JP2013195117A - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
JP2013195117A
JP2013195117A JP2012060033A JP2012060033A JP2013195117A JP 2013195117 A JP2013195117 A JP 2013195117A JP 2012060033 A JP2012060033 A JP 2012060033A JP 2012060033 A JP2012060033 A JP 2012060033A JP 2013195117 A JP2013195117 A JP 2013195117A
Authority
JP
Japan
Prior art keywords
light
distance
irradiation
measurement
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012060033A
Other languages
English (en)
Inventor
Tetsuo Saito
哲郎 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2012060033A priority Critical patent/JP2013195117A/ja
Publication of JP2013195117A publication Critical patent/JP2013195117A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】遠距離の精密な測距を実現することを課題とする。
【解決手段】レーザー光源11から照射されたパルスレーザー光が測距対象物100で反射して第2光検出器24により受光されるまでに要する時間Δtから測距対象物との間の概算往復距離L’を算出し、算出した概算往復距離L’に基づき、レーザー光源11から照射された高周波レーザー光が上記測距対象物で反射して第2光検出器により受光されるまでの往復光路内の波数nを特定するとともに、当該往復光路によって生じる当該高周波レーザー光の位相差Φを特定し、特定した上記波数nと上記位相差Φとから当該測距対象物までの距離を算出する。
【選択図】図1

Description

本発明は、測距対象物に向けて照射した照射光の反射光を受光し、受光した測定光を解析して測距対象物までの距離を算出する測距装置に関するものである。
この種の測距装置としては、パルスレーザー光等の照射光を照射してから測距対象物で反射して戻ってくるまでの光路の往復時間を直接測定し、その往復時間を距離に換算する方式(以下「時間差測距方式」という。)を採用するものがある。この時間差測距方式によれば、往復時間を光の速度で割ることでその光路長を一義的に算出でき、これを1/2倍することで測距対象物までの距離を得ることができる。また、時間差測距方式に用いるパルスレーザー光は、光を照射する期間と光を照射しない期間とが交互に繰り返されるものであるため、常に光を照射するレーザー光(連続光)と比較して、光源部の発熱を抑えることが可能となる。その結果、パルスレーザー光の光量を増大させることができるので、より遠距離の測定が可能となる。一方で、時間差測距方式では、光の速度が秒速300,000[km]と高速であり、往復時間の測定精度を考慮すると、通常の測距精度は数cm程度となる。よって、時間差測距方式の測距装置は、これよりも高精度な測距精度が求められる用途には不向きであるという不具合がある。
また、従来の測距装置には、強度が所定周波数で時間変化する照射光(例えば正弦波で変調された照射光)を連続的に照射し、その照射光が測距対象物で反射して受光されるまでの間で生じる位相変化から、測距対象物までの距離を測定する方式(以下「位相差測距方式」という。)を採用するものがある。この位相差測距方式は、測距対象物へ照射した照射光と測距対象物から反射して戻ってきた測定光との位相を比較し、その位相差を距離に換算するものである。位相差測距方式によれば、高精度な位相差検出技術が確立していることから、照射した照射光の波長(照射光の強度の時間変化周期の波長)の10-6程度の測距精度が得ることが可能である。
ただし、位相差測距方式には、照射された照射光が測距対象物で反射して戻ってくるまでの間に存在する波数が特定できないと、適正な距離測定ができない。一方、位相差の検出精度は照射光の波長(照射光の強度の時間変化周期の波長)が長くなるほど(照射光の強度が時間変化する周波数(以下「変調周波数」という。)が低くなるほど)低下するので、高い測距精度を得るには、これに応じて照射光の変調周波数を高くする必要がある。したがって、位相差測距方式は、このような高い変調周波数の照射光でも測距対象物で反射して戻ってくるまでの間に存在する波数が変化しないような近距離の測距対象物しか高い測距精度を実現できないという不具合がある。また、位相差測距方式は、通常、照射光として連続光を用いるので、光源部が昇温しやすく、そのため照射光の光量をあまり大きくできない。このことにも起因して、位相差測距方式は、測距可能な距離が近距離に制限される。
特許文献1には、一台の測距装置で遠距離の測距と近距離の精密な測距を行うために、光照射手段として、短パルスレーザー光(第1照射光)を発射する固体レーザー発振器と、所定周波数で変調された非パルスレーザー光(第2照射光)を発射するレーザーダイオードを用いた測距装置が開示されている。
