JP2013195225A - Device and method for measuring brillouin gain spectrum - Google Patents

Device and method for measuring brillouin gain spectrum Download PDF

Info

Publication number
JP2013195225A
JP2013195225A JP2012062470A JP2012062470A JP2013195225A JP 2013195225 A JP2013195225 A JP 2013195225A JP 2012062470 A JP2012062470 A JP 2012062470A JP 2012062470 A JP2012062470 A JP 2012062470A JP 2013195225 A JP2013195225 A JP 2013195225A
Authority
JP
Japan
Prior art keywords
light
continuous wave
frequency
voltage value
wave light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012062470A
Other languages
Japanese (ja)
Inventor
Koji Kawakita
浩二 川北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2012062470A priority Critical patent/JP2013195225A/en
Publication of JP2013195225A publication Critical patent/JP2013195225A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method for measuring a Brillouin gain spectrum that do not require an expensive frequency shifter such as a SSB (Single Side Band) modulator and a delay fiber.SOLUTION: A method for measuring a Brillouin gain spectrum of the present invention comprises: a first light source (1) outputting probe light; a second light source (2) outputting pump light; a phase difference control unit (3) for changing a phase difference between the probe light and the pump light; a first light detector (17) receiving light containing Brillouin scattering light in a measured optical fiber (6); a second light detector (15) receiving multiplexed light composed of the probe light and the pump light; a frequency discriminator (21) outputting a voltage value according to a frequency of an output signal from the second light detector; and a subtractor (26) outputting a voltage according to a difference between a set reference voltage value and a voltage value output by the frequency discriminator. A central frequency of probe light or pump light is changed so as to reduce a voltage value output by the subtractor.

Description

本発明は、光ファイバのブリルアン散乱光を測定するブリルアンゲインスペクトル測定装置及び方法に関する。   The present invention relates to a Brillouin gain spectrum measuring apparatus and method for measuring Brillouin scattered light of an optical fiber.

光ファイバの温度や歪みの分布を測定するために、光ファイバのブリルアン散乱光を観測するBOCDA(Brillouin Optical Correlation−Domain Analysis)が提案されている(例えば、特許文献1参照。)。BOCDAは、ブリルアン散乱現象が生じるような周波数差をもつポンプ光とプローブ光を光ファイバの両側から対向して入射し、光ファイバ中において発生したポンプ光とプローブ光のブリルアン散乱光を観測する。   In order to measure the temperature and strain distribution of an optical fiber, BOCDA (Brillouin Optical Correlation-Domain Analysis) for observing Brillouin scattered light of the optical fiber has been proposed (for example, see Patent Document 1). BOCDA receives pump light and probe light having a frequency difference such that a Brillouin scattering phenomenon occurs from opposite sides of the optical fiber, and observes Brillouin scattered light of the pump light and probe light generated in the optical fiber.

特許文献1のBOCDAでは、被測定光ファイバへ入射するポンプ光とプローブ光の中心周波数の間にブリルアン周波数シフト(略10数GHz)相当の周波数差を与え、その周波数差を数GHz程度変化させることでブリルアンゲインスペクトルの測定をおこなう。このため、従来は、光源からの光を2つに分け、片方の光にLN強度変調を行い、そのサイドバンド成分を光フィルタにより取り出すことで周波数シフトされた光を得ていた。
しかし、高速のLN強度変調器は高価で挿入損失が大きく、場合によってはその減衰分を補うため光増幅器が必要となる問題があった。また、不要な周波数成分を抑圧して目的とする周波数シフト光成分のみを取り出すには狭線幅の光フィルタを用い、中心周波数差の変化に合わせた透過スペクトルの精密な制御が必要である。周波数シフト光成分のみを発生させることができるSSB(Single Side Band)タイプのLN変調器を用いることで光フィルタを不要とすることもできるが、そのような変調器はより高価であり、より挿入損失が大きく、更に専用の駆動回路が必要であるという問題があった。
In BOCDA of Patent Document 1, a frequency difference corresponding to a Brillouin frequency shift (approximately 10 GHz) is given between the center frequencies of the pump light and the probe light incident on the optical fiber to be measured, and the frequency difference is changed by several GHz. In this way, the Brillouin gain spectrum is measured. For this reason, conventionally, the light from the light source is divided into two, LN intensity modulation is performed on one of the lights, and the sideband component is extracted by an optical filter to obtain frequency-shifted light.
However, a high-speed LN intensity modulator is expensive and has a large insertion loss. In some cases, an optical amplifier is required to compensate for the attenuation. Further, in order to suppress unnecessary frequency components and extract only the desired frequency shift light component, it is necessary to use a narrow line width optical filter and to precisely control the transmission spectrum in accordance with the change in the center frequency difference. An SSB (Single Side Band) type LN modulator that can generate only frequency-shifted light components can be used to eliminate the need for an optical filter, but such a modulator is more expensive and more inserted. There is a problem that the loss is large and a dedicated drive circuit is necessary.

また、特許文献1では被測定光ファイバ上においてブリルアン散乱光を観測する位置を掃引する際、高次(0次以外)の相関ピークを利用する。このため、従来は、遅延差を持たせるため、プローブ光とポンプ光のどちらか片方の光路にオフセット用の遅延ファイバを配置し、変調周波数を変化させることで観測位置を掃引していた。
しかし、被測定光ファイバの長さに合わせた十分な長さの遅延ファイバを用意する必要がある。この遅延ファイバは、被測定光ファイバ長に合わせて長くなるため、装置のサイズが制限される問題があった。
Further, in Patent Document 1, a high-order (other than zero-order) correlation peak is used when sweeping the position where Brillouin scattered light is observed on the optical fiber to be measured. For this reason, conventionally, in order to provide a delay difference, an offset delay fiber is arranged in one of the optical paths of the probe light and the pump light, and the observation position is swept by changing the modulation frequency.
However, it is necessary to prepare a delay fiber having a sufficient length according to the length of the optical fiber to be measured. Since this delay fiber becomes longer according to the length of the optical fiber to be measured, there is a problem that the size of the apparatus is limited.

特許3667132号公報Japanese Patent No. 3667132

前記課題を解決するために、本発明は、SSB変調器などの高価な光周波数シフタ及び遅延ファイバを必要としないブリルアンゲインスペクトル測定装置及び方法の提供を目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a Brillouin gain spectrum measurement apparatus and method that does not require an expensive optical frequency shifter such as an SSB modulator and a delay fiber.

