JP4921594B2 - Secondary battery current collector paste, secondary battery current collector and method for producing the same, secondary battery electrode, secondary battery - Google Patents

Secondary battery current collector paste, secondary battery current collector and method for producing the same, secondary battery electrode, secondary battery Download PDF

Info

Publication number
JP4921594B2
JP4921594B2 JP2011002861A JP2011002861A JP4921594B2 JP 4921594 B2 JP4921594 B2 JP 4921594B2 JP 2011002861 A JP2011002861 A JP 2011002861A JP 2011002861 A JP2011002861 A JP 2011002861A JP 4921594 B2 JP4921594 B2 JP 4921594B2
Authority
JP
Japan
Prior art keywords
secondary battery
current collector
paste
fine particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011002861A
Other languages
Japanese (ja)
Other versions
JP2011086636A (en
Inventor
将弘 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011002861A priority Critical patent/JP4921594B2/en
Publication of JP2011086636A publication Critical patent/JP2011086636A/en
Application granted granted Critical
Publication of JP4921594B2 publication Critical patent/JP4921594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池用集電体形成用のペースト、二次電池用集電体およびその製造方法、二次電池用電極、二次電池に関するものであり、急速充放電特性の優れたリチウムイオン二次電池を提供することができる高性能な材料に関する。   TECHNICAL FIELD The present invention relates to a paste for forming a current collector for a secondary battery, a current collector for a secondary battery and a method for producing the same, an electrode for a secondary battery, and a secondary battery, and lithium having excellent rapid charge / discharge characteristics. The present invention relates to a high-performance material capable of providing an ion secondary battery.

リチウムイオン二次電池は、高性能な二次電池であり、そのエネルギー密度の高さから現在、携帯電話やノートパソコン、さらにビデオカメラ等の用途に用いられ大きく市場を伸ばしている。これらのリチウムイオン電池のうち小型のものは、正極活物質にコバルト酸リチウム、あるいはマンガン酸リチウム、負極にグラファイトを用いているのが一般的である。さらに、ポリプロピレン、ポリエチレン等の多孔質シートであるセパレーター、電解液として6フッ化リン酸リチウム(LiPF)のエチレンカーボネート系溶液などの、リチウム塩が溶解した有機溶液から構成されている。 Lithium-ion secondary batteries are high-performance secondary batteries, and because of their high energy density, they are currently used in applications such as mobile phones, notebook computers, and video cameras, and the market is greatly expanding. Of these lithium ion batteries, small batteries generally use lithium cobaltate or lithium manganate as the positive electrode active material and graphite as the negative electrode. Furthermore, polypropylene, a porous separator is a sheet of polyethylene or the like, such as ethylene carbonate-based solution of lithium hexafluorophosphate as an electrolyte (LiPF 6), and an organic solution of lithium salt is dissolved.

さらに詳しく述べると、一般的なリチウムイオン二次電池の正極は、正極活物質であるコバルト酸リチウムあるいはマンガン酸リチウムと、ここから(ここに)電子を運搬するための電子伝導性を有する炭素微粒子とを集電効果のある金属箔上に固定化することで成り立っている。この際、用いられる金属箔としては、アルミニウムが一般的であり、正極活物質と炭素微粒子とを固定化するのに用いるバインダーとしてはポリフッ化ビニリデン(PVDF)あるいはポリテトラフルオロエチレン(PTFE)などが用いられている。   More specifically, the positive electrode of a general lithium ion secondary battery is composed of lithium cobaltate or lithium manganate as a positive electrode active material, and carbon fine particles having electron conductivity for transporting electrons from here (here). Is fixed on a metal foil having a current collecting effect. At this time, aluminum is generally used as the metal foil, and polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE) is used as a binder to fix the positive electrode active material and the carbon fine particles. It is used.

近年は、こうした高性能二次電池を自動車などのパワーを必要とする分野に応用しようとする動きが活発となってきている。そのため、従来のような、小型電池では予想もされなかった問題も発生してきている。   In recent years, there has been an active movement to apply such high-performance secondary batteries to fields that require power, such as automobiles. For this reason, problems that have not been anticipated with small batteries have occurred.

その1つが、急速充放電特性である。パワーを必要とするためには、多くの電流が必要となる。そのため、電池の容量がすぐになくなるので新たに充電をする必要が生じる。充電時間は長く設定していては、その間電池が使えないので出来るだけ大きな電流で早く充電を完了しなければならない。こうした大電流値における放電性能と充電性能とを、急速充放電特性と称し、二次電池の重要な性能指標となっている。   One of them is rapid charge / discharge characteristics. In order to require power, a large amount of current is required. Therefore, since the capacity of the battery is exhausted immediately, it becomes necessary to newly charge the battery. If the charging time is set long, the battery cannot be used during that time, so charging must be completed quickly with as much current as possible. The discharge performance and the charge performance at such a large current value are referred to as rapid charge / discharge characteristics and are important performance indexes of the secondary battery.

急速充放電を行うには、上述したように電流値を大きくすることが必須である。しかしながら、現状のリチウムイオン二次電池では大きな電流で充放電を行うと、充放電を繰り返した際の容量の低下(初期電池容量維持率)が極端に低下すると言う不具合を生じてしまう。すなわち大きな電流で充放電を繰り返すと、パワーが下がってしまう。より詳細には、1C(電池容量を1時間で充放電できる電流値)での充放電は可能でも、20C(電池容量を1時間で充放電できる電流値の20倍の電流値)ではほぼ不可能と言うのが現状であり、こうした不具合を改善するために次の文献のように多くの試みがなされている。   In order to perform rapid charge / discharge, it is essential to increase the current value as described above. However, in the current lithium ion secondary battery, when charging / discharging is performed with a large current, there is a problem in that a decrease in capacity (initial battery capacity maintenance ratio) when charging / discharging is extremely reduced. That is, when charging and discharging are repeated with a large current, the power decreases. More specifically, charging / discharging at 1 C (current value capable of charging / discharging the battery capacity in one hour) is possible, but at 20 C (current value 20 times the current value capable of charging / discharging the battery capacity in one hour), it is almost impossible. The current situation is that it is possible, and many attempts have been made to improve such problems as described in the following document.

特開2001−266850号公報JP 2001-266850 A 特公平7−123053号公報Japanese Examined Patent Publication No. 7-123053 特許第1989293号Patent No. 1989293 第45回電池討論会(平成16年) 3C18The 45th Battery Discussion (2004) 3C18

しかし、上記各文献に記載された技術は、いずれも前記不具合を改善するには十分ではなかった。   However, none of the techniques described in the above-mentioned documents is sufficient to improve the above-mentioned problems.

本発明は、上記事情に鑑みなされたものであり、急速充放電を可能とし、高レート(高い電流値)における初期電池容量維持率の高いリチウム二次電池用の二次電池用集電体形成用のペースト、二次電池用集電体およびその製造方法、二次電池用電極、二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and allows for rapid charging and discharging, and formation of a secondary battery current collector for a lithium secondary battery having a high initial battery capacity retention rate at a high rate (high current value). An object of the present invention is to provide a paste for a battery, a current collector for a secondary battery and a method for producing the same, an electrode for a secondary battery, and a secondary battery.