この測距装置は、遠距離にある測距対象物までの測距を行う場合には、固体レーザー発振器から短パルスレーザー光を発射させる。この場合、短パルスレーザー光の一部が第一光検出器によって電気パルス信号に変換されるとともに、短パルスレーザー光の大部分は送信光学系により測距対象物に投射される。そして、測距対象物で散乱又は反射した短パルスレーザー光が受信光学系により集光されて第三光検出器によって電気パルス信号に変換される。その後、第一光検出器及び第三光検出器が変換した2つの電気パルス信号から、短パルスレーザー光が測距対象物で反射して戻ってくるまでの往復時間を計測し、測距対象物までの距離を算出する。このように、上記測距装置では、遠距離にある測距対象物までの測距には、いわゆる時間差測距方式を採用する。
一方、近距離にある測距対象物までの測距を行う場合には、レーザーダイオードから、所定周波数で変調されて強度が時間変化する非パルスレーザー光を発射させる。この場合、非パルスレーザー光の一部が第二光検出器によって電気パルス信号に変換されるとともに、非パルスレーザー光の大部分は送信光学系により測距対象物に投射される。そして、測距対象物で散乱又は反射した非パルスレーザー光が受信光学系により集光されて第三光検出器によって電気パルス信号に変換される。その後、第二光検出器及び第三光検出器が変換した2つの電気パルス信号の位相差から、測距対象物までの距離を算出する。このように、上記測距装置では、近距離にある測距対象物までの測距には、いわゆる位相差測距方式を採用する。
上記特許文献1に記載の測距装置では、近距離については位相差測距方式を採用するので精密な測距が可能である。しかしながら、遠距離の測距については、短パルスレーザー光(第1照射光)による時間差測距方式が採用されているので、高い測距精度での測距(精密な測距)を行うことができない。一方、精密な測距を可能とする位相差測距方式で遠距離の測距を実現する場合には、上述した光源部の昇温という不具合を解決する必要があるが、仮にこれを解決できたとしても、測距対象物からの反射光の位相遅れが一周期を超えないように非パルスレーザー光(第2照射光)の変調周波数を低くする必要がある。位相差の検出精度は、変調周波数が低くなるほど低下するので、位相差測距方式で遠距離の測距を実現しようとしても、近距離ほどの高い測距精度を得ることはできない。
本発明は、以上の問題点に鑑みなされたものであり、その目的とするところは、遠距離の精密な測距を実現できる測距装置を提供することである。
上記目的を達成するために、本発明は、測距対象物に向けて照射光を照射する光照射手段と、該光照射手段が照射して該測距対象物で反射した測定光を受光する測定光受光手段と、該測定光受光手段で受光した測定光を解析して測距対象物までの距離を算出する距離算出手段とを有する測距装置において、上記光照射手段は、パルス状の第1照射光を照射する第1光照射部と、強度が所定周波数で時間変化する第2照射光を照射する第2光照射部とを備えており、上記距離算出手段は、上記第1光照射部から照射された第1照射光が上記測距対象物で反射して上記測定光受光手段により受光されるまでに要する時間から該測距対象物までの概算距離を算出し、上記第2光照射部から照射された第2照射光が該測距対象物で反射して該測定光受光手段により受光されるまでの間の波数を上記概算距離に基づいて特定するとともに、該第2光照射部から照射された第2照射光が該測距対象物で反射して該測定光受光手段により受光されるまでの間で生じる位相変化による位相差を特定し、特定した上記波数と上記位相差とから該測距対象物までの距離を算出することを特徴とする。
本発明においては、比較的低精度ではあるが遠距離の測距に適している時間差測距方式により測距対象物までの概算距離を求め、位相差測距方式に用いる第2照射光が測距対象物で反射して測定光受光手段により受光されるまでの間の波数を特定する。これにより、位相差測距方式による高精度な測距を可能とすべく第2照射光の所定周波数(強度が時間変化する周波数)を高くしても、位相差測距方式による適正な距離測定が可能となる。したがって、本発明によれば、遠距離の測距対象物の測距について、従来の位相差測距方式による近距離の測距精度と同程度の高い測距精度を実現することができる。
以上より、本発明によれば、遠距離の測距対象物の測距について、従来の位相差測距方式による近距離の測距精度と同程度の高い測距精度を実現できるという優れた効果が得られる。
実施形態における測距装置の構成を示すブロック図である。 (a)及び(b)は、同測距装置におけるレーザー光源と第1光検出器及び第2光検出器との配置関係を示す説明図である。 実施形態における測距対象物までの距離を測定するときの処理や動作の流れを示すフローチャートである。 時間差測距方式による概算往復距離の測定時における信号の流れを示す説明図である。 (a)〜(c)は、パルス応答測定の波形の一例を示す説明図である。 実施形態の測距装置を用いて、ある程度遠距離に位置する測距対象物の距離を時間差測距方式による測定を行ったときの時間差のばらつきを示すヒストグラムである。 位相差の測定時における信号の流れを示す説明図である。 実施形態における測距精度を説明するための説明図である。 変形例1における測距対象物までの距離を測定するときの処理や動作の流れを示すフローチャートである。 変形例2における測距対象物までの距離を測定するときの処理や動作の流れを示すフローチャートである。
以下、本発明に係る測距装置の一実施形態について説明する。
図1は、本実施形態における測距装置の構成を示すブロック図である。
本実施形態の測距装置は、測距対象物100に向けて照射光を照射する光照射手段としての発光部10と、発光部10から照射された照射光を受光する受光部20と、受光部20で受光した測定光を解析して測距対象物100までの距離を算出するための処理を行う距離算出部30とに大別できる。