本願発明のブリルアンゲインスペクトル測定装置は、所定の変調周波数で周波数変調された第1の連続発振光を出力する第1の光源(1)と、前記所定の変調周波数で周波数変調されかつ前記第1の連続発振光と所定の中心周波数差を有する第2の連続発振光を出力する第2の光源(2)と、前記第1の連続発振光と前記第2の連続発振光の位相差を変化させる位相差制御部(3)と、前記第1の連続発振光を分岐し、その一方を被測定光ファイバの一端へ入射する第1の光分岐部(12)と、前記第2の連続発振光を分岐する第2の光分岐部(13)と、前記第2の光分岐部で分岐された前記第2の連続発振光の一方を前記被測定光ファイバの他端に入射し、前記被測定光ファイバの前記他端から出力される前記第1の連続発振光及び前記第2の連続発振光の散乱光を導く第3の光分岐部(16)と、前記第3の光分岐部で導かれた光を受光する第1の光検出器(17)と、前記第1の光分岐部で分岐された前記第1の連続発振光の他方と前記第2の光分岐部で分岐された前記第2の連続発振光の他方を合波する光合波部(14)と、前記光合波部からの合波光を受光する第2の光検出器(15)と、前記第2の光検出器からの出力信号の周波数に応じた電圧値を出力する周波数弁別器(21)と、設定された参照電圧値と前記周波数弁別器の出力する電圧値との差に応じた電圧を出力する減算器(26)と、を備え、前記第1の光源又は前記第2の光源は、前記減算器の出力する電圧値が小さくなるように、中心周波数を変化させる。   The Brillouin gain spectrum measuring apparatus according to the present invention includes a first light source (1) that outputs a first continuous wave light frequency-modulated at a predetermined modulation frequency, frequency-modulated at the predetermined modulation frequency, and the first light source (1). A second light source (2) that outputs a second continuous wave light having a predetermined center frequency difference from the continuous wave light, and a phase difference between the first continuous wave light and the second continuous wave light is changed. A phase difference control unit (3) for causing the first continuous wave light to branch, one of which is incident on one end of the optical fiber to be measured, and the second continuous wave light One of the second optical branching unit (13) for branching light and the second continuous wave light branched by the second optical branching unit is incident on the other end of the optical fiber to be measured, and The first continuous wave light output from the other end of the measurement optical fiber, and the A third light branching portion (16) for guiding scattered light of two continuous wave lights, a first photodetector (17) for receiving the light guided by the third light branching portion, and the first An optical multiplexing unit (14) for multiplexing the other of the first continuous wave light branched by the optical branching unit and the other of the second continuous wave light branched by the second optical branching unit; A second photodetector (15) that receives the multiplexed light from the optical multiplexing unit, and a frequency discriminator (21) that outputs a voltage value corresponding to the frequency of the output signal from the second photodetector. A subtractor (26) that outputs a voltage according to a difference between a set reference voltage value and a voltage value output from the frequency discriminator, and the first light source or the second light source includes: The center frequency is changed so that the voltage value output from the subtractor becomes smaller.

本願発明のブリルアンゲインスペクトル測定装置では、前記周波数弁別器からの出力信号を平滑化するLPF(22)を備え、前記減算器は、前記参照電圧値と前記LPFの平滑化した電圧値との差に応じた電圧を出力してもよい。   The Brillouin gain spectrum measuring apparatus of the present invention includes an LPF (22) for smoothing the output signal from the frequency discriminator, and the subtractor is a difference between the reference voltage value and the smoothed voltage value of the LPF. A voltage corresponding to may be output.

本願発明のブリルアンゲインスペクトル測定装置では、前記位相差制御部が変化させる前記第1の連続発振光と前記第2の連続発振光との位相差に応じて、前記参照電圧値を時間的に変化させる補正部(10)をさらに備えてもよい。   In the Brillouin gain spectrum measuring apparatus of the present invention, the reference voltage value is temporally changed in accordance with the phase difference between the first continuous wave light and the second continuous wave light that is changed by the phase difference control unit. You may further provide the correction | amendment part (10) to be made.

本願発明のブリルアンゲインスペクトル測定方法は、所定の変調周波数で周波数変調された所定の中心周波数差をもつ第1の連続発振光と第2の連続発振光を、前記第1の連続発振光と前記第2の連続発振光の位相差を変化させながら出力する光出力手順と、前記第1の連続発振光を分岐した一方を被測定光ファイバ(6)の一端に入射し、前記第2の連続発振光を分岐した一方を前記被測定光ファイバの他端に入射し、前記被測定光ファイバの前記他端から出力される前記第1の連続発振光及び前記第2の連続発振光の散乱光を受光するとともに、前記第1の連続発振光を分岐した他方と前記第2の連続発振光を分岐した他方を合波した合波光を受光する受光手順と、設定された参照電圧値と前記合波光の受光信号の周波数に応じた電圧値との差を検出し、検出した当該電圧差が小さくなるように、前記第1の連続発振光又は前記第2の連続発振光の中心周波数を変化させる制御手順と、を順に有する。   In the Brillouin gain spectrum measuring method of the present invention, the first continuous wave light and the second continuous wave light having a predetermined center frequency difference frequency-modulated with a predetermined modulation frequency, the first continuous wave light and the An optical output procedure for outputting while changing the phase difference of the second continuous wave light, and one of the first continuous wave lights branched to one end of the optical fiber to be measured (6), and the second continuous wave One of the branched oscillation light is incident on the other end of the measured optical fiber, and the first continuous wave light and the second continuous wave light scattered from the other end of the measured optical fiber are scattered. A light receiving procedure for receiving a combined light obtained by combining the other of the first continuous wave light and the other of the second continuous wave light, and a set reference voltage value and the combined light. Voltage value according to the frequency of the received light signal Difference detecting the, as the voltage difference detected is smaller, has a control procedure for changing the center frequency of the first continuous oscillation light or the second continuous oscillation light, in this order.

本願発明のブリルアンゲインスペクトル測定方法では、前記制御手順において、前記合波光の受光信号の周波数に応じた電圧値を平滑化し、当該平滑化した電圧値と前記参照電圧値との差を検出してもよい。   In the Brillouin gain spectrum measurement method of the present invention, in the control procedure, the voltage value corresponding to the frequency of the light reception signal of the combined light is smoothed, and the difference between the smoothed voltage value and the reference voltage value is detected. Also good.

本願発明のブリルアンゲインスペクトル測定方法では、前記制御手順において、前記第1の連続発振光と前記第2の連続発振光との位相差に応じて、前記参照電圧値を時間的に変化させてもよい。   In the Brillouin gain spectrum measurement method of the present invention, in the control procedure, the reference voltage value may be changed with time in accordance with the phase difference between the first continuous wave light and the second continuous wave light. Good.

本発明によれば、SSB変調器などの高価な光周波数シフタ及び遅延ファイバを必要としないブリルアンゲインスペクトル測定装置及び方法を提供することができる。   According to the present invention, it is possible to provide a Brillouin gain spectrum measurement apparatus and method that does not require an expensive optical frequency shifter such as an SSB modulator and a delay fiber.