本発明者は、上記目的を達成するため鋭意検討を重ねた結果、特に正極構造において、リチウムイオンの導電を特定の化合物に分担させ、電子導電を電子導電性の炭素微粒子に分担させる正極集電体構造にすることにより上記課題が解決されることを見出し、本発明をなすに至った。すなわち本発明は以下に関する。
(1)(a)多糖類高分子ポリマーと架橋剤とからなる皮膜形成用の化合物、
(b)炭素微粒子、及び
(c)溶剤
を含む二次電池用集電体形成用のペースト。
(2)前記多糖類高分子ポリマーがキトサンまたはキチンである前項1に記載の二次電池用集電体形成用のペースト。
(3)前記架橋剤が酸無水物である前項1または2のいずれか1項に記載の二次電池用集電体形成用のペースト。
(4)前記酸無水物が無水トリメリット酸または無水ピロメリット酸である前項3に記載の二次電池用集電体形成用のペースト。
(5)前記炭素微粒子が、針状あるいは棒状の炭素微粒子を含む前項1〜4のいずれか1項に記載の二次電池用集電体形成用のペースト。
(6)アルミニウム箔または銅箔の上に、前項1〜5のいずれか1項に記載の二次電池用集電体形成用のペーストからなる皮膜を形成する工程及び、
該皮膜の溶剤を飛散させる工程
を含む二次電池用集電体の製造方法。
(7)前項1〜5のいずれか1項に記載の二次電池用集電体形成用のペーストを用いて製造された二次電池用集電体。
(8)前項7に記載の集電体と、活物質を含む皮膜とを有する二次電池用電極。
(9)前項8に記載の電極を有する二次電池。
As a result of intensive studies to achieve the above object, the present inventor has made a positive electrode current collector that distributes lithium ion conductivity to a specific compound and electronic conductivity to electron conductive carbon particles, particularly in the positive electrode structure. It has been found that the above problems can be solved by using a body structure, and the present invention has been made. That is, the present invention relates to the following.
(1) (a) a film-forming compound comprising a polysaccharide polymer and a crosslinking agent,
A paste for forming a current collector for a secondary battery, comprising (b) carbon fine particles, and (c) a solvent.
(2) The paste for forming a current collector for a secondary battery as described in (1) above, wherein the polysaccharide polymer is chitosan or chitin.
(3) The paste for forming a current collector for a secondary battery according to any one of (1) or (2), wherein the crosslinking agent is an acid anhydride.
(4) The paste for forming a current collector for a secondary battery as described in (3) above, wherein the acid anhydride is trimellitic anhydride or pyromellitic anhydride.
(5) The paste for forming a current collector for a secondary battery according to any one of items 1 to 4, wherein the carbon fine particles include needle-shaped or rod-shaped carbon fine particles.
(6) A step of forming a film made of the paste for forming a current collector for a secondary battery according to any one of items 1 to 5 on an aluminum foil or a copper foil; and
The manufacturing method of the electrical power collector for secondary batteries including the process of scattering the solvent of this membrane | film | coat.
(7) A current collector for a secondary battery manufactured using the paste for forming a current collector for a secondary battery according to any one of items 1 to 5.
(8) An electrode for a secondary battery comprising the current collector according to item 7 above and a film containing an active material.
(9) A secondary battery comprising the electrode according to item 8 above.

本発明に係る二次電池用集電体形成用のペーストを用いて製造した二次電池用集電体、二次電池用電極、二次電池は、高レートでの初期容量維持率の向上が大幅に改善しているものであるから、急速充放電特性が優れている二次電池に好適に用いることができる。   The secondary battery current collector, the secondary battery electrode, and the secondary battery manufactured using the paste for forming a secondary battery current collector according to the present invention have an improved initial capacity maintenance rate at a high rate. Since it is greatly improved, it can be suitably used for a secondary battery having excellent rapid charge / discharge characteristics.

本発明の実施例1の下層に係る集電体断面構造を示す概略図である。It is the schematic which shows the collector sectional structure which concerns on the lower layer of Example 1 of this invention. 本発明の実施例2に係る正極断面構造を示す概略図である。It is the schematic which shows the positive electrode cross-section based on Example 2 of this invention.

以下、本発明につき更に詳しく説明する。なお、本明細書においてアルミニウムは、アルミニウム及びアルミニウム合金を意味する。また、銅は純銅および銅合金を意味する。   Hereinafter, the present invention will be described in more detail. In the present specification, aluminum means aluminum and aluminum alloy. Copper means pure copper and copper alloy.

本発明で用いることの出来るアルミニウム箔としては、特に限定されたものではなく純アルミ系であるA1085材や、A3003材など種々のものが使用できる。また、その厚さは概ね5μm〜100μmが好ましい。また、銅箔としても同様であり、圧延銅箔や電解銅箔が好んで用いられる。本発明において、アルミニウム箔は正極側、銅箔は負極側に用いる。   The aluminum foil that can be used in the present invention is not particularly limited, and various types such as a pure aluminum-based A1085 material and A3003 material can be used. The thickness is preferably about 5 μm to 100 μm. The same applies to the copper foil, and a rolled copper foil or an electrolytic copper foil is preferably used. In the present invention, the aluminum foil is used on the positive electrode side, and the copper foil is used on the negative electrode side.

アルミニウム箔ならびに銅箔の厚さが5μm以下であると、強度不足で集電層を形成する塗工工程で箔の破断が生じる恐れがあり、一方、100μmを越えると電池1個の所定体積中に箔の占める割合が増大して、電池容量の低下を招くので好ましくない。   If the thickness of the aluminum foil and the copper foil is 5 μm or less, there is a risk that the foil may be broken in the coating process for forming the current collecting layer due to insufficient strength. On the other hand, if the thickness exceeds 100 μm, This is not preferable because the ratio of the foil increases and the battery capacity decreases.

本発明に用いる正極活物質としては、特に限定されるものではなく、リチウム(イオン)が吸蔵・脱離することができる物質であれば良い。具体的には、従来用いられているコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMnO4)、ニッケル酸リチウム(LiNiO)、さらには、Co、Mn、Niの3元系リチウム化合物(Li(CoxMnyNiz)O)、イオウ系(TiS)、オリビン系(LiFePO)などが好適である。 The positive electrode active material used in the present invention is not particularly limited as long as it is a substance capable of inserting and extracting lithium (ions). Specifically, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4), lithium nickelate (LiNiO 2 ), and ternary lithium compounds of Co, Mn, and Ni ( Li (CoxMnyNiz) O 2 ), sulfur-based (TiS 2 ), olivine-based (LiFePO 4 ) and the like are suitable.

また、これら正極活物質の粒子径としては、1〜50μmが好ましい。粒子径が50μm以上になると、粒子の内部と外部でのリチウムの吸蔵・脱離に不均一性が出るので好ましくない。一方、1μm以下になると結晶性が低下し、粒子構造が乱れてしまうので性能低下が起こり好ましくない。   Moreover, as a particle diameter of these positive electrode active materials, 1-50 micrometers is preferable. A particle diameter of 50 μm or more is not preferable because non-uniformity in lithium insertion / extraction occurs inside and outside the particle. On the other hand, when the thickness is 1 μm or less, the crystallinity is lowered and the particle structure is disturbed, so that the performance is lowered, which is not preferable.

負極に用いる負極活物質としては、公知ものを使用することができる。グラファイト等の黒鉛系、非晶質黒鉛系、酸化物系など特に制限がない。   A well-known thing can be used as a negative electrode active material used for a negative electrode. There are no particular restrictions on graphite, such as graphite, amorphous graphite, and oxide.

本発明に用いることのできるイオン透過性化合物、有機溶媒に対して膨潤性のない化合物、有機溶媒による剥離試験において剥がれのない化合物、テープ剥離において剥離のない化合物(以下、これらをまとめて皮膜形成用の化合物と記す)としては以下に挙げるものを使用することができる。   An ion-permeable compound that can be used in the present invention, a compound that is not swellable with respect to an organic solvent, a compound that does not peel off in a peeling test with an organic solvent, a compound that does not peel off in a tape peeling (hereinafter collectively referred to as film formation) The following can be used as the compound for use).