発光部10は、レーザー光源11と、ハーフミラー12と、投光光学系13と、ドライバ14と、パルス発生器15と、高周波発生器16と、第3スイッチ17とから構成されている。レーザー光源11は、ドライバ14の制御に従って照射光を生成して射出する。ハーフミラー12は、レーザー光源11から射出された照射光の一部を透過するとともに、他部を反射させるものである。投光光学系13は、ハーフミラー12を透過した照射光を測距対象物100に投光するためのものである。ドライバ14は、レーザー光源11から所定の照射光が照射されるように制御するレーザー駆動用のドライバである。
レーザー光源11としては、半導体レーザー、半導体レーザー励起の固体レーザーなど、広く公知のレーザーを利用することができる。また、発光部10の光源としては、レーザー光源11に代えて、LEDなどの非レーザー光源を使用することも可能である。特に、近距離で変調速度が遅い測距装置については非レーザー光源を使用する方が好ましい場合がある。
パルス発生器15は、パルス状の第1照射光を照射する第1光照射部を構成し、レーザー光源11から照射される照射光をパルス駆動してレーザー光源11から第1照射光であるパルスレーザー光を照射させるためのものである。高周波発生器16は、強度が所定周波数で時間変化する第2照射光を照射する第2光照射部を構成し、レーザー光源11から照射される照射光を高周波駆動してレーザー光源11から第2照射光である高周波レーザー光を照射させるためのものである。第3スイッチ17は、レーザー光源11から照射される照射光をパルス駆動するか高周波駆動するかを選択するための切替手段である。
受光部20は、受光光学系21と、第1光検出器22と、第1アンプ23と、第2光検出器24と、第2アンプ25とから構成されている。受光光学系21は、測距対象物100で反射した照射光(測定光)の一部を第2光検出器24へ導くためのものである。第1光検出器22は、基準光受光手段として機能し、レーザー光源11からハーフミラー12で反射された一部の照射光を受光して電気信号(基準信号)に変換して出力する。第1アンプ23は、第1光検出器22から出力される基準信号を増幅する信号増幅器である。第2光検出器24は、測定光受光手段として機能し、測距対象物100で反射して受光光学系21により導かれた測定光を受光して電気信号(測定信号)に変換して出力する。第2アンプ25は、第2光検出器24から出力される測定信号を増幅する信号増幅器である。
図2(a)及び(b)は、本実施形態におけるレーザー光源11と第1光検出器22及び第2光検出器24との配置関係を示す説明図である。
レーザー光源11から照射された照射光の一部は、図2(a)に示すように、ハーフミラー12で反射し、参照ミラー22aで反射した後に、再びハーフミラー12で反射して、第1光検出器22に受光される。以下、レーザー光源11から照射された照射光が第1光検出器22に受光されるまでの距離の半分(片道分)を第1距離L1とする。また、レーザー光源11から照射された照射光の他部は、図2(b)に示すように、ハーフミラー12を透過して測距対象物100で反射し、再びハーフミラーを透過して第2光検出器24に受光される。以下、レーザー光源11から照射された照射光が第2光検出器24に受光されるまでの距離の半分(片道分)を第2距離L2とする。
距離算出部30は、パルス応答測定器31と、位相差測定器32と、第1スイッチ33と、第2スイッチ34と、制御演算器35とから構成されている。パルス応答測定器31は、第1距離L1の2倍と第2距離L2の2倍との光路長差によって生じる、第1光検出器22に受光されるパルスレーザー光(基準光)の受光時と、第2光検出器24に受光されるパルスレーザー光(照射光)の受光時との時間差を検出する。位相差測定器32は、第1距離L1の2倍と第2距離L2の2倍との光路長差によって生じる、第1光検出器22に受光される高周波レーザー光(基準光)に対する、第2光検出器24に受光される高周波レーザー光(照射光)の位相ズレ量(位相差)を検出する。第1スイッチ33は、第1アンプ23から出力される基準信号をパルス応答測定器31か位相差測定器32のどちらに送るかを選択するための切替手段である。第2スイッチ34は、第2アンプ25から出力される測定信号をパルス応答測定器31か位相差測定器32のどちらに送るかを選択するための切替手段である。
制御演算器35は、第1スイッチ33、第2スイッチ34、第3スイッチ17、パルス発生器15、高周波発生器16などを制御する制御器として機能する。また、制御演算器35は、パルス応答測定器31や位相差測定器32の出力結果から測距対象物100までの距離を算出する演算器としても機能する。
図3は、本実施形態における測距対象物100までの距離を測定するときの処理や動作の流れを示すフローチャートである。
本実施形態において、測距対象物100までの距離を測定する場合、まず、時間差測距方式によって測距対象物100までの概算往復距離L’を測定する(S1〜S3)。また、測距対象物100との間の往復光路によって生じる高周波レーザー光(第2照射光)の位相差Φを測定する(S4〜S5)。そして、測定した概算往復距離L’から、測距対象物100との間の往復光路内に存在する高周波レーザー光の波数nを算出する(S6)。そして、このようにして得た波数nと位相差Φとから、以下の式(1)より、測距対象物100までの精密な距離L2を算出する(S7)。
L2 = 1/2×{λ×(Φ/2π+n)}+L1 ・・・(1)
図4は、時間差測距方式による概算往復距離L’の測定時における信号の流れを示す説明図である。
制御演算器35は、第3スイッチ17を制御して、パルス発生器15の信号によりレーザー光源11を駆動させる。これにより、レーザー光源11からパルスレーザー光(第1照射光)が測距対象物100に照射される(S1)。
