JP2008224394A - Optical heterodyne interference apparatus and method for measuring optical path-length difference therefor - Google Patents

Optical heterodyne interference apparatus and method for measuring optical path-length difference therefor Download PDF

Info

Publication number
JP2008224394A
JP2008224394A JP2007062449A JP2007062449A JP2008224394A JP 2008224394 A JP2008224394 A JP 2008224394A JP 2007062449 A JP2007062449 A JP 2007062449A JP 2007062449 A JP2007062449 A JP 2007062449A JP 2008224394 A JP2008224394 A JP 2008224394A
Authority
JP
Japan
Prior art keywords
frequency
optical path
optical
light
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007062449A
Other languages
Japanese (ja)
Other versions
JP4586033B2 (en
Inventor
Koji Kawakita
浩二 川北
Shigeo Arai
茂雄 新井
Takao Tanimoto
隆生 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2007062449A priority Critical patent/JP4586033B2/en
Publication of JP2008224394A publication Critical patent/JP2008224394A/en
Application granted granted Critical
Publication of JP4586033B2 publication Critical patent/JP4586033B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To correctly perform phase measurements with respect to an object to be measured. <P>SOLUTION: This optical heterodyne interference apparatus divides light P emitted from a wavelength variable light source 11 into a first optical path L1 containing the object to be measured 1 and a second optical path L2 not containing the object 1 with an optical demultiplexer 12, makes a predetermined frequency difference between light having passed through the first path L1 and light having passed through the second path L2 by a frequency difference making means, combines those rays of light with an optical multiplexer 15, and finds the property of the object 1 on the basis of the output signal of a photoelectric transducer 16 which receives light emitted from the optical multiplexer 15. The apparatus is provided with an optical frequency sweeping means 31 for sweeping the frequency of the outgoing light of the light source 11 at a fixed speed; a frequency detection means 32 for detecting the frequency of a signal output from the photoelectric transducer 16 while the frequency of the light P is swept at the fixed speed; and an optical path length difference calculation means 33 for finding the difference between a frequency detected by the detection means 32 and the predetermined frequency, and based on the difference, calculating the difference ΔL in length between the first path L1 and the second path L2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光ヘテロダイン干渉装置において、被測定物に対する位相測定を正しく行えるようにするための技術に関する。   The present invention relates to a technique for correctly performing phase measurement on an object to be measured in an optical heterodyne interferometer.

光ファイバや光部品等の各種特性を求めるために、従来から図7に示す構成の光ヘテロダイン干渉装置10が用いられている。   Conventionally, an optical heterodyne interference device 10 having the configuration shown in FIG. 7 has been used to obtain various characteristics of optical fibers and optical components.

この光ヘテロダイン干渉装置10は、波長可変光源11から出射された周波数foの光Pを光分波器12で2分岐し、その一方の光Paを被測定物1を含む光路L1に出射し、他方の光Pbを被測定物1を含まない光路L2側に出射する。   This optical heterodyne interferometer 10 splits light P having a frequency fo emitted from a wavelength tunable light source 11 into two by an optical demultiplexer 12, and emits one light Pa to an optical path L1 including the device under test 1. The other light Pb is emitted to the optical path L2 side not including the DUT 1.

ここで、光路L2側には周波数シフタ13が挿入されている。周波数シフタ13は例えば音響光学型の素子からなり、信号発生器14から出力される所定周波数faの電気の駆動信号Eaを受けて、周波数foで入力された光Pbを周波数fo+faの光Pcに変換する。なお、この周波数シフタ13は光路L1側の被測定部1の前段あるいは後段に挿入されていてもよい。   Here, a frequency shifter 13 is inserted on the optical path L2 side. The frequency shifter 13 is composed of, for example, an acousto-optic element, receives an electric drive signal Ea having a predetermined frequency fa output from the signal generator 14, and converts the light Pb input at the frequency fo into light Pc having the frequency fo + fa. To do. The frequency shifter 13 may be inserted before or after the measured part 1 on the optical path L1 side.

そして、光路L1側で被測定物1から出射された光Pa′(以下、信号光と記す)と、光路L2の周波数シフタ13から出射された光Pc(以下、参照光と記す)は光合波器15で合波され、その合波光Pdが光電変換器16に入力されて、電気の信号Edに変換される。   The light Pa ′ (hereinafter referred to as signal light) emitted from the DUT 1 on the optical path L1 side and the light Pc (hereinafter referred to as reference light) emitted from the frequency shifter 13 in the optical path L2 are optically combined. The combined light Pd is input to the photoelectric converter 16 and converted into an electric signal Ed.

ここで、信号光Pa′の電界成分をEs、振幅をAs、周波数をfs、初期位相をφs、参照光Pcの電界成分をEr、振幅をAr、周波数をfr、初期位相をφrとすると、両光の電界成分は、次のように表される。   Here, if the electric field component of the signal light Pa ′ is Es, the amplitude is As, the frequency is fs, the initial phase is φs, the electric field component of the reference light Pc is Er, the amplitude is Ar, the frequency is fr, and the initial phase is φr, The electric field components of both lights are expressed as follows.

Es=As・cos(2πfst+φs)
Er=Ar・cos(2πfrt+φr)
Es = As · cos (2πfst + φs)
Er = Ar · cos (2πfrt + φr)

そして、この2つの光が合波されたときの光の強度Iは、次式(1)で表される。   The light intensity I when these two lights are combined is expressed by the following equation (1).

I=<|Er+Es|
=(Ar+As
+2Ar・As・cos[2π(fr−fs)t+(φr−φs)]
……(1)
ここで、記号< >は時間平均を示す。
I = <| Er + Es | 2 >
= (Ar 2 + As 2 )
+ 2Ar · As · cos [2π (fr−fs) t + (φr−φs)]
...... (1)
Here, the symbol <> indicates a time average.