イオン透過性化合物としては、単にイオンが透過できる性能を有する材料(化合物を含む)であれば良く、例えばセルロースとアクリルアミドの架橋重合体とセルロースとキトサンピロリドンカルボン酸塩の架橋重合体などが適している。これ以外にも多糖類高分子ポリマーであるキトサン、キチン等を架橋剤で架橋したもの等を用いることが出来る。用いることのできる架橋剤としては、アクリルアミド、アクリロニトリル、キトサンピロリドンカルボン酸塩、ヒドロキシプロピルキトサン、または無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸などの酸無水物、などが適している。   As the ion-permeable compound, any material (including the compound) having a performance capable of simply transmitting ions may be used.For example, a crosslinked polymer of cellulose and acrylamide and a crosslinked polymer of cellulose and chitosan pyrrolidone carboxylate are suitable. Yes. In addition to these, polysaccharide polymers such as chitosan and chitin which are crosslinked with a crosslinking agent can be used. Suitable crosslinking agents that can be used include acrylamide, acrylonitrile, chitosan pyrrolidone carboxylate, hydroxypropyl chitosan, or acid anhydrides such as phthalic anhydride, maleic anhydride, trimellitic anhydride, and pyromellitic anhydride. ing.

電池の性能の観点からはイオン導電率の大きいものが好ましい。特に、リチウムイオンの導電率の大きいものが好ましく、リチウムイオンの導電率としては1×10-2 S/cm以上を有する化合物が好適である。あるいはフッ素イオンの導電率が1×10-2 S/cm以上を有する化合物でも好適である。 From the viewpoint of battery performance, those having high ionic conductivity are preferred. In particular, a lithium ion having a high conductivity is preferable, and a compound having a lithium ion conductivity of 1 × 10 −2 S / cm or more is preferable. Alternatively, a compound having a fluorine ion conductivity of 1 × 10 −2 S / cm or more is also suitable.

あるいは皮膜形成用化合物としては上記化合物のうち、有機溶媒に耐性を有して金属箔に強固に密着するものが好ましい。その理由として、リチウムイオン電池には、通常電解液として有機系の電解液が用いられているので、形成した皮膜がこの電解液に溶解してしまうためである。   Alternatively, as the film forming compound, among the above compounds, those having resistance to an organic solvent and firmly adhering to the metal foil are preferable. The reason for this is that in lithium ion batteries, an organic electrolytic solution is usually used as the electrolytic solution, so that the formed film is dissolved in the electrolytic solution.

一般に、耐有機溶媒性を有する化合物としてはポリアミド、ポリアミドイミド等が公知であるが、これらは非常に高価であり実用的ではない。さらに、これらの平均分子量が50000程度と小さく、金属箔に対する密着性が十分でない。一方、平均分子量が50000以上では前述したPVDF、PTFE等があり、金属箔に密着性は十分であるが、これらは有機溶媒中では膨潤してしまい、有機溶媒への耐性は非常に弱いものである。従って、平均分子量が50000以下で金属箔への密着性が高く、有機溶媒への耐性が非常に高いものが好適となる。   In general, polyamides, polyamideimides and the like are known as compounds having resistance to organic solvents, but these are very expensive and impractical. Furthermore, these average molecular weights are as small as about 50000, and the adhesiveness with respect to metal foil is not enough. On the other hand, when the average molecular weight is 50000 or more, the above-mentioned PVDF, PTFE, and the like are present, and the metal foil has sufficient adhesion, but these swell in the organic solvent, and the resistance to the organic solvent is very weak. is there. Accordingly, those having an average molecular weight of 50,000 or less, high adhesion to the metal foil, and extremely high resistance to organic solvents are suitable.

これらの性能を測定する尺度として、溶剤に対する膨潤性、溶剤を浸漬した布での剥離試験(こすり試験)、テープ剥離試験(JIS D0202−1988)で判断することが出来る。   As a scale for measuring these performances, it can be judged by swelling property with respect to a solvent, a peeling test (rubbing test) with a cloth soaked with a solvent, and a tape peeling test (JIS D0202-1988).

上記特性を示す材料としては、多糖類高分子ポリマーをアクリル系添加剤や酸無水物で架橋したものや、キトサン系誘導体をベースにしたものが挙げられる。   Examples of the material exhibiting the above characteristics include those obtained by crosslinking polysaccharide polymer polymers with acrylic additives and acid anhydrides, and those based on chitosan derivatives.

本発明に用いることの出来る電子導電性の炭素微粒子としては、特に制約は無いが、アセチレンブラック、ケッチェンブラック、気相法炭素繊維、グラファイト(黒鉛)などが好適である。特に粉体での電気抵抗が、100%の圧粉体で1×10-1 Ω・cm以下のものが好ましく、必要に応じて上記のものを組み合わせて使用できる。 The electron conductive carbon fine particles that can be used in the present invention are not particularly limited, but acetylene black, ketjen black, vapor grown carbon fiber, graphite (graphite) and the like are suitable. In particular, it is preferable that the electrical resistance of the powder is 100% green compact and 1 × 10 −1 Ω · cm or less, and the above can be used in combination as necessary.

上記、電子導電性炭素微粒子において、その粒子サイズに特に制限はないが、概ね10〜100nmが好ましい。さらに、その形状が球状ではなく、針状もしくは、棒状のような異方性を有していれば尚好ましい。その理由を以下に述べる。電子導電性の炭素微粒子はリチウムイオン二次電池で電子の移動を分担している。充電時は、外部から供給される電子をアルミニウム箔を通じて正極活物質にまで到達させる必要があるので、アルミニウム箔と正極活物資間の接触面積を大きくしたい。そのためには、質量あたりの表面積が大きい微粒子のほうが有利である。しかも、電池容量確保のため出来るだけ少ない量で達成しなければならない。従って、形状に異方性を有する電子導電性炭素微粒子が好適となる。   In the above-mentioned electron conductive carbon fine particles, the particle size is not particularly limited, but is generally 10 to 100 nm. Furthermore, it is more preferable that the shape is not spherical but has anisotropy such as a needle shape or a rod shape. The reason is described below. The electron conductive carbon fine particles share the movement of electrons in the lithium ion secondary battery. At the time of charging, it is necessary to allow electrons supplied from the outside to reach the positive electrode active material through the aluminum foil, so it is desired to increase the contact area between the aluminum foil and the positive electrode active material. For this purpose, fine particles having a large surface area per mass are more advantageous. Moreover, it must be achieved with as little amount as possible to ensure battery capacity. Therefore, electron conductive carbon fine particles having anisotropy in shape are suitable.

本発明において、皮膜形成用化合物と炭素微粒子とを含む皮膜の作成には特に制限はなく、公知の方法を用いることができる。具体的には、キャスト法、バーコーター法、ディップ法、印刷法などである。これらの方法の内、皮膜の厚さを制御しやすい点からバーコーター法、キャスト法などが好適である。アルミニウム箔あるいは銅箔に上記の方法により、炭素微粒子含有皮膜を形成させることで集電体(正極用あるいは負極用)とすることができる。さらに、その厚さとしては0.1μm以上10μm以下が好ましい。厚みが0.1μm以下であると所望の効果が得られないので好ましくない。一方、厚みが10μm以上になると二次電池1個の所定の体積中に占める活物質の比率が相対的に低下するので好ましくない。   In the present invention, there is no particular limitation on the preparation of the film containing the film forming compound and the carbon fine particles, and a known method can be used. Specifically, there are a casting method, a bar coater method, a dip method, a printing method, and the like. Of these methods, the bar coater method, the cast method and the like are preferable because the thickness of the film can be easily controlled. A current collector (for positive electrode or negative electrode) can be obtained by forming a carbon fine particle-containing film on an aluminum foil or copper foil by the above method. Further, the thickness is preferably 0.1 μm or more and 10 μm or less. If the thickness is 0.1 μm or less, the desired effect cannot be obtained, which is not preferable. On the other hand, when the thickness is 10 μm or more, the ratio of the active material in a predetermined volume of one secondary battery is relatively decreased, which is not preferable.