また、制御演算器35は、第1スイッチ33を制御して、ハーフミラー12で反射された基準光(パルスレーザー光)がパルス応答測定器31に入力されるようにする。これにより、パルスレーザー光が既知の第1距離L1の2倍である既知光路を通じて第1光検出器22に受光された基準光に基づく基準信号が、パルス応答測定器31に入力される。また、制御演算器35は、第2スイッチ34を制御して、測距対象物100で反射された測定光(パルスレーザー光)がパルス応答測定器31に入力されるようにする。これにより、パルスレーザー光が測距対象物100で反射して第2光検出器24に受光されるまでの往復光路(第2距離L2の2倍)を通った測定光に基づく測定信号が、パルス応答測定器31に入力される。
パルス応答測定器31は、入力された基準信号と測定信号とを比較することで、第1距離L1の2倍と第2距離L2の2倍との光路長差によって生じるパルスレーザー光の到達時間差Δtを測定する(S2)。第1距離L1は、測距装置内の既知の距離であり、また、光の速度cも、約3×108[m/s]と既知である。よって、以下の式(2)より、概算往復距離L’を求めることができる(S3)。
L’ = c×Δt + L1 ・・・(2)
図5(a)〜(c)は、パルス応答測定の波形の一例を示す説明図である。
図5(a)に示すようなパルス信号によるパルスレーザー光が照射されたとき、第1光検出器22で受光される基準光の基準信号は図5(b)に示すようなものとなり、第2光検出器24で受光される測定光の測定信号は図5(c)に示すようなものとなる。図5(c)に示す第2光検出器24から出力される測定信号の波形は、図5(b)に示す第1光検出器22から出力される基準信号の波形と比較して、波形が歪んでいることがわかる。これは次の理由による。
基準信号は、反射率や面精度が管理されたハーフミラー12で反射されることに加え、第1光検出器22に受光されるまでの光路長(第1距離L1の2倍)が短いので光路中での光の散乱や吸収の影響が少ないためである。これに対し、測定信号は、表面状態、表面反射率、表面色などが多様な測距対象物100で反射されることに加え、第2光検出器24に受光されるまでの光路長(第2距離L2の2倍)が長く、そのため光路中での光の散乱や吸収の影響が大きいためである。また、光検出器に起因する誤差もこれに影響を与えている。
このように、第2光検出器24から出力される測定信号の波形が歪んでいることから、第1距離L1の2倍と第2距離L2の2倍との光路長差によって生じるパルスレーザー光の到達時間差Δtは、この測定信号の歪みの影響で、本実施形態の高精度な測距においては無視できない測定誤差が生じる。
図6は、本実施形態の測距装置を用いて、ある程度遠距離に位置する測距対象物の距離を時間差測距方式による測定を行ったときの時間差Δtのばらつきを示すヒストグラムである。
このヒストグラムは、同一条件において、短い時間内に1000回の測定を行った結果である。このヒストグラムの結果では、時間差Δtのばらつき(標準偏差)は0.3[nsec]であり、距離にして約10[cm]のばらつきがある。つまり、本実施形態の測距装置においては、時間差測距方式による測定では10[cm]以上の距離精度は得られているものの、それ以下の距離精度(測距精度)が求められる場合、例えば数十μm程度の測距精度が求められる場合には、時間差測距方式による測定では対応することができない。
図7は、位相差の測定時における信号の流れを示す説明図である。
制御演算器35は、第3スイッチ17を制御して、高周波発生器16の信号によりレーザー光源11を駆動させる。これにより、レーザー光源11から高周波レーザー光(第2照射光)が測距対象物100に照射される(S4)。
また、制御演算器35は、第1スイッチ33を制御して、ハーフミラー12で反射された基準光(高周波レーザー光)が位相差測定器32に入力されるようにする。これにより、高周波レーザー光が既知の第1距離L1の2倍である既知光路を通じて第1光検出器22に受光された基準光に基づく基準信号が、位相差測定器32に入力される。また、制御演算器35は、第2スイッチ34を制御して、測距対象物100で反射された測定光(高周波レーザー光)が位相差測定器32に入力されるようにする。これにより、高周波レーザー光が測距対象物100で反射して第2光検出器24に受光されるまでの往復光路(第2距離L2の2倍)を通った測定光に基づく測定信号が、位相差測定器32に入力される。
位相差測定器32は、入力された基準信号と測定信号とを比較することで、第1距離L1の2倍と第2距離L2の2倍との光路長差によって生じる高周波レーザー光の位相差Φを測定する(S5)。
ここで、具体的な数値例を挙げて説明する。
図8は、本実施形態における測距精度を説明するための説明図である。
測距対象物100までの距離は、およそ300[m]程度とする。パルス発生器15によるパルスレーザー光は、パルス幅が10[nsec]で、1M[Hz]の周波数で繰り返されるパルス信号から生成されるものを用いる。高周波発生器16による高周波レーザー光は、100[MHz]の変調周波数の正弦波信号から生成されるものを用いる。
変調周波数が100[MHz]のときの変調波の波長は約3[m]であり、測距対象物との間(片道分)には約100個の波が存在するので、測距対象物との間の往復光路内に存在する高周波レーザ光の波数nは約200ということになる。上述したように、本実施形態の測距装置において、時間差測距方式による概算往復距離L’は、時間差測距方式による測定では10[cm](0.1[m])以上の距離精度が得られるので、波数nは、この概算往復距離L’から正確に決定することができる(S6)。
また、第1距離L1は、測距装置内の既知の距離であり、また、高周波レーザー光の波長(強度の時間変化周期の波長。以下同様。)λも変調周波数が100[MHz]と既知であることから予め把握されている。したがって、よって、上述した式(1)より、測定した位相差Φを用いて、測距対象物100までの距離L2を求めることができる(S7)。
