ink to the one of the current collectors It is made by rotating the rotating body around the rotation axis in a state where the other surface located on the opposite side to the one surface is attached to the inner peripheral surface with the surface facing the rotation axis.
An electrode manufacturing method characterized by the above.
請求項2に記載の電極の製造方法であって、前記遠心力をかける工程において、前記回転体の回転速度が100乃至10000rpm(round/min)である事を特徴とする電極の製造方法。   The electrode manufacturing method according to claim 2, wherein in the step of applying the centrifugal force, a rotation speed of the rotating body is 100 to 10,000 rpm (round / min). 請求項1〜3の何れか1項に記載された電極の製造方法を用いて製造する事を特徴とする電極。   It manufactures using the manufacturing method of the electrode as described in any one of Claims 1-3, The electrode characterized by the above-mentioned. 請求項4に記載の電極であって、電極表面から集電体側に向けて段階的に前記電極活物質の濃度が高くなるグラデーション構造をとる事を特徴とする電極。   5. The electrode according to claim 4, wherein the electrode has a gradation structure in which the concentration of the electrode active material increases stepwise from the electrode surface toward the current collector side. 請求項4または5に記載の電極を用いて製造することを特徴とする電池。   A battery manufactured using the electrode according to claim 4. 請求項6に記載の電池を電源又は動力源として作動する事を特徴とする機器。   A device that operates using the battery according to claim 6 as a power source or a power source.
JP2012065202A 2012-03-22 2012-03-22 Electrode and method for manufacturing the same Pending JP2013197014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012065202A JP2013197014A (en) 2012-03-22 2012-03-22 Electrode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012065202A JP2013197014A (en) 2012-03-22 2012-03-22 Electrode and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013197014A true JP2013197014A (en) 2013-09-30

Family

ID=49395701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012065202A Pending JP2013197014A (en) 2012-03-22 2012-03-22 Electrode and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013197014A (en)

Similar Documents

Publication Publication Date Title
JP4593488B2 (en) Secondary battery current collector, secondary battery positive electrode, secondary battery negative electrode, secondary battery, and production method thereof
JP4921594B2 (en) Secondary battery current collector paste, secondary battery current collector and method for producing the same, secondary battery electrode, secondary battery
US10608276B2 (en) Carbon material, anode material and spacer additive for lithium ion battery
US20150270536A1 (en) Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material comprising same, negative electrode structure and secondary battery comprising same, and method for manufacturing same
KR101670580B1 (en) Separator for secondary battery, method of fabricating the same, and lithium secondary battery comprising the same
TW201827125A (en) Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
JP2007173134A (en) Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
CN107112581A (en) Lithium ion battery
JP2010080297A (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2009266400A (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
TW201503476A (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
US20210036373A1 (en) Methods of making sulfide-impregnated solid-state battery
CN104282885A (en) Surface coating method, and method for improving the electrochemical performance of an electrode for a lithium-based battery
Yuca et al. A facile and functional process to enhance electrochemical performance of silicon anode in lithium ion batteries
KR20160113981A (en) Negative electrode active material and method for preparing the same
JP6529700B1 (en) Current collector for power storage device, method for producing the same, and coating liquid used for the production
Wu et al. Comparative analysis of different separators for the electrochemical performances and long-term stability of high-power lithium-ion batteries
TWI670736B (en) Hybrid capacitor
Muchakayala et al. Modified ceramic coated polyethylene separator–A strategy for using lithium metal as anode with superior electrochemical performance and thermal stability
JP2020187825A (en) Dual ion power storage device
US20140315084A1 (en) Method and apparatus for energy storage
WO2013099138A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery having negative electrode for lithium ion secondary battery
JP7082405B2 (en) How to manufacture lithium-sulfur batteries
KR101664624B1 (en) Method for manufacturing positive electrode for all solid lithium-sulfur battery, and positive electrode for all solid lithium-sulfur battery using the same
JP7112073B2 (en) Method for producing active material for lithium-sulfur battery, electrode for lithium-sulfur battery, and lithium-sulfur battery