一方、正極活物質あるいは負極活物質を含んだ皮膜を形成させる場合も同様の手法で製造することが出来る。また、その膜厚は10μm以上500μm以下が好ましい。膜厚が10μm以下であると電池1個の所定体積中の活物質の割合が少なくなり電池容量が小さくなるので好ましくない。一方、500μm以上であると箔からの脱離や電池の内部抵抗が増大するので好ましくない。   On the other hand, when a film containing a positive electrode active material or a negative electrode active material is formed, the same method can be used. The film thickness is preferably 10 μm or more and 500 μm or less. A film thickness of 10 μm or less is not preferable because the ratio of the active material in a predetermined volume of one battery decreases and the battery capacity decreases. On the other hand, when the thickness is 500 μm or more, detachment from the foil and the internal resistance of the battery increase, such being undesirable.

以下、正極活物質を含んだ皮膜を形成させる場合についてさらに詳しく述べる。負極活物質を含んだ皮膜の場合は、以下の記述中においてアルミニウム箔を銅箔、正極活物質を負極活物質に置き換えて同様に実施することが出来る。   Hereinafter, the case where a film containing a positive electrode active material is formed will be described in more detail. In the case of a film containing a negative electrode active material, the same can be applied by replacing the aluminum foil with a copper foil and the positive electrode active material with a negative electrode active material in the following description.

皮膜の組成比は皮膜を形成させるペーストの段階で調整する。具体的には、皮膜形成用化合物、炭素微粒子、正極活物質等を混練機等で混合し、粘度調整にさらに溶剤を加えることで調製される。また、溶剤は後工程により飛散させるので、皮膜中には固形分(皮膜形成用化合物、炭素微粒子、正極活物質)のみが残存することになる。これらの比率は質量比で概ね、皮膜形成用化合物が1質量%〜30質量%、炭素微粒子が1質量%〜30質量%、正極活物質が65質量%以上が好ましい。   The composition ratio of the film is adjusted at the stage of the paste for forming the film. Specifically, it is prepared by mixing a film-forming compound, carbon fine particles, a positive electrode active material and the like with a kneader or the like, and further adding a solvent for viscosity adjustment. In addition, since the solvent is scattered in a subsequent step, only solid content (film forming compound, carbon fine particles, positive electrode active material) remains in the film. These ratios are generally in terms of mass ratio, preferably 1% to 30% by mass of the film-forming compound, 1% to 30% by mass of the carbon fine particles, and 65% by mass or more of the positive electrode active material.

また、皮膜の厚さとしては0.1μm以上500μm以下が好ましい。厚さが0.1μm以下であると所望の効果が得られなくなる。一方、500μm以上になると、皮膜の割れ、アルミニウム箔からの脱落などが発生する恐れがあるので好ましくない。   The thickness of the film is preferably 0.1 μm or more and 500 μm or less. If the thickness is 0.1 μm or less, the desired effect cannot be obtained. On the other hand, when the thickness is 500 μm or more, there is a risk of cracking of the film, dropping from the aluminum foil, and the like, which is not preferable.

本発明において、アルミニウム箔に下層と上層の二層の皮膜を供えた集電体としても良い。このとき、皮膜形成用化合物と炭素微粒子とを含む皮膜を下層とし、バインダー、炭素微粒子及び正極活物質を含む皮膜を上層とする。上層に含まれるバインダーは、粒子を固定できる効果があれば良く、皮膜形成用化合物、例えば多糖類高分子ポリマーをアクリル系添加剤で架橋したものを含んでも、あるいは通常用いられる化合物、例えばポリフッ化ビニリデン(PVDF)あるいはポリテトラフルオロエチレン(PTFE)を含んでも良い。   In the present invention, a current collector may be provided in which an aluminum foil is provided with two layers of a lower layer and an upper layer. At this time, a film containing the film-forming compound and carbon fine particles is used as a lower layer, and a film containing a binder, carbon fine particles and a positive electrode active material is used as an upper layer. The binder contained in the upper layer only needs to have an effect of fixing particles, and may include a film-forming compound such as a polysaccharide polymer polymer crosslinked with an acrylic additive, or a commonly used compound such as polyfluoride. Vinylidene (PVDF) or polytetrafluoroethylene (PTFE) may be included.

本発明の二次電池用集電体の電池評価には、当該集電体を電極化して、公知なセパレータ、有機電解液を備えた二次電池を構成して行うことが出来る。   The battery evaluation of the current collector for the secondary battery according to the present invention can be performed by forming the current collector into an electrode and configuring a secondary battery including a known separator and organic electrolyte.

さらに、本発明による二次電池を移動体(自動車、自転車などの車両)あるいはパワー電動工具(電動ドリル、インパクトレンチなど)に搭載してその性能を評価することが出来る。   Furthermore, the performance of the secondary battery according to the present invention can be evaluated by mounting it on a moving body (vehicle such as an automobile or bicycle) or a power electric tool (electric drill, impact wrench, etc.).

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example.

(実施例1)
A1085材の厚さ30μmであるアルミニウム箔を用意した。次に、イオン透過性を有する化合物として多糖類高分子ポリマーであるキトサンを無水ピロメリット酸で架橋したものを用意した。この分子量はGPC測定により35000であった。これを用いて、電子導電性を有する炭素微粒子(アセチレンブラック:粒子径40nm)との混合ペーストを作成した。溶媒は水とし、イオン透過性化合物と炭素微粒子と水との質量比率を35:15:50とした。次に、アプリケーター(隙間:10μm)を用いて、キャスト法によりアルミニウム箔上にこのペーストを塗工し、その後、空気中で180℃にて3分間乾燥し、熱硬化させて、イオン透過性を有する化合物と炭素微粒子を含む皮膜を備えたアルミニウム箔を得た。
Example 1
An aluminum foil having a thickness of 30 μm made of A1085 material was prepared. Next, a polysaccharide polymer polymer chitosan crosslinked with pyromellitic anhydride was prepared as an ion-permeable compound. This molecular weight was 35000 by GPC measurement. Using this, a mixed paste with carbon fine particles (acetylene black: particle size 40 nm) having electronic conductivity was prepared. The solvent was water, and the mass ratio of the ion-permeable compound, the carbon fine particles, and water was 35:15:50. Next, using an applicator (gap: 10 μm), this paste was applied onto an aluminum foil by a casting method, and then dried in air at 180 ° C. for 3 minutes, followed by thermosetting to make the ion permeability. The aluminum foil provided with the film | membrane containing the compound which has and a carbon microparticle was obtained.

乾燥後この皮膜の厚さを測定したところ厚さは5μmであり、皮膜中における電子導電性を有する炭素微粒子の含有率は30質量%であった。   When the thickness of this film was measured after drying, the thickness was 5 μm, and the content of carbon fine particles having electronic conductivity in the film was 30% by mass.