本実施形態において算出される距離L2は、波長λ×波数nによる距離に、位相差測距方式で求めた残りの距離(高周波レーザー光の一波長内の距離)を足し合わせて算出されるものであると言える。そして、波長λ×波数nによる距離に誤差はない。したがって、本実施形態の測距誤差は、位相差測距方式による測距誤差の場合と同じになる。上述したように、位相差測距方式によれば、照射光の波長の10-6程度の測距精度が得られる。本実施形態では、照射光の波長すなわち高周波レーザー光の波長が約3[m]である。よって、本実施形態によれば、約300[m]という比較的遠距離の測距において、約3[m]×10-6程度、すなわち、数十μmの距離精度が得られる。
〔変形例1〕
次に、本実施形態の一変形例(以下、本変形例を「変形例1」という。)について説明する。
本変形例1では、時間差測距方式による概算往復距離L’の測定を複数回行い、その測定結果のばらつき(標準偏差等)から、高周波レーザー光の変調周波数を決める。その他の処理や動作の内容は上述した実施形態と同じであるため、以下、上述した実施形態とは異なる部分についてのみ説明する。
図9は、本変形例1における測距対象物100までの距離を測定するときの処理や動作の流れを示すフローチャートである。
本変形例1では、時間差測距方式による概算往復距離L’の測定回数が規定回数に達するまで、時間差測距方式による概算測定(S1〜S3)を繰り返し行う(S11)。各測定の結果は、時間差Δtのデータ等の形で、所定の記憶手段に記憶しておく。そして、測定回数が規定回数に達したら(S11のYes)、次に、各測定の結果のばらつき(標準偏差等)を算出し、その算出結果に基づいて、位相差の測定(S4〜S5)で用いる高周波レーザー光の変調周波数を決定する(S12)。
高周波レーザー光の変調周波数は、測距精度に影響するので高い測距精度を得るためにはなるべく高い周波数であることが望まれる。しかしながら、時間差測距方式による測定結果のばらつきに対して高周波レーザー光の変調周波数が高すぎると、波数nの正確に決定することができない場合が生じる。例えば、時間差測距方式による測定結果のばらつき(標準偏差)が10[cm]であるのに対し、仮に変調周波数が6000[MHz]の高周波レーザー光を用いた場合、その波長は約5[cm]となる。この場合、10[cm]のばらつきがある概算往復距離L’からは、約5[cm]の波長を有する波の数nを正確に決定することはできない。一方で、時間差測距方式による測定結果のばらつきは測定環境によって変化するので、高周波レーザー光の最適な変調周波数(波数nを正確に決定できる範囲内でなるべく高い周波数)は使用環境、測定環境によって変化する。
本変形例1によれば、実際の測定環境で測定した時間差測距方式による測定結果のばらつきに基づいて高周波レーザー光の変調周波数を決定するので、その測定時に最適な変調周波数を決定することができる。
〔変形例2〕
次に、本実施形態の他の変形例(以下、本変形例を「変形例2」という。)について説明する。
位相差Φの測定で用いられる基準光(高周波レーザー光)は、第2光検出器24が測定光(高周波レーザー光)を受光した時に第1光検出器22が受光している基準光を用いる。そのため、測距対象物100に向けて高周波レーザー光を照射した後、その高周波レーザー光が測距対象物100で反射して第2光検出器24で受光されるまでの期間に、第1光検出器22で受光される基準光(高周波レーザー光)は、距離測定に使用されない無駄なものである。
一方、時間差測距方式により概算往復距離L’を事前に測定するので、その測定結果から、照射した高周波レーザー光が測距対象物で反射して第2光検出器24で受光される時期を事前に把握することができる。そこで、本変形例2では、レーザー光源11から高周波レーザー光を規定のごく短時間だけ照射した後(第1の光照射タイミング)、一旦、高周波レーザー光の照射を停止する。そして、照射した高周波レーザー光が測距対象物100で反射して第2光検出器24に受光される時期を概算往復距離L’から特定し、その時期に第1光検出器22が高周波レーザー光を受光するタイミング(第2の光照射タイミング)で、再び、レーザー光源11から高周波レーザー光を照射する。
図10は、本変形例2における測距対象物100までの距離を測定するときの処理や動作の流れを示すフローチャートである。
本変形例2では、概算往復距離L’を測定したら(S1〜S3)、位相差の測定に使用する高周波レーザー光が測距対象物100で反射して第2光検出器24に受光される時期(測定光受光時期)を、測定した概算往復距離L’から特定する(S21)。その後、位相差の測定において、レーザー光源11から高周波レーザー光を照射させ(S4)、予め決められた規定時間(少なくとも、概算往復距離L’から特定される時期が経過する時間よりも短い時間)が経過したら、レーザー光源11からの高周波レーザー光の照射を停止させる(S22)。
その後、上記ステップS21で特定した測定光受光時期に第1光検出器22が高周波レーザー光を受光する第2の光照射タイミングである時期(再照射時期)が到来したら(S23のYes)、再び、レーザー光源11から高周波レーザー光を照射する(S24)。その後、上記ステップ4で照射した高周波レーザー光による測定光と、上記ステップ24で照射した高周波レーザー光による基準光との間の位相差Φを測定する(S5)。
本変形例2によれば、高周波レーザー光を断続的に照射する結果、高周波レーザー光を連続照射する場合と比較して、高周波レーザー光の照射時間を短くすることができ、レーザー光源11の発熱を抑えることができる。その結果、高周波レーザー光を連続照射する場合と比較して、レーザー光源11からより大きな光量の高周波レーザー光を照射させることが可能となるので、より遠距離の測距が可能になる。
以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様A)