実施形態1に係るブリルアンゲインスペクトル測定装置の一例を示す。1 shows an example of a Brillouin gain spectrum measuring apparatus according to a first embodiment. プローブ光とポンプ光の一例を示す。An example of probe light and pump light is shown. ブリルアン散乱現象の生じる相関ピークの位置の一例を示す。An example of the position of the correlation peak where the Brillouin scattering phenomenon occurs is shown. 位相差Δφに対する第2の光検出器からの出力信号例を示す。An example of an output signal from the second photodetector with respect to the phase difference Δφ is shown. 周波数弁別器の周波数−電圧変換特性の一例を示す。An example of the frequency-voltage conversion characteristic of a frequency discriminator is shown. 位相差Δφの制御形態の第2例を備える実施形態1に係るブリルアンゲインスペクトル測定装置の一例を示す。An example of the Brillouin gain spectrum measuring apparatus which concerns on Embodiment 1 provided with the 2nd example of the control form of phase difference (DELTA) phi is shown. 実施形態2に係るブリルアンゲインスペクトル測定装置の一例を示す。An example of the Brillouin gain spectrum measuring apparatus which concerns on Embodiment 2 is shown. 位相差制御部から位相差Δφを取得する場合の実施形態2に係るブリルアンゲインスペクトル測定装置の一例を示す。An example of the Brillouin gain spectrum measuring apparatus according to the second embodiment when acquiring the phase difference Δφ from the phase difference control unit will be described. 位相差Δφの制御形態の第2例を備える実施形態2に係るブリルアンゲインスペクトル測定装置の一例を示す。An example of the Brillouin gain spectrum measuring apparatus which concerns on Embodiment 2 provided with the 2nd example of the control form of phase difference (DELTA) phi is shown. 位相差Δφの制御形態の第2例を備え位相差制御部から位相差Δφを取得する場合の実施形態2に係るブリルアンゲインスペクトル測定装置の一例を示す。An example of the Brillouin gain spectrum measuring apparatus according to the second embodiment in the case where the second example of the control form of the phase difference Δφ is provided and the phase difference Δφ is obtained from the phase difference control unit will be described. 周波数弁別器の構成の一例を示す。An example of a structure of a frequency discriminator is shown.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図1に、本実施形態に係るブリルアンゲインスペクトル測定装置の一例を示す。本実施形態に係るブリルアンゲインスペクトル測定装置は、第1の光源1と、第2の光源2と、位相差制御部3と、第1の光分岐部12と、第2の光分岐部13と、第3の光分岐部16と、第1の光検出器17と、光合波部14と、第2の光検出器15と、周波数弁別器21と、LPF(Low Pass Filter)22と、オフセット周波数設定部24と、参照電圧発生部23と、減算器26と、を備える。第1の光検出器17及び第2の光検出器15は、例えば、PD(Photo Diode)である。また、ブリルアンゲインスペクトル測定方法は、光出力手順と、受光手順と、制御手順と、を順に有する。
(Embodiment 1)
FIG. 1 shows an example of a Brillouin gain spectrum measuring apparatus according to this embodiment. The Brillouin gain spectrum measuring apparatus according to the present embodiment includes a first light source 1, a second light source 2, a phase difference control unit 3, a first light branching unit 12, and a second light branching unit 13. The third optical branching unit 16, the first optical detector 17, the optical multiplexing unit 14, the second optical detector 15, the frequency discriminator 21, the LPF (Low Pass Filter) 22, and the offset A frequency setting unit 24, a reference voltage generation unit 23, and a subtractor 26 are provided. The first photodetector 17 and the second photodetector 15 are, for example, PD (Photo Diode). In addition, the Brillouin gain spectrum measurement method includes a light output procedure, a light receiving procedure, and a control procedure in this order.

光出力手順では、第1の連続発振光と第2の連続発振光を、位相差を変化させながら出力する。具体的には、以下のように動作する。
第1の光源1は、所定の変調周波数で周波数変調された中心周波数ν1の第1の連続発振光(以下、プローブ光と記載する。)を出力する。第2の光源2は、所定の変調周波数で周波数変調された中心周波数ν2の第2の連続発振光有する第2の連続発振光(以下、ポンプ光と記載する。)を出力する。中心周波数ν1は中心周波数ν2よりも低く、これらの差はブリルアン周波数シフトに相当する。なお、周波数変調と位相変調は等価な技術であるので、ここでいう周波数変調とは位相変調の技術も含む。
In the light output procedure, the first continuous wave light and the second continuous wave light are output while changing the phase difference. Specifically, it operates as follows.
The first light source 1 outputs first continuous wave light (hereinafter, referred to as probe light) having a center frequency ν1 frequency-modulated with a predetermined modulation frequency. The second light source 2 outputs a second continuous wave light (hereinafter referred to as pump light) having a second continuous wave light having a center frequency ν2 that is frequency-modulated with a predetermined modulation frequency. The center frequency ν1 is lower than the center frequency ν2, and these differences correspond to the Brillouin frequency shift. Since frequency modulation and phase modulation are equivalent techniques, the term “frequency modulation” herein includes phase modulation techniques.

本実施形態では、第1の光源1はLD51と発振器52を備え、第2の光源2はLD53と発振器54を備える。LD51は、中心周波数ν1の連続発振光を発生する。発振器52は、LD51に周波数変調するための信号を与える。これにより、LD51は、発振器52からの信号に応じてν1を中心周波数とする周波数変調されたプローブ光を出力する。LD53は、中心周波数ν2の連続発振光を発生する。発振器54は、LD53に周波数変調するための信号を与える。これにより、LD53は、発振器54からの信号に応じてν2を中心周波数とする周波数変調されたポンプ光を出力する。このように、本実施形態では、第1の光源1及び第2の光源2を直接変調することで、所望の中心周波数差を持った周波数変調光を得る。これにより、高価なSSB変調器とその専用ドライバを不要にすることができる。   In the present embodiment, the first light source 1 includes an LD 51 and an oscillator 52, and the second light source 2 includes an LD 53 and an oscillator 54. The LD 51 generates continuous wave light having a center frequency ν1. The oscillator 52 gives a signal for frequency modulation to the LD 51. As a result, the LD 51 outputs frequency-modulated probe light having a center frequency ν 1 in accordance with the signal from the oscillator 52. The LD 53 generates continuous wave light having a center frequency ν2. The oscillator 54 gives a signal for frequency modulation to the LD 53. As a result, the LD 53 outputs frequency-modulated pump light having ν2 as the center frequency in accordance with the signal from the oscillator 54. As described above, in the present embodiment, the first light source 1 and the second light source 2 are directly modulated to obtain frequency-modulated light having a desired center frequency difference. This eliminates the need for an expensive SSB modulator and its dedicated driver.