次に、正極活物質、電子導電性炭素微粒子、バインダー、及び溶剤からなる正極ペーストを用いて厚さ200μmの電極層を形成させリチウムイオン二次電池用正極とした。この際、正極活物質はコバルト酸リチウム、導電性炭素微粒子としてアセチレンブラック、バインダーとしてはポリフッ化ビニリデン(PVDF)、溶剤としてはN−メチル−2−ピロリドン(NMP)を用いた。各成分の組成比は正極活物質:炭素微粒子:バインダー=95:2:3(質量比)として、溶剤は正極活物質質量の10質量%とした。   Next, a positive electrode paste made of a positive electrode active material, electron conductive carbon fine particles, a binder, and a solvent was used to form an electrode layer having a thickness of 200 μm to obtain a positive electrode for a lithium ion secondary battery. At this time, lithium cobaltate was used as the positive electrode active material, acetylene black as the conductive carbon fine particles, polyvinylidene fluoride (PVDF) as the binder, and N-methyl-2-pyrrolidone (NMP) as the solvent. The composition ratio of each component was positive electrode active material: carbon fine particles: binder = 95: 2: 3 (mass ratio), and the solvent was 10% by mass of the positive electrode active material mass.

さらに、セパレーター、銅箔上に形成された負極を組み込み、これらに有機電解液を含侵させ、リチウムイオン二次電池を得た。   Furthermore, the separator and the negative electrode formed on the copper foil were incorporated, and these were impregnated with an organic electrolyte solution to obtain a lithium ion secondary battery.

上記で得られた、リチウムイオン二次電池のサイクル特性を測定した。結果を表1に示した。測定機は北斗電工株式会社製電池充放電装置HJ−2010型機を用い、電流レートを0.1C、2C、20Cと変えて100サイクル後の初期容量維持率を百分率で表示した。表から明らかなように、電流レートが小さい時には大きな差が認められなかったが、本発明による集電体を用いることで特に、高レート側での初期容量維持率の向上が大幅に改善していることが分かる。すなわち急速充放電特性が優れていることを示している。   The cycle characteristics of the lithium ion secondary battery obtained above were measured. The results are shown in Table 1. The measuring device used was a battery charging / discharging device HJ-2010 type manufactured by Hokuto Denko Co., Ltd., and the initial capacity maintenance rate after 100 cycles was displayed as a percentage by changing the current rate to 0.1C, 2C, and 20C. As can be seen from the table, a large difference was not observed when the current rate was small. However, the use of the current collector according to the present invention significantly improved the initial capacity maintenance ratio on the high rate side. I understand that. That is, the rapid charge / discharge characteristics are excellent.

また、上記2次電池の内部抵抗を測定した。測定はHIOKI3551バッテリーテスターを用いACインピーダンス法で、測定周波数1kHzにて測定した。測定結果を表2に示した。測定値が小さいほど、急速充放電持性が優れていることを示している。   Moreover, the internal resistance of the secondary battery was measured. The measurement was carried out by an AC impedance method using a HIOKI3551 battery tester at a measurement frequency of 1 kHz. The measurement results are shown in Table 2. The smaller the measured value, the better the quick charge / discharge performance.

(実施例2)
A1085材の厚さ30μmであるアルミニウム箔を用意した。次に、イオン透過性を有する化合物として多糖類高分子ポリマーであるキチンを無水マレイン酸で架橋したものを用意した。この分子量はGPC測定により30000であった。これを用いて電子導電性を有する炭素微粒子(アセチレンブラック:粒子径40nm)さらには、正極活物質として、マンガン酸リチウム(LiMn24)及び、溶剤(NMP)からなるペーストを作成した。ペースト中のイオン透過性化合物、炭素微粒子、正極活物質の組成比はそれぞれ2質量%、3質量%、95質量%とし、溶剤は正極活物質の10質量%とした。次に、実施例1と同様にアプリケーター(隙間:250μm)を用いて、アルミニウム箔上にこのペーストを塗工し、その後、空気中で180℃にて3分間乾燥し、熱硬化させて、イオン透過性を有する化合物と炭素微粒子及び正極活物質を含む皮膜を備えたアルミニウム箔を得た。
(Example 2)
An aluminum foil having a thickness of 30 μm made of A1085 material was prepared. Next, a polysaccharide polymer polymer chitin crosslinked with maleic anhydride was prepared as a compound having ion permeability. This molecular weight was 30000 by GPC measurement. Using this, carbon fine particles having electron conductivity (acetylene black: particle diameter 40 nm) and a paste made of lithium manganate (LiMn 2 O 4 ) and a solvent (NMP) as a positive electrode active material were prepared. The composition ratios of the ion-permeable compound, the carbon fine particles, and the positive electrode active material in the paste were 2 mass%, 3 mass%, and 95 mass%, respectively, and the solvent was 10 mass% of the positive electrode active material. Next, this paste was applied onto an aluminum foil using an applicator (gap: 250 μm) in the same manner as in Example 1, and then dried in air at 180 ° C. for 3 minutes, followed by thermosetting, An aluminum foil provided with a film containing a permeable compound, carbon fine particles, and a positive electrode active material was obtained.

乾燥後この皮膜の厚さを測定したところ厚さは200μmであり、皮膜中における電子導電性を有する炭素微粒子と正極活物質の含有率はそれぞれ3質量%、95質量%であった。   When the thickness of this film was measured after drying, the thickness was 200 μm, and the contents of the carbon fine particles having electron conductivity and the positive electrode active material in the film were 3% by mass and 95% by mass, respectively.

以下、実施例1と同様の工程により、セパレーター、銅箔上に形成された負極集電体を組み込みこれらに有機電解液を含侵させ、リチウムイオン二次電池を得た。
同様に初期容量維持率、内部抵抗を測定して、結果を表1、表2にそれぞれに示した。
Thereafter, the separator and the negative electrode current collector formed on the copper foil were incorporated by the same process as in Example 1, and the organic electrolyte was impregnated therein to obtain a lithium ion secondary battery.
Similarly, the initial capacity retention ratio and the internal resistance were measured, and the results are shown in Table 1 and Table 2, respectively.

(実施例3)
実施例2において、アルミニウム箔の材料をA1085材からA3003材に変更しイオン透過性を有する化合物の代わりに有機溶媒による剥離試験において剥がれのない化合物として多糖類高分子ポリマーであるキトサンをアクリロニトリルで架橋したものを用意した。この化合物を0.5μmの厚さに成膜して有機溶剤であるエチルアルコールで剥離試験を行ったところ剥離は認められないものであった。また、この分子量はGPC測定により31000であった。また、炭素微粒子として気相法炭素繊維(昭和電工製、商標登録名VGCF)とした。また、正極活物質をオリビン系(LiFePO4)に変更した。
さらに、炭素微粒子の添加量を変更し、ペースト中の有機溶媒による剥離試験において剥がれのない化合物、炭素微粒子、正極活物質の組成比はそれぞれ2質量%、1質量%、97質量%とした。
(Example 3)
In Example 2, the material of the aluminum foil was changed from the A1085 material to the A3003 material, and instead of the compound having ion permeability, chitosan, which is a polysaccharide polymer polymer, was cross-linked with acrylonitrile as a compound that did not peel in an organic solvent peel test. I prepared what I did. When this compound was formed into a film having a thickness of 0.5 μm and subjected to a peel test with ethyl alcohol as an organic solvent, no peel was observed. Moreover, this molecular weight was 31000 by GPC measurement. Moreover, it was set as the vapor-phase-grown carbon fiber (made by Showa Denko, trademark registration name VGCF) as carbon fine particles. The positive electrode active material was changed to olivine (LiFePO 4 ).
Furthermore, the addition amount of the carbon fine particles was changed, and the composition ratios of the compound, the carbon fine particles, and the positive electrode active material that did not peel in the peel test using the organic solvent in the paste were 2 mass%, 1 mass%, and 97 mass%, respectively.