測距対象物100に向けて照射光を照射する発光部10等の光照射手段と、該光照射手段が照射して該測距対象物で反射した測定光を受光する第2光検出器24等の測定光受光手段と、該測定光受光手段で受光した測定光を解析して測距対象物までの距離を算出する距離算出部30等の距離算出手段とを有する測距装置において、上記光照射手段は、パルスレーザー光等のパルス状の第1照射光を照射するパルス発生器15、ドライバ14、レーザー光源11等からなる第1光照射部と、強度が所定周波数で時間変化する高周波レーザー光等の第2照射光を照射する高周波発生器16、ドライバ14、レーザー光源11等からなる第2光照射部とを備えており、上記距離算出手段は、上記第1光照射部から照射された第1照射光(パルスレーザー光)が上記測距対象物で反射して上記測定光受光手段により受光されるまでに要する時間から該測距対象物までの概算距離(概算往復距離L’等)を算出し、上記第2光照射部から照射された第2照射光(高周波レーザー光)が該測距対象物で反射して該測定光受光手段により受光されるまでの間の波数nを上記概算距離に基づいて特定するとともに、該第2光照射部から照射された第2照射光(高周波レーザー光)が該測距対象物で反射して該測定光受光手段により受光されるまでの間で生じる位相変化による位相差Φを特定し、特定した上記波数nと上記位相差Φとから該測距対象物までの距離を算出することを特徴とする。
これによれば、上述したとおり、遠距離の測距対象物の測距について、位相差測距方式による近距離の測距精度と同程度の高い測距精度を実現できる。
(態様B)
上記態様Aにおいて、上記第1光照射部から照射された第1照射光(パルスレーザー光)が上記測距対象物で反射して上記測定光受光手段により受光されるまでに要する時間を複数回計測し、その計測結果の標準偏差等のばらつきに応じて、上記第2光照射部から照射する第2照射光(高周波レーザー光)の上記所定周波数を変更する距離算出部30等の周波数変更手段を有し、上記距離算出手段は、上記周波数変更手段による周波数変更後の第2照射光(高周波レーザー光)を上記第2光照射部が照射したときの上記波数n及び上記位相差Φから、上記測距対象物までの距離を算出することを特徴とする。
これによれば、上述した変形例1で説明したように、実際の測定環境で測定した時間差測距方式による測定結果のばらつきに基づいて高周波レーザー光の変調周波数を決定できるので、その測定時に最適な変調周波数を決定することができる。
(態様C)
上記態様A又はBにおいて、上記距離算出手段が上記位相差Φを特定する際に上記測定光受光手段により受光される上記第2照射光の位相と比較するための基準光を受光する第1光検出器22等の基準光受光手段を有し、上記光照射手段は、上記第2光照射部から照射される第2照射光の一部を上記基準光として既知の光路(第1距離L1の2倍である光路)を介して上記基準光受光手段へ照射するとともに、該第2照射光の他部を上記測距対象物に向けて照射するものであり、上記距離算出手段は、上記測定光受光手段により受光した第2照射光と上記基準光受光手段により受光した基準光との位相の差を上記位相差Φとして特定することを特徴とする。
これによれば、簡易な構成により位相差Φを高精度に測定することができる。
(態様D)
上記態様Cにおいて、上記第2光照射部は、第1の光照射タイミング(S4)で上記第2光照射部から上記第2照射光を照射した後に該第2照射光の照射を停止させ、その後、該第2照射光が上記測距対象物で反射して上記測定光受光手段に受光される第2の光照射タイミング(S24)で該第2光照射部から再び第2照射光を照射させるものであり、上記距離算出手段は、上記第1の光照射タイミングで照射された第2照射光を上記測定光受光手段で受光した測定光と、上記第2の光照射タイミングで照射された第2照射光を上記基準光受光手段で受光した基準光との位相の差を上記位相差として特定することを特徴とする。
これによれば、上記変形例2で説明したように、高周波レーザー光を連続照射する場合と比較して、レーザー光源11の発熱を抑えることができるので、より遠距離の測距が可能になる。
10 発光部
11 レーザー光源
12 ハーフミラー
15 パルス発生器
16 高周波発生器
20 受光部
22 第1光検出器
24 第2光検出器
30 距離算出部
31 パルス応答測定器
32 位相差測定器
35 制御演算器
100 測距対象物
特開平5−333151号公報

Claims (4)

  1. 測距対象物に向けて照射光を照射する光照射手段と、該光照射手段が照射して該測距対象物で反射した測定光を受光する測定光受光手段と、該測定光受光手段で受光した測定光を解析して測距対象物までの距離を算出する距離算出手段とを有する測距装置において、
    上記光照射手段は、パルス状の第1照射光を照射する第1光照射部と、強度が所定周波数で時間変化する第2照射光を照射する第2光照射部とを備えており、
    上記距離算出手段は、上記第1光照射部から照射された第1照射光が上記測距対象物で反射して上記測定光受光手段により受光されるまでに要する時間から該測距対象物までの概算距離を算出し、上記第2光照射部から照射された第2照射光が該測距対象物で反射して該測定光受光手段により受光されるまでの間の波数を上記概算距離に基づいて特定するとともに、該第2光照射部から照射された第2照射光が該測距対象物で反射して該測定光受光手段により受光されるまでの間で生じる位相変化による位相差を特定し、特定した上記波数と上記位相差とから該測距対象物までの距離を算出することを特徴とする測距装置。
  2. 請求項1の測距装置において、
    上記第1光照射部から照射された第1照射光が上記測距対象物で反射して上記測定光受光手段により受光されるまでに要する時間を複数回計測し、その計測結果のばらつきに応じて、上記第2光照射部から照射する第2照射光の上記所定周波数を変更する周波数変更手段を有し、