図2に、プローブ光とポンプ光の一例を示す。中心周波数ν1と中心周波数ν2の差Δνは、ブリルアン散乱現象が生じる周波数差であり、例えば、10数GHzである。発振器52と発振器54は、同じ周波数の信号を発生する。発振器52からの信号と発振器54からの信号は、位相差制御部3から指定された位相差Δφを有する。ポンプ光とプローブ光を被測定ファイバの一端と他端から対向して入射すると光ファイバ中で両光の位相が同期する位置で相関が高まり(相関ピーク)、周波数差Δνとその位置におけるブルリアンゲインスペクトルの重なりに応じてブリルアン散乱現象によってポンプ光からプローブ光へ光ファイバ中の音響波を介してパワーが移動する。ここで、位相差制御部3が位相差Δφを変化させることで、図3に示すように、ポンプ光とプローブ光の相関ピークの位置Lを、破線の位置から実線の位置へ移動することができる。位相を変化させるのは、発振器52からの駆動信号であってもよいし、発振器54からの駆動信号であってもよいし、これらの両方であってもよい。このように、本実施形態では、遅延ファイバを用いることなく相関ピークの位置Lを掃引するため、遅延ファイバが不要であり、これにより装置の小型化が可能になる。   FIG. 2 shows an example of probe light and pump light. The difference Δν between the center frequency ν1 and the center frequency ν2 is a frequency difference in which the Brillouin scattering phenomenon occurs, and is, for example, 10 GHz. The oscillator 52 and the oscillator 54 generate signals having the same frequency. The signal from the oscillator 52 and the signal from the oscillator 54 have a phase difference Δφ designated by the phase difference control unit 3. When pump light and probe light are incident from one end and the other end of the measured fiber, the correlation increases at the position where the phases of the two lights are synchronized in the optical fiber (correlation peak), and the frequency difference Δν and the bullian at that position The power moves from the pump light to the probe light via the acoustic wave in the optical fiber by the Brillouin scattering phenomenon according to the overlap of the gain spectrum. Here, when the phase difference control unit 3 changes the phase difference Δφ, the correlation peak position L between the pump light and the probe light can be moved from the broken line position to the solid line position as shown in FIG. it can. The phase may be changed by a driving signal from the oscillator 52, a driving signal from the oscillator 54, or both of them. As described above, in this embodiment, since the correlation peak position L is swept without using a delay fiber, a delay fiber is not required, and this allows downsizing of the apparatus.

受光手順では、プローブ光を分岐した一方を被測定光ファイバ6の一端に入射し、ポンプ光を分岐した一方を被測定光ファイバ6の他端に入射し、被測定光ファイバ6の他端から出力されるプローブ光及びポンプ光の散乱光を第1の光検出器17を用いて受光するとともに、プローブ光を分岐した他方とポンプ光を分岐した他方を合波した合波光を第2の光検出器15を用いて受光する。具体的には、以下のように動作する。   In the light receiving procedure, one of the branched probe lights is incident on one end of the measured optical fiber 6, the one of the branched pump light is incident on the other end of the measured optical fiber 6, and the other end of the measured optical fiber 6 is The scattered light of the output probe light and pump light is received using the first photodetector 17 and the combined light obtained by combining the other branched probe light and the other branched pump light is the second light. Light is received using the detector 15. Specifically, it operates as follows.

第1の光分岐部12は、プローブ光を分岐する。プローブ光の一方は被測定光ファイバ6の一端に入射され、プローブ光の他方は光合波部14に入射される。第2の光分岐部13は、ポンプ光を分岐する。ポンプ光の一方は第3の光分岐部16に入射され、ポンプ光の他方は光合波部14に入射される。第3の光分岐部16は、第2の光分岐部13からのポンプ光を被測定光ファイバ6の他端に入射し、被測定光ファイバ6を通過したプローブ光と、プローブ光及びポンプ光の散乱光と、を第1の光検出器17に出力する。第1の光検出器17は、第3の光分岐部16からの光を受光する。これによってプローブ光とポンプ光の相関ピークの位置においてブリルアン散乱現象によってポンプ光からプローブ光へ移動したパワーを観測することができる。プローブ光又はポンプ光の中心周波数を変化させ、中心周波数差Δνを少なくともブリルアン周波数シフトを含むようにブリルアンゲイン帯域内を変化させることで、ブリルアンゲインスペクトルを測定することができる。   The first light branching unit 12 branches the probe light. One of the probe lights is incident on one end of the optical fiber 6 to be measured, and the other of the probe lights is incident on the optical multiplexing unit 14. The second light branching unit 13 branches the pump light. One of the pump lights is incident on the third optical branching section 16, and the other of the pump lights is incident on the optical multiplexing section 14. The third optical branching unit 16 makes the pump light from the second optical branching unit 13 incident on the other end of the optical fiber to be measured 6, the probe light that has passed through the optical fiber to be measured 6, the probe light, and the pump light. Are output to the first photodetector 17. The first photodetector 17 receives light from the third light branching unit 16. Thereby, the power moved from the pump light to the probe light by the Brillouin scattering phenomenon at the position of the correlation peak between the probe light and the pump light can be observed. The Brillouin gain spectrum can be measured by changing the center frequency of the probe light or the pump light and changing the center frequency difference Δν in the Brillouin gain band so as to include at least the Brillouin frequency shift.

光合波部14は、プローブ光とポンプ光を合波する。第2の光検出器15は、合波光を受光する。これにより、第2の光検出器15から、プローブ光とポンプ光の合波によるビート信号を出力する。   The optical multiplexing unit 14 combines the probe light and the pump light. The second photodetector 15 receives the combined light. As a result, a beat signal obtained by combining the probe light and the pump light is output from the second photodetector 15.

制御手順では、設定された参照電圧値と前記合波光の受光信号の周波数に応じた周波数弁別器からの出力電圧値との差を検出し、検出した当該電圧差が小さくなるように、プローブ光又はポンプ光の中心周波数を変化させる。具体的には、以下のように動作する。   In the control procedure, the probe light is detected so that the difference between the set reference voltage value and the output voltage value from the frequency discriminator corresponding to the frequency of the light reception signal of the combined light is detected, and the detected voltage difference is reduced. Alternatively, the center frequency of the pump light is changed. Specifically, it operates as follows.

オフセット周波数設定部24は、ブリルアンゲインスペクトルを測定するに当たり、観測したい中心周波数差Δνに等しい周波数を設定する。参照電圧発生部23は、オフセット周波数設定部24から設定された値の参照電圧を発生する。参照電圧発生部23が設定された周波数に対して発生する電圧値は、周波数弁別器21と等しくする。周波数弁別器21は、第2の光検出器15から出力される受光信号の周波数を電圧値に変換する。LPF22は、周波数弁別器21からの出力電圧値Vを平滑化する。減算器26は、遮断周波数が周波数変調の変調周波数より低く設定されたLPF22からの電圧値と参照電圧発生部23からの参照電圧値Vの差を出力する。これにより、出力されているプローブ光とポンプ光の中心周波数差Δνと所望の設定した中心周波数差Δνとのずれを検出することができる。 In measuring the Brillouin gain spectrum, the offset frequency setting unit 24 sets a frequency equal to the center frequency difference Δν to be observed. The reference voltage generator 23 generates a reference voltage having a value set by the offset frequency setting unit 24. The voltage value generated with respect to the frequency set by the reference voltage generator 23 is made equal to the frequency discriminator 21. The frequency discriminator 21 converts the frequency of the light reception signal output from the second photodetector 15 into a voltage value. The LPF 22 smoothes the output voltage value V B from the frequency discriminator 21. The subtractor 26 outputs the difference between the voltage value from the LPF 22 in which the cutoff frequency is set lower than the modulation frequency of the frequency modulation and the reference voltage value V S from the reference voltage generator 23. As a result, it is possible to detect a deviation between the center frequency difference Δν between the probe light and the pump light being output and a desired center frequency difference Δν.