上記式(1)で表される光の強度Iは、周波数fr、fsが固定であれば、(Ar+As)を中心として、振幅2Ar・As、ビート周波数fbo(=fr−fs)で正弦状に変化する。 If the frequencies fr and fs are fixed, the light intensity I represented by the above formula (1) is centered on (Ar 2 + As 2 ), with an amplitude of 2Ar · As and a beat frequency fbo (= fr−fs). It changes sinusoidally.

上記構成の光ヘテロダイン干渉装置10で、光電変換器16の出力信号Edが前記光の強度Iに比例している。また、周波数fr=fo+fa、fs=foであるから、波長可変光源11の出射光Pの周波数foに関わらず、ビート周波数fboは信号発生器14から周波数シフタ13に与えられる駆動信号Eaの周波数faに等しい。   In the optical heterodyne interferometer 10 having the above configuration, the output signal Ed of the photoelectric converter 16 is proportional to the intensity I of the light. Further, since the frequencies fr = fo + fa and fs = fo, the beat frequency fbo is the frequency fa of the drive signal Ea given from the signal generator 14 to the frequency shifter 13 regardless of the frequency fo of the emitted light P of the wavelength variable light source 11. be equivalent to.

したがって、被測定物1に与える光の波長に対して、光電変換器16の出力信号Edの振幅や位相の変化を求めることで、被測定物1の波長に対する各種特性を把握することができる。   Therefore, by obtaining changes in the amplitude and phase of the output signal Ed of the photoelectric converter 16 with respect to the wavelength of light applied to the device under test 1, various characteristics with respect to the wavelength of the device under test 1 can be grasped.

なお、上記構成の光ヘテロダイン干渉装置は、例えば次の特許文献1に開示されている。   The optical heterodyne interferometer having the above configuration is disclosed in, for example, the following Patent Document 1.

特開2006−266796号公報Japanese Patent Laid-Open No. 2006-266796

しかしながら、上記構成の光ヘテロダイン干渉装置10では、光分波器12と光合波器15の間の2つの光路L1、L2の長さに差がある状態で、波長可変光源11の出射光の波長を可変すると、光路長差による位相変化が生じ、これが2π以上変化して位相の回転が生じると、正しく位相測定することができなくなってしまう。   However, in the optical heterodyne interferometer 10 having the above configuration, the wavelength of the light emitted from the wavelength tunable light source 11 is different in the length of the two optical paths L1 and L2 between the optical demultiplexer 12 and the optical multiplexer 15. If the phase is changed, a phase change due to the optical path length difference occurs. If this changes by 2π or more and a phase rotation occurs, the phase cannot be measured correctly.

本発明は、この問題を解決し、光分波器と光合波器の間の2つの光路の長さの差を容易に求めることができ、この光路長差をなくして、被測定物に対する位相測定を正しく行うことができる光ヘテロダイン干渉装置を提供することを目的としている。   The present invention solves this problem, and can easily determine the difference in length between the two optical paths between the optical demultiplexer and the optical multiplexer, and eliminates this optical path length difference to reduce the phase relative to the object to be measured. An object of the present invention is to provide an optical heterodyne interferometer capable of correctly performing measurement.

前記目的を達成するために、本発明の請求項1の光ヘテロダイン干渉装置は、
波長可変光源(11)と、
前記波長可変光源の出射光を受けて、被測定物を含む第1光路(L1)と前記被測定物を含まない第2光路(L2)へ出射する光分波手段(12)と、
前記第1光路を経た光と前記第2光路を経た光とを受けて合波する光合波手段(15)と、
前記第1光路を経て前記光合波手段に入射される光と前記第2光路を経て前記光合波手段に入射される光の間に所定周波数の差を付与する周波数差付与手段(13、43、14、44)と、
前記光合波手段で合波された光を受ける光電変換器(16)とを有し、
前記光電変換器の出力信号に基づいて、前記被測定物の特性を求める光ヘテロダイン干渉装置において、
前記波長可変光源の出射光の周波数を一定速度で掃引させる光周波数掃引手段(31)と、
前記光周波数掃引手段によって前記波長可変光源の出射光の周波数が一定速度で掃引されている間に前記光電変換器から出力される信号の周波数を検出する周波数検出手段(32)と、
前記周波数検出手段によって検出された周波数と前記所定周波数との差を求め、該差に基づいて前記第1光路と前記第2光路の長さの差を算出する光路長差算出手段(33)とを設けたことを特徴としている。
In order to achieve the above object, an optical heterodyne interferometer according to claim 1 of the present invention comprises:
A wavelength tunable light source (11);
Optical demultiplexing means (12) for receiving the light emitted from the wavelength tunable light source and emitting the light to the first optical path (L1) including the object to be measured and the second optical path (L2) not including the object to be measured;
Optical multiplexing means (15) for receiving and multiplexing the light having passed through the first optical path and the light having passed through the second optical path;
Frequency difference providing means (13, 43, which gives a predetermined frequency difference between the light incident on the optical multiplexing means via the first optical path and the light incident on the optical multiplexing means via the second optical path. 14, 44),
A photoelectric converter (16) that receives the light combined by the optical combining means,
In the optical heterodyne interferometer for obtaining the characteristics of the device under test based on the output signal of the photoelectric converter,
Optical frequency sweeping means (31) for sweeping the frequency of the emitted light of the wavelength tunable light source at a constant speed;
Frequency detection means (32) for detecting the frequency of a signal output from the photoelectric converter while the frequency of the light emitted from the wavelength tunable light source is swept at a constant speed by the optical frequency sweep means;
An optical path length difference calculating means (33) for obtaining a difference between the frequency detected by the frequency detecting means and the predetermined frequency, and calculating a difference in length between the first optical path and the second optical path based on the difference; It is characterized by providing.

また、本発明の請求項2の光ヘテロダイン干渉装置は、請求項1記載の光ヘテロダイン干渉装置において、
前記周波数差付与手段は、
信号発生器(14)と、入射光の光周波数を前記信号発生器の出力信号の周波数分だけシフトして出射する周波数シフタ(13)とにより構成されていることを特徴としている。
An optical heterodyne interference device according to claim 2 of the present invention is the optical heterodyne interference device according to claim 1,
The frequency difference giving means is
It is characterized by comprising a signal generator (14) and a frequency shifter (13) that emits light by shifting the optical frequency of incident light by the frequency of the output signal of the signal generator.