    上記距離算出手段は、上記周波数変更手段による周波数変更後の第2照射光を上記第2光照射部が照射したときの上記波数及び上記位相差から、上記測距対象物までの距離を算出することを特徴とする測距装置。
  3. 請求項1又は2の測距装置において、
    上記距離算出手段が上記位相差を特定する際に上記測定光受光手段により受光される上記第2照射光の位相と比較するための基準光を受光する基準光受光手段を有し、
    上記光照射手段は、上記第2光照射部から照射される第2照射光の一部を上記基準光として既知の光路を介して上記基準光受光手段へ照射するとともに、該第2照射光の他部を上記測距対象物に向けて照射するものであり、
    上記距離算出手段は、上記測定光受光手段により受光した測定光と上記基準光受光手段により受光した基準光との位相の差を上記位相差として特定することを特徴とする測距装置。
  4. 請求項3の測距装置において、
    上記第2光照射部は、第1の光照射タイミングで上記第2光照射部から上記第2照射光を照射した後に該第2照射光の照射を停止させ、その後、該第2照射光が上記測距対象物で反射して上記測定光受光手段に受光される第2の光照射タイミングで該第2光照射部から再び第2照射光を照射させるものであり、
    上記距離算出手段は、上記第1の光照射タイミングで照射された第2照射光を上記測定光受光手段で受光した測定光と、上記第2の光照射タイミングで照射された第2照射光を上記基準光受光手段で受光した基準光との位相の差を上記位相差として特定することを特徴とする測距装置。
JP2012060033A 2012-03-16 2012-03-16 測距装置 Pending JP2013195117A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060033A JP2013195117A (ja) 2012-03-16 2012-03-16 測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060033A JP2013195117A (ja) 2012-03-16 2012-03-16 測距装置

Publications (1)

Publication Number Publication Date
JP2013195117A true JP2013195117A (ja) 2013-09-30

Family

ID=49394268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060033A Pending JP2013195117A (ja) 2012-03-16 2012-03-16 測距装置

Country Status (1)

Country Link
JP (1) JP2013195117A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760566A (zh) * 2014-01-08 2014-04-30 苏州新桥电子科技有限公司 激光测距系统
CN104459673A (zh) * 2014-12-18 2015-03-25 扬州天目光电科技有限公司 激光测距目标指示器及其测距方法和工作状态切换方法
CN104930991A (zh) * 2015-07-08 2015-09-23 陈静 基于载波相位的位移监测方法和位移监测系统
WO2017134707A1 (ja) * 2016-02-02 2017-08-10 ソニー株式会社 測距装置、測距方法、信号処理装置および投光装置
CN109270547A (zh) * 2018-08-22 2019-01-25 深亮智能技术(中山)有限公司 一种激光飞行时间光雷达
WO2020241294A1 (ja) * 2019-05-31 2020-12-03 ソニー株式会社 信号処理装置、信号処理方法、および、測距モジュール
WO2021210423A1 (ja) * 2020-04-16 2021-10-21 ソニーセミコンダクタソリューションズ株式会社 測距装置および測距方法
US20220035039A1 (en) * 2019-04-22 2022-02-03 Koito Manufacturing Co., Ltd. Tof camera

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333151A (ja) * 1992-05-29 1993-12-17 Nec Corp 測距装置
US5889490A (en) * 1996-08-05 1999-03-30 Wachter; Eric A. Method and apparatus for improved ranging
JP2000046931A (ja) * 1998-07-24 2000-02-18 Mitsubishi Electric Corp レーダ装置
JP2000206244A (ja) * 1999-01-20 2000-07-28 Kubota Corp 測距装置
JP2004507742A (ja) * 2000-08-25 2004-03-11 ギガー,クルト 距離測定のための方法および装置
JP2008076131A (ja) * 2006-09-20 2008-04-03 Hokuyo Automatic Co 測距装置
WO2010100846A1 (ja) * 2009-03-05 2010-09-10 パナソニック株式会社 距離測定装置、距離測定方法、プログラムおよび集積回路
JP2011153980A (ja) * 2010-01-28 2011-08-11 Mitsubishi Heavy Ind Ltd ガス濃度計測装置および方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333151A (ja) * 1992-05-29 1993-12-17 Nec Corp 測距装置