周波数弁別器21を簡易的に構成した例を図11に示す。光検出器15から出力されるビート信号の周波数がフィルタ特性のスロープ部にあたる透過特性を持つHPF(High Pass Filter)56と、前記HPF56を通過するビート信号の電力を電圧値に変換する検波器57と、により構成される。これにより光検出器15から出力されるビート信号の周波数に応じて変化する電圧値を得ることができる。フィルタ特性のスロープ部を利用しているだけなのでここで用いられるフィルタはHPFに限らずLPF等であってもよい。また、光検出器15から出力されるビート信号の振幅値の変動も検波器57から出力される電圧値に影響を与えるが、この影響はHPF56へ入力する前のビート信号の電力を別途検波器等によりモニタしておき、検波器57からの出力電圧値を補正することで取り除くことが可能である。   An example in which the frequency discriminator 21 is simply configured is shown in FIG. An HPF (High Pass Filter) 56 having a transmission characteristic in which the frequency of the beat signal output from the photodetector 15 corresponds to the slope portion of the filter characteristic, and a detector 57 for converting the power of the beat signal passing through the HPF 56 into a voltage value. And composed of As a result, a voltage value that changes in accordance with the frequency of the beat signal output from the photodetector 15 can be obtained. Since only the slope portion of the filter characteristics is used, the filter used here is not limited to HPF but may be LPF or the like. In addition, the fluctuation of the amplitude value of the beat signal output from the photodetector 15 also affects the voltage value output from the detector 57. This influence causes the power of the beat signal before being input to the HPF 56 to be separately detected. It can be removed by correcting the output voltage value from the detector 57 in advance by monitoring the signal.

第2の光源2は、減算器26からの出力信号を受け、当該出力信号が小さくなるように、中心周波数を変化させる。これにより、プローブ光とポンプ光の中心周波数差Δνを所望の周波数差に安定させ、ブリルアンゲインスペクトルの測定精度を高めることができる。なお、中心周波数を変化させる光源は、第2の光源2に限らず第1の光源1であってもよい。   The second light source 2 receives the output signal from the subtractor 26 and changes the center frequency so that the output signal becomes small. As a result, the center frequency difference Δν between the probe light and the pump light can be stabilized at a desired frequency difference, and the measurement accuracy of the Brillouin gain spectrum can be increased. The light source for changing the center frequency is not limited to the second light source 2 but may be the first light source 1.

ここで、本実施形態では、プローブ光とポンプ光の位相差Δφを位相差制御部15により変化している。このとき、図4に示すように、位相差Δφによっては光検出器15から出力されるビート信号の周波数は一定でなく時間的に変化し、その変化の仕方は位相差Δφにより異なる。これに伴い、周波数弁別器21からの出力電圧値Vも、図5に示すように時間変動する。そこで、制御手順において、周波数弁別器21からの出力電圧値Vを平滑化する。これにより、プローブ光とポンプ光の位相差Δφを掃引した場合であっても、プローブ光とポンプ光の中心周波数差Δνと所望の設定した中心周波数差Δνとのずれを検出することができる。 Here, in this embodiment, the phase difference Δφ between the probe light and the pump light is changed by the phase difference control unit 15. At this time, as shown in FIG. 4, the frequency of the beat signal output from the photodetector 15 is not constant depending on the phase difference Δφ and changes with time, and the manner of the change varies depending on the phase difference Δφ. Accordingly, the output voltage value V B from the frequency discriminator 21 also varies with time as shown in FIG. Therefore, in the control procedure, the output voltage value V B from the frequency discriminator 21 is smoothed. Thus, even when the phase difference Δφ between the probe light and the pump light is swept, it is possible to detect a deviation between the center frequency difference Δν between the probe light and the pump light and a desired set center frequency difference Δν.

以上の手順を実行することで、中心周波数の周波数差Δνを所望の値に安定化することができ、ブリルアンゲインスペクトルのうち、中心周波数ν1と中心周波数ν2の差が特定の値のときの成分を観測することができる。オフセット周波数設定部19は、設定周波数を少なくともブリルアン周波数シフトを含むようにブリルアンゲイン帯域内を掃引する。これによって、中心周波数ν2を掃引し、ブリルアンゲインスペクトルの測定が完了する。   By executing the above procedure, the frequency difference Δν of the center frequency can be stabilized to a desired value, and the component when the difference between the center frequency ν1 and the center frequency ν2 is a specific value in the Brillouin gain spectrum. Can be observed. The offset frequency setting unit 19 sweeps the set frequency in the Brillouin gain band so as to include at least the Brillouin frequency shift. Thereby, the center frequency ν2 is swept and the measurement of the Brillouin gain spectrum is completed.

以上説明したように、本実施形態に係るブリルアンゲインスペクトル測定装置は、参照電圧発生部23の発生電圧を変化させることで周波数差Δνを変え、ブリルアンゲインスペクトルの測定を行う。また、変調信号の位相差Δφを変化させることで、測定位置Lの掃引を行う。また、変調信号の位相差により発生する周波数の変化による周波数弁別器からの出力電圧値を平滑化し、参照電圧値との差が小さくなるように帰還制御を行うことで、中心周波数の周波数差Δνを所望の周波数差に安定化する。   As described above, the Brillouin gain spectrum measurement apparatus according to the present embodiment changes the frequency difference Δν by changing the voltage generated by the reference voltage generator 23 and measures the Brillouin gain spectrum. Further, the measurement position L is swept by changing the phase difference Δφ of the modulation signal. Also, by smoothing the output voltage value from the frequency discriminator due to the frequency change caused by the phase difference of the modulation signal and performing feedback control so that the difference from the reference voltage value is small, the frequency difference Δν of the center frequency To the desired frequency difference.

なお、本実施形態では、中心周波数ν2にフィードバックすることで帰還制御を行ったが、中心周波数ν1にフィードバックすることで帰還制御を行ってもよい。   In the present embodiment, feedback control is performed by feeding back to the center frequency ν2. However, feedback control may be performed by feeding back to the center frequency ν1.

また、本実施形態に係るブリルアンゲインスペクトル測定装置は、発振器2及び発振器54に代えて、図6に示すように、発振器と移相器55を備えてもよい。発振器52は、LD51とLD53の両方に周波数変調を加えるための信号を与える。移相器55は、位相差制御部3から指定された位相差Δφが入力され、発振器52からの駆動信号の位相を位相差Δφに応じて変化させる。本構成を採用することにより、変調周波数のずれのないプローブ光とポンプ光を発生させることができる。   Further, the Brillouin gain spectrum measuring apparatus according to the present embodiment may include an oscillator and a phase shifter 55 as shown in FIG. 6 instead of the oscillator 2 and the oscillator 54. The oscillator 52 provides a signal for applying frequency modulation to both the LD 51 and the LD 53. The phase shifter 55 receives the phase difference Δφ designated from the phase difference control unit 3 and changes the phase of the drive signal from the oscillator 52 according to the phase difference Δφ. By adopting this configuration, it is possible to generate probe light and pump light with no deviation in modulation frequency.