また、本発明の請求項3の光ヘテロダイン干渉装置は、請求項1または請求項2記載の光ヘテロダイン干渉装置において、
前記第1光路と第2光路の少なくとも一方に光路長可変手段(21)が挿入され、該光路長可変手段により、前記光路長差算出手段によって算出された光路長差を相殺できるようにしたことを特徴としている。
An optical heterodyne interference device according to claim 3 of the present invention is the optical heterodyne interference device according to claim 1 or 2,
An optical path length varying means (21) is inserted in at least one of the first optical path and the second optical path, and the optical path length varying means can cancel the optical path length difference calculated by the optical path length difference calculating means. It is characterized by.

また、本発明の請求項4の光ヘテロダイン干渉装置の光路長差測定方法は、
波長可変光を分波して被測定物を含む第1光路(L1)と前記被測定物を含まない第2光路(L2)に分け、前記第1光路を経た光と前記第2光路を経た光の間に所定周波数の差を与えて合波し、該合波した光を光電変換器(16)に入射し、その出力信号に基づいて前記被測定物の特性を求める光ヘテロダイン干渉装置における前記第1光路と第2光路の長さの差を測定するための光路長差測定方法であって、
波長可変光の周波数を一定速度で掃引させるとともに、該掃引中に前記光電変換器から出力される信号の周波数を検出する段階(S1〜S3)と、
前記検出された周波数と前記所定周波数との差を求め、該差に基づいて前記第1光路と第2光路の長さの差を算出する段階(S4、S5)とを含むことを特徴としている。
Moreover, the optical path length difference measuring method of the optical heterodyne interferometer according to claim 4 of the present invention is:
The wavelength tunable light is demultiplexed and divided into a first optical path (L1) that includes the object to be measured and a second optical path (L2) that does not include the object to be measured, and passes through the first optical path and the second optical path. In an optical heterodyne interferometer for obtaining a characteristic of the device under test based on an output signal of the combined light that enters a photoelectric converter (16) by combining a predetermined frequency difference between the lights. An optical path length difference measuring method for measuring a difference in length between the first optical path and the second optical path,
Sweeping the frequency of the wavelength tunable light at a constant speed and detecting the frequency of the signal output from the photoelectric converter during the sweep (S1 to S3);
Calculating a difference between the detected frequency and the predetermined frequency and calculating a difference between the lengths of the first optical path and the second optical path based on the difference (S4, S5). .

このように、本発明では、波長可変光源の出射光の周波数を一定速度で掃引させたときに、光分波手段と光合波手段の間の2つの光路の長さの差によって光電変換器の出力信号の周波数が、所定周波数から別周波数に変化するという性質を利用しているため、その周波数変化量から容易に光路長差を求めることができ、その光路長差を見込むあるいは相殺処理することにより、被測定物に対する位相測定を正しく行うことができる。   As described above, in the present invention, when the frequency of the light emitted from the wavelength tunable light source is swept at a constant speed, the photoelectric converter has a length difference between the two optical paths between the optical demultiplexing unit and the optical multiplexing unit. Since the frequency of the output signal changes from a predetermined frequency to another frequency, the optical path length difference can be easily obtained from the amount of frequency change, and the optical path length difference can be estimated or canceled. Thus, the phase measurement for the object to be measured can be performed correctly.

(第1の実施形態)
以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した光ヘテロダイン干渉装置20の構成を示している。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of an optical heterodyne interference apparatus 20 to which the present invention is applied.

図1に示しているように、この光ヘテロダイン干渉装置20は、前記した従来の光ヘテロダイン干渉装置10と同様に、波長可変光源11から出射された周波数foの光Pを光分岐手段としての光分波器12で2分岐し、その一方の光Paを光ファイバ等の被測定物1を含む光路L1に出射し、他方の光Pbを被測定物1を含まない光路L2側に出射して、その光路L2側に周波数差付与手段として挿入された周波数シフタ13に信号発生器14からの周波数faの駆動信号Eaを与えて、周波数fo+faの参照光Pcに変換し、被測定物1から出射された信号光Pa′とともに光合波手段としての光合波器15に入射して合波し、その合波光Pdを光電変換器16に入射して、電気の信号(干渉信号)Edに変換している。   As shown in FIG. 1, the optical heterodyne interferometer 20 uses the light P having the frequency fo emitted from the wavelength tunable light source 11 as light splitting means, as in the conventional optical heterodyne interferometer 10 described above. The light is branched into two by the branching filter 12, and one light Pa is emitted to the optical path L 1 including the device under test 1 such as an optical fiber, and the other light Pb is emitted to the optical path L 2 side not including the device under test 1. The drive signal Ea having the frequency fa from the signal generator 14 is given to the frequency shifter 13 inserted as a frequency difference providing means on the optical path L2 side, and converted to the reference light Pc having the frequency fo + fa, and emitted from the DUT 1. The signal light Pa ′ is incident on an optical multiplexer 15 as optical multiplexing means and combined, and the combined light Pd is incident on a photoelectric converter 16 to be converted into an electrical signal (interference signal) Ed. Yes.

ただし、この光ヘテロダイン干渉装置20では、周波数シフタ13側が挿入されている光路L2に、その光路長を変化させることができる光路長可変手段21が設けられている。   However, in this optical heterodyne interferometer 20, the optical path length varying means 21 capable of changing the optical path length is provided in the optical path L2 in which the frequency shifter 13 side is inserted.

光電変換器16から出力される干渉信号Edは、ロックインアンプ17に入力されて、信号Eaで同期検波(ベクトル検波)され、その出力X、Yが被測定物1の特性を求めるための演算処理を行う演算処理部40に与えられる。   The interference signal Ed output from the photoelectric converter 16 is input to the lock-in amplifier 17 and subjected to synchronous detection (vector detection) using the signal Ea, and the output X and Y are used to calculate the characteristics of the DUT 1. It is given to the arithmetic processing unit 40 that performs processing.