US5889490A (en) * 1996-08-05 1999-03-30 Wachter; Eric A. Method and apparatus for improved ranging
JP2000046931A (ja) * 1998-07-24 2000-02-18 Mitsubishi Electric Corp レーダ装置
JP2000206244A (ja) * 1999-01-20 2000-07-28 Kubota Corp 測距装置
JP2004507742A (ja) * 2000-08-25 2004-03-11 ギガー,クルト 距離測定のための方法および装置
JP2008076131A (ja) * 2006-09-20 2008-04-03 Hokuyo Automatic Co 測距装置
WO2010100846A1 (ja) * 2009-03-05 2010-09-10 パナソニック株式会社 距離測定装置、距離測定方法、プログラムおよび集積回路
JP2011153980A (ja) * 2010-01-28 2011-08-11 Mitsubishi Heavy Ind Ltd ガス濃度計測装置および方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760566A (zh) * 2014-01-08 2014-04-30 苏州新桥电子科技有限公司 激光测距系统
CN104459673A (zh) * 2014-12-18 2015-03-25 扬州天目光电科技有限公司 激光测距目标指示器及其测距方法和工作状态切换方法
CN104930991A (zh) * 2015-07-08 2015-09-23 陈静 基于载波相位的位移监测方法和位移监测系统
WO2017134707A1 (ja) * 2016-02-02 2017-08-10 ソニー株式会社 測距装置、測距方法、信号処理装置および投光装置
JPWO2017134707A1 (ja) * 2016-02-02 2018-11-29 ソニー株式会社 測距装置、測距方法、信号処理装置および投光装置
US11086014B2 (en) 2016-02-02 2021-08-10 Sony Corporation Ranging device, ranging method, signal processing device, and light projecting device
CN109270547A (zh) * 2018-08-22 2019-01-25 深亮智能技术(中山)有限公司 一种激光飞行时间光雷达
US20220035039A1 (en) * 2019-04-22 2022-02-03 Koito Manufacturing Co., Ltd. Tof camera
WO2020241294A1 (ja) * 2019-05-31 2020-12-03 ソニー株式会社 信号処理装置、信号処理方法、および、測距モジュール
WO2021210423A1 (ja) * 2020-04-16 2021-10-21 ソニーセミコンダクタソリューションズ株式会社 測距装置および測距方法

Similar Documents

Publication Publication Date Title
JP2013195117A (ja) 測距装置
US10732091B2 (en) Laser sensor for particle size detection
JP2016161411A (ja) 光波距離計
JP6924149B2 (ja) マルチビーム距離測定プロセス
JP4104991B2 (ja) 光波距離計
TWI401460B (zh) 用以測量相對移動之裝置及方法
CN102792183B (zh) 物理量传感器以及物理量测量方法
JP2018525606A (ja) 粒子密度検出のためのレーザセンサ
JP6514920B2 (ja) 光波距離計
CN109696691A (zh) 一种激光雷达及其进行测量的方法、存储介质
JP5812713B2 (ja) レーザ測距装置
KR101303371B1 (ko) 소정 범위의 속도들에 걸친 객체와 광 입력 장치의 상대이동을 측정하는 방법
JPWO2015098469A1 (ja) 測距装置、電子機器、測距方法、測距プログラム
JP2016001143A (ja) 多点距離測定装置及び形状測定装置
KR101260280B1 (ko) 3차원 광 스캔 장치 및 방법
US11585928B2 (en) LIDAR measuring device
JPWO2017134707A1 (ja) 測距装置、測距方法、信号処理装置および投光装置
JP6538191B2 (ja) 計測装置、計測方法及びコンピュータプログラム
US20230417884A1 (en) Apparatus and method for measuring distant to and/or velocity of physical object
CN203720351U (zh) 精确测定物体角度和角速度的激光雷达测量仪
US20060132754A1 (en) Hand-held laser distance measuring device with a pulse reflection mixing method
JP7257105B2 (ja) 絶対距離測定装置及びその方法
JP7192959B2 (ja) 測距装置及び測距方法
CN110702384B (zh) 激光器近场测试方法及测试系统
KR20150012803A (ko) 분광기술을 적용한 검지장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160415