これ以外には、実施例2と同様にしてリチウムイオン二次電池を得た。同様に初期容量維持率、内部抵抗を測定して、結果を表1に示した。   Except for this, a lithium ion secondary battery was obtained in the same manner as in Example 2. Similarly, the initial capacity retention ratio and the internal resistance were measured, and the results are shown in Table 1.

(実施例4)
実施例1において、イオン透過性を有する化合物の代わりにNMPに対して膨潤しない化合物として、多糖類高分子ポリマーであるキトサンを無水トリメリット酸で架橋し、さらに溶媒をNMPとしたものを用意した。この分子量はGPC測定により22000であった。
Example 4
In Example 1, as a compound that does not swell with respect to NMP instead of an ion-permeable compound, a polysaccharide polymer polymer chitosan was crosslinked with trimellitic anhydride, and a solvent in which NMP was used was prepared. . This molecular weight was 22000 by GPC measurement.

これを用いた以外は実施例1と同様にしてリチウムイオン二次電池を得た。同様に初期容量維持率、内部抵抗を測定して、結果を表1、表2にそれぞれ示した。   A lithium ion secondary battery was obtained in the same manner as in Example 1 except that this was used. Similarly, the initial capacity retention ratio and the internal resistance were measured, and the results are shown in Tables 1 and 2, respectively.

(実施例5)
電解銅箔の厚さ9μmである銅箔を用意した。次に、イオン透過性を有する化合物として多糖類高分子ポリマーであるセルロースをキトサンピロリドンカルボン酸塩で架橋したものを用意した。この分子量はGPC測定により40000であった。これを用いて、電子導電性を有する炭素微粒子(アセチレンブラック:粒子径40nm)との混合ペーストを作成した。溶媒はNMPとし、イオン透過性化合物と炭素微粒子と溶媒との質量比率を35:15:50とした。次に、グラビアロール(#200)を用いたグラビア法により銅箔上にこのペーストを塗工し、その後、空気中で180℃にて3分間乾燥し、熱硬化させて、イオン透過性を有する化合物と炭素微粒子を含む皮膜を備えた銅箔(集電体)を得た。
(Example 5)
A copper foil having an electrolytic copper foil thickness of 9 μm was prepared. Next, a polysaccharide polymer polymer cellulose crosslinked with chitosan pyrrolidone carboxylate was prepared as an ion-permeable compound. This molecular weight was 40000 by GPC measurement. Using this, a mixed paste with carbon fine particles (acetylene black: particle size 40 nm) having electronic conductivity was prepared. The solvent was NMP, and the mass ratio of the ion-permeable compound, the carbon microparticles, and the solvent was 35:15:50. Next, this paste is applied onto a copper foil by a gravure method using a gravure roll (# 200), then dried in air at 180 ° C. for 3 minutes, and thermally cured to have ion permeability. A copper foil (current collector) provided with a film containing the compound and carbon fine particles was obtained.

乾燥後この皮膜の厚さを測定したところ厚さは0.2μmであり、皮膜中における電子導電性を有する炭素微粒子の含有率は30質量%であった。   When the thickness of this film was measured after drying, the thickness was 0.2 μm, and the content of carbon fine particles having electronic conductivity in the film was 30% by mass.

次に、負極活物質、電子導電性炭素微粒子、バインダー、及び溶剤からなる負極ペーストを用いて厚さ250μmの電極層を形成させリチウムイオン二次電池用負極とした。この際、負極活物質はグラファイト、導電性炭素微粒子としてアセチレンブラック、バインダーとしてはポリフッ化ビニリデン(PVDF)、溶剤としてはN−メチル−2−ピロリドン(NMP)を用いた。各成分の組成比は負極活物質:炭素微粒子:バインダー=92:5:3(質量比)として、溶剤は負極活物質質量の10質量%とした。   Next, an electrode layer having a thickness of 250 μm was formed using a negative electrode paste made of a negative electrode active material, electronically conductive carbon fine particles, a binder, and a solvent to obtain a negative electrode for a lithium ion secondary battery. At this time, graphite was used as the negative electrode active material, acetylene black as the conductive carbon fine particles, polyvinylidene fluoride (PVDF) as the binder, and N-methyl-2-pyrrolidone (NMP) as the solvent. The composition ratio of each component was negative electrode active material: carbon fine particles: binder = 92: 5: 3 (mass ratio), and the solvent was 10% by mass of the negative electrode active material mass.

以下、実施例1と同様の工程により、セパレーター、実施例1で用いたアルミニウム箔上に形成された正極を組み込みこれらに有機電解液を含浸させ、リチウムイオン二次電池を得た。同様に初期容量維持率、内部抵抗を測定して、結果を表1、表2にそれぞれ示した。   Thereafter, a separator and a positive electrode formed on the aluminum foil used in Example 1 were incorporated by the same process as in Example 1, and these were impregnated with an organic electrolyte solution to obtain a lithium ion secondary battery. Similarly, the initial capacity retention ratio and the internal resistance were measured, and the results are shown in Tables 1 and 2, respectively.

(実施例6)
実施例5においてイオン透過性を有する化合物の代わりにテープ剥離試験において剥がれのない化合物として多糖類高分子ポリマーであるキトサンをアクリロニトリルで架橋したものを用意した。この化合物を0.5μmの厚さにして成膜してテープ剥離試験を行ったところ100/100であり剥離は認められないものであった。また、この分子量はGPC測定により26000であった。また、炭素微粒子として気相法炭素繊維(昭和電工製、商標登録名VGCF)とした。これ以外には、実施例5と同様にしてリチウムイオン二次電池を得た。同様に初期容量維持率、内部抵抗を測定して、結果を表1、2にそれぞれ示した。
(Example 6)
Instead of the compound having ion permeability in Example 5, a compound obtained by crosslinking chitosan, which is a polysaccharide polymer, with acrylonitrile as a compound that does not peel off in a tape peeling test was prepared. When this compound was formed to a thickness of 0.5 μm and a tape peeling test was conducted, it was 100/100 and no peeling was observed. Moreover, this molecular weight was 26000 by GPC measurement. Moreover, it was set as the vapor-phase-grown carbon fiber (made by Showa Denko, trademark registration name VGCF) as carbon fine particles. Except for this, a lithium ion secondary battery was obtained in the same manner as in Example 5. Similarly, the initial capacity retention ratio and the internal resistance were measured, and the results are shown in Tables 1 and 2, respectively.

(比較例1)
実施例1において、A1085材上にイオン透過性を有する化合物と電子導電性を有する炭素微粒子からなる複合皮膜を形成させずに、実施例1に示した正極活物質(コバルト酸リチウム)、電子導電性炭素微粒子(アセチレンブラック)、バインダー(PVDF)、溶剤(NMP)からなる集電層を200μm形成させ、正極集電体を得た。以下、同様にしてリチウムイオン二次電池を作成し、初期容量維持率、内部抵抗を実施例1と同じ条件にて測定して表1、表2にそれぞれ示した。
(Comparative Example 1)
In Example 1, the positive electrode active material (lithium cobaltate) and electronic conductivity shown in Example 1 were not formed on the A1085 material without forming a composite film composed of an ion-permeable compound and carbon particles having electronic conductivity. A current collector layer composed of conductive carbon fine particles (acetylene black), a binder (PVDF), and a solvent (NMP) was formed to a thickness of 200 μm to obtain a positive electrode current collector. Hereinafter, lithium ion secondary batteries were prepared in the same manner, and the initial capacity retention ratio and internal resistance were measured under the same conditions as in Example 1, and are shown in Tables 1 and 2, respectively.