また、干渉信号Edは、A/D変換器18でデジタル値に変換されて、光路長差測定部30に入力される。   The interference signal Ed is converted into a digital value by the A / D converter 18 and input to the optical path length difference measuring unit 30.

光路長差測定部30は、被測定物1に対する測定を行う前に、光分波器12と光合波器15の間の光路L1、L2の長さの差ΔLを求めて、その差ΔLを相殺処理するためのものであり、波長可変光源11の出射光Pの周波数foを一定速度で掃引させる光周波数掃引手段31と、出射光Pの周波数foが一定速度で掃引されている間に光電変換器16から出力される干渉信号Edの周波数(ビート周波数)fbを検出する周波数検出手段32と、その検出されたビート周波数fbと、非掃引中に周波数差付与手段によって与えられる周波数差(この場合、信号発生器14の出力信号の周波数fa)との差Δfを求め、この差Δfに基づいて光分波器12と光合波器15の間の2つの光路L1、L2の長さの差ΔLを算出する光路長差算出手段33とを有している。   The optical path length difference measuring unit 30 obtains a difference ΔL in the lengths of the optical paths L1 and L2 between the optical demultiplexer 12 and the optical multiplexer 15 before performing measurement on the DUT 1, and calculates the difference ΔL. The optical frequency sweeping means 31 sweeps the frequency fo of the emitted light P of the wavelength tunable light source 11 at a constant speed, and photoelectrically operates while the frequency fo of the emitted light P is swept at a constant speed. The frequency detection means 32 for detecting the frequency (beat frequency) fb of the interference signal Ed output from the converter 16; the detected beat frequency fb; and the frequency difference given by the frequency difference giving means during non-sweep (this In this case, the difference Δf with respect to the frequency fa) of the output signal of the signal generator 14 is obtained, and the length difference between the two optical paths L1 and L2 between the optical demultiplexer 12 and the optical multiplexer 15 based on this difference Δf. Optical path length difference calculating means 3 for calculating ΔL 3.

次に、光路長差ΔLと位相変化との関係について説明する。
光路長差ΔLのとき、波長可変光源11から波長λ1の光Pを入射したときに得られる干渉信号Edの位相と、波長λ2の光Pを入射したときの干渉信号Edの位相との差Δθは、次の式(2)で表される。
Next, the relationship between the optical path length difference ΔL and the phase change will be described.
When the optical path length difference ΔL, the difference Δθ between the phase of the interference signal Ed obtained when the light P having the wavelength λ1 is incident from the wavelength variable light source 11 and the phase of the interference signal Ed when the light P having the wavelength λ2 is incident. Is represented by the following equation (2).

Δθ=[(ΔL/λ1)−(ΔL/λ2)]・2π・n
=ΔL[(λ2−λ1)/λ1・λ2]・2π・n ……(2)
ただし、nは屈折率
Δθ = [(ΔL / λ1) − (ΔL / λ2)] · 2π · n
= ΔL [(λ2−λ1) / λ1 · λ2] · 2π · n (2)
Where n is the refractive index

一方、波長λ1、λ2の光の周波数f1、f2の差Δfは、次式(3)、
Δf=f1−f2=c(λ2−λ1)/λ1・λ2 ……(3)
cは光速
で表される。
On the other hand, the difference Δf between the frequencies f1 and f2 of light of wavelengths λ1 and λ2 is expressed by the following equation (3):
Δf = f1−f2 = c (λ2−λ1) / λ1 · λ2 (3)
c is represented by the speed of light.

式(3)を式(2)に代入すると、位相差Δθは、
Δθ=ΔL・Δf・2π・n/c ……(4)
となる。
Substituting equation (3) into equation (2), the phase difference Δθ is
Δθ = ΔL · Δf · 2π · n / c (4)
It becomes.

したがって、光路長差ΔLは、
ΔL=c・Δθ/(Δf・2π・n) ……(5)
となり、周波数差Δfに対する位相変化量Δθが判れば、光路長差ΔLを求めることができる。
Therefore, the optical path length difference ΔL is
ΔL = c · Δθ / (Δf · 2π · n) (5)
Thus, if the phase change amount Δθ with respect to the frequency difference Δf is known, the optical path length difference ΔL can be obtained.

ただし、光路長差ΔLが大きい場合、僅かな周波数変化Δfでも2π以上の位相変化が生じてしまい、微小で精密な波長制御が必要となり、現実的にその位相変化量を求めることが困難である。   However, when the optical path length difference ΔL is large, even a slight frequency change Δf causes a phase change of 2π or more, necessitating minute and precise wavelength control, and it is difficult to actually determine the amount of phase change. .

そこで、本実施形態では、前記したように波長可変光源11の出射光Pの周波数foを一定速度で掃引することにより、大きな光路長差ΔLであっても正確に求められるようにしている。   Therefore, in the present embodiment, as described above, the frequency fo of the emitted light P from the wavelength tunable light source 11 is swept at a constant speed, so that even a large optical path length difference ΔL can be obtained accurately.

即ち、図1において光路長差ΔLがない状態で、波長可変光源11の出射光Pの周波数foを一定の速度で例えば高くなる方向に掃引させた場合、図2の(a)のように、光路L1から光合波器15に入射される光Pa′と光路L2から光合波器15に入射される光Pcの周波数差(ビート周波数fb)は、周波数シフタ13に入力されている信号Eaの周波数faに等しい。   That is, when the frequency fo of the output light P of the wavelength tunable light source 11 is swept in a direction that increases, for example, at a constant speed in a state where there is no optical path length difference ΔL in FIG. 1, as shown in FIG. The frequency difference (beat frequency fb) between the light Pa ′ incident on the optical multiplexer 15 from the optical path L1 and the light Pc incident on the optical multiplexer 15 from the optical path L2 is the frequency of the signal Ea input to the frequency shifter 13. equal to fa.