(実施形態2)
図7に、本実施形態に係るブリルアンゲインスペクトル測定装置の一例を示す。本実施形態に係るブリルアンゲインスペクトル測定装置は、実施形態1で説明したLPF22に代えて、光源制御部11及び補正部25を備える。そして、本実施形態では、制御手順において、位相差Δφの変化に合わせて変化させた参照電圧値Vと周波数弁別器21からの出力信号Vとの差を算出する。
(Embodiment 2)
FIG. 7 shows an example of a Brillouin gain spectrum measuring apparatus according to this embodiment. The Brillouin gain spectrum measurement apparatus according to the present embodiment includes a light source control unit 11 and a correction unit 25 instead of the LPF 22 described in the first embodiment. In this embodiment, in the control procedure, the difference between the reference voltage value V S changed in accordance with the change in the phase difference Δφ and the output signal V B from the frequency discriminator 21 is calculated.

位相差Δφに対する光検出器15からの出力信号波形を求めておく。これは光検出器15から出力されるビート信号から実際に求めてもよいし、位相差を持った周波数変調光の合波として演算により求めてもよい。そして、補正部25は、光源制御部11から位相差Δφが入力されると、オフセット周波数設定部24の設定した周波数の値を、位相差Δφのときに光検出器15から出力される信号と同期して同じ周波数変化幅で周波数が変化する値となるように位相差Δφに応じて時間変化させる。参照電圧発生部23は、補正部25から入力された中心周波数差Δνに応じた直流電圧値成分を持ちかつ位相差Δφに応じて時間変化する電圧値を有する参照電圧値を発生する。減算器26が、参照電圧発生部23からの参照電圧値Vと周波数弁別器21からの出力信号Vとの差を算出する。これにより、プローブ光とポンプ光の位相差Δφを掃引した場合であっても、位相差Δφにより生じる周波数弁別器の出力電圧値の時間的変化分は相殺されるためプローブ光とポンプ光の中心周波数差Δνと所望の設定した中心周波数差Δνとのずれを正しく検出することができる。 The output signal waveform from the photodetector 15 with respect to the phase difference Δφ is obtained in advance. This may be actually obtained from the beat signal output from the light detector 15 or may be obtained by calculation as a combination of frequency modulated light having a phase difference. Then, when the phase difference Δφ is input from the light source control unit 11, the correction unit 25 uses the frequency value set by the offset frequency setting unit 24 as a signal output from the photodetector 15 when the phase difference Δφ. The time is changed in accordance with the phase difference Δφ so that the frequency changes with the same frequency change width in synchronization. The reference voltage generation unit 23 generates a reference voltage value having a DC voltage value component corresponding to the center frequency difference Δν input from the correction unit 25 and having a voltage value that changes with time according to the phase difference Δφ. The subtractor 26 calculates the difference between the reference voltage value V S from the reference voltage generator 23 and the output signal V B from the frequency discriminator 21. As a result, even when the phase difference Δφ between the probe light and the pump light is swept, the temporal change in the output voltage value of the frequency discriminator caused by the phase difference Δφ is canceled out. The deviation between the frequency difference Δν and the desired center frequency difference Δν can be detected correctly.

本実施形態では、位相差Δφに対する補正をオフセット周波数設定部からの周波数設定値に補正をおこなうことで実現しているが、例えば補正部をオフセット周波数設定部と参照電圧発生部の間ではなく、参照電圧発生部と減算器の間に配置し、参照電圧発生部からの参照電圧値に直接同様な補正を行う構成とすることでも可能である。   In the present embodiment, correction for the phase difference Δφ is realized by correcting the frequency setting value from the offset frequency setting unit, but for example, the correction unit is not between the offset frequency setting unit and the reference voltage generation unit, It is also possible to arrange between the reference voltage generator and the subtractor so that the same correction is made directly on the reference voltage value from the reference voltage generator.

補正部25は、プローブ光とポンプ光の位相差Δφを取得する必要がある。そこで、本実施形態では、光源制御部11を備える。光源制御部11は、ブリルアンゲインスペクトルを測定する被測定光ファイバ中のピークの位置Lに合わせて位相差Δφを決定し、位相差制御部3及び補正部25へ出力する。なお、補正部25は、図8に示すように、位相差制御部3から位相差Δφを取得しても良い。   The correcting unit 25 needs to acquire the phase difference Δφ between the probe light and the pump light. Therefore, the light source control unit 11 is provided in the present embodiment. The light source control unit 11 determines the phase difference Δφ according to the peak position L in the optical fiber to be measured for measuring the Brillouin gain spectrum, and outputs the phase difference Δφ to the phase difference control unit 3 and the correction unit 25. Note that the correction unit 25 may acquire the phase difference Δφ from the phase difference control unit 3 as illustrated in FIG. 8.

また、本実施形態に係るブリルアンゲインスペクトル測定装置は、発振器52及び発振器54に代えて、図9及び図10に示すように、発振器52と移相器55を備えてもよい。発振器52は、LD51とLD53の両方に周波数変調を加えるための信号を与える。移相器55は、位相差制御部3から指定された位相差Δφが入力され、発振器52からの信号の位相を位相差Δφに応じて変化させる。本構成を採用することにより、変調周波数のずれのないプローブ光とポンプ光を発生させることができる。   The Brillouin gain spectrum measuring apparatus according to this embodiment may include an oscillator 52 and a phase shifter 55 as shown in FIGS. 9 and 10 instead of the oscillator 52 and the oscillator 54. The oscillator 52 provides a signal for applying frequency modulation to both the LD 51 and the LD 53. The phase shifter 55 receives the phase difference Δφ designated from the phase difference control unit 3 and changes the phase of the signal from the oscillator 52 according to the phase difference Δφ. By adopting this configuration, it is possible to generate probe light and pump light with no deviation in modulation frequency.

以上説明したように、本実施形態に係るブリルアンゲインスペクトル測定装置は、参照電圧値Vを変化させることで周波数差Δνを変え、ブリルアンゲインスペクトルの測定を行う。また、変調信号の位相差Δφを変化させることで、測定位置Lの掃引を行う。変調信号の位相差により発生する周波数の変化分を予め参照電圧発生部23に与えてから参照電圧値Vと出力信号Vとの比較を行い、差が小さくなるように帰還制御を行うことで、中心周波数の周波数差Δνを所望の周波数差に安定化する。 As described above, the Brillouin gain spectrum measuring apparatus according to the present embodiment changes the frequency difference Δν by changing the reference voltage value V S and measures the Brillouin gain spectrum. Further, the measurement position L is swept by changing the phase difference Δφ of the modulation signal. A reference voltage value V S is compared with the output signal V B after a change in frequency generated by the phase difference of the modulation signal is given to the reference voltage generation unit 23 in advance, and feedback control is performed so that the difference becomes small. Thus, the frequency difference Δν of the center frequency is stabilized to a desired frequency difference.