(比較例2)
実施例5において、イオン透過性を有する化合物の代わりに、上記PVDFバインダー(有機溶媒による剥離試験において剥がれのある化合物)を用いた以外は実施例1と同様にしてリチウムイオン二次電池を作成し、初期容量維持率、内部抵抗を実施例1と同じ条件にて測定して表1、表2にそれぞれ示した。2次電池にまで加工することは可能であったが、炭素微粒子を含有する皮膜を備えた集電体の段階で、NMPを浸漬させた布で集電体表面をこすると大きく剥離を生じた。初期の特性がたとえ良好であっても、長期間の使用には耐えられない二次電池であることが測定できる。
(Comparative Example 2)
In Example 5, a lithium ion secondary battery was prepared in the same manner as in Example 1 except that the PVDF binder (a compound that peeled off in a peel test using an organic solvent) was used instead of the compound having ion permeability. The initial capacity retention rate and the internal resistance were measured under the same conditions as in Example 1, and are shown in Tables 1 and 2, respectively. Although it was possible to process to a secondary battery, when the surface of the current collector was rubbed with a cloth dipped in NMP at the stage of the current collector provided with a film containing carbon fine particles, a large peeling occurred. . Even if the initial characteristics are good, it can be measured that the secondary battery cannot withstand long-term use.

(比較例3)
実施例1において、イオン透過性を有する化合物の代わりに、PVA(ポリビニルアルコール)バインダー(テープ剥離試験において剥がれのある化合物)を用いた以外は実施例1と同様にしてリチウムイオン二次電池を作成し、初期容量維持率、内部抵抗を実施例1と同じ条件にて測定して表1、表2にそれぞれ示した。2次電池にまで加工することは可能であったが、炭素微粒子を含有する皮膜を備えた集電体の段階で、テープ剥離試験を実施したところ集電体表面が大きく剥離した。初期の特性がたとえ良好であっても、長期間の使用には耐えられない二次電池であることが測定できる。
(Comparative Example 3)
In Example 1, a lithium ion secondary battery was prepared in the same manner as in Example 1 except that a PVA (polyvinyl alcohol) binder (a compound that peeled off in the tape peeling test) was used instead of the compound having ion permeability. The initial capacity retention ratio and the internal resistance were measured under the same conditions as in Example 1, and are shown in Tables 1 and 2, respectively. Although it was possible to process to a secondary battery, a tape peeling test was performed at the stage of a current collector provided with a film containing carbon fine particles, and the current collector surface was largely peeled off. Even if the initial characteristics are good, it can be measured that the secondary battery cannot withstand long-term use.

表1によれば、比較例は低レートにおける初期容量維持率は本発明における実施例に比べ遜色はないが、高レートになると初期容量維持率が大幅に低下した。
すなわち、急速充放電が困難であることが分かる。
また、表2からも内部抵抗が小さく、急速充放電に向いている二次電池であることが分かる。
According to Table 1, in the comparative example, the initial capacity retention rate at the low rate is not inferior to that of the example in the present invention, but the initial capacity retention rate is significantly lowered at the high rate.
That is, it turns out that rapid charge / discharge is difficult.
Table 2 also shows that the secondary battery has a low internal resistance and is suitable for rapid charge / discharge.

本発明が急速充放電特性に優れているのは、イオンの移動と電池の移動をそれぞれイオン透過性バインダーと電子導電性の炭素微粒子とが分担して受け持っているため、金属箔と炭素微粒子含有皮膜、電極皮膜とが強固に密着しているためと推察される。   The reason why the present invention is excellent in rapid charge / discharge characteristics is that the ion-permeable binder and the electronically conductive carbon fine particles share the movement of ions and the movement of the battery, respectively. This is probably because the film and the electrode film are firmly adhered.

Figure 0004921594
Figure 0004921594

Figure 0004921594
Figure 0004921594

本発明は、二次電池用集電体形成用のペースト、このペーストを用いた二次電池用集電体およびその製造方法、二次電池用電極、二次電池を提供する。特に、多糖類高分子ポリマーと架橋剤とからなる皮膜形成用の化合物と炭素微粒子と溶剤とを含む特定のペースト、およびこのペーストを用いた二次電池用集電体および関連発明は、二次電池を構成した時に、高レートでの初期容量維持率の向上が極めて改善することができ、急速充放電特性が優れていることから、二次電池を搭載している通信機器やデジタル家電等において好適に用いることができる。この特性により二次電池を搭載する機器の用途が広がり産業上の利用範囲が予想以上に拡大することができる。   The present invention provides a paste for forming a current collector for a secondary battery, a current collector for a secondary battery using the paste, a method for producing the current collector, an electrode for a secondary battery, and a secondary battery. In particular, a specific paste containing a film-forming compound comprising a polysaccharide polymer polymer and a crosslinking agent, carbon fine particles, and a solvent, and a current collector for a secondary battery using the paste and a related invention When the battery is configured, the improvement of the initial capacity maintenance rate at a high rate can be greatly improved, and the rapid charge / discharge characteristics are excellent, so in communication equipment and digital home appliances equipped with secondary batteries, etc. It can be used suitably. Due to this characteristic, the application of the device equipped with the secondary battery is expanded and the industrial use range can be expanded more than expected.

1…アルミニウム箔、
2…イオン透過性化合物、
3…炭素微粒子、
4…複合皮膜、
5…正極活物質、
1 ... Aluminum foil,
2 ... ion-permeable compound,
3 ... carbon fine particles,
4 ... Composite film,
5 ... Positive electrode active material,

Claims (7)

(a)キトサン酸無水物またはアクリロニトリルで架橋した皮膜形成用の化合物、
(b)炭素微粒子、及び
(c)溶剤
を含む二次電池用集電体形成用のペースト。
(A) a film-forming compound obtained by crosslinking chitosan with an acid anhydride or acrylonitrile ;
A paste for forming a current collector for a secondary battery, comprising (b) carbon fine particles, and (c) a solvent.
前記酸無水物が無水トリメリット酸または無水ピロメリット酸である請求項に記載の二次電池用集電体形成用のペースト。 The paste for forming a current collector for a secondary battery according to claim 1 , wherein the acid anhydride is trimellitic anhydride or pyromellitic anhydride. 前記炭素微粒子が、針状あるいは棒状の炭素微粒子を含む請求項1または2に記載の二次電池用集電体形成用のペースト。 The paste for forming a current collector for a secondary battery according to claim 1 or 2 , wherein the carbon fine particles include needle-shaped or rod-shaped carbon fine particles. アルミニウム箔または銅箔の上に、請求項1〜のいずれか1項に記載の二次電池用集電体形成用のペーストからなる皮膜を形成する工程及び、
該皮膜の溶剤を飛散させる工程
を含む二次電池用集電体の製造方法。
The process of forming the membrane | film | coat which consists of the paste for the collectors for secondary batteries of any one of Claims 1-3 on aluminum foil or copper foil, and
The manufacturing method of the electrical power collector for secondary batteries including the process of scattering the solvent of this membrane | film | coat.
請求項1〜のいずれか1項に記載の二次電池用集電体形成用のペーストを用いて製造された二次電池用集電体。 Current collector for a secondary battery manufactured using the secondary battery current collector forming paste according to any one of claims 1-3. 請求項に記載の集電体と、活物質を含む皮膜とを有する二次電池用電極。 An electrode for a secondary battery comprising the current collector according to claim 5 and a film containing an active material. 請求項に記載の電極を有する二次電池。 A secondary battery comprising the electrode according to claim 6 .
JP2011002861A 2005-02-10 2011-01-11 Secondary battery current collector paste, secondary battery current collector and method for producing the same, secondary battery electrode, secondary battery Active JP4921594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002861A JP4921594B2 (en) 2005-02-10 2011-01-11 Secondary battery current collector paste, secondary battery current collector and method for producing the same, secondary battery electrode, secondary battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005034639 2005-02-10
JP2005034639 2005-02-10
JP2006019311 2006-01-27
JP2006019311 2006-01-27
JP2011002861A JP4921594B2 (en) 2005-02-10 2011-01-11 Secondary battery current collector paste, secondary battery current collector and method for producing the same, secondary battery electrode, secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010023741A Division JP5249258B2 (en) 2005-02-10 2010-02-05 Secondary battery current collector, secondary battery positive electrode, secondary battery negative electrode, secondary battery, and production method thereof