また、光路L1が光路L2より長い場合には、図2の(b)のように、光路L1から光合波器15に入射される光Pa′の周波数変化が、光路長差ΔLに相当する時間Δtだけ遅れる(右にシフトする)。   When the optical path L1 is longer than the optical path L2, as shown in FIG. 2B, the time corresponding to the optical path length difference ΔL is the frequency change of the light Pa ′ incident on the optical multiplexer 15 from the optical path L1. Delay by Δt (shift to the right).

したがって、両光路L1、L2の出射光Pa′、Pcの周波数差(ビート周波数fb)は、fa+Δfとなる。   Therefore, the frequency difference (beat frequency fb) between the outgoing lights Pa ′ and Pc of both optical paths L1 and L2 is fa + Δf.

ここで、遅延時間Δtは、Δt=n・ΔL/cであるから、光路長差ΔLは、
ΔL=(c/n)・Δt ……(6)
と表すことができる。
Here, since the delay time Δt is Δt = n · ΔL / c, the optical path length difference ΔL is
ΔL = (c / n) · Δt (6)
It can be expressed as.

光Pの周波数掃引速度をΔf/Δt=αで一定とすると、式(6)は、次式(7)となる。   When the frequency sweep speed of the light P is constant at Δf / Δt = α, the equation (6) becomes the following equation (7).

ΔL=c・Δf・/(α・n) ……(7)   ΔL = c · Δf · / (α · n) (7)

したがって、ビート周波数fbの周波数faからの変化量Δfを検出することにより、位相と無関係に光路長差ΔLを求めることができる。   Therefore, the optical path length difference ΔL can be obtained regardless of the phase by detecting the change amount Δf of the beat frequency fb from the frequency fa.

上記光路長差測定部30は、上記原理に基づいて光路長差ΔLを求めている。
即ち、図3の処理手順に示すように、光周波数掃引手段31により波長可変光源11の出射光Pの周波数foを一定速度αで掃引させ(S1)、その間に光電変換器16から出力された干渉信号Edの波形データを図示しないメモリに記憶しておく(S2)。
The optical path length difference measuring unit 30 obtains the optical path length difference ΔL based on the above principle.
That is, as shown in the processing procedure of FIG. 3, the frequency fo of the light P emitted from the wavelength tunable light source 11 is swept at a constant speed α by the optical frequency sweeping unit 31 (S1), and output from the photoelectric converter 16 during that time. The waveform data of the interference signal Ed is stored in a memory (not shown) (S2).

次に、この記憶したデータに対して、周波数検出手段32が例えばFFT(高速フーリエ変換処理)あるいは周波数計数処理を行い、ビート周波数fb′を検出する(S3)。   Next, the frequency detecting means 32 performs, for example, FFT (Fast Fourier Transform Processing) or frequency counting processing on the stored data to detect the beat frequency fb ′ (S3).

そして、光路長差算出手段33により、検出されたビート周波数fb′と、非掃引中におけるビート周波数fbo(この場合周波数faと等しい)との差Δfを求め(S4)、この差Δfを上記式(7)に代入(他のパラメータは既知とする)することで、光路長差ΔLを算出する(S5)。   Then, the optical path length difference calculating means 33 obtains a difference Δf between the detected beat frequency fb ′ and the beat frequency fbo during non-sweep (in this case, equal to the frequency fa) (S4), and this difference Δf is calculated from the above equation. By substituting into (7) (other parameters are known), the optical path length difference ΔL is calculated (S5).

そして、この算出された光路長差ΔL分の光路長の補正処理を光路長可変手段21により自動的に行う(S6)、あるいは手動で行うことにより、光分波器12と光合波器15との間の2つの光路の長さの差がなくなり、この状態で被測定物1の特性を測定するために波長可変光源11の波長を可変しても光路長差による位相変化はほとんど発生せず、各波長毎のロックインアンプ17の出力X、Yに対する所定の演算処理で、被測定物1の特性を正確に得ることができる。   Then, the optical path length correction process corresponding to the calculated optical path length difference ΔL is automatically performed by the optical path length varying means 21 (S6) or manually, so that the optical demultiplexer 12 and the optical multiplexer 15 are The difference in length between the two optical paths is eliminated, and even if the wavelength of the wavelength tunable light source 11 is varied in order to measure the characteristics of the DUT 1 in this state, the phase change due to the optical path length difference hardly occurs. The characteristics of the DUT 1 can be accurately obtained by a predetermined calculation process for the outputs X and Y of the lock-in amplifier 17 for each wavelength.

なお、この実施形態では周波数シフタ13が挿入されている光路L2側に光路長可変手段21を設けていたが、被測定物1が挿入されている光路L1側に設けてもよい。   In this embodiment, the optical path length varying means 21 is provided on the optical path L2 side where the frequency shifter 13 is inserted, but may be provided on the optical path L1 side where the device under test 1 is inserted.

また、図4に示す光ヘテロダイン干渉装置20′のように、光路長可変手段21を省略し、光路長差算出部30によって前記同様に算出された光路長差ΔLを演算処理部40に与えて、被測定物1の特性を測定する際に、算出された光路長差ΔLを見込んで演算処理を行うようにしてもよい。   Further, like the optical heterodyne interferometer 20 ′ shown in FIG. 4, the optical path length varying means 21 is omitted, and the optical path length difference ΔL calculated in the same manner as described above by the optical path length difference calculating section 30 is given to the arithmetic processing section 40. When measuring the characteristics of the DUT 1, the calculation process may be performed in consideration of the calculated optical path length difference ΔL.

また、上記実施形態では、周波数シフタ13と信号発生器14とを被測定物1を含まない光路L2側に挿入して、光合波器15で合波される光の間に所定周波数の差を付与していたが、反対に周波数シフタ13を被測定物1が含まれる光路L1側に挿入してもよい。   Further, in the above embodiment, the frequency shifter 13 and the signal generator 14 are inserted on the optical path L2 side not including the DUT 1, and a predetermined frequency difference is generated between the lights combined by the optical multiplexer 15. However, the frequency shifter 13 may be inserted on the optical path L1 side where the DUT 1 is included.