なお、本実施形態では、中心周波数ν2にフィードバックすることで帰還制御を行ったが、中心周波数ν1にフィードバックすることで帰還制御を行ってもよい。   In the present embodiment, feedback control is performed by feeding back to the center frequency ν2. However, feedback control may be performed by feeding back to the center frequency ν1.

本発明は情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

1:第1の光源
2:第2の光源
3:位相差制御部
4:オフセット周波数設定部
6:被測定光ファイバ
7:発振器
9:LPF
10:補正部
12:第1の光分岐部
13:第2の光分岐部
14:光合波部
15:第2の光検出部
16:第3の光分岐部
17:第1の光検出部
21:周波数弁別器
22:LPF
23:参照電圧発生部
24:オフセット周波数設定部
25:補正部
26:減算器
51、53:LD
52、54:発振器
55:移相器
56:HPF
57:検波器
1: First light source 2: Second light source 3: Phase difference control unit 4: Offset frequency setting unit 6: Optical fiber to be measured 7: Oscillator 9: LPF
10: Correction unit 12: First optical branching unit 13: Second optical branching unit 14: Optical multiplexing unit 15: Second optical detection unit 16: Third optical branching unit 17: First optical detection unit 21 : Frequency discriminator 22: LPF
23: Reference voltage generator 24: Offset frequency setting unit 25: Correction unit 26: Subtractor 51, 53: LD
52, 54: Oscillator 55: Phase shifter 56: HPF
57: Detector

Claims (6)

所定の変調周波数で周波数変調された第1の連続発振光を出力する第1の光源(1)と、
前記所定の変調周波数で周波数変調されかつ前記第1の連続発振光と所定の中心周波数差を有する第2の連続発振光を出力する第2の光源(2)と、
前記第1の連続発振光と前記第2の連続発振光の位相差を変化させる位相差制御部(3)と、
前記第1の連続発振光を分岐し、その一方を被測定光ファイバの一端へ入射する第1の光分岐部(12)と、
前記第2の連続発振光を分岐する第2の光分岐部(13)と、
前記第2の光分岐部で分岐された前記第2の連続発振光の一方を前記被測定光ファイバの他端に入射し、前記被測定光ファイバの前記他端から出力される前記第1の連続発振光及び前記第2の連続発振光の散乱光を導く第3の光分岐部(16)と、
前記第3の光分岐部で導かれた光を受光する第1の光検出器(17)と、
前記第1の光分岐部で分岐された前記第1の連続発振光の他方と前記第2の光分岐部で分岐された前記第2の連続発振光の他方を合波する光合波部(14)と、
前記光合波部からの合波光を受光する第2の光検出器(15)と、
前記第2の光検出器からの出力信号の周波数に応じた電圧値を出力する周波数弁別器(21)と、
設定された参照電圧値と前記周波数弁別器の出力する電圧値との差に応じた電圧を出力する減算器(26)と、を備え、
前記第1の光源又は前記第2の光源は、前記減算器の出力する電圧値が小さくなるように、中心周波数を変化させることを特徴とするブリルアンゲインスペクトル測定装置。
A first light source (1) for outputting a first continuous wave light frequency-modulated at a predetermined modulation frequency;
A second light source (2) that outputs a second continuous wave light that is frequency-modulated at the predetermined modulation frequency and has a predetermined center frequency difference from the first continuous wave light;
A phase difference control unit (3) for changing a phase difference between the first continuous wave light and the second continuous wave light;
A first light branching section (12) for branching the first continuous wave light, one of which is incident on one end of the optical fiber to be measured;
A second light branching section (13) for branching the second continuous wave light;
One of the second continuous wave lights branched by the second light branching unit is incident on the other end of the optical fiber to be measured, and is output from the other end of the optical fiber to be measured. A third light branching section (16) for guiding continuous wave light and scattered light of the second continuous wave light;
A first photodetector (17) for receiving the light guided by the third optical branch;
An optical multiplexing unit (14) that multiplexes the other of the first continuous wave light branched by the first optical branching unit and the other of the second continuous wave light branched by the second optical branching unit. )When,
A second photodetector (15) for receiving the combined light from the optical combining unit;
A frequency discriminator (21) for outputting a voltage value corresponding to the frequency of the output signal from the second photodetector;
A subtractor (26) for outputting a voltage corresponding to a difference between a set reference voltage value and a voltage value output from the frequency discriminator,
The Brillouin gain spectrum measuring apparatus, wherein the first light source or the second light source changes a center frequency so that a voltage value output from the subtractor becomes small.
前記周波数弁別器からの出力信号を平滑化するLPF(22)を備え、
前記減算器は、前記参照電圧値と前記LPFの平滑化した電圧値との差に応じた電圧を出力することを特徴とする請求項1に記載のブリルアンゲインスペクトル測定装置。
Comprising an LPF (22) for smoothing the output signal from the frequency discriminator;
2. The Brillouin gain spectrum measurement apparatus according to claim 1, wherein the subtracter outputs a voltage corresponding to a difference between the reference voltage value and a smoothed voltage value of the LPF.
前記位相差制御部が変化させる前記第1の連続発振光と前記第2の連続発振光との位相差に応じて、前記参照電圧値を時間的に変化させる補正部(10)をさらに備えることを特徴とする請求項1に記載のブリルアンゲインスペクトル測定装置。   A correction unit (10) that temporally changes the reference voltage value according to a phase difference between the first continuous wave light and the second continuous wave light that are changed by the phase difference control unit; The Brillouin gain spectrum measuring apparatus according to claim 1. 所定の変調周波数で周波数変調された所定の中心周波数差をもつ第1の連続発振光と第2の連続発振光を、前記第1の連続発振光と前記第2の連続発振光の位相差を変化させながら出力する光出力手順と、
前記第1の連続発振光を分岐した一方を被測定光ファイバ(6)の一端に入射し、前記第2の連続発振光を分岐した一方を前記被測定光ファイバの他端に入射し、前記被測定光ファイバの前記他端から出力される前記第1の連続発振光及び前記第2の連続発振光の散乱光を受光するとともに、前記第1の連続発振光を分岐した他方と前記第2の連続発振光を分岐した他方を合波した合波光を受光する受光手順と、
設定された参照電圧値と前記合波光の受光信号の周波数に応じた電圧値との差を検出し、検出した当該電圧差が小さくなるように、前記第1の連続発振光又は前記第2の連続発振光の中心周波数を変化させる制御手順と、
を順に有するブリルアンゲインスペクトル測定方法。
The first continuous wave light and the second continuous wave light having a predetermined center frequency difference frequency-modulated at a predetermined modulation frequency, and the phase difference between the first continuous wave light and the second continuous wave light. Light output procedure to output while changing,
One branching the first continuous wave light is incident on one end of the optical fiber to be measured (6), one branching the second continuous wave light is incident on the other end of the optical fiber to be measured, The scattered light of the first continuous wave light and the second continuous wave light output from the other end of the optical fiber to be measured is received, and the other of the first continuous wave light and the second are branched. A light receiving procedure for receiving the combined light obtained by combining the other of the continuous oscillation light and the other,
A difference between the set reference voltage value and a voltage value corresponding to the frequency of the light reception signal of the combined light is detected, and the first continuous wave light or the second second light is reduced so that the detected voltage difference becomes small. A control procedure for changing the center frequency of the continuous wave light;
The Brillouin gain spectrum measurement method which has these in order.
前記制御手順において、前記合波光の受光信号の周波数に応じた電圧値を平滑化し、当該平滑化した電圧値と前記参照電圧値との差を検出することを特徴とする請求項4に記載のブリルアンゲインスペクトル測定方法。   5. The control procedure according to claim 4, wherein in the control procedure, a voltage value corresponding to a frequency of a light reception signal of the combined light is smoothed, and a difference between the smoothed voltage value and the reference voltage value is detected. Brillouin gain spectrum measurement method. 前記制御手順において、前記第1の連続発振光と前記第2の連続発振光との位相差に応じて、前記参照電圧値を時間的に変化させることを特徴とする請求項4に記載のブリルアンゲインスペクトル測定方法。   5. The Brillouin according to claim 4, wherein, in the control procedure, the reference voltage value is temporally changed according to a phase difference between the first continuous wave light and the second continuous wave light. Gain spectrum measurement method.
JP2012062470A 2012-03-19 2012-03-19 Device and method for measuring brillouin gain spectrum Pending JP2013195225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012062470A JP2013195225A (en) 2012-03-19 2012-03-19 Device and method for measuring brillouin gain spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012062470A JP2013195225A (en) 2012-03-19 2012-03-19 Device and method for measuring brillouin gain spectrum