Publications (2)

Publication Number Publication Date
JP2011086636A JP2011086636A (en) 2011-04-28
JP4921594B2 true JP4921594B2 (en) 2012-04-25

Family

ID=42346380

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010023741A Active JP5249258B2 (en) 2005-02-10 2010-02-05 Secondary battery current collector, secondary battery positive electrode, secondary battery negative electrode, secondary battery, and production method thereof
JP2011002861A Active JP4921594B2 (en) 2005-02-10 2011-01-11 Secondary battery current collector paste, secondary battery current collector and method for producing the same, secondary battery electrode, secondary battery
JP2011208617A Active JP4909443B2 (en) 2005-02-10 2011-09-26 Secondary battery current collector, secondary battery positive electrode and secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010023741A Active JP5249258B2 (en) 2005-02-10 2010-02-05 Secondary battery current collector, secondary battery positive electrode, secondary battery negative electrode, secondary battery, and production method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011208617A Active JP4909443B2 (en) 2005-02-10 2011-09-26 Secondary battery current collector, secondary battery positive electrode and secondary battery

Country Status (1)

Country Link
JP (3) JP5249258B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936642B1 (en) * 2005-10-11 2014-04-30 Showa Denko K.K. Electric double layer capacitor
WO2012096189A1 (en) * 2011-01-14 2012-07-19 昭和電工株式会社 Current collector
KR101472873B1 (en) * 2011-02-10 2014-12-15 쇼와 덴코 가부시키가이샤 Current collector
WO2012114834A1 (en) * 2011-02-23 2012-08-30 大日精化工業株式会社 Aqueous liquid composition, aqueous coating, functional coating film, and composite material
JP5144821B1 (en) 2011-06-16 2013-02-13 株式会社神戸製鋼所 Method for producing electrode material
US20140162122A1 (en) * 2011-07-29 2014-06-12 Uacj Foil Corporation Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same
WO2013018684A1 (en) * 2011-07-29 2013-02-07 古河スカイ株式会社 Collector and electrode structure, non-aqueous electrolyte cell, electrical double layer capacitor, lithium ion capacitor, or electricity storage component using same
JP5578370B2 (en) * 2011-09-28 2014-08-27 トヨタ自動車株式会社 Secondary battery electrode and manufacturing method thereof
JP5281706B2 (en) * 2011-10-25 2013-09-04 株式会社神戸製鋼所 Current collector, current collector manufacturing method, electrode, and secondary battery
JP5303057B2 (en) 2011-10-27 2013-10-02 株式会社神戸製鋼所 Current collector, electrode and secondary battery
CN104583333B (en) * 2012-08-21 2017-06-16 大日精化工业株式会社 Aqueous fluid composition, aqueous coating liquid, functional-coated film and composite
KR20150060720A (en) * 2012-09-21 2015-06-03 가부시키가이샤 유에이씨제이 Current collector, electrode structure, and electricity storage component
KR102103989B1 (en) 2012-09-28 2020-04-23 제온 코포레이션 Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrode for electrochemical element
JP6350150B2 (en) 2013-09-30 2018-07-04 株式会社Gsユアサ Electricity storage element
JP6485359B2 (en) * 2013-12-26 2019-03-20 日本ゼオン株式会社 Composite particles for electrochemical device electrodes
US10361432B2 (en) 2014-01-24 2019-07-23 Maxell Holdings, Ltd. Non-aqueous secondary battery
US20170331115A1 (en) 2014-10-29 2017-11-16 Showa Denko K.K. Electrode current collector, method of manufacturing the same, electrode, lithium ion secondary battery, redox flow battery, and electric double layer capacitor
KR101809189B1 (en) * 2016-05-23 2017-12-14 한국제이씨씨(주) Metal foil, metal foil manufacturing method and electrode manufacturing method using the same
CN106784603A (en) * 2016-12-28 2017-05-31 珠海银隆新能源有限公司 A kind of preparation method of current collector coatings
CN110400933B (en) 2019-08-08 2020-12-04 宁德时代新能源科技股份有限公司 Positive pole piece and electrochemical device comprising same
CN110429240B (en) * 2019-08-08 2020-12-04 宁德时代新能源科技股份有限公司 Positive pole piece and electrochemical device comprising same
JP2024015900A (en) 2022-07-25 2024-02-06 株式会社リコー Surface-modified carbon material, method for producing surface-modified carbon material, electrode, liquid composition, housing container, device for producing electrode, method for producing electrode, and electrochemical element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229740B2 (en) * 1993-12-29 2001-11-19 ティーディーケイ株式会社 Lithium secondary battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH10144298A (en) * 1996-11-15 1998-05-29 Sanyo Electric Co Ltd Lithium secondary battery
JPH11339771A (en) * 1998-05-22 1999-12-10 Fuji Photo Film Co Ltd Nonaqueous secondary battery
KR100276966B1 (en) * 1998-07-31 2001-02-01 이병길 Pretreatment method for metal aluminum and copper current collectors for secondary batteries
JP4007486B2 (en) * 2001-12-26 2007-11-14 日本バイリーン株式会社 SUBSTRATE FOR SOLID ELECTROLYTE, SOLID ELECTROLYTE, AND METHOD FOR PRODUCING SUBSTRATE FOR SOLID ELECTROLYTE
JP4030397B2 (en) * 2002-05-23 2008-01-09 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4593488B2 (en) * 2005-02-10 2010-12-08 昭和電工株式会社 Secondary battery current collector, secondary battery positive electrode, secondary battery negative electrode, secondary battery, and production method thereof
WO2009147989A1 (en) * 2008-06-02 2009-12-10 大日精化工業株式会社 Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof

Also Published As

Publication number Publication date
JP2010135338A (en) 2010-06-17
JP4909443B2 (en) 2012-04-04
JP5249258B2 (en) 2013-07-31
JP2011086636A (en) 2011-04-28
JP2012023050A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP4921594B2 (en) Secondary battery current collector paste, secondary battery current collector and method for producing the same, secondary battery electrode, secondary battery
JP4593488B2 (en) Secondary battery current collector, secondary battery positive electrode, secondary battery negative electrode, secondary battery, and production method thereof
KR101179378B1 (en) Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
TWI390789B (en) A battery current collector, a battery positive electrode, a battery negative electrode, a battery, and a manufacturing method
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP6185984B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
WO2013018687A1 (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP6184552B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP6529700B1 (en) Current collector for power storage device, method for producing the same, and coating liquid used for the production
JPWO2013018688A1 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP6567289B2 (en) Lithium ion secondary battery
EP2838144A1 (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP2009151960A (en) Positive electrode body for lithium ion secondary battery, and lithium ion secondary battery
Jakóbczyk et al. Locust bean gum as green and water‑soluble binder for LiFePO
KR20160062125A (en) Base layer for battery electrodes, collector using same, electrode and lithium ion secondary battery
WO2019124123A1 (en) Method for manufacturing electrode for lithium ion secondary battery including composite consisting of active material and electrically conductive carbon material
JP6031223B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

R150 Certificate of patent or registration of utility model

Ref document number: 4921594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250