(第2実施形態)
また、前記実施形態では、周波数シフタ13と信号発生器14とを一組だけ用いて、一方の光路の光の周波数をシフトしていたが、図5に示すように、光路L2側だけでなく、光路L1側に挿入した周波数シフタ43に、信号発生器44から周波数fa′の信号Ea′を与え、光合波器15で合波される光の間に、|fa−fa′|の周波数差を付与してもよい。
(Second Embodiment)
In the above embodiment, only one set of the frequency shifter 13 and the signal generator 14 is used to shift the frequency of light in one optical path. However, as shown in FIG. The frequency shifter 43 inserted on the optical path L1 side is supplied with the signal Ea ′ of the frequency fa ′ from the signal generator 44, and the frequency difference of | fa−fa ′ | between the lights combined by the optical multiplexer 15 May be given.

この場合、ビート周波数を大幅に低下させることができ、より高い位相分解能を得ることができる。ただし、この場合には、信号Ea、Ea′をミキサ45で混合して、その混合成分からフィルタ46により差の周波数成分の信号Ea″を抽出してロックインアンプ17に与える。   In this case, the beat frequency can be greatly reduced, and higher phase resolution can be obtained. In this case, however, the signals Ea and Ea ′ are mixed by the mixer 45, and a signal Ea ″ having a difference frequency component is extracted from the mixed component by the filter 46 and is supplied to the lock-in amplifier 17.

(第3の実施形態)
また、図6に示すように、光源51から出射された波長固定の基準光Puを光合波器52により波長可変光源11からの出射光Pと合波し、その合波光P′を光分波器12に与え、光合波器15からの出射光Pdを波長分波器53に入射して、波長可変光源11の出射光Pを周波数シフトした成分からなる光Peと、基準光Puを周波数シフトした成分のみからなる光Pfと分けて、それぞれ光電変換器16、54に入射して、光電変換器16、54から出力されるビート周波数fbの干渉信号Ee、Efを得て、ロックインアンプ17において、基準光Puに対応した干渉信号Efを基準信号として干渉信号Eeを同期検波して、被測定物1の特性を表す信号X、Yを得る構成としてもよい。
(Third embodiment)
Further, as shown in FIG. 6, the fixed wavelength reference light Pu emitted from the light source 51 is combined with the output light P from the wavelength variable light source 11 by the optical multiplexer 52, and the combined light P ′ is optically demultiplexed. The output light Pd from the optical multiplexer 15 is incident on the wavelength demultiplexer 53, and the light Pe composed of components obtained by frequency shifting the output light P of the wavelength variable light source 11 and the reference light Pu are frequency shifted. Separated from the light Pf consisting of only the components, the light is incident on the photoelectric converters 16 and 54, respectively, and interference signals Ee and Ef of the beat frequency fb output from the photoelectric converters 16 and 54 are obtained. The interference signal Ef corresponding to the reference light Pu may be used as a reference signal to synchronously detect the interference signal Ee, and the signals X and Y representing the characteristics of the device under test 1 may be obtained.

この実施形態の場合、ロックインアンプ17に基準信号として入力される信号が、干渉信号Eeと同等の光路を経た光によって得られた干渉信号Efであるため、被測定物1側の光路に対する外乱で干渉信号Eeが変動した場合であっても、干渉信号Efも同等の影響を受けることになり、得られる信号X、Yへの影響を抑圧できるという利点がある。   In the case of this embodiment, the signal input as the reference signal to the lock-in amplifier 17 is the interference signal Ef obtained by the light passing through the optical path equivalent to the interference signal Ee. Even if the interference signal Ee fluctuates, the interference signal Ef is also affected by the same effect, and there is an advantage that the influence on the signals X and Y obtained can be suppressed.

なお、この実施形態では、周波数差付与手段を構成する周波数シフタ13、43を2つの光路L1、L2に挿入しているが、第1実施形態と同様に、一方の光路のみに周波数シフタを挿入してもよい。   In this embodiment, the frequency shifters 13 and 43 constituting the frequency difference providing means are inserted in the two optical paths L1 and L2. However, as in the first embodiment, the frequency shifter is inserted only in one optical path. May be.

本発明の実施形態の構成図Configuration diagram of an embodiment of the present invention 実施形態の動作原理を説明するための図The figure for demonstrating the operation principle of embodiment 本発明の光路長差測定方法の手順を示すフローチャートThe flowchart which shows the procedure of the optical path length difference measuring method of this invention 他の実施形態の構成図Configuration diagram of another embodiment 他の実施形態の構成図Configuration diagram of another embodiment 他の実施形態の構成図Configuration diagram of another embodiment 光ヘテロダイン干渉装置の要部構成図Main part configuration diagram of optical heterodyne interferometer

符号の説明Explanation of symbols

1……被測定物、11……波長可変光源、12……光分波器、13、43……周波数シフタ、14、44……信号発生器、15……光合波器、16……光電変換器、17……ロックインアンプ、18……A/D変換器、20、20′……光ヘテロダイン干渉装置、21……光路長可変手段、30……光路長差測定部、31……光周波数掃引手段、32……周波数検出手段、33……光路長差算出手段、40……演算処理部、45……ミキサ、46……フィルタ、51……光源、52……光合波器、53……波長分波器、54……光電変換器   DESCRIPTION OF SYMBOLS 1 ... Object to be measured, 11 ... Wavelength variable light source, 12 ... Optical demultiplexer, 13, 43 ... Frequency shifter, 14, 44 ... Signal generator, 15 ... Optical multiplexer, 16 ... Photoelectric Converter: 17 ... Lock-in amplifier, 18 ... A / D converter, 20, 20 '... Optical heterodyne interference device, 21 ... Optical path length variable means, 30 ... Optical path length difference measuring unit, 31 ... Optical frequency sweeping means, 32 ... Frequency detecting means, 33 ... Optical path length difference calculating means, 40 ... Arithmetic processing section, 45 ... Mixer, 46 ... Filter, 51 ... Light source, 52 ... Optical multiplexer, 53 …… Wavelength demultiplexer, 54 …… Photoelectric converter