Publications (1)

Publication Number Publication Date
JP2013195225A true JP2013195225A (en) 2013-09-30

Family

ID=49394356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012062470A Pending JP2013195225A (en) 2012-03-19 2012-03-19 Device and method for measuring brillouin gain spectrum

Country Status (1)

Country Link
JP (1) JP2013195225A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104819741A (en) * 2015-04-24 2015-08-05 西南交通大学 Coherent brillouin light time domain analysis sensing system based on single-sideband modulation detection light
CN105910797A (en) * 2016-04-07 2016-08-31 南京航空航天大学 Optical device spectrum response measurement method and measurement device based on double sideband modulation and stimulated Brillouin scattering effect
WO2020166331A1 (en) * 2019-02-12 2020-08-20 日本電信電話株式会社 Device for measuring optical frequency reflection and measurement method thereof
CN111678601A (en) * 2020-07-21 2020-09-18 哈尔滨工业大学 Coherent spectrum analysis device and method based on optical fiber Brillouin scattering
CN111829657A (en) * 2020-07-21 2020-10-27 哈尔滨工业大学 Coherent spectrum analysis device and method based on optical fiber Rayleigh scattering

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104819741A (en) * 2015-04-24 2015-08-05 西南交通大学 Coherent brillouin light time domain analysis sensing system based on single-sideband modulation detection light
CN105910797A (en) * 2016-04-07 2016-08-31 南京航空航天大学 Optical device spectrum response measurement method and measurement device based on double sideband modulation and stimulated Brillouin scattering effect
CN105910797B (en) * 2016-04-07 2019-04-05 南京航空航天大学 Optical device measurement of spectral response method and measuring device based on double sideband modulation Yu stimulated Brillouin scattering effect
WO2020166331A1 (en) * 2019-02-12 2020-08-20 日本電信電話株式会社 Device for measuring optical frequency reflection and measurement method thereof
JP2020134143A (en) * 2019-02-12 2020-08-31 日本電信電話株式会社 Optical frequency reflection measurement device and measurement method thereof
US11463163B2 (en) 2019-02-12 2022-10-04 Nippon Telegraph And Telephone Corporation Device for measuring optical frequency reflection and measurement method thereof
JP7331373B2 (en) 2019-02-12 2023-08-23 日本電信電話株式会社 Optical frequency reflection measurement device and its measurement method
CN111678601A (en) * 2020-07-21 2020-09-18 哈尔滨工业大学 Coherent spectrum analysis device and method based on optical fiber Brillouin scattering
CN111829657A (en) * 2020-07-21 2020-10-27 哈尔滨工业大学 Coherent spectrum analysis device and method based on optical fiber Rayleigh scattering
CN111829657B (en) * 2020-07-21 2022-09-16 哈尔滨工业大学 Coherent spectrum analysis device and method based on optical fiber Rayleigh scattering
CN111678601B (en) * 2020-07-21 2022-09-27 哈尔滨工业大学 Coherent spectrum analysis device and method based on optical fiber Brillouin scattering

Similar Documents

Publication Publication Date Title
EP3139135B1 (en) Optical fiber characteristic measuring device
JP6705353B2 (en) Optical fiber strain and temperature measuring device
JP2013195225A (en) Device and method for measuring brillouin gain spectrum
JP5043714B2 (en) Optical fiber characteristic measuring apparatus and method
JP6308184B2 (en) Optical fiber strain measuring device and optical fiber strain measuring method
JP2012227640A (en) Optical transmission system and optical transmission method
WO2020084825A1 (en) Optical pulse testing device and optical pulse testing method
JP2019161246A (en) Digital coherent transmission system
JP6308183B2 (en) Optical fiber strain measuring device and optical fiber strain measuring method
JP4002934B2 (en) Scattered light measurement device
JP5412209B2 (en) Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus
KR100216595B1 (en) Laser line width measurement apparatus using stimulated brillouin scattering
EP4177573A1 (en) Optical fiber characteristic measurement device, optical fiber characteristic measurement program, and optical fiber characteristic measurement method
JP2008224394A (en) Optical heterodyne interference apparatus and method for measuring optical path-length difference therefor
JP2018169487A (en) Phase conjugate light generator and optical communication system, and phase conjugate light generation method
JP5334619B2 (en) Optical path length control device
JP5561679B2 (en) Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus
US10295328B2 (en) Method of calibrating interferometer and interferometer using the same
JP2013195224A (en) Device and method for measuring brillouin gain spectrum
JP2009115509A (en) Optical frequency domain reflection measuring method and device
JP2000329651A (en) Apparatus for measuring polarization mode dispersion
US7609385B2 (en) Method and apparatus for characterization of the response of optical devices
JP2001165808A (en) Measuring method of back-scattering light, and its apparatus
JP2019035724A (en) Optical fiber strain measurement device and optical fiber strain measurement method
JP2002071512A (en) Measuring device of dependency on chromatic dispersion and loss wavelength