Claims (4)

波長可変光源(11)と、
前記波長可変光源の出射光を受けて、被測定物を含む第1光路(L1)と前記被測定物を含まない第2光路(L2)へ出射する光分波手段(12)と、
前記第1光路を経た光と前記第2光路を経た光とを受けて合波する光合波手段(15)と、
前記第1光路を経て前記光合波手段に入射される光と前記第2光路を経て前記光合波手段に入射される光の間に所定周波数の差を付与する周波数差付与手段(13、43、14、44)と、
前記光合波手段で合波された光を受ける光電変換器(16)とを有し、
前記光電変換器の出力信号に基づいて、前記被測定物の特性を求める光ヘテロダイン干渉装置において、
前記波長可変光源の出射光の周波数を一定速度で掃引させる光周波数掃引手段(31)と、
前記光周波数掃引手段によって前記波長可変光源の出射光の周波数が一定速度で掃引されている間に前記光電変換器から出力される信号の周波数を検出する周波数検出手段(32)と、
前記周波数検出手段によって検出された周波数と前記所定周波数との差を求め、該差に基づいて前記第1光路と前記第2光路の長さの差を算出する光路長差算出手段(33)とを設けたことを特徴とする光ヘテロダイン干渉装置。
A wavelength tunable light source (11);
Optical demultiplexing means (12) for receiving the light emitted from the wavelength tunable light source and emitting the light to the first optical path (L1) including the object to be measured and the second optical path (L2) not including the object to be measured;
Optical multiplexing means (15) for receiving and multiplexing the light having passed through the first optical path and the light having passed through the second optical path;
Frequency difference providing means (13, 43, which gives a predetermined frequency difference between the light incident on the optical multiplexing means via the first optical path and the light incident on the optical multiplexing means via the second optical path. 14, 44),
A photoelectric converter (16) that receives the light combined by the optical combining means,
In the optical heterodyne interferometer for obtaining the characteristics of the device under test based on the output signal of the photoelectric converter,
Optical frequency sweeping means (31) for sweeping the frequency of the emitted light of the wavelength tunable light source at a constant speed;
Frequency detection means (32) for detecting the frequency of a signal output from the photoelectric converter while the frequency of the light emitted from the wavelength tunable light source is swept at a constant speed by the optical frequency sweep means;
An optical path length difference calculating means (33) for obtaining a difference between the frequency detected by the frequency detecting means and the predetermined frequency, and calculating a difference in length between the first optical path and the second optical path based on the difference; An optical heterodyne interferometer characterized by comprising:
前記周波数差付与手段は、
信号発生器(14)と、入射光の光周波数を前記信号発生器の出力信号の周波数分だけシフトして出射する周波数シフタ(13)とにより構成されていることを特徴とする請求項1記載の光ヘテロダイン干渉装置。
The frequency difference giving means is
2. A signal generator (14), and a frequency shifter (13) that emits light after shifting the optical frequency of incident light by the frequency of the output signal of the signal generator. Optical heterodyne interferometer.
前記第1光路と第2光路の少なくとも一方に光路長可変手段(21)が挿入され、該光路長可変手段により、前記光路長差算出手段によって算出された光路長差を相殺できるようにしたことを特徴とする請求項1または請求項2記載の光ヘテロダイン干渉装置。   An optical path length varying means (21) is inserted in at least one of the first optical path and the second optical path, and the optical path length varying means can cancel the optical path length difference calculated by the optical path length difference calculating means. The optical heterodyne interferometer according to claim 1 or 2. 波長可変光を分波して被測定物を含む第1光路(L1)と前記被測定物を含まない第2光路(L2)に分け、前記第1光路を経た光と前記第2光路を経た光の間に所定周波数の差を与えて合波し、該合波した光を光電変換器(16)に入射し、その出力信号に基づいて前記被測定物の特性を求める光ヘテロダイン干渉装置における前記第1光路と第2光路の長さの差を測定するための光路長差測定方法であって、
波長可変光の周波数を一定速度で掃引させるとともに、該掃引中に前記光電変換器から出力される信号の周波数を検出する段階(S1〜S3)と、
前記検出された周波数と前記所定周波数との差を求め、該差に基づいて前記第1光路と第2光路の長さの差を算出する段階(S4、S5)とを含むことを特徴とする光ヘテロダイン干渉装置の光路長差測定方法。
The wavelength tunable light is demultiplexed and divided into a first optical path (L1) that includes the object to be measured and a second optical path (L2) that does not include the object to be measured, and passes through the first optical path and the second optical path. In an optical heterodyne interferometer for obtaining a characteristic of the device under test based on an output signal of the combined light that enters a photoelectric converter (16) by combining a predetermined frequency difference between the lights. An optical path length difference measuring method for measuring a difference in length between the first optical path and the second optical path,
Sweeping the frequency of the wavelength tunable light at a constant speed and detecting the frequency of the signal output from the photoelectric converter during the sweep (S1 to S3);
Obtaining a difference between the detected frequency and the predetermined frequency, and calculating a difference in length between the first optical path and the second optical path based on the difference (S4, S5). Optical path length difference measuring method of optical heterodyne interferometer.
JP2007062449A 2007-03-12 2007-03-12 Optical heterodyne interferometer and optical path length difference measuring method thereof Expired - Fee Related JP4586033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062449A JP4586033B2 (en) 2007-03-12 2007-03-12 Optical heterodyne interferometer and optical path length difference measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062449A JP4586033B2 (en) 2007-03-12 2007-03-12 Optical heterodyne interferometer and optical path length difference measuring method thereof

Publications (2)

Publication Number Publication Date
JP2008224394A true JP2008224394A (en) 2008-09-25
JP4586033B2 JP4586033B2 (en) 2010-11-24

Family

ID=39843204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062449A Expired - Fee Related JP4586033B2 (en) 2007-03-12 2007-03-12 Optical heterodyne interferometer and optical path length difference measuring method thereof

Country Status (1)

Country Link
JP (1) JP4586033B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052842A (en) * 2016-08-05 2016-10-26 上海交通大学 Distributed fiber vibration sensing system capable of eliminating declining noises and demodulation method of system
CN110793445A (en) * 2019-10-24 2020-02-14 中国工程物理研究院流体物理研究所 Multi-channel synchronous absolute distance measuring method and device based on all-fiber frequency domain interference
CN112424562A (en) * 2018-05-18 2021-02-26 密歇根大学董事会 Path fluctuation monitoring for frequency modulation interferometer
CN113029007A (en) * 2021-04-27 2021-06-25 北京凌微光电科技有限公司 Method and device for measuring length of optical fiber gyroscope ring and readable storage medium
CN113091617A (en) * 2021-03-29 2021-07-09 电子科技大学 Novel multimode optical fiber optical path change measuring system
WO2022130587A1 (en) * 2020-12-17 2022-06-23 三菱電機株式会社 Light measurement device and light measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157560B (en) * 2015-05-29 2018-02-02 山东大学 A kind of three-freedom degree precision laser detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149903A (en) * 1983-10-05 1985-08-07 エステイーシー・ピーエルシー Method and device for balancing interferometer optical fiber
JPH01206283A (en) * 1988-02-13 1989-08-18 Brother Ind Ltd Optical heterodyne measuring apparatus
JPH02187636A (en) * 1989-01-13 1990-07-23 Tech Res & Dev Inst Of Japan Def Agency Optical fiber sensor
JPH04102003A (en) * 1990-08-21 1992-04-03 Brother Ind Ltd Frequency modulation optical heterodyne interference measuring device
JPH095028A (en) * 1995-04-17 1997-01-10 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk Optical sensor
JP2001513888A (en) * 1997-02-28 2001-09-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Circuit for signal processing of signals appearing in a heterodyne interferometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149903A (en) * 1983-10-05 1985-08-07 エステイーシー・ピーエルシー Method and device for balancing interferometer optical fiber
JPH01206283A (en) * 1988-02-13 1989-08-18 Brother Ind Ltd Optical heterodyne measuring apparatus
JPH02187636A (en) * 1989-01-13 1990-07-23 Tech Res & Dev Inst Of Japan Def Agency Optical fiber sensor
JPH04102003A (en) * 1990-08-21 1992-04-03 Brother Ind Ltd Frequency modulation optical heterodyne interference measuring device
JPH095028A (en) * 1995-04-17 1997-01-10 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk Optical sensor
JP2001513888A (en) * 1997-02-28 2001-09-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Circuit for signal processing of signals appearing in a heterodyne interferometer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106052842A (en) * 2016-08-05 2016-10-26 上海交通大学 Distributed fiber vibration sensing system capable of eliminating declining noises and demodulation method of system
CN112424562A (en) * 2018-05-18 2021-02-26 密歇根大学董事会 Path fluctuation monitoring for frequency modulation interferometer
US11467031B2 (en) 2018-05-18 2022-10-11 The Regents Of The University Of Michigan Path fluctuation monitoring for frequency modulated interferometer
CN110793445A (en) * 2019-10-24 2020-02-14 中国工程物理研究院流体物理研究所 Multi-channel synchronous absolute distance measuring method and device based on all-fiber frequency domain interference
WO2022130587A1 (en) * 2020-12-17 2022-06-23 三菱電機株式会社 Light measurement device and light measurement method
JPWO2022130587A1 (en) * 2020-12-17 2022-06-23
JP7221472B2 (en) 2020-12-17 2023-02-13 三菱電機株式会社 Light measuring device and light measuring method
CN113091617A (en) * 2021-03-29 2021-07-09 电子科技大学 Novel multimode optical fiber optical path change measuring system
CN113029007A (en) * 2021-04-27 2021-06-25 北京凌微光电科技有限公司 Method and device for measuring length of optical fiber gyroscope ring and readable storage medium
CN113029007B (en) * 2021-04-27 2024-02-06 北京星网船电科技有限公司 Method and device for measuring length of optical fiber tourbillon and readable storage medium

Also Published As

Publication number Publication date
JP4586033B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
EP2128588B1 (en) Optical refractometry measuring method and device
JP4586033B2 (en) Optical heterodyne interferometer and optical path length difference measuring method thereof
RU2556748C2 (en) Phase reading
JP6277147B2 (en) Optical fiber vibration measurement method and system
JP6125981B2 (en) Sample clock generator for optical tomographic imaging apparatus, and optical tomographic imaging apparatus
JP6241283B2 (en) Radar apparatus and distance-velocity measuring method
JP5043714B2 (en) Optical fiber characteristic measuring apparatus and method
JP6308184B2 (en) Optical fiber strain measuring device and optical fiber strain measuring method
JP6290798B2 (en) OFDR device
JP2004101472A (en) Distortion temperature measurement system using optical fiber
JP2023055698A (en) Optical transmission device
JP2009080048A (en) Measurement method and device of backward brillouin scattering light of optical fiber
JP7272327B2 (en) Optical fiber characteristic measuring device, optical fiber characteristic measuring program, and optical fiber characteristic measuring method
JP5042701B2 (en) Optical sampling apparatus and optical sampling method
JP6751362B2 (en) Propagation delay time difference measurement apparatus between spatial channels and propagation delay time difference measurement method between spatial channels
JP2006308531A (en) Wavelength dispersion measuring method and device
JP2006266796A (en) Apparatus for optical heterodyne interference
JP4916347B2 (en) Optical heterodyne OFDR device
JP5371933B2 (en) Laser light measuring method and measuring apparatus
JP2019020276A (en) Spatial multiplexing optical transmission path evaluation device and method
WO2013015349A1 (en) Optical tomographic image measuring apparatus and optical tomographic image measuring system
JP2014149190A (en) Measuring device, measuring method, light source device, and article manufacturing method
JP4613110B2 (en) Optical interference type phase detector
JP2008209188A (en) Polarization mode dispersion measuring device
KR101730445B1 (en) optical-phase imaging system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees