WO2020241294A1 - 信号処理装置、信号処理方法、および、測距モジュール - Google Patents

信号処理装置、信号処理方法、および、測距モジュール Download PDF

Info

Publication number
WO2020241294A1
WO2020241294A1 PCT/JP2020/019375 JP2020019375W WO2020241294A1 WO 2020241294 A1 WO2020241294 A1 WO 2020241294A1 JP 2020019375 W JP2020019375 W JP 2020019375W WO 2020241294 A1 WO2020241294 A1 WO 2020241294A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
exposure control
signal processing
light
distance
Prior art date
Application number
PCT/JP2020/019375
Other languages
English (en)
French (fr)
Inventor
基 三原
俊 海津
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/608,059 priority Critical patent/US20220317269A1/en
Priority to JP2021522209A priority patent/JPWO2020241294A1/ja
Priority to DE112020002746.5T priority patent/DE112020002746T5/de
Priority to CN202080038326.7A priority patent/CN113874750A/zh
Publication of WO2020241294A1 publication Critical patent/WO2020241294A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • G01S7/4914Circuits for detection, sampling, integration or read-out of detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present technology relates to a signal processing device, a signal processing method, and a ranging module, and particularly to a signal processing device, a signal processing method, and a ranging module that enable appropriate exposure control.
  • a distance measuring sensor that uses an indirect ToF (Time of Flight) method is known.
  • the signal charge obtained by receiving the reflected light reflected by the object to be measured is distributed to two charge storage regions, and the distance is calculated from the distribution ratio of those signal charges. .. It has been proposed that such a distance measuring sensor has improved light receiving characteristics by adopting a back-illuminated type (see, for example, Patent Document 1).
  • a distance measuring sensor that receives reflected light
  • ambient light such as sunlight and the amount of light from the light emitting source affect the amount of light received, so appropriate exposure control is required to accurately measure the distance.
  • This technology was made in view of such a situation, and makes it possible to perform appropriate exposure control.
  • the signal processing device on the first aspect of the present technology includes a parameter determination unit that determines exposure control parameters based on an evaluation index using distance information and luminance information calculated from the detection signal of the light receiving sensor.
  • the signal processing device determines the exposure control parameter based on the evaluation index using the distance information and the brightness information calculated from the detection signal of the light receiving sensor.
  • the ranging module on the third side of the present technology is composed of a light emitting unit that emits light at a predetermined frequency, a light receiving sensor that receives the reflected light reflected by the object, and a detection signal of the light receiving sensor. It is provided with a parameter determination unit that determines exposure control parameters based on an evaluation index using the calculated distance information and luminance information.
  • the exposure control parameters are determined based on the evaluation index using the distance information and the luminance information calculated from the detection signal of the light receiving sensor.
  • the signal processing device and the ranging module may be independent devices or modules incorporated in other devices.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a ranging module to which the present technology is applied.
  • the distance measuring module 11 shown in FIG. 1 is a distance measuring module (ToF module) that performs distance measurement by the Indirect ToF method, and has a light emitting unit 12, a light emitting control unit 13, a light receiving unit 14, and a signal processing unit 15.
  • the distance measuring module 11 irradiates an object with light, and the light (irradiation light) receives the light reflected by the object (reflected light) to receive a depth map (distance image) as distance information to the object.
  • a reliability map reliability image
  • the light emitting unit 12 has, for example, an infrared laser diode or the like as a light source, and emits light while being modulated at a timing corresponding to the light emission control signal supplied from the light emission control unit 13 according to the control by the light emission control unit 13 to the object. And irradiate the irradiation light.
  • the light emission control unit 13 controls the light emission of the light emission unit 12 by supplying the light emission control signal for controlling the frequency (for example, 20 MHz or the like) when the light source is made to emit light and the light emission amount. Further, in order to drive the light receiving unit 14 in accordance with the timing of light emission in the light emitting unit 12, the light emitting control unit 13 also supplies a light emitting control signal to the light receiving unit 14.
  • the light receiving unit 14 is provided with a pixel array unit 22 in which pixels 21 that generate an electric charge according to the amount of received light and output a signal corresponding to the electric charge are two-dimensionally arranged in a matrix in the row direction and the column direction.
  • the drive control circuit 23 is arranged in the peripheral region of the pixel array unit 22.
  • the light receiving unit 14 is a light receiving sensor that receives reflected light, and is also called a ToF sensor.
  • the light receiving unit 14 is a pixel array unit 22 in which a plurality of pixels 21 are two-dimensionally arranged, and receives reflected light from an object. Then, the light receiving unit 14 supplies the detection signal corresponding to the amount of reflected light received by each pixel 21 of the pixel array unit 22 to the signal processing unit 15 as pixel data.
  • the drive control circuit 23 has, for example, a control signal for controlling the drive of the pixel 21 based on a light emission control signal supplied from the light emission control unit 13, (for example, a distribution signal DIMIX described later, a selection signal ADDRESS DECODE, etc. Reset signal RST, etc.) is output.
  • a control signal for controlling the drive of the pixel 21 based on a light emission control signal supplied from the light emission control unit 13, for example, a distribution signal DIMIX described later, a selection signal ADDRESS DECODE, etc. Reset signal RST, etc.
  • the pixel 21 has a photodiode 31 and a first tap 32A and a second tap 32B that detect the charge photoelectrically converted by the photodiode 31.
  • the electric charge generated by one photodiode 31 is distributed to the first tap 32A or the second tap 32B.
  • the charges distributed to the first tap 32A are output as a detection signal A from the signal line 33A
  • the charges distributed to the second tap 32B are detected signals B from the signal line 33B. Is output as.
  • the first tap 32A is composed of a transfer transistor 41A, an FD (Floating Diffusion) unit 42A, a selection transistor 43A, and a reset transistor 44A.
  • the second tap 32B is composed of a transfer transistor 41B, an FD section 42B, a selection transistor 43B, and a reset transistor 44B.
  • the signal processing unit 15 calculates the depth value, which is the distance from the distance measuring module 11 to the object, for each pixel 21 of the pixel array unit 22 based on the pixel data supplied from the light receiving unit 14. Further, the signal processing unit 15 generates and outputs a depth map in which a depth value (depth information) is stored as a pixel value of each pixel 21 of the pixel array unit 22. Further, the signal processing unit 15 also calculates the reliability of the calculated depth value for each pixel 21 of the pixel array unit 22, and stores the reliability (luminance information) as the pixel value of each pixel 21 of the pixel array unit 22. Generate and output a reliability map.
  • the signal processing unit 15 calculates the optimum exposure control parameter when the reflected light is received next from the obtained depth map and reliability map, and supplies it to the light emission control unit 13.
  • the light emission control unit 13 generates a light emission control signal based on the exposure control parameter from the signal processing unit 15.
  • the reflected light is received by the photodiode 31 with a delay of only one.
  • the distribution signal DIMIX_A controls the on / off of the transfer transistor 41A
  • the distribution signal DIMIX_B controls the on / off of the transfer transistor 41B.
  • the distribution signal DIMIX_A is a signal having the same phase as the irradiation light
  • the distribution signal DIMIX_B has a phase in which the distribution signal DIMIX_A is inverted.
  • the electric charge generated by the photodiode 31 receiving the reflected light is transferred to the FD unit 42A while the transfer transistor 41A is on according to the distribution signal DIMIX_A, and the transfer transistor 41B is turned on according to the distribution signal DIMIX_B. While it is, it is transferred to the FD unit 42B.
  • the charges transferred via the transfer transistor 41A are sequentially accumulated in the FD unit 42A and transferred via the transfer transistor 41B during a predetermined period in which the irradiation light of the irradiation time T is periodically irradiated.
  • the electric charge is sequentially accumulated in the FD section 42B.
  • the selection transistor 43A is turned on according to the selection signal ADDRESS DECODE_A after the end of the period for accumulating the electric charge
  • the electric charge accumulated in the FD unit 42A is read out via the signal line 33A and corresponds to the amount of the electric charge.
  • the detection signal A is output from the light receiving unit 14.
  • the selection transistor 43B is turned on according to the selection signal ADDRESS DECODE_B
  • the electric charge accumulated in the FD unit 42B is read out via the signal line 33B, and the detection signal B according to the amount of the electric charge is transmitted from the light receiving unit 14. It is output.
  • the electric charge stored in the FD section 42A is discharged when the reset transistor 44A is turned on according to the reset signal RST_A, and the electric charge stored in the FD section 42B is discharged when the reset transistor 44B is turned on according to the reset signal RST_B. Will be done.
  • the pixel 21 distributes the electric charge generated by the reflected light received by the photodiode 31 to the first tap 32A or the second tap 32B according to the delay time ⁇ T, and outputs the detection signal A and the detection signal B.
  • the delay time ⁇ T corresponds to the time during which the light emitted by the light emitting unit 12 flies to the object, is reflected by the object, and then flies to the light receiving unit 14, that is, the distance to the object. Therefore, the distance measuring module 11 can obtain the distance (depth value) to the object according to the delay time ⁇ T based on the detection signal A and the detection signal B.
  • the detection signal A and the detection signal A have different effects for each pixel 21 due to the deviation (sensitivity difference) of the characteristics of each element of the pixel transistor such as the photodiode 31 and the transfer transistor 41 of each pixel 21. It may be given to signal B. Therefore, in the Indirect ToF type ranging module 11, the sensitivity difference between the taps of each pixel is removed by acquiring the detection signal A and the detection signal B that receive the reflected light by changing the phase of the same pixel 21. , A method to improve the SN ratio is adopted.
  • the light receiving unit 14 receives the reflected light at the light receiving timings whose phases are shifted by 0 °, 90 °, 180 °, and 270 ° with respect to the irradiation timing of the irradiation light. More specifically, the light receiving unit 14 receives light with the phase set to 0 ° with respect to the irradiation timing of the irradiation light in a certain frame period, and receives light with the phase set to 90 ° in the next frame period. In the frame period, the light is received with the phase set to 180 °, and in the next frame period, the light is received with the phase set to 270 °, and so on.
  • FIG. 4 is a diagram showing the exposure periods of the first tap 32A of the pixel 21 in each phase of 0 °, 90 °, 180 °, and 270 ° side by side so that the phase difference can be easily understood.
  • the detection signal A obtained by receiving light in the same phase (phase 0 °) as the irradiation light is the detection signal A 0 , and the phase (phase) shifted by 90 degrees from the irradiation light.
  • the detection signal A obtained by receiving light at 90 °) is detected by detection signal A 90
  • the detection signal A obtained by receiving light in a phase (phase 180 °) shifted by 180 degrees from the irradiation light is detected by detection signal A 180 , irradiation light and 270.
  • the detection signal A obtained by receiving light in a shifted phase (phase 270 °) is referred to as a detection signal A 270 .
  • the detection signal B obtained by receiving light at the second tap 32B in the same phase (phase 0 °) as the irradiation light is shifted by 90 degrees from the detection signal B 0 and the irradiation light (phase).
  • the detection signal B obtained by receiving light at 90 °) is detected by detection signal B 90
  • the detection signal B obtained by receiving light in a phase (phase 180 °) shifted by 180 degrees from the irradiation light is detected by detection signal B 180 , irradiation light and 270.
  • the detection signal B obtained by receiving light in a shifted phase (phase 270 °) is referred to as a detection signal B 270 .
  • FIG. 5 is a diagram illustrating a method of calculating the depth value and the reliability by the 2Phase method and the 4Phase method.
  • the depth value d can be obtained by the following equation (1).
  • equation (1) c is the speed of light
  • ⁇ T is the delay time
  • f is the modulation frequency of light.
  • ⁇ in the equation (1) represents the phase shift amount [rad] of the reflected light, and is represented by the following equation (2).
  • I and Q of the equation (2) set the phases to 0 °, 90 °, 180 ° and 270 ° to obtain the detection signals A 0 to A 270 and the detection signals B 0 to B 270 . It is calculated by the following equation (3).
  • I and Q are signals obtained by converting the phase of the cos wave from polar coordinates to a Cartesian coordinate system (IQ plane), assuming that the change in brightness of the irradiation light is a cos wave.
  • the 2Phase method two of the detection signals A 0 to A 270 and the detection signals B 0 to B 270 obtained by setting the phases to 0 °, 90 °, 180 ° and 270 ° are orthogonal to each other.
  • the depth value d to the object can be obtained using only the phase.
  • the I and Q of the equation (2) become the following equation (4).
  • the I and Q of the equation (2) become the following equation (5).
  • the characteristic variation between taps existing in each pixel cannot be removed, but the depth value d to the object can be obtained only from the detection signals of two phases, so the frame is twice that of the 4Phase method.
  • Distance measurement can be performed at a rate.
  • the characteristic variation between taps can be adjusted by correction parameters such as gain and offset.
  • the reliability cnf is obtained by the following equation (6) in both the 2Phase method and the 4Phase method. As can be seen from the equation (6), the reliability cnf corresponds to the magnitude of the reflected light received by the pixel 21, that is, the luminance information (luminance value).
  • the ranging module 11 is either an I signal or a Q signal corresponding to the delay time ⁇ T calculated by the 4 Phase method or an I signal or the Q signal corresponding to the delay time ⁇ T calculated by the 2 Phase method. It does not matter whether the depth value d and the reliability cnf are used with. Either the 4Phase method or the 2Phase method may be used in a fixed manner, or may be, for example, a method of appropriately selecting or blending according to the movement of an object or the like. In the following, for the sake of simplicity, the 4Phase method will be adopted.
  • the unit for outputting one depth map is referred to as one frame (period), and pixel data (detection signal) of each phase of 0 °, 90 °, 180 °, or 270 ° is generated.
  • the unit to be used is called a microframe (period).
  • one frame is composed of 4 microframes
  • one frame is composed of 2 microframes.
  • the depth value d may be referred to as a distance d for ease of understanding.
  • the signal processing unit 15 of the ranging module 11 generates and outputs a depth map and a reliability map based on the result of receiving the reflected light by the 4Phase method, and also outputs the obtained depth map and the reliability map. Then, the optimum exposure control parameter for receiving the reflected light is calculated and supplied to the light emission control unit 13.
  • the luminance value l observed in each pixel 21 of the light receiving unit 14 as a light receiving sensor is an additive noise (optical shot noise) expressed by a normal distribution having an average of 0 and a variance of ⁇ 2 (l). Is assumed to occur.
  • the variance ⁇ 2 (l) is expressed by the following equation (7).
  • ⁇ 2 (l) a ⁇ l + b ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (7)
  • a and b are values determined by drive parameters such as the gain of the light receiving unit 14, and can be obtained by, for example, prior calibration.
  • FIG. 6 shows the relationship between the luminance value l expressed by the following equation (7) and the variance ⁇ 2 (l). As shown in FIG. 6, as the luminance value l increases, the variance ⁇ 2 (l) also increases.
  • the IndirectToF method is a method that receives the light of a self-luminous light source as reflected light, and because the intensity of the light is inversely proportional to the square of the distance, what is the brightness value of an object existing at a predetermined distance? It is possible to estimate in advance whether the value will be.
  • the luminance value l (r, p, t, d) at the distance d can be expressed by the model of the following equation (8).
  • d represents a distance
  • r represents the reflectance of an object
  • p represents the amount of light emitted from the light source of the light emitting unit 12
  • t represents the exposure time (accumulation time) of the pixel 21 of the light receiving unit 14.
  • the coefficient A (r, p, t) is a coefficient linear with the reflectance r, the amount of light emitted p, and the exposure time t
  • offset is an offset constant.
  • the luminance information of the object existing at the distance d can be estimated by the luminance value l (r, p, t, d) of the equation (8), and the variance according to the luminance information is ⁇ 2 ( ⁇ 2 ) of the equation (7). Since it can be expressed by l), the SNR (d), which is the SN ratio according to the distance d, is expressed by the following equation (9) using the luminance information.
  • FIG. 7 shows an example of SNR (d) of the equation (9)'.
  • the distance d_sat determined to be saturated in the SNR (d) of FIG. 7 can be determined according to the sensor performance such as the saturated charge amount of the light receiving unit 14.
  • the signal processing unit 15 adopts the average value of the SNR (d) of all the pixels of the light receiving unit 14 as the evaluation value E when determining the optimum exposure control parameter of the light receiving unit 14.
  • the value E can be expressed by a convoluted equation of the appearance frequency p (d) of the distance d in the entire light receiving unit 14 and the SNR (d) corresponding to the distance d.
  • the evaluation value E can be expressed by the sum of products of the appearance frequency p (d) and the SNR (d) for the distance d detected in one frame in the following equation (10).
  • the signal processing unit 15 can calculate the optimum exposure control parameter by searching for the exposure control parameter that maximizes the evaluation value E of the equation (10).
  • FIG. 9 shows the transition of the evaluation value E when the exposure time t is fixed as the exposure control parameter and the light emission amount p of the light source of the light emitting unit 12 is sequentially changed.
  • the emission amount p at which the evaluation value E is maximized and the exposure time t are the optimum exposure control parameters.
  • FIG. 10 is a block diagram showing a first configuration example of the signal processing unit 15 that executes the process of searching for the optimum value of the exposure control parameter described above. Note that FIG. 10 also shows other configurations of the ranging module 11.
  • the signal processing unit 15 is composed of a distance image / reliability calculation unit 61, a statistic calculation unit 62, an evaluation value calculation unit 63, an evaluation index storage unit 64, a parameter determination unit 65, and a parameter holding unit 66.
  • the signal processing unit 15 can be composed of one signal processing chip or a signal processing device. Further, the light emission control unit 13 and the signal processing unit 15 may be configured by one signal processing chip or signal processing device, or the light receiving unit 14 and the signal processing unit 15 may be composed of one signal processing chip or signal processing device. It may be configured.
  • the distance image / reliability calculation unit 61 calculates the distance d and the reliability cnf of each pixel 21 based on the pixel data (detection signals A and B) of each pixel 21 supplied from the light receiving unit 14.
  • the calculation method of the distance d and the reliability cnf of each pixel is as described above.
  • the distance image / reliability calculation unit 61 stores a depth map (distance image) in which the distance d of each pixel 21 is stored as a pixel value of the pixel array unit 22, and the reliability cnf of each pixel 21 is a pixel value of the pixel array unit 22. Generates a reliability map (reliability image) stored as, and outputs it to the outside.
  • the distance image / reliability calculation unit 61 also supplies the depth map as the distance information and the reliability map as the luminance information to the statistic calculation unit 62.
  • the statistic calculation unit 62 calculates the statistic of the depth map from one depth map supplied from the distance image / reliability calculation unit 61. Specifically, the statistic calculation unit 62 generates a histogram of the distance d in which the appearance frequency (frequency) of the distance d shown in FIG. 8 is counted for all the pixels of the pixel array unit 22, and the evaluation value calculation unit 63 Supply to.
  • the evaluation value calculation unit 63 calculates the evaluation value in the current exposure control parameter according to the evaluation index supplied by the evaluation index storage unit 64. Specifically, the evaluation value calculation unit 63 calculates an evaluation value E based on the equation (10) supplied from the evaluation index storage unit 64 as an evaluation index, and supplies the result to the parameter determination unit 65.
  • the evaluation index storage unit 64 stores the calculation formula of the evaluation value E of the formula (10) as the evaluation index and the formula (9)'representing the SNR corresponding to the distance d, and supplies it to the evaluation value calculation unit 63. ..
  • the evaluation value E of the equation (10) is a value calculated by using the depth map statistic and the reliability map, and more specifically, the appearance frequency p (d) of the distance d and the distance d. It is a value calculated by a formula convoluted with SNR (d) according to.
  • the parameter determination unit 65 determines whether the current exposure control parameter is the value at which the evaluation value E is maximized. Then, when it is determined that the current exposure control parameter is not the value at which the evaluation value E is the maximum, for example, the next exposure control parameter is determined by using the gradient method or the like and supplied to the light emission control unit 13. .. Further, the parameter determination unit 65 supplies and holds the current exposure control parameter and the evaluation value E at that time to the parameter holding unit 66. When it is determined that the exposure control parameter having the maximum evaluation value E has been searched, the parameter determination unit 65 ends updating the exposure control parameter. In the present embodiment, the parameter determination unit 65 updates the light emission amount p of the light source of the light emitting unit 12 as the exposure control parameter to be updated, and supplies the light emission amount p to the parameter holding unit 66 and the light emission control unit 13.
  • the parameter holding unit 66 holds the exposure control parameter supplied from the parameter determining unit 65 and the evaluation value E at that time.
  • the exposure control parameter and the evaluation value E held in the parameter holding unit 66 are referred to by the parameter determining unit 65 as necessary.
  • the light emission control unit 13 generates a light emission control signal based on the light emission amount p supplied from the parameter determination unit 65 as an updated exposure control parameter, and supplies it to the light emission unit 12 and the light receiving unit 14.
  • First depth map generation process a depth map generation process (first depth map generation process) by the distance measuring module 11 including the first configuration example of the signal processing unit 15 will be described with reference to the flowchart of FIG. This process is started, for example, when a command to start measurement is supplied to the distance measuring module 11.
  • step S11 the parameter determination unit 65 supplies the initial values of the predetermined exposure control parameters to the light emission control unit 13.
  • step S12 the light emission control unit 13 generates a light emission control signal based on the exposure control parameter supplied from the parameter determination unit 65, and supplies the light emission control signal to the light emitting unit 12 and the light receiving unit 14.
  • the light emission control signal defines a frequency and a light emission amount when the light emitting unit 12 emits light from a light source.
  • the exposure period (light receiving period) is determined according to the light emission timing of the light source defined by the light emission control signal, and each pixel 21 of the pixel array unit 22 is driven.
  • step S13 the light emitting unit 12 emits light at a predetermined frequency and the amount of light emitted based on the light emission control signal, and the light receiving unit 14 emits the irradiation light emitted from the light emitting unit 12 by being reflected by the object and returned from the object. Receives the reflected light of. Then, each pixel 21 of the light receiving unit 14 outputs the pixel data generated according to the amount of light received to the distance image / reliability calculation unit 61 of the signal processing unit 15. The light receiving unit 14 receives the reflected light capable of generating one depth map by the 4 Phase method.
  • the light receiving unit 14 receives light in four phases shifted by 0 °, 90 °, 180 °, and 270 ° with respect to the emission timing of the irradiation light, and the pixel data obtained as a result is obtained. It is output to the distance image / reliability calculation unit 61.
  • step S14 the distance image / reliability calculation unit 61 calculates the distance d and the reliability cnf of each pixel 21 based on the pixel data of each pixel 21 supplied from the light receiving unit 14, and calculates the depth map and the reliability. Generate a map and output it to the outside. Further, the distance image / reliability calculation unit 61 also supplies the generated depth map and reliability map to the statistic calculation unit 62.
  • step S15 the statistic calculation unit 62 calculates the statistic of the depth map from one depth map supplied from the distance image / reliability calculation unit 61. Specifically, the statistic calculation unit 62 generates a histogram of the distance d shown in FIG. 8 in which the appearance frequency of the distance d is counted for all the pixels of the pixel array unit 22, and supplies the histogram to the evaluation value calculation unit 63. ..
  • step S16 the evaluation value calculation unit 63 calculates the evaluation value E in the current exposure control parameter according to the evaluation index supplied by the evaluation index storage unit 64. Specifically, the evaluation value calculation unit 63 calculates the evaluation value E of the formula (10) supplied from the evaluation index storage unit 64 as an evaluation index, and supplies the result to the parameter determination unit 65.
  • the parameter determination unit 65 determines whether the exposure control parameter having the maximum evaluation value E has been searched. For example, when the parameter determination unit 65 searches for an exposure control parameter using the gradient method, the exposure control parameter having the maximum evaluation value E depends on whether the gradient is within a predetermined range that can be regarded as zero. Is determined whether or not has been searched. Alternatively, when the parameter determination unit 65 repeats the process of searching for the exposure control parameter a predetermined number of times, or when it is determined that the exposure control parameter for which the evaluation value E is improved is not updated, the evaluation value E is set. It may be determined that the maximum exposure control parameter has been searched.
  • step S17 If it is determined in step S17 that the exposure control parameter having the maximum evaluation value E has not yet been searched, the process proceeds to step S18, and the parameter determination unit 65 updates the exposure control parameter and emits light control unit. Supply to 13. Specifically, the parameter determination unit 65 supplies the exposure control parameter in which the light emission amount p of the light source is changed within a predetermined set width to the light emission control unit 13. Further, in step S18, a process of storing the exposure control parameter before the update and the evaluation value E at that time in the parameter holding unit 66 is also performed. After step S18, the process returns to step S12, and the processes of steps S12 to S17 described above are repeated.
  • step S17 when it is determined in step S17 that the exposure control parameter having the maximum evaluation value E has been searched, the process proceeds to step S19, and the ranging module 11 sets the exposure control parameter determined to be optimal.
  • a depth map and a reliability map are generated based on the received reflected light and output to the outside. That is, the parameter determination unit 65 supplies the optimum exposure control parameter determined to have the maximum evaluation value E to the light emission control unit 13 again.
  • the light emission control unit 13 generates a light emission control signal based on the optimum exposure control parameter supplied from the parameter determination unit 65, and supplies the light emission control signal to the light emitting unit 12 and the light receiving unit 14.
  • the light receiving unit 14 receives the reflected light from the object and outputs pixel data.
  • the distance image / reliability calculation unit 61 generates a depth map and a reliability map with the optimum exposure control parameters and outputs them to the outside.
  • the first depth map generation process based on the evaluation index using the luminance information assumed according to the distance and the distance information of the object (subject) obtained by actually receiving the reflected light.
  • the exposure control parameters that maximize the evaluation index can be searched and determined. As a result, appropriate exposure control can be performed.
  • the optimum exposure control parameter is supplied to the light emission control unit 13 again, and the depth map and the reliability map with the optimum exposure control parameter are generated again.
  • the depth map and reliability map generated by each exposure control parameter under search are stored in the parameter holding unit 66, and when the optimum exposure control parameter is determined, the depth map at that time is displayed.
  • the reliability map may be acquired from the parameter holding unit 66 and output to the outside. Further, although the depth map and the reliability map of the sequentially set exposure control parameters are output to the outside, only the depth map and the reliability map of the optimum exposure control parameters may be output to the outside.
  • FIG. 12 is a block diagram showing a second configuration example of the signal processing unit 15.
  • FIG. 12 also shows other configurations of the ranging module 11.
  • the second configuration example of FIG. 12 is different in that the image composition unit 81 is newly added to the subsequent stage of the distance image / reliability calculation unit 61, and the other configurations are the same as those of the first configuration example. There is.
  • the signal processing unit 15 sets the light emission amount p as an exposure control parameter twice in the light emission control unit 13 to have high brightness and low brightness, and is generated in a high brightness environment.
  • a depth map that combines the depth map of the above and the second depth map generated in a low-luminance environment is generated and output.
  • a reliability map is generated by synthesizing the first reliability map generated in the high-luminance environment and the second reliability map generated in the low-luminance environment. Is output.
  • the ToF sensor With the ToF sensor, if the light emission is strengthened so that long-distance information can be acquired, the charge will be saturated at a short-distance object and information cannot be acquired. There is a problem that the SN ratio cannot be obtained because the light does not reach.
  • the above problem can be solved by setting the light emission amount p of the light source twice, high brightness and low brightness, and synthesizing a plurality of depth maps.
  • the parameter determination unit 65 supplies the exposure control parameter including the first light emission amount low, which results in low brightness, to the light emission control unit 13.
  • the light emitting unit 12 emits light at the first light emission amount low
  • the light receiving unit 14 outputs pixel data according to the light receiving amount to the distance image / reliability calculation unit 61.
  • the distance image / reliability calculation unit 61 generates a first depth map and a first reliability map at low brightness based on the pixel data of each pixel 21.
  • the parameter determination unit 65 supplies the exposure control parameter including the second emission amount p high having high brightness to the emission control unit 13.
  • the light emitting unit 12 emits light at a second light emitting amount p high
  • the light receiving unit 14 outputs pixel data corresponding to the light receiving amount to the distance image / reliability calculation unit 61.
  • the distance image / reliability calculation unit 61 generates a second depth map and a second reliability map at high brightness based on the pixel data of each pixel 21.
  • the image compositing unit 81 synthesizes a first depth map at low brightness and a second depth map at high brightness to generate a depth map (hereinafter, referred to as HDR depth map) having an expanded dynamic range. Generate. Further, the image synthesizing unit 81 synthesizes the first reliability map at low brightness and the second reliability map at high brightness to expand the dynamic range of the reliability map (hereinafter, HDR reliability). It is called a degree map.) Is generated. The generated HDR depth map and HDR reliability map are output to the outside and supplied to the statistic calculation unit 62.
  • the HDR depth map composition by the image composition unit 81 can also be obtained by the same blending process as in the equation (11). The same applies to the composition of HDR reliability maps.
  • the statistic calculation unit 62 calculates the statistic of the HDR depth map from one HDR depth map supplied from the distance image / reliability calculation unit 61. That is, a histogram of the distance d for the HDR depth map is generated as in the first configuration example.
  • the evaluation value calculation unit 63 calculates the evaluation value E in the current exposure control parameter according to the evaluation index supplied from the evaluation index storage unit 64.
  • the formula for obtaining the evaluation value E supplied from the evaluation index storage unit 64 is the same as the above-mentioned formula (10). That is, the evaluation value E is expressed by an equation in which the appearance frequency p (d) of the distance d and the SNR (d) corresponding to the distance d are convoluted.
  • SNR (d) which is the SN ratio according to the distance d when synthesizing two depth images at high brightness and low brightness at the blend ratio ⁇
  • equation (12) SNR (d)
  • FIG. 13 shows an example of SNR (d) of the equation (12)'.
  • FIG. 14 is a conceptual diagram corresponding to the equation (10) for obtaining the evaluation value E using the SNR (d) of FIG.
  • a plurality of SNRs (d) are stored in the evaluation index storage unit 64, and the evaluation value calculation unit 63 stores a predetermined SNR (d) according to the operation mode, the reflectance r of the measurement object, the distance measurement range, and the like. d) is acquired from the evaluation index storage unit 64.
  • FIG. 15 shows an example of a plurality of SNRs (d) stored in the evaluation index storage unit 64.
  • the evaluation index storage unit 64 stores three types of SNRs (d), SNRs 101 to 103.
  • the SNR 101 is switched between an SNR with a first light emission amount low for a short distance and an SNR with a second light emission amount p high for a long distance.
  • SNR102 can switch between SNR for short distance and SNR for long distance at a distance d1, but the measurement range of SNR due to the first emission amount low for short distance is narrower than that of SNR101. However, it is set to a high signal-to-noise ratio.
  • the distance d2 for switching between the SNR for a short distance and the SNR for a long distance is set to be larger than the distance d1 of the SNR101 and SNR102 (d1 ⁇ d2), and the measurement range of the SNR for a short distance is larger than that of the SNR102. It is set large.
  • FIG. 16 shows contour lines of SNR in a two-dimensional region having a second emission amount p high for a long distance as a horizontal axis and a first emission amount p low for a short distance as a vertical axis.
  • the parameter determination unit 65 sequentially updates the exposure control parameter, searches for the exposure control parameter that maximizes the SNR, and determines the exposure control parameter.
  • Second depth map generation process Next, the depth map generation process (second depth map generation process) by the distance measuring module 11 including the second configuration example of the signal processing unit 15 will be described with reference to the flowchart of FIG. This process is started, for example, when a command to start measurement is supplied to the distance measuring module 11.
  • the parameter determination unit 65 supplies a predetermined initial value of the exposure control parameter to the light emission control unit 13.
  • the exposure control parameters supplied to the light emission control unit 13 include at least two types of light emission amounts p, that is, a first light emission amount p low for a short distance and a second light emission amount p high for a long distance. ..
  • step S32 the light emission control unit 13 generates a light emission control signal including the first light emission amount low based on the exposure control parameter supplied from the parameter determination unit 65, and causes the light emission unit 12 and the light receiving unit 14 to generate a light emission control signal. Supply.
  • step S33 the light emitting unit 12 emits light at a predetermined frequency based on the light emission control signal and the first light emission amount low , and the light receiving unit 14 receives the reflected light from the object. Then, each pixel 21 of the light receiving unit 14 outputs the pixel data generated according to the amount of light received to the distance image / reliability calculation unit 61 of the signal processing unit 15.
  • the light receiving unit 14 receives light in four phases shifted by 0 °, 90 °, 180 °, and 270 ° with respect to the emission timing of the irradiation light, and the pixel data obtained as a result is obtained as a distance image. -Output to the reliability calculation unit 61.
  • step S34 the distance image / reliability calculation unit 61 generates a first depth map and a first reliability map based on the pixel data of each pixel 21 supplied from the light receiving unit 14, and obtains statistics. It is supplied to the calculation unit 62.
  • step S35 the light emission control unit 13 generates a light emission control signal including the second light emission amount p high and supplies it to the light emission unit 12 and the light receiving unit 14.
  • step S36 the light emitting unit 12 emits light at a predetermined frequency based on the light emission control signal and the second light emission amount p high , and the light receiving unit 14 receives the reflected light from the object. Then, each pixel 21 of the light receiving unit 14 outputs the pixel data generated according to the amount of light received to the distance image / reliability calculation unit 61 of the signal processing unit 15. The light receiving unit 14 receives light in four phases shifted by 0 °, 90 °, 180 °, and 270 ° with respect to the emission timing of the irradiation light, and the pixel data obtained as a result is obtained as a distance image. -Output to the reliability calculation unit 61.
  • step S37 the distance image / reliability calculation unit 61 generates a second depth map and a second reliability map based on the pixel data of each pixel 21 supplied from the light receiving unit 14, and obtains statistics. It is supplied to the calculation unit 62.
  • step S38 the image synthesizing unit 81 synthesizes the first depth map at low brightness and the second depth map at high brightness to generate an HDR depth map with an expanded dynamic range.
  • the image compositing unit 81 synthesizes the first reliability map at low brightness and the second reliability map at high brightness to generate an HDR reliability map with an expanded dynamic range.
  • the generated HDR depth map and HDR reliability map are output to the outside and supplied to the statistic calculation unit 62.
  • step S39 the statistic calculation unit 62 calculates the statistic of the HDR depth map from one HDR depth map supplied from the distance image / reliability calculation unit 61. That is, the statistic calculation unit 62 generates a histogram of the distance d for the HDR depth map and supplies it to the evaluation value calculation unit 63.
  • step S40 the evaluation value calculation unit 63 calculates the evaluation value E in the current exposure control parameter according to the evaluation index supplied by the evaluation index storage unit 64. Specifically, the evaluation value calculation unit 63 calculates the evaluation value E of the formula (10) supplied from the evaluation index storage unit 64 as an evaluation index, and supplies the result to the parameter determination unit 65.
  • step S41 the parameter determination unit 65 determines whether the exposure control parameter having the maximum evaluation value E has been searched. This determination process is the same as step S17 in FIG. 11 described above.
  • step S41 If it is determined in step S41 that the exposure control parameter having the maximum evaluation value E has not yet been searched, the process proceeds to step S42, and the parameter determination unit 65 updates the exposure control parameter and emits light control unit. Supply to 13. After step S42, the process returns to step S32, and the processes of steps S32 to S41 described above are repeated.
  • step S41 when it is determined in step S41 that the exposure control parameter having the maximum evaluation value E has been searched, the process proceeds to step S43.
  • the exposure control parameter that maximizes the evaluation value E is the optimum exposure control parameter.
  • the ranging module 11 sets the optimum exposure control parameters, generates an HDR depth map and an HDR reliability map based on the received reflected light, and outputs the HDR depth map and the HDR reliability map to the outside. That is, the distance measuring module 11 has two light emitting amounts p, that is, a first light emitting amount low for short distance and a second light emitting amount p high for long distance determined as the optimum exposure control parameter. Depth map and reliability map of are generated, synthesis processing is performed, DR depth map and HDR reliability map are generated, and output to the outside.
  • the light emission amount of the light source is set twice at low brightness and high brightness to receive the reflected light, so that the first depth map at low brightness and the second depth map at high brightness are received.
  • the distance information of an object can be obtained from a short distance to a long distance by using two images with the depth map of 2.
  • the evaluation index is based on the evaluation index using the luminance information assumed according to the distance and the distance information of the object (subject) obtained by actually receiving the reflected light.
  • the exposure control parameters to be maximized are searched and determined. Therefore, appropriate exposure control can be performed.
  • FIG. 18 is a block diagram showing a third configuration example of the signal processing unit 15.
  • FIG. 18 also shows other configurations of the ranging module 11.
  • the third configuration example of FIG. 18 is different in that the constraint setting unit 82 is newly added, and the other configurations are the same as those of the second configuration example.
  • the signal processing unit 15 searched for the exposure control parameter that maximizes the evaluation value E.
  • the larger the first emission amount p low and the second emission amount p high the larger the SNR, so that the exposure value E becomes the maximum.
  • the power consumption of the control parameters also increases. Therefore, it is desirable to determine the optimum exposure control parameters in consideration of power consumption.
  • the constraint setting unit 82 newly added in the third configuration example of FIG. 18 sets the constraint conditions for determining the optimum exposure control parameter in the parameter determination unit 65.
  • the constraint setting unit 82 sets the minimum value of SNR (hereinafter, referred to as the minimum SNR) that the distance measuring module 11 should satisfy in distance measurement as a constraint condition.
  • the minimum SNR as a constraint condition is determined in advance by the designer of the distance measuring module 11 and stored, or is determined by the user who is the user of the application on the setting screen of the application using the distance measuring module 11. ..
  • the parameter determination unit 65 sequentially changes the exposure control parameter to determine the exposure control parameter that satisfies the minimum SNR set by the constraint setting unit 82 and maximizes the evaluation value E.
  • the exposure control parameter matching the SNR of the SNR contour line 111 is set to a predetermined initial value. Then, among the SNRs on the SNR contour line 111, the combination 112 of the first emission amount low and the second emission amount p high that minimizes the power consumption is determined. To.
  • steps S61 to S70 of FIG. 20 are the same as steps S31 to S40 of the second depth map generation process shown in FIG. 17, the description thereof will be omitted.
  • the parameter determination unit 65 sets the evaluation value E calculated by the evaluation value calculation unit 63 as the minimum SNR which is a constraint condition. Determine if they match.
  • the parameter determination unit 65 determines that the calculated evaluation value E matches the minimum SNR when it is within a predetermined range close to the minimum SNR which is the target value.
  • the minimum SNR, which is a constraint condition is supplied from the constraint setting unit 82 before the depth map generation process or, if necessary.
  • step S71 If it is determined in step S71 that the evaluation value in the current exposure control parameter does not match the minimum SNR, the process proceeds to step S72, and the parameter determination unit 65 updates the exposure control parameter to the light emission control unit 13. Supply. After step S72, the process returns to step S62, and the processes of steps S62 to S71 described above are repeated.
  • step S73 the parameter determination unit 65 determines whether the current exposure control parameter is an exposure control parameter that minimizes power consumption.
  • the search process for the exposure control parameter two types of light emission amounts p, a first light emission amount p low for a short distance and a second light emission amount p high for a long distance, are changed. Therefore, in step S73.
  • the power consumption can be simply considered as the sum of the first light emission amount p low and the second light emission amount p high .
  • step S73 If it is determined in step S73 that the current exposure control parameter is not the exposure control parameter that minimizes power consumption, the process proceeds to step S72, the exposure control parameter is changed to the next value, and the above-mentioned step The processes of S62 to S73 are repeated.
  • step S73 if it is determined in step S73 that the current exposure control parameter is the exposure control parameter that minimizes the power consumption, the process proceeds to step S74. That is, when the constraint condition is satisfied and the exposure control parameter that maximizes the evaluation value E is determined, the process proceeds to step S74.
  • the ranging module 11 sets the optimum exposure control parameters, generates an HDR depth map and an HDR reliability map based on the received reflected light, and outputs the HDR depth map and the HDR reliability map to the outside. That is, the ranging module 11 has two types of light emitting amounts p, that is, a first light emitting amount low for short distance and a second light emitting amount p high for long distance determined as the optimum exposure control parameter.
  • the depth map and reliability map of are generated, the composition process is performed, the HDR depth map and HDR reliability map are generated, and output to the outside.
  • the optimum exposure control parameter can be determined in consideration of power consumption.
  • FIG. 21 is a block diagram showing a fourth configuration example of the signal processing unit 15.
  • FIG. 21 also shows other configurations of the ranging module 11.
  • the fourth configuration example of FIG. 21 is different in that the attention region determination unit 91 is newly added, and the other configurations are the same as those of the first configuration example shown in FIG.
  • the signal processing unit 15 determines the exposure control parameter having the maximum evaluation value E as the optimum exposure control parameter, but the pixel array unit 22
  • a depth map and a reliability map are supplied to the attention area determination unit 91 from the distance image / reliability calculation unit 61.
  • the attention area determination unit 91 determines the attention area for all the pixel areas of the pixel array unit 22 by using at least one of the depth map and the reliability map, and sends the area setting information for setting the attention area to the statistic calculation unit 62. Supply.
  • the method in which the attention region determination unit 91 determines the attention region is not particularly limited. For example, the attention area determination unit 91 identifies the area for each object as a cluster from the distance information indicated by the depth map or the brightness information indicated by the reliability map, and selects the cluster closest to the recognition target registered in advance as the attention area. Can be decided.
  • the attention region determination unit 91 may identify the region for each object as a cluster from the luminance information indicated by the reliability map, and determine the cluster having the highest reliability as the attention region.
  • the attention area determination unit 91 can determine the attention area from the object recognition result by the object recognizer using an arbitrary object recognizer.
  • the attention area determination unit 91 can also determine the attention area based on the area identification signal supplied from the device outside the distance measuring module 11. For example, when the user operates on the touch panel of a smartphone or the like in which the distance measuring module 11 is incorporated, the attention area is set by the user, and the area identification signal indicating the attention area is supplied to the attention area determination unit 91. .. The attention area determination unit 91 supplies the statistic calculation unit 62 with area setting information indicating the area of interest determined based on the area identification signal.
  • a in FIG. 22 shows how the region of interest 92 is set by the automatic recognition process using the depth map or the reliability map.
  • FIG. 22 shows how the attention area 92 is set by the user designating the attention area 92 on the touch panel of the smartphone.
  • the statistic calculation unit 62 is a depth map related to the attention area from one depth map supplied from the distance image / reliability calculation unit 61 and the area setting information of the attention area supplied from the attention area determination unit 91. Calculate statistics. Specifically, the statistic calculation unit 62 generates a histogram of the distance d, which counts the appearance frequency (frequency) of the distance d shown in FIG. 8 for the pixels in the region of interest, and supplies the histogram to the evaluation value calculation unit 63. To do.
  • the evaluation value calculation unit 63 calculates the evaluation value E for the region of interest and supplies it to the parameter determination unit 65.
  • Steps S91 to S94 of FIG. 23 are the same as steps S11 to S14 of the first depth map generation process shown in FIG.
  • the depth map and the reliability map generated by the distance image / reliability calculation unit 61 are supplied to the statistic calculation unit 62 and the attention area determination unit 91.
  • the attention area determination unit 91 determines the attention area in the total pixel area in which the depth map and the reliability map are generated.
  • the attention area determination unit 91 itself identifies the attention area, for example, the attention area determination unit 91 identifies the area for each object as a cluster from the distance information indicated by the depth map or the luminance information indicated by the reliability map. The cluster closest to the pre-registered recognition target is determined as the region of interest.
  • the region of interest is set outside the ranging module 11, the region of interest 91 determines the region of interest based on the input region identification signal.
  • the area setting information for setting the determined area of interest is supplied to the statistic calculation unit 62.
  • step S96 the statistic calculation unit 62 pays attention from the one depth map supplied from the distance image / reliability calculation unit 61 and the area setting information indicating the area of interest supplied from the area of interest determination unit 91. Calculate depth map statistics for the region.
  • step S97 the evaluation value calculation unit 63 calculates the evaluation value E in the current exposure control parameter for the region of interest. This process is the same as step S16 in FIG. 11, except that the evaluation value E is calculated for the region of interest.
  • steps S98 to S100 is the same as that of steps S17 to S19 of the first depth map generation processing shown in FIG. That is, the process is repeated until it is determined that the optimum exposure control parameter having the maximum evaluation value E has been searched based on the evaluation value E of the region of interest, and the determined optimum exposure control parameter is used as the depth map. A reliability map is generated and output to the outside.
  • the fourth depth map generation process it is possible to search for and determine the exposure control parameter that maximizes the evaluation index not only for the entire light receiving region of the ranging module 11 but for a part of the light receiving region. As a result, it is possible to perform appropriate exposure control specialized for a part of the light receiving region.
  • the fourth configuration example of FIG. 21 is a configuration in which the region of interest determination unit 91 is added to the first configuration example shown in FIG. 10, but the second configuration example shown in FIG. 12 and the second configuration example shown in FIG. A configuration in which the region of interest 91 is added to the third configuration example shown in FIG. 18 is also possible.
  • the area of interest is set for the HDR depth map and the HDR reliability map generated by using the first depth map at low brightness and the second depth map at high brightness, and it is appropriate. It can be configured to obtain various exposure control parameters.
  • the light emitting unit 12 irradiates the object with modulated light having a single frequency such as 20 MHz based on the light emission control signal.
  • the modulation frequency of the light source is increased, for example, 100 MHz, the resolution of the distance information can be increased, but the range that can be measured is narrowed.
  • the modulation frequency is lowered, the range that can be measured can be expanded.
  • the distance d is expressed by the equation (1) as described above, and the distance information is calculated based on the phase shift amount ⁇ of the reflected light.
  • the noise generated in the phase shift amount ⁇ is a function ⁇ ⁇ (l) of the luminance value l
  • the noise ⁇ d over the distance d is as shown in the following equation (13) from the equation (1).
  • the exposure control parameters supplied from the parameter determination unit 65 to the light emission control unit 13 include the modulation frequency f in addition to the exposure time t and the light emission amount p, and are modulated.
  • the configuration can be configured to determine the optimum exposure control parameters including the frequency f.
  • the distance measuring module 11 first irradiates an object with irradiation light at a first frequency such as 20 MHz to execute a depth map generation process, and as a result of the depth map generation process, up to a measurement target.
  • a first frequency such as 20 MHz
  • the modulation frequency is changed to a second frequency higher than the first frequency, for example, 100 MHz, and the depth is changed.
  • Execute the map generation process In this case, the depth map and the reliability map generated by the distance image / reliability calculation unit 61 are also supplied to the parameter determination unit 65, and the parameter determination unit 65 is second according to the distance to the measurement target.
  • the exposure control parameter for changing the frequency is supplied to the light emission control unit 13.
  • the SNR (d) of the equations (9) and (12) A method is also possible in which the equation includes both the emission amount p and the modulation frequency f, and the optimum values of the emission amount p and the modulation frequency f at which the evaluation value E of the equation (10) is maximized are simultaneously determined.
  • the first modification for determining the exposure control parameter including the modulation frequency can be executed in combination with any of the first to fourth configuration examples described above.
  • the signal processing unit 15 changes the light emission amount p as an exposure control parameter and determines the optimum value of the light emission amount p.
  • the signal charge generated by the light receiving unit 14 changes by increasing the light emission amount p, but the signal charge can also be increased by changing the exposure time t with the light emission amount p as a fixed value. That is, the change in brightness due to the change in the amount of light emitted p is essentially the same as the change in the exposure time t. Therefore, in the first to fourth depth map generation processes described above, instead of changing the light emission amount p, the exposure time t is controlled to be changed, and the optimum value of the exposure time t is determined as an exposure control parameter. May be good.
  • the constraint setting unit 82 of the third configuration example of the signal processing unit 15 shown in FIG. 18 may set the lower limit of the frame rate as a constraint condition. As a result, it is possible to determine the exposure control parameter that satisfies the lower limit of the frame rate set by the constraint setting unit 82 and maximizes the evaluation value E.
  • the components of the pixel data (detection signal) obtained by each pixel 21 of the light receiving unit 14 are roughly classified into an active component, an ambient light component, and a noise component.
  • the active component is a light component in which the irradiation light is reflected by an object and returned.
  • the ambient light component is a light component due to ambient light such as sunlight.
  • the ambient light component is canceled in the process of the calculation of the above equations (3) to (5), but the noise component remains. Therefore, as the ambient light component increases, the ratio of the noise component increases, and the ratio is relatively SN. The ratio becomes low.
  • the signal processing unit 15 when it is determined that the ratio of the ambient light component is large, the signal processing unit 15 generates an exposure control parameter that shortens the exposure time t and increases the light emission amount p, and supplies the exposure control parameter to the light emission control unit 13. Processing can be performed.
  • the magnitude of the ratio of the ambient light component is, for example, the average value of the pixel data (detection signal) obtained in each pixel 21 and the reliability map supplied from the distance image / reliability calculation unit 61 for each pixel. It can be determined from the difference from the average value of reliability. Alternatively, the magnitude of the ratio of the ambient light component may be determined simply by the average value (magnitude) of the reliability of each pixel calculated from the reliability map.
  • the parameter determination unit 65 acquires the pixel data of each pixel 21 from the light receiving unit 14, and acquires the reliability map from the distance image / reliability calculation unit 61. Then, the parameter determination unit 65 determines whether or not the proportion of the ambient light component is large, and when it is determined that the proportion of the ambient light component is large, the exposure time t is shortened and the light emission amount p is increased. Exposure control parameters can be generated. As a result, the effect of noise increase can be reduced by increasing the proportion of the active component.
  • the distance measuring module 11 of FIG. 1 can be configured to include the first to fourth configuration examples of the signal processing unit 15 or modifications thereof, and can be used in the first to fourth depth map generation processes and the modifications thereof. Such processing can be executed.
  • the distance measuring module 11 may be configured to execute only one of the first to fourth depth map generation processes and the processes related to the modified examples thereof, or all the processes are selected by switching the operation mode or the like. It may be configured to be executed as a target.
  • the distance measuring module 11 of FIG. 1 based on the evaluation index using the luminance information assumed according to the distance and the distance information of the object (subject) obtained by actually receiving the reflected light.
  • the exposure control parameters that maximize the evaluation index can be searched and determined. As a result, appropriate exposure control can be performed.
  • an HDR depth map and an HDR reliability map with an expanded dynamic range can be generated based on the result of receiving light by setting the light emission amount of the light source twice, low brightness and high brightness, and even in that case. , Appropriate exposure control can be performed.
  • the evaluation index for determining the optimum exposure control parameter can be defined in the evaluation index storage unit 64, the designer of the distance measuring module 11, the designer of the distance measuring application using the distance measuring module 11, or the designer of the distance measuring application using the distance measuring module 11 or , The user of the distance measurement application, etc. can set the evaluation index arbitrarily.
  • the constraint setting unit 82 it is possible to perform appropriate exposure control after setting constraint conditions such as SN ratio, power consumption, and frame rate.
  • the attention area determination unit 91 it is possible to search for and determine the exposure control parameter that maximizes the evaluation index not only for the entire light receiving area of the ranging module 11 but for a part of the light receiving area.
  • the distance measuring module 11 described above can be mounted on an electronic device such as a smartphone, a tablet terminal, a mobile phone, a personal computer, a game machine, a television receiver, a wearable terminal, a digital still camera, or a digital video camera.
  • an electronic device such as a smartphone, a tablet terminal, a mobile phone, a personal computer, a game machine, a television receiver, a wearable terminal, a digital still camera, or a digital video camera.
  • FIG. 24 is a block diagram showing a configuration example of a smartphone as an electronic device equipped with a ranging module.
  • the distance measuring module 202, the image pickup device 203, the display 204, the speaker 205, the microphone 206, the communication module 207, the sensor unit 208, the touch panel 209, and the control unit 210 are connected via the bus 211. Is connected and configured. Further, the control unit 210 has functions as an application processing unit 221 and an operation system processing unit 222 by executing a program by the CPU.
  • the distance measuring module 11 of FIG. 1 is applied to the distance measuring module 202.
  • the distance measuring module 202 is arranged in front of the smartphone 201, and by performing distance measurement for the user of the smartphone 201, the depth value of the surface shape of the user's face, hand, finger, etc. is measured. Can be output as.
  • the image pickup device 203 is arranged in front of the smartphone 201, and by taking an image of the user of the smartphone 201 as a subject, the image taken by the user is acquired. Although not shown, the image pickup device 203 may be arranged on the back surface of the smartphone 201.
  • the display 204 displays an operation screen for performing processing by the application processing unit 221 and the operation system processing unit 222, an image captured by the image pickup device 203, and the like.
  • the speaker 205 and the microphone 206 for example, output the voice of the other party and collect the voice of the user when making a call by the smartphone 201.
  • the communication module 207 communicates via the communication network.
  • the sensor unit 208 senses speed, acceleration, proximity, etc., and the touch panel 209 acquires a touch operation by the user on the operation screen displayed on the display 204.
  • the application processing unit 221 performs processing for providing various services by the smartphone 201.
  • the application processing unit 221 can create a face by computer graphics that virtually reproduces the user's facial expression based on the depth supplied from the distance measuring module 202, and can perform a process of displaying the face on the display 204.
  • the application processing unit 221 can perform a process of creating, for example, three-dimensional shape data of an arbitrary three-dimensional object based on the depth supplied from the distance measuring module 202.
  • the operation system processing unit 222 performs processing for realizing the basic functions and operations of the smartphone 201.
  • the operation system processing unit 222 can perform a process of authenticating the user's face and unlocking the smartphone 201 based on the depth value supplied from the distance measuring module 202.
  • the operation system processing unit 222 performs, for example, a process of recognizing a user's gesture based on the depth value supplied from the distance measuring module 202, and performs a process of inputting various operations according to the gesture. Can be done.
  • the smartphone 201 configured in this way, appropriate exposure control can be performed by applying the distance measuring module 11 described above. As a result, the smartphone 201 can detect the distance measurement information more accurately.
  • FIG. 25 is a block diagram showing a configuration example of an embodiment of a computer on which a program for executing the above-mentioned series of processes is installed.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable and Programmable Read Only Memory
  • the CPU 301 performs the above-mentioned series of processes by, for example, loading the programs stored in the ROM 302 and the EEPROM 304 into the RAM 303 via the bus 305 and executing the programs. Further, the program executed by the computer (CPU301) can be written in advance in the ROM 302, and can be installed or updated in the EEPROM 304 from the outside via the input / output interface 306.
  • the CPU 301 performs the processing according to the above-mentioned flowchart or the processing performed according to the above-mentioned block diagram configuration. Then, the CPU 301 can output the processing result to the outside via, for example, the input / output interface 306, if necessary.
  • the processing performed by the computer according to the program does not necessarily have to be performed in chronological order in the order described as the flowchart. That is, the processing performed by the computer according to the program also includes processing executed in parallel or individually (for example, parallel processing or processing by an object).
  • the program may be processed by one computer (processor) or may be distributed by a plurality of computers. Further, the program may be transferred to a distant computer and executed.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 26 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers, or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the imaging unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs cooperative control for the purpose of antiglare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits the output signal of at least one of the audio and the image to the output device capable of visually or audibly notifying the passenger or the outside of the vehicle of the information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
  • FIG. 27 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as the image pickup unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example.
  • the image pickup unit 12101 provided on the front nose and the image pickup section 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the images in front acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 27 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more.
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to the vehicle exterior information detection unit 12030 and the vehicle interior information detection unit 12040 among the configurations described above.
  • processing for recognizing the driver's gesture is performed, and various types according to the gesture (for example, It can perform operations on audio systems, navigation systems, air conditioning systems) and detect the driver's condition more accurately.
  • the distance measurement by the distance measurement module 11 can be used to recognize the unevenness of the road surface and reflect it in the control of the suspension.
  • the structure of the photodiode 31 of the light receiving unit 14 includes a distance measuring sensor having a CAPD (Current Assisted Photonic Demodulator) structure, a gate type distance measuring sensor that alternately applies an electric charge of the photodiode to two gates, and the like. It can be applied to a distance measuring sensor having a structure that distributes charges to two charge storage units. Further, this technique may be applied to a Structured Light type ranging sensor.
  • CAPD Current Assisted Photonic Demodulator
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be collectively configured as one device (or processing unit).
  • a configuration other than the above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of one device (or processing unit) may be included in the configuration of another device (or other processing unit). ..
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a device in which a plurality of modules are housed in one housing are both systems. ..
  • the above-mentioned program can be executed in any device.
  • the device may have necessary functions (functional blocks, etc.) so that necessary information can be obtained.
  • a signal processing device including a parameter determination unit that determines exposure control parameters based on an evaluation index that uses distance information and luminance information calculated from the detection signal of the light receiving sensor.
  • An evaluation value calculation unit for calculating an evaluation value, which is a value based on an evaluation index using the distance information and the brightness information, is further provided.
  • the signal processing device according to (1) wherein the parameter determination unit determines the exposure control parameter based on the evaluation value.
  • An evaluation index storage unit for storing the evaluation index is further provided.
  • the signal processing device according to (2) or (3), wherein the evaluation value calculation unit calculates the evaluation value based on the evaluation index supplied from the evaluation index storage unit.
  • a distance image reliability calculation unit that generates a distance image as the distance information and a reliability image as the brightness information from the detection signal of the light receiving sensor.
  • the signal processing device according to any one of (1) to (4) above, further comprising a statistic calculation unit for calculating the statistic of the distance image.
  • a composite distance image obtained by combining a first distance image in the first exposure control parameter and a second distance image in the second exposure control parameter, a first reliability image in the first exposure control parameter, and the above.
  • an image compositing unit for generating a composite reliability image obtained by compositing the second reliability image in the second exposure control parameter.
  • the distance image reliability calculation unit generates the first distance image and the second distance image, and the first reliability image and the second reliability image.
  • the statistic calculation unit calculates the statistic of the composite distance image, and then The signal processing device according to (5) above, wherein the parameter determining unit determines the first exposure control parameter and the second exposure control parameter.
  • the evaluation index is a value calculated by using the statistic of the distance image and the reliability image.
  • the signal processing device according to (7) above, wherein the statistic of the distance image is the appearance frequency of the distance information.
  • the evaluation index is a value calculated by convolving the appearance frequency of the distance information and the SN ratio corresponding to the distance information using the reliability image.
  • the signal processing according to the above (8). apparatus. (10) The signal processing device according to any one of (1) to (9) above, wherein the parameter determining unit determines the amount of light emitted from a light source that emits light received by the light receiving sensor as the exposure control parameter. (11) The signal processing device according to any one of (1) to (10) above, wherein the parameter determining unit determines the modulation frequency of a light source that emits light received by the light receiving sensor as the exposure control parameter.
  • the signal processing device according to any one of (1) to (11), wherein the parameter determining unit determines the exposure time of the light receiving sensor as the exposure control parameter. (13) When the proportion of the ambient light component is large, the parameter determining unit determines the exposure control parameter that shortens the exposure time of the light receiving sensor and increases the amount of light emitted from the light source that emits the light received by the light receiving sensor.
  • the signal processing apparatus according to any one of (1) to (12).
  • a region of interest determining unit for determining a region of interest of particular interest in the entire pixel region of the light receiving sensor.
  • the signal processing device according to any one of (1) to (14), wherein the parameter determining unit determines the exposure control parameter based on the evaluation index using the distance information and the brightness information of the region of interest. ..
  • the attention region determination unit determines the attention region by using at least one of the distance information and the luminance information.
  • the attention region determination unit determines the attention region based on a region identification signal indicating the attention region supplied from the outside.
  • the signal processing device A signal processing method that determines exposure control parameters based on an evaluation index that uses distance information and luminance information calculated from the detection signal of a light receiving sensor.
  • a light emitting part that emits light at a predetermined frequency
  • a light receiving sensor that receives the reflected light reflected by an object from the light emitting unit
  • a distance measuring module including a parameter determining unit that determines an exposure control parameter based on an evaluation index using distance information and luminance information calculated from the detection signal of the light receiving sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Studio Devices (AREA)

Abstract

本技術は、適切な露出制御を行うことができるようにする信号処理装置、信号処理方法、および、測距モジュールに関する。 測距モジュールのパラメータ決定部は、受光部の検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータを決定する。本技術は、例えば、Indirect ToF方式による測距を行う測距モジュール等に適用できる。

Description

信号処理装置、信号処理方法、および、測距モジュール
 本技術は、信号処理装置、信号処理方法、および、測距モジュールに関し、特に、適切な露出制御を行うことができるようにした信号処理装置、信号処理方法、および、測距モジュールに関する。
 間接ToF(Time of Flight)方式を利用した測距センサが知られている。間接ToF方式の測距センサでは、測定対象物にあたって反射されてきた反射光を受光することで得られる信号電荷を2つの電荷蓄積領域に振り分け、それらの信号電荷の配分比から距離が算出される。このような測距センサにおいて、裏面照射型とすることで、受光特性を向上させたものが提案されている(例えば、特許文献1参照)。
国際公開第2018/135320号
 反射光を受光する測距センサにおいては、太陽光などの環境光や発光源の光量が受光量に影響を及ぼすため、距離を正確に測定するためには、適切な露出制御が求められる。
 本技術は、このような状況に鑑みてなされたものであり、適切な露出制御を行うことができるようにするものである。
 本技術の第1の側面の信号処理装置は、受光センサの検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータを決定するパラメータ決定部を備える。
 本技術の第2の側面の信号処理方法は、信号処理装置が、受光センサの検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータを決定する。
 本技術の第3の側面の測距モジュールは、所定の周波数で発光させる発光部と、前記発光部からの光が物体で反射した反射光を受光する受光センサと、前記受光センサの検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータを決定するパラメータ決定部とを備える。
 本技術の第1乃至第3の側面においては、受光センサの検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータが決定される。
 信号処理装置及び測距モジュールは、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。
本技術を適用した測距モジュールの一実施の形態の構成例を示すブロック図である。 Indirect ToF方式における画素の動作を説明する図である。 4Phaseによる検出方式を説明する図である。 4Phaseによる検出方式を説明する図である。 2Phase方式と4Phase方式によるデプス値と信頼度の算出方法を説明する図である。 輝度値lと分散σ(l)の関係を示す図である。 距離に応じたSN比を示す図である。 露出制御パラメータを決定する際の評価指標を説明する図である。 評価値Eの探索を説明する図である。 信号処理部の第1の構成例を示すブロック図である。 第1のデプスマップ生成処理を説明するフローチャートである。 信号処理部の第2の構成例を示すブロック図である。 第2の構成例で採用するSN比を説明する図である。 第2の構成例で採用する評価指標を説明する図である。 複数のSNRの例を示す図である。 SNRの等高線を示す図である。 第2のデプスマップ生成処理を説明するフローチャートである。 信号処理部の第3の構成例を示すブロック図である。 制約条件下の露出制御パラメータの探索を説明する図である。 第3のデプスマップ生成処理を説明するフローチャートである。 信号処理部の第4の構成例を示すブロック図である。 注目領域の設定を説明する図である。 第4のデプスマップ生成処理を説明するフローチャートである。 本技術を適用した電子機器の構成例を示すブロック図である。 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
 1.測距モジュールの構成例
 2.Indirect ToF方式の画素動作
 3.信号処理部の露出制御パラメータの算出方法
 4.信号処理部の第1の構成例
 5.第1のデプスマップ生成処理
 6.信号処理部の第2の構成例
 7.第2のデプスマップ生成処理
 8.信号処理部の第3の構成例
 9.第3のデプスマップ生成処理
10.信号処理部の第4の構成例
11.第4のデプスマップ生成処理
12.第1の変形例
13.第2の変形例
14.第3の変形例
15.まとめ
16.電子機器の構成例
17.コンピュータの構成例
18.移動体への応用例
<1.測距モジュールの構成例>
 図1は、本技術を適用した測距モジュールの一実施の形態の構成例を示すブロック図である。
 図1に示される測距モジュール11は、Indirect ToF方式による測距を行う測距モジュール(ToFモジュール)であり、発光部12、発光制御部13、受光部14、および信号処理部15を有する。測距モジュール11は、物体に対して光を照射し、その光(照射光)が物体で反射した光(反射光)を受光することにより、物体までの距離情報としてのデプスマップ(距離画像)と、輝度情報としての信頼度マップ(信頼度画像)とを生成して出力する。
 発光部12は、例えば、光源として赤外線レーザダイオードなどを有し、発光制御部13による制御に従って、発光制御部13から供給される発光制御信号に応じたタイミングで変調しながら発光し、物体に対して照射光を照射する。
 発光制御部13は、光源を発光させるときの周波数(例えば、20MHzなど)と発光量とを制御する発光制御信号を発光部12に供給することにより、発光部12の発光を制御する。また、発光部12における発光のタイミングに合わせて受光部14を駆動させるために、発光制御部13は、受光部14にも発光制御信号を供給する。
 受光部14には、受光した光量に応じた電荷を生成し、その電荷に応じた信号を出力する画素21が行方向および列方向の行列状に2次元配置された画素アレイ部22が設けられており、画素アレイ部22の周辺領域に駆動制御回路23が配置されている。受光部14は、反射光を受光する受光センサであり、ToFセンサとも呼ばれる。
 受光部14は、複数の画素21が2次元配置された画素アレイ部22で、物体からの反射光を受光する。そして、受光部14は、画素アレイ部22の各画素21が受光した反射光の光量に応じた検出信号を画素データとして信号処理部15に供給する。
 駆動制御回路23は、例えば、発光制御部13から供給される発光制御信号などに基づいて、画素21の駆動を制御するための制御信号(例えば、後述する振り分け信号DIMIXや、選択信号ADDRESS DECODE、リセット信号RSTなど)を出力する。
 画素21は、フォトダイオード31と、フォトダイオード31で光電変換された電荷を検出する第1タップ32Aおよび第2タップ32Bとを有する。画素21では、1つのフォトダイオード31で発生した電荷が、第1タップ32Aまたは第2タップ32Bに振り分けられる。そして、フォトダイオード31で発生した電荷のうち、第1タップ32Aに振り分けられた電荷が信号線33Aから検出信号Aとして出力され、第2タップ32Bに振り分けられた電荷が信号線33Bから検出信号Bとして出力される。
 第1タップ32Aは、転送トランジスタ41A、FD(Floating Diffusion)部42A、選択トランジスタ43A、およびリセットトランジスタ44Aにより構成される。同様に、第2タップ32Bは、転送トランジスタ41B、FD部42B、選択トランジスタ43B、およびリセットトランジスタ44Bにより構成される。
 信号処理部15は、画素アレイ部22の画素21ごとに、受光部14から供給される画素データに基づいて、測距モジュール11から物体までの距離であるデプス値を算出する。さらに、信号処理部15は、画素アレイ部22の各画素21の画素値としてデプス値(奥行き情報)が格納されたデプスマップを生成して出力する。また、信号処理部15は、画素アレイ部22の各画素21について、算出したデプス値の信頼度も算出し、画素アレイ部22の各画素21の画素値として信頼度(輝度情報)を格納した信頼度マップを生成して出力する。
 また、信号処理部15は、得られたデプスマップと信頼度マップから、反射光を次に受光するときの最適な露出制御パラメータを算出し、発光制御部13に供給する。発光制御部13は、信号処理部15からの露出制御パラメータに基づいて発光制御信号を生成する。
<2.Indirect ToF方式の画素動作>
 図2を参照して、Indirect ToF方式における画素21の動作について説明する。
 図2に示されるように、照射時間Tで照射のオン/オフを繰り返すように変調(1周期=2T)された照射光が発光部12から出力され、物体までの距離に応じた遅延時間ΔTだけ遅れて、フォトダイオード31において反射光が受光される。また、振り分け信号DIMIX_Aは、転送トランジスタ41Aのオン/オフを制御し、振り分け信号DIMIX_Bは、転送トランジスタ41Bのオン/オフを制御する。振り分け信号DIMIX_Aは、照射光と同一位相の信号であり、振り分け信号DIMIX_Bは、振り分け信号DIMIX_Aを反転した位相となっている。
 従って、フォトダイオード31が反射光を受光することにより発生する電荷は、振り分け信号DIMIX_Aに従って転送トランジスタ41Aがオンとなっている間ではFD部42Aに転送され、振り分け信号DIMIX_Bに従って転送トランジスタ41Bがオンとなっている間ではFD部42Bに転送される。これにより、照射時間Tの照射光の照射が周期的に行われる所定の期間において、転送トランジスタ41Aを介して転送された電荷はFD部42Aに順次蓄積され、転送トランジスタ41Bを介して転送された電荷はFD部42Bに順次蓄積される。
 そして、電荷を蓄積する期間の終了後、選択信号ADDRESS DECODE_Aに従って選択トランジスタ43Aがオンとなると、FD部42Aに蓄積されている電荷が信号線33Aを介して読み出され、その電荷量に応じた検出信号Aが受光部14から出力される。同様に、選択信号ADDRESS DECODE_Bに従って選択トランジスタ43Bがオンとなると、FD部42Bに蓄積されている電荷が信号線33Bを介して読み出され、その電荷量に応じた検出信号Bが受光部14から出力される。また、FD部42Aに蓄積されている電荷は、リセット信号RST_Aに従ってリセットトランジスタ44Aがオンになると排出され、FD部42Bに蓄積されている電荷は、リセット信号RST_Bに従ってリセットトランジスタ44Bがオンになると排出される。
 このように、画素21は、フォトダイオード31が受光した反射光により発生する電荷を、遅延時間ΔTに応じて第1タップ32Aまたは第2タップ32Bに振り分けて、検出信号Aおよび検出信号Bを出力する。そして、遅延時間ΔTは、発光部12で発光した光が物体まで飛行し、物体で反射した後に受光部14まで飛行する時間に応じたもの、即ち、物体までの距離に応じたものである。従って、測距モジュール11は、検出信号Aおよび検出信号Bに基づき、遅延時間ΔTに従って物体までの距離(デプス値)を求めることができる。
 ただし、画素アレイ部22では、個々の画素21が有するフォトダイオード31や転送トランジスタ41等の画素トランジスタの各素子の特性のズレ(感度差)によって、画素21ごとに異なる影響が検出信号Aおよび検出信号Bに与えられる場合がある。そのため、Indirect ToF方式の測距モジュール11では、同一の画素21で位相を変えて反射光を受光した検出信号Aおよび検出信号Bを取得することにより、各画素のタップ間の感度差を除去し、SN比を向上させる手法が採用される。
 位相を変えて反射光を受光し、デプス値を算出する方式として、例えば、2Phaseによる検出方式(2Phase方式)と、4Phaseによる検出方式(4Phase方式)とについて説明する。
 受光部14は、図3に示されるように、照射光の照射タイミングを基準に、位相を0°、90°、180°、および、270°だけずらした受光タイミングで反射光を受光する。より具体的には、受光部14は、あるフレーム期間では、照射光の照射タイミングに対して位相を0°にして受光し、次のフレーム期間では、位相を90°にして受光し、次のフレーム期間では、位相を180°にして受光し、次のフレーム期間では、位相を270°にして受光する、というように、時分割で位相を変えて反射光を受光する。
 図4は、0°、90°、180°、および、270°の各位相における画素21の第1タップ32Aの露光期間を、位相差が分かり易いように並べて示した図である。
 図4に示されるように、第1タップ32Aにおいて、照射光と同一の位相(位相0°)で受光して得られる検出信号Aを検出信号A、照射光と90度ずらした位相(位相90°)で受光して得られる検出信号Aを検出信号A90、照射光と180度ずらした位相(位相180°)で受光して得られる検出信号Aを検出信号A180、照射光と270度ずらした位相(位相270°)で受光して得られる検出信号Aを検出信号A270、と呼ぶことにする。
 また、図示は省略するが、第2タップ32Bにおいて、照射光と同一の位相(位相0°)で受光して得られる検出信号Bを検出信号B、照射光と90度ずらした位相(位相90°)で受光して得られる検出信号Bを検出信号B90、照射光と180度ずらした位相(位相180°)で受光して得られる検出信号Bを検出信号B180、照射光と270度ずらした位相(位相270°)で受光して得られる検出信号Bを検出信号B270、と呼ぶことにする。
 図5は、2Phase方式と4Phase方式によるデプス値と信頼度の算出方法を説明する図である。
 Indirect ToF方式において、デプス値dは、次式(1)で求めることができる。
Figure JPOXMLDOC01-appb-M000001
 式(1)のcは光速であり、ΔTは遅延時間であり、fは光の変調周波数を表す。また、式(1)のφは、反射光の位相ずれ量[rad]を表し、次式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 4Phase方式では、式(2)のI,Qが、位相を0°、90°、180°、270°に設定して得られた検出信号A乃至A270および検出信号B乃至B270を用いて、次式(3)で計算される。I,Qは、照射光の輝度変化をcos波と仮定し、cos波の位相を極座標から直交座標系(IQ平面)に変換した信号である。
 I=c-c180=(A-B)-(A180-B180
 Q=c90-c270=(A90-B90)-(A270-B270
  ・・・・・・・・・・(3)
 4Phase方式では、例えば、式(3)の“A-A180”や“A90-A270”のように、同じ画素での逆位相の検出信号の差分を取ることで、各画素に存在するタップ間の特性ばらつき、すなわち、タップ間の感度差を除去することができる。
 一方、2Phase方式では、位相を0°、90°、180°、270°に設定して得られた検出信号A乃至A270および検出信号B乃至B270のうち、直交関係にある2つの位相のみを用いて、物体までのデプス値dを求めることができる。例えば、位相0°の検出信号AおよびBと、位相90°の検出信号A90およびB90を用いた場合、式(2)のI,Qは次式(4)となる。
 I=c-c180=(A-B
 Q=c90-c270=(A90-B90)  ・・・・・・・・・・(4)
 例えば、位相180°の検出信号A180およびB180と、位相270°の検出信号A270およびB270を用いた場合、式(2)のI,Qは次式(5)となる。
 I=c-c180=-(A180-B180
 Q=c90-c270=-(A270-B270)  ・・・・・・・・・・(5)
 2Phase方式では、各画素に存在するタップ間の特性ばらつきは除去することができないが、2つの位相の検出信号のみで物体までのデプス値dを求めることができるので、4Phase方式の2倍のフレームレートで測距を行うことができる。タップ間の特性ばらつきは、ゲインやオフセット等の補正パラメータで調整することができる。
 信頼度cnfは、2Phase方式および4Phase方式のいずれにおいても、次式(6)で求められ。
Figure JPOXMLDOC01-appb-M000003
 式(6)から分かるように、信頼度cnfは、画素21で受光した反射光の大きさ、即ち輝度情報(輝度値)に相当する。
 本実施の形態において、測距モジュール11は、4Phase方式で算出された遅延時間ΔTに対応するI信号およびQ信号と、2Phase方式で算出された遅延時間ΔTに対応するI信号およびQ信号のいずれを用いてデプス値dおよび信頼度cnfを用いるかは問わない。4Phase方式または2Phase方式のいずれか一方が固定的に用いられてもよいし、例えば、物体の動き等に応じて適切に選択またはブレンドする方法でもよい。以下では、簡単のため、4Phase方式が採用されることとする。
 なお、以下では、1枚のデプスマップを出力するための単位を1フレーム(期間)と称し、0°、90°、180°、または、270°の各位相の画素データ(検出信号)を生成する単位をマイクロフレーム(期間)と称する。4Phase方式では、1フレームが4マイクロフレームで構成され、2Phase方式の場合には、1フレームが2マイクロフレームで構成される。また、以下の説明では、理解を容易にするため、デプス値dを距離dと称する場合がある。
<3.信号処理部の露出制御パラメータの算出方法>
 測距モジュール11の信号処理部15は、上述したように、4Phase方式による反射光の受光結果に基づいてデプスマップと信頼度マップを生成して出力するとともに、得られたデプスマップと信頼度マップから、次に反射光を受光するときの最適な露出制御パラメータを算出し、発光制御部13に供給する。
 そこで、次に、図6乃至図9を参照して、信号処理部15による露出制御パラメータの算出方法について説明する。
 まず、受光センサとしての受光部14の各画素21で観測される輝度値lには、平均が0、分散がσ(l)となる正規分布で表現される加法性ノイズ(光ショットノイズ)が生じることを仮定する。分散σ(l)は、次式(7)で表される。
 σ(l)=a・l+b  ・・・・・・・・・・(7)
 ここで、a,bは、受光部14のゲインなどの駆動パラメータによって決定される値であり、例えば、事前のキャリブレーションにより求めることができる。
 図6は、次式(7)で表現される輝度値lと分散σ(l)の関係を示している。図6にも表れているように、輝度値lが大きくなるに従い、分散σ(l)も大きくなる。
 また、Indirect ToF方式は、自発光光源の光を反射光として受光する方式であり、光の強度が距離の2乗に反比例する性質から、所定の距離に存在する物体の輝度値が、どのような値になるかを予め見積もることができる。
 例えば、距離dにおける輝度値l(r,p,t,d)は、下記の式(8)のモデルで表すことができる。
Figure JPOXMLDOC01-appb-M000004
 式(8)において、dは距離を表し、rは物体の反射率、pは発光部12の光源の発光量、tは、受光部14の画素21の露光時間(蓄積時間)を表す。係数A(r,p,t)は、反射率r、発光量p、および、露光時間tに線形となる係数であり、offsetは、オフセット定数である。
 距離dに存在する物体の輝度情報は、式(8)の輝度値l(r,p,t,d)で見積もることができ、輝度情報に応じた分散は、式(7)のσ(l)で表すことができることから、距離dに応じたSN比であるSNR(d)は、輝度情報を用いて、次の式(9)で表される。
Figure JPOXMLDOC01-appb-M000005
 ただし、物体までの距離が近い場合には、検出信号が飽和し、正確な信号を取得することができない。そのため、飽和を考慮すると、SNR(d)は、式(9)’のように表すことができる。
Figure JPOXMLDOC01-appb-M000006
 図7は、式(9)’のSNR(d)の例を示している。図7のSNR(d)において飽和状態と判定する距離d_satは、例えば、受光部14の飽和電荷量等のセンサ性能に応じて決定することができる。
 ここで、信号処理部15は、受光部14の最適な露出制御パラメータを決定する際の評価値Eとして、受光部14の全画素のSNR(d)の平均値を採用することとすると、評価値Eは、図8に示されるように、受光部14全体における距離dの出現頻度p(d)と、距離dに応じたSNR(d)とを畳み込んだ式で表すことができる。換言すれば、評価値Eは、次式(10)の、1フレームで検出された距離dについての出現頻度p(d)とSNR(d)との積和で表すことができる。
Figure JPOXMLDOC01-appb-M000007
 式(10)によれば、現在の露出制御パラメータで反射光を受光したときに期待されるSN比がわかる。したがって、信号処理部15が、式(10)の評価値Eが最大となる露出制御パラメータを探索することで、最適な露出制御パラメータを算出することができる。
 図9は、露出制御パラメータとして、露光時間tを固定とし、発光部12の光源の発光量pを逐次的に変更した場合の評価値Eの変移を示している。評価値Eが最大となる発光量pと、露光時間tとが、最適な露出制御パラメータとなる。
<4.信号処理部の第1の構成例>
 図10は、上述した露出制御パラメータの最適値を探索する処理を実行する信号処理部15の第1の構成例を示すブロック図である。なお、図10では、測距モジュール11のその他の構成も併せて示している。
 信号処理部15は、距離画像・信頼度算出部61、統計量算出部62、評価値算出部63、評価指標記憶部64、パラメータ決定部65、および、パラメータ保持部66により構成される。信号処理部15は、1つの信号処理チップまたは信号処理装置で構成することができる。また、発光制御部13と信号処理部15とを1つの信号処理チップまたは信号処理装置で構成してもよいし、受光部14と信号処理部15とを1つの信号処理チップまたは信号処理装置で構成してもよい。
 距離画像・信頼度算出部61は、受光部14から供給される各画素21の画素データ(検出信号AおよびB)に基づいて、各画素21の距離dおよび信頼度cnfを算出する。各画素の距離dおよび信頼度cnfの算出方法は、上述した通りである。
 距離画像・信頼度算出部61は、各画素21の距離dを画素アレイ部22の画素値として格納したデプスマップ(距離画像)と、各画素21の信頼度cnfを画素アレイ部22の画素値として格納した信頼度マップ(信頼度画像)を生成し、外部に出力する。
 また、距離画像・信頼度算出部61は、距離情報としてのデプスマップと、輝度情報としての信頼度マップとを、統計量算出部62にも供給する。
 統計量算出部62は、距離画像・信頼度算出部61から供給される1枚のデプスマップから、デプスマップの統計量を算出する。具体的には、統計量算出部62は、図8に示した距離dの出現頻度(度数)を画素アレイ部22の全画素についてカウントした、距離dのヒストグラムを生成し、評価値算出部63に供給する。
 評価値算出部63は、評価指標記憶部64により供給される評価指標に従い、現在の露出制御パラメータにおける評価値を算出する。具体的には、評価値算出部63は、評価指標として評価指標記憶部64から供給された式(10)に基づく評価値Eを算出し、その結果を、パラメータ決定部65に供給する。
 評価指標記憶部64は、評価指標としての式(10)の評価値Eの演算式と、距離dに応じたSNRを表す式(9)’とを記憶し、評価値算出部63に供給する。式(10)の評価値Eは、デプスマップの統計量と、信頼度マップとを用いて算出される値であり、より具体的には、距離dの出現頻度p(d)と、距離dに応じたSNR(d)とを畳み込んだ式で計算される値である。
 パラメータ決定部65は、現在の露出制御パラメータが、評価値Eが最大となる値であるかを判定する。そして、現在の露出制御パラメータが、評価値Eが最大となる値ではないと判定された場合、例えば、勾配法などを用いて、次の露出制御パラメータを決定し、発光制御部13に供給する。また、パラメータ決定部65は、現在の露出制御パラメータと、そのときの評価値Eとをパラメータ保持部66に供給し、保持させる。パラメータ決定部65は、評価値Eが最大となる露出制御パラメータが探索されたと判定された場合、露出制御パラメータの更新を終了する。本実施の形態では、パラメータ決定部65は、更新対象の露出制御パラメータとして、発光部12の光源の発光量pを更新し、パラメータ保持部66と発光制御部13とに供給する。
 パラメータ保持部66は、パラメータ決定部65から供給される露出制御パラメータと、そのときの評価値Eとを保持する。パラメータ保持部66に保持された露出制御パラメータと評価値Eとは、必要に応じてパラメータ決定部65によって参照される。
 発光制御部13は、更新後の露出制御パラメータとしてパラメータ決定部65から供給される発光量pに基づく発光制御信号を生成し、発光部12および受光部14に供給する。
<5.第1のデプスマップ生成処理>
 次に、図11のフローチャートを参照して、信号処理部15の第1の構成例を備える測距モジュール11によるデプスマップ生成処理(第1のデプスマップ生成処理)を説明する。この処理は、例えば、測距モジュール11に対して、測定を開始する指令が供給されたとき、開始される。
 初めに、ステップS11において、パラメータ決定部65は、予め決定された露出制御パラメータの初期値を発光制御部13に供給する。
 ステップS12において、発光制御部13は、パラメータ決定部65から供給された露出制御パラメータに基づいて発光制御信号を生成し、発光部12と受光部14とに供給する。この発光制御信号には、発光部12が光源を発光させるときの周波数と発光量とが規定されている。受光部14では、発光制御信号によって規定される光源の発光タイミングにしたがい、露光期間(受光期間)が決定し、画素アレイ部22の各画素21が駆動される。
 ステップS13において、発光部12は、発光制御信号に基づく所定の周波数と発光量で発光し、受光部14は、発光部12から照射された照射光が物体に反射されて返ってきた、物体からの反射光を受光する。そして、受光部14の各画素21は、受光量に応じて生成された画素データを、信号処理部15の距離画像・信頼度算出部61に出力する。受光部14は、4Phase方式による1枚のデプスマップを生成可能な反射光の受光を行う。すなわち、受光部14は、照射光の発光タイミングに対して、位相を0°、90°、180°、および、270°だけずらした4位相の受光を行い、その結果得られた画素データを、距離画像・信頼度算出部61に出力する。
 ステップS14において、距離画像・信頼度算出部61は、受光部14から供給された各画素21の画素データに基づいて、各画素21の距離dおよび信頼度cnfを算出し、デプスマップと信頼度マップとを生成して、外部に出力する。また、距離画像・信頼度算出部61は、生成したデプスマップと信頼度マップとを、統計量算出部62にも供給する。
 ステップS15において、統計量算出部62は、距離画像・信頼度算出部61から供給された1枚のデプスマップから、デプスマップの統計量を算出する。具体的には、統計量算出部62は、距離dの出現頻度を画素アレイ部22の全画素についてカウントした、図8に示した距離dのヒストグラムを生成し、評価値算出部63に供給する。
 ステップS16において、評価値算出部63は、評価指標記憶部64により供給された評価指標に従い、現在の露出制御パラメータにおける評価値Eを算出する。具体的には、評価値算出部63は、評価指標として評価指標記憶部64から供給された式(10)の評価値Eを算出し、その結果をパラメータ決定部65に供給する。
 ステップS17において、パラメータ決定部65は、評価値Eが最大となる露出制御パラメータが探索されたかを判定する。例えば、パラメータ決定部65は、勾配法を用いて露出制御パラメータを探索する場合には、勾配がゼロとみなすことができる所定の範囲内となったかにより、評価値Eが最大となる露出制御パラメータが探索されたか否かを判定する。あるいはまた、パラメータ決定部65は、露出制御パラメータを探索する処理を予め決定した回数繰り返したかや、評価値Eが向上する露出制御パラメータの更新がないと判定された場合などに、評価値Eが最大となる露出制御パラメータが探索されたと判定してもよい。
 ステップS17で、評価値Eが最大となる露出制御パラメータがまだ探索されていないと判定された場合、処理はステップS18に進み、パラメータ決定部65は、露出制御パラメータを更新して、発光制御部13に供給する。具体的には、パラメータ決定部65は、所定の設定幅で光源の発光量pを変更した露出制御パラメータを発光制御部13に供給する。また、ステップS18では、更新前の露出制御パラメータと、そのときの評価値Eとをパラメータ保持部66に記憶させる処理も行われる。ステップS18の後、処理はステップS12に戻り、上述したステップS12乃至S17の処理が繰り返される。
 そして、ステップS17で、評価値Eが最大となる露出制御パラメータが探索されたと判定された場合、処理はステップS19に進み、測距モジュール11は、最適と判定された露出制御パラメータを設定し、受光した反射光に基づいてデプスマップと信頼度マップを生成して、外部に出力する。すなわち、パラメータ決定部65は、評価値Eが最大となると判定された最適な露出制御パラメータを、再度、発光制御部13に供給する。発光制御部13は、パラメータ決定部65から供給された最適な露出制御パラメータに基づいて発光制御信号を生成し、発光部12と受光部14とに供給する。受光部14は、物体からの反射光を受光し、画素データを出力する。距離画像・信頼度算出部61は、最適な露出制御パラメータにおけるデプスマップと信頼度マップとを生成して、外部に出力する。
 以上で、第1のデプスマップ生成処理が終了する。
 第1のデプスマップ生成処理によれば、距離に応じて想定される輝度情報と、実際に反射光を受光して得られた物体(被写体)の距離情報とを用いた評価指標に基づいて、評価指標を最大化する露出制御パラメータを探索し、決定することができる。これにより、適切な露出制御を行うことができる。
 なお、上述した第1のデプスマップ生成処理において、最適と決定された露出制御パラメータを、再度、発光制御部13に供給し、最適な露出制御パラメータにおけるデプスマップと信頼度マップを再度生成して、出力するようにしたが、探索中の各露出制御パラメータで生成したデプスマップと信頼度マップをパラメータ保持部66に記憶させ、最適な露出制御パラメータが確定した場合に、そのときのデプスマップと信頼度マップをパラメータ保持部66から取得して、外部に出力してもよい。また、逐次設定された露出制御パラメータにおけるデプスマップと信頼度マップを外部に出力するようにしたが、最適な露出制御パラメータにおけるデプスマップと信頼度マップのみを外部に出力するようにしてもよい。
<6.信号処理部の第2の構成例>
 図12は、信号処理部15の第2の構成例を示すブロック図である。図12においても、測距モジュール11のその他の構成も併せて示している。
 図12の第2の構成例において、図10に示した第1の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略し、第1の構成例と異なる部分に着目して説明する。
 図12の第2の構成例では、距離画像・信頼度算出部61の後段に、画像合成部81が新たに追加されている点が異なり、その他は第1の構成例と同様に構成されている。
 第2の構成例に係る信号処理部15は、発光制御部13に、露出制御パラメータとしての発光量pを高輝度と低輝度の2回設定し、高輝度の環境下で生成される第1のデプスマップと、低輝度の環境下で生成される第2のデプスマップとを合成したデプスマップを生成して出力する。信頼度マップについても同様に、高輝度の環境下で生成される第1の信頼度マップと、低輝度の環境下で生成される第2の信頼度マップとを合成した信頼度マップが生成されて出力される。
 ToFセンサでは、遠距離の情報を取得できるように発光を強くすると、近距離の物体のところで電荷が飽和してしまい、情報が取得できず、逆に、発光を弱くすると遠距離の物体に十分な光が届かず、SN比が得られないという問題がある。光源の発光量pを高輝度と低輝度の2回設定し、複数のデプスマップを合成することで、上述の問題を解決することができる。
 例えば、1枚目のデプスマップの生成において、パラメータ決定部65は、低輝度となる第1の発光量plowを含む露出制御パラメータを発光制御部13に供給する。発光部12は、第1の発光量plowで発光し、受光部14は、受光量に応じた画素データを距離画像・信頼度算出部61に出力する。距離画像・信頼度算出部61は、各画素21の画素データに基づいて、低輝度時の第1のデプスマップおよび第1の信頼度マップを生成する。
 次に、2枚目のデプスマップの生成において、パラメータ決定部65は、高輝度となる第2の発光量phighを含む露出制御パラメータを発光制御部13に供給する。発光部12は、第2の発光量phighで発光し、受光部14は、受光量に応じた画素データを距離画像・信頼度算出部61に出力する。距離画像・信頼度算出部61は、各画素21の画素データに基づいて、高輝度時の第2のデプスマップおよび第2の信頼度マップを生成する。
 画像合成部81は、低輝度時の第1のデプスマップと、高輝度時の第2のデプスマップとを合成処理し、ダイナミックレンジが拡大されたデプスマップ(以下、HDRデプスマップという。)を生成する。また、画像合成部81は、低輝度時の第1の信頼度マップと、高輝度時の第2の信頼度マップとを合成処理し、ダイナミックレンジが拡大された信頼度マップ(以下、HDR信頼度マップという。)を生成する。生成されたHDRデプスマップおよびHDR信頼度マップは、外部に出力されるとともに、統計量算出部62に供給される。
 第1の発光量plowによる輝度値l(r,plow,t,d)と、第2の発光量phighによる輝度値l(r,phigh,t,d)とを合成する場合の輝度値lhdrは、下記の式(11)で表すことができる。
 lhdr=α・r・l(r,plow,t,d)+(1-α)・l(r,phigh,t,d)
                   ・・・・・・・・・・・(11)
 式(11)のrは、第1の発光量plowと第2の発光量phighとの輝度比(r=phigh/plow)を表し、αは、低輝度時の第1のデプスマップと高輝度時の第2のデプスマップとのブレンド比(0≦α≦1)を表す。
 ブレンド比αは、輝度値に相当する信頼度cnfによって決定することができる。信頼度cnfの大きさによってノイズの大きさが想定できるので、例えば、信頼度cnfが第1の閾値未満TH1である場合には、α=1として第1の発光量plowによる輝度値l(r,plow,t,d)のみを用い、信頼度cnfが第1の閾値TH1以上である場合には、α=0として第2の発光量phighによる輝度値l(r,phigh,t,d)のみを用いるように設定することができる。これにより、被写体としての物体が近距離にあっても電荷が飽和せず、遠距離にあっても十分な光量による画素データが得られ、近くから遠くまでのレンジの広い測距が可能となる。
 画像合成部81によるHDRデプスマップの合成も、式(11)と同様のブレンド処理により求めることができる。HDR信頼度マップの合成についても同様である。
 統計量算出部62は、距離画像・信頼度算出部61から供給される1枚のHDRデプスマップから、HDRデプスマップの統計量を算出する。すなわち、第1の構成例と同様に、HDRデプスマップについての距離dのヒストグラムが生成される。
 評価値算出部63は、評価指標記憶部64から供給される評価指標に従い、現在の露出制御パラメータにおける評価値Eを算出する。評価指標記憶部64から供給される評価値Eを求める式は、上述した式(10)と同一である。すなわち、評価値Eは、距離dの出現頻度p(d)と、距離dに応じたSNR(d)とを畳み込んだ式で表される。
 ただし、高輝度時と低輝度時の2枚のデプス画像をブレンド比αで合成する場合の距離dに応じたSN比であるSNR(d)は次式(12)で定義され、さらに、近距離における飽和を考慮すると、式(12)’のように表される。
Figure JPOXMLDOC01-appb-M000008
 図13は、式(12)’のSNR(d)の例を示している。
 図14は、図13のSNR(d)を用いて評価値Eを求める式(10)に相当する概念図である。
 評価指標記憶部64には、複数のSNR(d)が記憶されており、評価値算出部63は、動作モード、測定対象物の反射率r、測距範囲等に応じて、所定のSNR(d)を評価指標記憶部64から取得する。
 図15は、評価指標記憶部64に記憶されている複数のSNR(d)の例を示している。
 評価指標記憶部64には、SNR101乃至103の3種類のSNR(d)が記憶されている。
 SNR101は、距離d1で、近距離用の第1の発光量plowによるSNRと、遠距離用の第2の発光量phighによるSNRとが切り替えられる。
 SNR102は、SNR101と同様に距離d1で近距離用のSNRと遠距離用のSNRとが切り替えられるが、近距離用の第1の発光量plowによるSNRの測定範囲が、SNR101よりも狭く、しかし、高SN比に設定されている。
 SNR103は、近距離用のSNRと遠距離用のSNRとを切り替える距離d2が、SNR101およびSNR102の距離d1より大きく(d1<d2)設定され、SNR102よりも、近距離用のSNRの測定範囲が大きく設定されている。
 図16は、遠距離用の第2の発光量phighを横軸とし、近距離用の第1の発光量plowを縦軸とした2次元領域における、SNRの等高線を示している。
 発光量が大きいほどSNRが高くなるので、図16の2次元領域の右上、すなわち、第1の発光量plowと第2の発光量phighの両方が大きい場合がSNRは最も高くなり、図16の2次元領域の左下、すなわち、第1の発光量plowと第2の発光量phighの両方が小さい場合がSNRは最も低くなる。パラメータ決定部65は、露出制御パラメータを逐次的に更新し、SNRが最大となる露出制御パラメータを探索し、決定する。
<7.第2のデプスマップ生成処理>
 次に、図17のフローチャートを参照して、信号処理部15の第2の構成例を備える測距モジュール11によるデプスマップ生成処理(第2のデプスマップ生成処理)を説明する。この処理は、例えば、測距モジュール11に対して、測定を開始する指令が供給されたとき、開始される。
 初めに、ステップS31において、パラメータ決定部65は、予め決定された露出制御パラメータの初期値を発光制御部13に供給する。ここで発光制御部13に供給される露出制御パラメータには、近距離用の第1の発光量plowと、遠距離用の第2の発光量phighの2種類の発光量pを少なくとも含む。
 ステップS32において、発光制御部13は、パラメータ決定部65から供給された露出制御パラメータに基づいて、第1の発光量plowを含む発光制御信号を生成し、発光部12と受光部14とに供給する。
 ステップS33において、発光部12は、発光制御信号に基づく所定の周波数と第1の発光量plowで発光し、受光部14は、物体からの反射光を受光する。そして、受光部14の各画素21は、受光量に応じて生成された画素データを、信号処理部15の距離画像・信頼度算出部61に出力する。受光部14は、照射光の発光タイミングに対して、位相を0°、90°、180°、および、270°だけずらした4位相の受光を行い、その結果得られた画素データを、距離画像・信頼度算出部61に出力する。
 ステップS34において、距離画像・信頼度算出部61は、受光部14から供給された各画素21の画素データに基づいて、第1のデプスマップと第1の信頼度マップとを生成し、統計量算出部62に供給する。
 ステップS35において、発光制御部13は、第2の発光量phighを含む発光制御信号を生成し、発光部12と受光部14とに供給する。
 ステップS36において、発光部12は、発光制御信号に基づく所定の周波数と第2の発光量phighで発光し、受光部14は、物体からの反射光を受光する。そして、受光部14の各画素21は、受光量に応じて生成された画素データを、信号処理部15の距離画像・信頼度算出部61に出力する。受光部14は、照射光の発光タイミングに対して、位相を0°、90°、180°、および、270°だけずらした4位相の受光を行い、その結果得られた画素データを、距離画像・信頼度算出部61に出力する。
 ステップS37において、距離画像・信頼度算出部61は、受光部14から供給された各画素21の画素データに基づいて、第2のデプスマップと第2の信頼度マップとを生成し、統計量算出部62に供給する。
 ステップS38において、画像合成部81は、低輝度時の第1のデプスマップと、高輝度時の第2のデプスマップとを合成処理し、ダイナミックレンジが拡大されたHDRデプスマップを生成する。また、画像合成部81は、低輝度時の第1の信頼度マップと、高輝度時の第2の信頼度マップとを合成処理し、ダイナミックレンジが拡大されたHDR信頼度マップを生成する。生成されたHDRデプスマップおよびHDR信頼度マップは、外部に出力されるとともに、統計量算出部62に供給される。
 ステップS39において、統計量算出部62は、距離画像・信頼度算出部61から供給された1枚のHDRデプスマップから、HDRデプスマップの統計量を算出する。すなわち、統計量算出部62は、HDRデプスマップについて、距離dのヒストグラムを生成し、評価値算出部63に供給する。
 ステップS40において、評価値算出部63は、評価指標記憶部64により供給された評価指標に従い、現在の露出制御パラメータにおける評価値Eを算出する。具体的には、評価値算出部63は、評価指標として評価指標記憶部64から供給された式(10)の評価値Eを算出し、その結果をパラメータ決定部65に供給する。
 ステップS41において、パラメータ決定部65は、評価値Eが最大となる露出制御パラメータが探索されたかを判定する。この判定処理は、上述した図11のステップS17と同様である。
 ステップS41で、評価値Eが最大となる露出制御パラメータがまだ探索されていないと判定された場合、処理はステップS42に進み、パラメータ決定部65は、露出制御パラメータを更新して、発光制御部13に供給する。ステップS42の後、処理はステップS32に戻り、上述したステップS32乃至S41の処理が繰り返される。
 そして、ステップS41で、評価値Eが最大となる露出制御パラメータが探索されたと判定された場合、処理はステップS43に進む。評価値Eが最大となる露出制御パラメータが最適な露出制御パラメータとなる。
 ステップS43において、測距モジュール11は、最適な露出制御パラメータを設定し、受光した反射光に基づいてHDRデプスマップとHDR信頼度マップを生成して、外部に出力する。すなわち、測距モジュール11は、最適な露出制御パラメータとして決定された近距離用の第1の発光量plowと遠距離用の第2の発光量phighの2種類の発光量pによる2枚のデプスマップおよび信頼度マップの生成を行い、合成処理を行って、DRデプスマップとHDR信頼度マップを生成して、外部に出力する。
 以上で、第2のデプスマップ生成処理が終了する。
 第2のデプスマップ生成処理によれば、光源の発光量を低輝度と高輝度の2回設定して反射光を受光することにより、低輝度時の第1のデプスマップと高輝度時の第2のデプスマップとの2枚を用いて、物体の距離情報を近距離から遠距離まで得ることができる。その2回の受光においても、距離に応じて想定される輝度情報と、実際に反射光を受光して得られた物体(被写体)の距離情報とを用いた評価指標に基づいて、評価指標を最大化する露出制御パラメータが探索され、決定される。したがって、適切な露出制御を行うことができる。
<8.信号処理部の第3の構成例>
 図18は、信号処理部15の第3の構成例を示すブロック図である。図18においても、測距モジュール11のその他の構成も併せて示している。
 図18の第3の構成例において、図12に示した第2の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略し、第2の構成例と異なる部分に着目して説明する。
 図18の第3の構成例では、制約設定部82が新たに追加されている点が異なり、その他は第2の構成例と同様に構成されている。
 上述した第2の構成例による第2のデプスマップ生成処理では、信号処理部15は、評価値Eが最大となる露出制御パラメータを探索した。しかしながら、図16に示したSNRの等高線から明らかなように、第1の発光量plowおよび第2の発光量phighを大きくするほど、SNRは大きくなるため、評価値Eが最大となる露出制御パラメータは、消費電力も大きくなってしまう。そのため、消費電力も考慮して、最適な露出制御パラメータを決定することが望ましい。
 図18の第3の構成例において新たに追加された制約設定部82は、最適な露出制御パラメータを決定する際の制約条件をパラメータ決定部65に設定する。制約設定部82は、測距において測距モジュール11が満たすべきSNRの最低値(以下、最低SNRという。)を、制約条件として設定する。制約条件としての最低SNRは、例えば、測距モジュール11の設計者によって予め決定されて記憶されたり、測距モジュール11を用いたアプリケーションの設定画面において、アプリケーションの使用者であるユーザによって決定される。
 パラメータ決定部65は、露出制御パラメータを逐次的に変更し、制約設定部82によって設定された最低SNRを満たし、かつ、評価値Eが最大となる露出制御パラメータを決定する。
 例えば、制約設定部82によって決定された最低SNRが、図19のSNR等高線111で示されるSNRに設定されたとすると、初めに、SNR等高線111のSNRに一致する露出制御パラメータが、所定の初期値から逐次的に更新されて探索され、次に、SNR等高線111上のSNRのなかで、消費電力が最小となる第1の発光量plowおよび第2の発光量phighの組合せ112が決定される。
<9.第3のデプスマップ生成処理>
 次に、図20のフローチャートを参照して、信号処理部15の第3の構成例を備える測距モジュール11によるデプスマップ生成処理(第3のデプスマップ生成処理)を説明する。この処理は、例えば、測距モジュール11に対して、測定を開始する指令が供給されたとき、開始される。
 図20のステップS61乃至ステップS70は、図17に示した第2のデプスマップ生成処理のステップS31乃至ステップS40と同様であるので、その説明は省略する。
 ステップS70により、現在の露出制御パラメータにおける評価値Eが算出された後、ステップS71において、パラメータ決定部65は、評価値算出部63で算出された評価値Eが、制約条件である最低SNRと一致するかを判定する。パラメータ決定部65は、算出された評価値Eが、目標値である最低SNRに近い所定の範囲内である場合、最低SNRと一致すると判定する。制約条件である最低SNRは、デプスマップ生成処理の前に、あるいは、必要に応じて、制約設定部82から供給される。
 ステップS71で、現在の露出制御パラメータにおける評価値が最低SNRと一致しないと判定された場合、処理はステップS72に進み、パラメータ決定部65は、露出制御パラメータを更新して、発光制御部13に供給する。ステップS72の後、処理はステップS62に戻り、上述したステップS62乃至S71の処理が繰り返される。
 そして、現在の露出制御パラメータにおける評価値が最低SNRと一致すると判定された場合、処理はステップS73に進む。ステップS73において、パラメータ決定部65は、現在の露出制御パラメータが、消費電力が最小となる露出制御パラメータであるかを判定する。ここで、露出制御パラメータの探索処理として、近距離用の第1の発光量plowと遠距離用の第2の発光量phighの2種類の発光量pが変更されるので、ステップS73における消費電力は、簡易的に、第1の発光量plowと第2の発光量phighの総和で考えることができる。
 ステップS73で、現在の露出制御パラメータが、消費電力が最小となる露出制御パラメータではない、と判定された場合、処理はステップS72に進み、露出制御パラメータが次の値に変更され、上述したステップS62乃至S73の処理が繰り返される。
 一方、ステップS73で、現在の露出制御パラメータが、消費電力が最小となる露出制御パラメータであると判定された場合、処理はステップS74に進む。すなわち、制約条件を満たし、かつ、評価値Eが最大となる露出制御パラメータが決定された場合、処理はステップS74に進む。
 ステップS74において、測距モジュール11は、最適な露出制御パラメータを設定し、受光した反射光に基づいてHDRデプスマップとHDR信頼度マップを生成して、外部に出力する。すなわち、測距モジュール11は、最適な露出制御パラメータとして決定された近距離用の第1の発光量plowと遠距離用の第2の発光量phighの2種類の発光量pによる2枚のデプスマップおよび信頼度マップの生成を行い、合成処理を行って、HDRデプスマップとHDR信頼度マップを生成して、外部に出力する。
 以上で、第3のデプスマップ生成処理が終了する。
 第3のデプスマップ生成処理によれば、消費電力も考慮して、最適な露出制御パラメータを決定することができる。
 なお、上述した第3のデプスマップ生成処理では、最初に、最低SNRと一致する露出制御パラメータを探索し、次に、消費電力が最小となる露出制御パラメータを探索する処理を実行したが、SNRと消費電力の両方が最小となる露出制御パラメータを同時に探索してもよい。
<10.信号処理部の第4の構成例>
 図21は、信号処理部15の第4の構成例を示すブロック図である。図21においても、測距モジュール11のその他の構成も併せて示している。
 図21の第4の構成例において、図10に示した第1の構成例と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略し、第1の構成例と異なる部分に着目して説明する。
 図21の第4の構成例では、注目領域決定部91が新たに追加されている点が異なり、その他は図10に示した第1の構成例と同様に構成されている。
 第4の構成例に係る信号処理部15は、上述した第1の構成例と同様に、評価値Eが最大となる露出制御パラメータを最適な露出制御パラメータとして決定するが、画素アレイ部22の全ての画素領域ではなく、全画素領域のなかで特に注目する注目領域についての評価値Eが最大となる露出制御パラメータを、最適な露出制御パラメータとして決定する。
 注目領域決定部91には、デプスマップと信頼度マップが、距離画像・信頼度算出部61から供給される。注目領域決定部91は、デプスマップまたは信頼度マップの少なくとも一方を用いて、画素アレイ部22の全画素領域に対する注目領域を決定し、注目領域を設定する領域設定情報を統計量算出部62に供給する。注目領域決定部91が注目領域を決定する方法は特に限定されない。例えば、注目領域決定部91は、デプスマップが示す距離情報または信頼度マップが示す輝度情報から、物体毎の領域をクラスタとして識別して、予め登録されている認識対象に最も近いクラスタを注目領域に決定することができる。また例えば、注目領域決定部91は、信頼度マップが示す輝度情報から、物体毎の領域をクラスタとして識別して、信頼度が最も高いクラスタを注目領域に決定してもよい。注目領域決定部91は、任意の物体認識器を用いて、物体認識器による物体認識結果から、注目領域を決定することができる。
 さらに、注目領域決定部91は、測距モジュール11外の装置から供給される領域特定信号に基づいて注目領域を決定することもできる。例えば、測距モジュール11が組み込まれたスマートフォン等のタッチパネル上をユーザが操作することにより、注目領域がユーザにより設定され、その注目領域を示す領域特定信号が、注目領域決定部91に供給される。注目領域決定部91は、領域特定信号に基づいて決定した注目領域を示す領域設定情報を統計量算出部62に供給する。
 図22のAは、デプスマップまたは信頼度マップを用いた自動認識処理により、注目領域92が設定される様子を示している。
 図22のBは、スマートフォンのタッチパネル上でユーザが注目領域92を指定することにより、注目領域92が設定される様子を示している。
 統計量算出部62は、距離画像・信頼度算出部61から供給される1枚のデプスマップと、注目領域決定部91から供給される注目領域の領域設定情報とから、注目領域に関するデプスマップの統計量を算出する。具体的には、統計量算出部62は、図8に示した距離dの出現頻度(度数)を、注目領域の画素についてカウントした、距離dのヒストグラムを生成し、評価値算出部63に供給する。
 評価値算出部63は、注目領域についての評価値Eを算出し、パラメータ決定部65に供給する。
<11.第4のデプスマップ生成処理>
 次に、図23のフローチャートを参照して、信号処理部15の第4の構成例を備える測距モジュール11によるデプスマップ生成処理(第4のデプスマップ生成処理)を説明する。この処理は、例えば、測距モジュール11に対して、測定を開始する指令が供給されたとき、開始される。
 図23のステップS91乃至ステップS94は、図11に示した第1のデプスマップ生成処理のステップS11乃至ステップS14と同様である。ステップS94までの処理により、距離画像・信頼度算出部61で生成されたデプスマップと信頼度マップとが、統計量算出部62と注目領域決定部91とに供給される。
 ステップS95において、注目領域決定部91は、デプスマップと信頼度マップが生成された全画素領域のなかの注目領域を決定する。注目領域決定部91自身が注目領域を識別する場合には、例えば、注目領域決定部91は、デプスマップが示す距離情報または信頼度マップが示す輝度情報から、物体毎の領域をクラスタとして識別して、予め登録されている認識対象に最も近いクラスタを注目領域に決定する。注目領域が測距モジュール11の外部で設定される場合には、注目領域決定部91は、入力される領域特定信号に基づいて注目領域を決定する。決定された注目領域を設定する領域設定情報が、統計量算出部62に供給される。
 ステップS96において、統計量算出部62は、距離画像・信頼度算出部61から供給された1枚のデプスマップと、注目領域決定部91から供給された注目領域を示す領域設定情報とから、注目領域に関するデプスマップの統計量を算出する。
 ステップS97において、評価値算出部63は、注目領域について、現在の露出制御パラメータにおける評価値Eを算出する。この処理は、評価値Eが注目領域について算出される点を除いて、図11のステップS16と同様である。
 ステップS98乃至ステップS100の処理は、図11に示した第1のデプスマップ生成処理のステップS17乃至ステップS19と同様である。すなわち、注目領域の評価値Eに基づいて、評価値Eが最大となる最適な露出制御パラメータが探索されたと判定されるまで処理が繰り返され、決定された最適な露出制御パラメータにより、デプスマップと信頼度マップが生成されて、外部に出力される。
 以上で、第4のデプスマップ生成処理が終了する。
 第4のデプスマップ生成処理によれば、測距モジュール11の受光領域全体ではなく、その一部の領域について評価指標を最大化する露出制御パラメータを探索し、決定することができる。これにより、受光領域の一部の領域に特化した適切な露出制御を行うことができる。
 なお、図21の第4の構成例は、図10に示した第1の構成例に、注目領域決定部91を追加した構成であるが、図12に示した第2の構成例、および、図18に示した第3の構成例に、注目領域決定部91を追加した構成も可能である。換言すれば、低輝度時の第1のデプスマップと高輝度時の第2のデプスマップとの2枚を用いて生成したHDRデプスマップとHDR信頼度マップに対して注目領域を設定し、適切な露出制御パラメータを求める構成とすることができる。
<12.第1の変形例>
<発光周波数を変更する制御>
 上述した例では、発光部12は、発光制御信号に基づいて、例えば、20MHzなどの単一周波数の変調光を物体に照射することとした。光源の変調周波数は、例えば、100MHzなどのように周波数を高くすると、距離情報の分解能を高くすることができるが、測距可能なレンジが狭くなる。一方、変調周波数を低くすると測距可能なレンジを拡大できる。
 距離dは、上述したように式(1)で表され、距離情報は、反射光の位相ずれ量φを基に算出される。このとき、位相ずれ量φに生じるノイズを、輝度値lの関数σφ(l)としたとき、距離dにのるノイズσは、式(1)から、以下の式(13)のように定義することができる。
Figure JPOXMLDOC01-appb-M000009
 ここで、式(13)のkは、k=c/4πとなる定数である。
 式(13)から明らかなように、変調周波数が大きくなるほど、距離dの誤差(ノイズ)は小さくなる。そこで、信号処理部15の第1の変形例として、パラメータ決定部65から発光制御部13に供給する露出制御パラメータに、露光時間tと発光量pとに加えて、変調周波数fを含み、変調周波数fを含めた最適な露出制御パラメータを決定する構成とすることができる。
 具体的には、測距モジュール11は、最初に、例えば20MHzなどの第1の周波数で照射光を物体に照射してデプスマップ生成処理を実行し、デプスマップ生成処理の結果、測定対象物までの距離が近い(測定対象物までの距離が所定の範囲内である)と判定された場合に、変調周波数を第1の周波数よりも高い第2の周波数、例えば、100MHzに変更して、デプスマップ生成処理を実行する。この場合、距離画像・信頼度算出部61で生成されたデプスマップと信頼度マップとをパラメータ決定部65にも供給し、パラメータ決定部65が、測定対象物までの距離に応じて、第2の周波数に変更する露出制御パラメータを発光制御部13に供給する。
 上述したような、発光量pの最適値を決定し、次に変調周波数fの最適値を決定する2段階のパラメータ探索方法の他、式(9)や式(12)のSNR(d)の式を、発光量pと変調周波数fの両方を含めた形とし、式(10)の評価値Eが最大となる発光量pと変調周波数fの最適値を同時に決定する方法も可能である。
 変調周波数を含めた露出制御パラメータを決定する第1の変形例は、上述した第1乃至第4の構成例のいずれとも組み合わせて実行することができる。
<13.第2の変形例>
<露光時間を変更する制御>
 上述した第1乃至第4のデプスマップ生成処理では、信号処理部15は、露出制御パラメータとして発光量pを変化させ、発光量pの最適値を決定した。
 発光量pを増大させることにより受光部14で生成される信号電荷が変化するが、発光量pを固定値として、露光時間tを変更させることでも、信号電荷を増大させることができる。すなわち、発光量pの変化による輝度変化は、露光時間tの変化と本質的に同一である。そのため、上述した第1乃至第4のデプスマップ生成処理において発光量pを変化させる代わりに、露光時間tを変化させるように制御し、露出制御パラメータとして露光時間tの最適値を決定する処理としてもよい。
 なお、露光時間tを大きくすると、フレームレートが低下することが考えられる。その場合、例えば、図18に示した信号処理部15の第3の構成例の制約設定部82が、制約条件として、フレームレートの下限値を設定すればよい。これにより、制約設定部82によって設定されたフレームレートの下限値を満たし、かつ、評価値Eが最大となる露出制御パラメータを決定することができる。
<14.第3の変形例>
<環境光を考慮した制御>
 受光部14の各画素21で得られる画素データ(検出信号)の成分は、アクティブ成分、環境光成分、および、ノイズ成分に大別される。アクティブ成分は、照射光が物体で反射され、返ってきた光成分である。環境光成分は、太陽光などの環境光による光成分である。環境光成分は、上述の式(3)乃至式(5)の演算の過程でキャンセルされるが、ノイズ成分は残るため、環境光成分が大きくなるとノイズ成分の割合が大きくなり、相対的にSN比が低くなる。
 そこで、信号処理部15は、環境光成分の割合が大きいと判定される場合、露光時間tを短くし、かつ、発光量pを大きくする露出制御パラメータを生成し、発光制御部13に供給する処理を行うことができる。環境光成分の割合の大きさは、例えば、各画素21で得られる画素データ(検出信号)の平均値と、距離画像・信頼度算出部61から供給される信頼度マップから算出した各画素の信頼度の平均値との差から判定することができる。または、環境光成分の割合の大きさは、単純に、信頼度マップから算出した各画素の信頼度の平均値(の大きさ)で判定してもよい。
 具体的には、パラメータ決定部65が、受光部14から各画素21の画素データを取得し、距離画像・信頼度算出部61から信頼度マップを取得する。そして、パラメータ決定部65は、環境光成分の割合が大きいか否かを判定し、環境光成分の割合が大きいと判定された場合に、露光時間tを短くし、かつ、発光量pを大きくする露出制御パラメータを生成することができる。これにより、アクティブ成分の割合を大きくすることで、ノイズ増大の影響を小さくすることができる。
<15.まとめ>
 図1の測距モジュール11は、信号処理部15の第1乃至第4の構成例またはその変形例を含む構成とすることができ、第1乃至第4のデプスマップ生成処理およびその変形例に係る処理を実行することができる。測距モジュール11は、第1乃至第4のデプスマップ生成処理およびその変形例に係る処理のいずれか1つのみを実行する構成としてもよいし、動作モード等の切り替えにより、全ての処理を選択的に実行する構成としてもよい。
 図1の測距モジュール11によれば、距離に応じて想定される輝度情報と、実際に反射光を受光して得られた物体(被写体)の距離情報とを用いた評価指標に基づいて、評価指標を最大化する露出制御パラメータを探索し、決定することができる。これにより、適切な露出制御を行うことができる。
 また、光源の発光量を低輝度と高輝度の2回設定して受光した結果に基づいて、ダイナミックレンジが拡大されたHDRデプスマップとHDR信頼度マップを生成することができ、その場合においても、適切な露出制御を行うことができる。
 最適な露出制御パラメータを決定する際の評価指標は、評価指標記憶部64において定義することができるので、測距モジュール11の設計者、測距モジュール11を用いた測距アプリケーションの設計者、または、測距アプリケーションの使用者などが、評価指標を任意に設定することができる。
 また、制約設定部82を追加した構成においては、SN比、消費電力、フレームレートなどの制約条件を設定した上で、適切な露出制御を行うことができる。
 注目領域決定部91を追加した構成においては、測距モジュール11の受光領域全体ではなく、その一部の領域について評価指標を最大化する露出制御パラメータを探索し、決定することができる。
<16.電子機器の構成例>
 上述した測距モジュール11は、例えば、スマートフォン、タブレット型端末、携帯電話機、パーソナルコンピュータ、ゲーム機、テレビ受像機、ウェアラブル端末、デジタルスチルカメラ、デジタルビデオカメラなどの電子機器に搭載することができる。
 図24は、測距モジュールを搭載した電子機器としてのスマートフォンの構成例を示すブロック図である。
 図24に示すように、スマートフォン201は、測距モジュール202、撮像装置203、ディスプレイ204、スピーカ205、マイクロフォン206、通信モジュール207、センサユニット208、タッチパネル209、および制御ユニット210が、バス211を介して接続されて構成される。また、制御ユニット210では、CPUがプログラムを実行することによって、アプリケーション処理部221およびオペレーションシステム処理部222としての機能を備える。
 測距モジュール202には、図1の測距モジュール11が適用される。例えば、測距モジュール202は、スマートフォン201の前面に配置され、スマートフォン201のユーザを対象とした測距を行うことにより、そのユーザの顔や手、指などの表面形状のデプス値を測距結果として出力することができる。
 撮像装置203は、スマートフォン201の前面に配置され、スマートフォン201のユーザを被写体とした撮像を行うことにより、そのユーザが写された画像を取得する。なお、図示しないが、スマートフォン201の背面にも撮像装置203が配置された構成としてもよい。
 ディスプレイ204は、アプリケーション処理部221およびオペレーションシステム処理部222による処理を行うための操作画面や、撮像装置203が撮像した画像などを表示する。スピーカ205およびマイクロフォン206は、例えば、スマートフォン201により通話を行う際に、相手側の音声の出力、および、ユーザの音声の収音を行う。
 通信モジュール207は、通信ネットワークを介した通信を行う。センサユニット208は、速度や加速度、近接などをセンシングし、タッチパネル209は、ディスプレイ204に表示されている操作画面に対するユーザによるタッチ操作を取得する。
 アプリケーション処理部221は、スマートフォン201によって様々なサービスを提供するための処理を行う。例えば、アプリケーション処理部221は、測距モジュール202から供給されるデプスに基づいて、ユーザの表情をバーチャルに再現したコンピュータグラフィックスによる顔を作成し、ディスプレイ204に表示する処理を行うことができる。また、アプリケーション処理部221は、測距モジュール202から供給されるデプスに基づいて、例えば、任意の立体的な物体の三次元形状データを作成する処理を行うことができる。
 オペレーションシステム処理部222は、スマートフォン201の基本的な機能および動作を実現するための処理を行う。例えば、オペレーションシステム処理部222は、測距モジュール202から供給されるデプス値に基づいて、ユーザの顔を認証し、スマートフォン201のロックを解除する処理を行うことができる。また、オペレーションシステム処理部222は、測距モジュール202から供給されるデプス値に基づいて、例えば、ユーザのジェスチャを認識する処理を行い、そのジェスチャに従った各種の操作を入力する処理を行うことができる。
 このように構成されているスマートフォン201では、上述した測距モジュール11を適用することで、適切な露出制御を行うことができる。これにより、スマートフォン201は、測距情報をより正確に検出することができる。
<17.コンピュータの構成例>
 次に、上述した一連の処理は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、汎用のコンピュータ等にインストールされる。
 図25は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)301,ROM(Read Only Memory)302,RAM(Random Access Memory)303、およびEEPROM(Electronically Erasable and Programmable Read Only Memory)304は、バス305により相互に接続されている。バス305には、さらに、入出力インタフェース306が接続されており、入出力インタフェース306が外部に接続される。
 以上のように構成されるコンピュータでは、CPU301が、例えば、ROM302およびEEPROM304に記憶されているプログラムを、バス305を介してRAM303にロードして実行することにより、上述した一連の処理が行われる。また、コンピュータ(CPU301)が実行するプログラムは、ROM302に予め書き込んでおく他、入出力インタフェース306を介して外部からEEPROM304にインストールしたり、更新したりすることができる。
 これにより、CPU301は、上述したフローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU301は、その処理結果を、必要に応じて、例えば、入出力インタフェース306を介して、外部へ出力することができる。
 本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。
 また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い。
<18.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図26は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図26に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図26の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図27は、撮像部12031の設置位置の例を示す図である。
 図27では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図27には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、車外情報検出ユニット12030や車内情報検出ユニット12040に適用され得る。具体的には、車外情報検出ユニット12030や車内情報検出ユニット12040として測距モジュール11による測距を利用することで、運転者のジェスチャを認識する処理を行い、そのジェスチャに従った各種(例えば、オーディオシステム、ナビゲーションシステム、エアーコンディショニングシステム)の操作を実行したり、より正確に運転者の状態を検出することができる。また、測距モジュール11による測距を利用して、路面の凹凸を認識して、サスペンションの制御に反映させたりすることができる。
 なお、本技術は、Indirect ToF方式の中でもContinuous-Wave方式と称する、物体へ投射する光を振幅変調する方式に適用することができる。また、受光部14のフォトダイオード31の構造としては、CAPD(Current Assisted Photonic Demodulator)構造の測距センサや、フォトダイオードの電荷を2つのゲートに交互にパルスを加えるゲート方式の測距センサなど、2つの電荷蓄積部に電荷を振り分ける構造の測距センサに適用することができる。また、本技術は、Structured Light方式の測距センサに適用してもよい。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。
 また、例えば、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
 さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、例えば、上述したプログラムは、任意の装置において実行することができる。その場合、その装置が、必要な機能(機能ブロック等)を有し、必要な情報を得ることができるようにすればよい。
 なお、本技術は、以下の構成を取ることができる。
(1)
 受光センサの検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータを決定するパラメータ決定部
 を備える信号処理装置。
(2)
 前記距離情報と輝度情報とを用いた評価指標に基づく値である評価値を算出する評価値算出部をさらに備え、
 前記パラメータ決定部は、前記評価値に基づいて、前記露出制御パラメータを決定する
 前記(1)に記載の信号処理装置。
(3)
 前記パラメータ決定部は、前記評価値が最大となる前記露出制御パラメータを決定する
 前記(2)に記載の信号処理装置。
(4)
 前記評価指標を記憶する評価指標記憶部をさらに備え、
 前記評価値算出部は、前記評価指標記憶部から供給された前記評価指標に基づく前記評価値を算出する
 前記(2)または(3)に記載の信号処理装置。
(5)
 前記受光センサの検出信号から、前記距離情報としての距離画像と、前記輝度情報としての信頼度画像とを生成する距離画像信頼度算出部と、
 前記距離画像の統計量を算出する統計量算出部と
 をさらに備える
 前記(1)乃至(4)のいずれかに記載の信号処理装置。
(6)
 第1の露出制御パラメータにおける第1の距離画像と第2の露出制御パラメータにおける第2の距離画像とを合成した合成距離画像と、前記第1の露出制御パラメータにおける第1の信頼度画像と前記第2の露出制御パラメータにおける第2の信頼度画像とを合成した合成信頼度画像とを生成する画像合成部をさらに備え、
 前記距離画像信頼度算出部は、前記第1の距離画像および前記第2の距離画像と、前記第1の信頼度画像および前記第2の信頼度画像とを生成し、
 前記統計量算出部は、前記合成距離画像の統計量を算出し、
 前記パラメータ決定部は、前記第1の露出制御パラメータと、前記第2の露出制御パラメータとを決定する
 前記(5)に記載の信号処理装置。
(7)
 前記評価指標は、前記距離画像の統計量と、前記信頼度画像とを用いて算出される値である
 前記(5)または(6)に記載の信号処理装置。
(8)
 前記距離画像の統計量は、前記距離情報の出現頻度である
 前記(7)に記載の信号処理装置。
(9)
 前記評価指標は、前記距離情報の出現頻度と、前記信頼度画像を用いた前記距離情報に応じたSN比とを畳み込んだ式で計算される値である
 前記(8)に記載の信号処理装置。
(10)
 前記パラメータ決定部は、前記露出制御パラメータとして、前記受光センサが受光する光を発光させる光源の発光量を決定する
 前記(1)乃至(9)のいずれかに記載の信号処理装置。
(11)
 前記パラメータ決定部は、前記露出制御パラメータとして、前記受光センサが受光する光を発光させる光源の変調周波数を決定する
 前記(1)乃至(10)のいずれかに記載の信号処理装置。
(12)
 前記パラメータ決定部は、前記露出制御パラメータとして、前記受光センサの露光時間を決定する
 前記(1)乃至(11)のいずれかに記載の信号処理装置。
(13)
 前記パラメータ決定部は、環境光成分の割合が大きい場合、前記受光センサの露光時間を短くし、前記受光センサが受光する光を発光させる光源の発光量を大きくする前記露出制御パラメータを決定する
 前記(1)乃至(12)のいずれかに記載の信号処理装置。
(14)
 前記露出制御パラメータを決定する際の制約条件を設定する制約設定部をさらに備え、
 前記パラメータ決定部は、前記制約条件を満たす前記露出制御パラメータを決定する
 前記(1)乃至(13)のいずれかに記載の信号処理装置。
(15)
 前記受光センサの全画素領域のなかで特に注目する注目領域を決定する注目領域決定部をさらに備え、
 前記パラメータ決定部は、前記注目領域の距離情報と輝度情報とを用いた前記評価指標に基づいて、前記露出制御パラメータを決定する
 前記(1)乃至(14)のいずれかに記載の信号処理装置。
(16)
 前記注目領域決定部は、前記距離情報または前記輝度情報の少なくとも一方を用いて、前記注目領域を決定する
 前記(15)に記載の信号処理装置。
(17)
 前記注目領域決定部は、外部からから供給される、前記注目領域を示す領域特定信号に基づいて、前記注目領域を決定する
 前記(15)または(16)に記載の信号処理装置。
(18)
 信号処理装置が、
 受光センサの検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータを決定する
 信号処理方法。
(19)
 所定の周波数で発光させる発光部と、
 前記発光部からの光が物体で反射した反射光を受光する受光センサと、
 前記受光センサの検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータを決定するパラメータ決定部と
 を備える測距モジュール。
 11 測距モジュール, 12 発光部, 13 発光制御部, 14 受光部, 15 信号処理部, 21 画素, 22 画素アレイ部, 61 距離画像・信頼度算出部, 62 統計量算出部, 63 評価値算出部, 64 評価指標記憶部, 65 パラメータ決定部, 66 パラメータ保持部, 81 画像合成部, 82 制約設定部, 91 注目領域決定部, 92 注目領域, 201 スマートフォン, 202 測距モジュール, 301 CPU, 302 ROM, 303 RAM

Claims (19)

  1.  受光センサの検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータを決定するパラメータ決定部
     を備える信号処理装置。
  2.  前記距離情報と輝度情報とを用いた評価指標に基づく値である評価値を算出する評価値算出部をさらに備え、
     前記パラメータ決定部は、前記評価値に基づいて、前記露出制御パラメータを決定する
     請求項1に記載の信号処理装置。
  3.  前記パラメータ決定部は、前記評価値が最大となる前記露出制御パラメータを決定する
     請求項2に記載の信号処理装置。
  4.  前記評価指標を記憶する評価指標記憶部をさらに備え、
     前記評価値算出部は、前記評価指標記憶部から供給された前記評価指標に基づく前記評価値を算出する
     請求項2に記載の信号処理装置。
  5.  前記受光センサの検出信号から、前記距離情報としての距離画像と、前記輝度情報としての信頼度画像とを生成する距離画像信頼度算出部と、
     前記距離画像の統計量を算出する統計量算出部と
     をさらに備える
     請求項1に記載の信号処理装置。
  6.  第1の露出制御パラメータにおける第1の距離画像と第2の露出制御パラメータにおける第2の距離画像とを合成した合成距離画像と、前記第1の露出制御パラメータにおける第1の信頼度画像と前記第2の露出制御パラメータにおける第2の信頼度画像とを合成した合成信頼度画像とを生成する画像合成部をさらに備え、
     前記距離画像信頼度算出部は、前記第1の距離画像および前記第2の距離画像と、前記第1の信頼度画像および前記第2の信頼度画像とを生成し、
     前記統計量算出部は、前記合成距離画像の統計量を算出し、
     前記パラメータ決定部は、前記第1の露出制御パラメータと、前記第2の露出制御パラメータとを決定する
     請求項5に記載の信号処理装置。
  7.  前記評価指標は、前記距離画像の統計量と、前記信頼度画像とを用いて算出される値である
     請求項5に記載の信号処理装置。
  8.  前記距離画像の統計量は、前記距離情報の出現頻度である
     請求項7に記載の信号処理装置。
  9.  前記評価指標は、前記距離情報の出現頻度と、前記信頼度画像を用いた前記距離情報に応じたSN比とを畳み込んだ式で計算される値である
     請求項8に記載の信号処理装置。
  10.  前記パラメータ決定部は、前記露出制御パラメータとして、前記受光センサが受光する光を発光させる光源の発光量を決定する
     請求項1に記載の信号処理装置。
  11.  前記パラメータ決定部は、前記露出制御パラメータとして、前記受光センサが受光する光を発光させる光源の変調周波数を決定する
     請求項1に記載の信号処理装置。
  12.  前記パラメータ決定部は、前記露出制御パラメータとして、前記受光センサの露光時間を決定する
     請求項1に記載の信号処理装置。
  13.  前記パラメータ決定部は、環境光成分の割合が大きい場合、前記受光センサの露光時間を短くし、前記受光センサが受光する光を発光させる光源の発光量を大きくする前記露出制御パラメータを決定する
     請求項1に記載の信号処理装置。
  14.  前記露出制御パラメータを決定する際の制約条件を設定する制約設定部をさらに備え、
     前記パラメータ決定部は、前記制約条件を満たす前記露出制御パラメータを決定する
     請求項1に記載の信号処理装置。
  15.  前記受光センサの全画素領域のなかで特に注目する注目領域を決定する注目領域決定部をさらに備え、
     前記パラメータ決定部は、前記注目領域の距離情報と輝度情報とを用いた前記評価指標に基づいて、前記露出制御パラメータを決定する
     請求項1に記載の信号処理装置。
  16.  前記注目領域決定部は、前記距離情報または前記輝度情報の少なくとも一方を用いて、前記注目領域を決定する
     請求項15に記載の信号処理装置。
  17.  前記注目領域決定部は、外部からから供給される、前記注目領域を示す領域特定信号に基づいて、前記注目領域を決定する
     請求項15に記載の信号処理装置。
  18.  信号処理装置が、
     受光センサの検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータを決定する
     信号処理方法。
  19.  所定の周波数で発光させる発光部と、
     前記発光部からの光が物体で反射した反射光を受光する受光センサと、
     前記受光センサの検出信号から算出された距離情報と輝度情報とを用いた評価指標に基づいて、露出制御パラメータを決定するパラメータ決定部と
     を備える測距モジュール。
PCT/JP2020/019375 2019-05-31 2020-05-15 信号処理装置、信号処理方法、および、測距モジュール WO2020241294A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/608,059 US20220317269A1 (en) 2019-05-31 2020-05-15 Signal processing device, signal processing method, and ranging module
JP2021522209A JPWO2020241294A1 (ja) 2019-05-31 2020-05-15
DE112020002746.5T DE112020002746T5 (de) 2019-05-31 2020-05-15 Signalverarbeitungsvorrichtung, signalverarbeitungsverfahren und abstandsmessmodul
CN202080038326.7A CN113874750A (zh) 2019-05-31 2020-05-15 信号处理装置、信号处理方法和测距模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019102151 2019-05-31
JP2019-102151 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241294A1 true WO2020241294A1 (ja) 2020-12-03

Family

ID=73553448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019375 WO2020241294A1 (ja) 2019-05-31 2020-05-15 信号処理装置、信号処理方法、および、測距モジュール

Country Status (5)

Country Link
US (1) US20220317269A1 (ja)
JP (1) JPWO2020241294A1 (ja)
CN (1) CN113874750A (ja)
DE (1) DE112020002746T5 (ja)
WO (1) WO2020241294A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009739A1 (ja) * 2022-07-08 2024-01-11 ソニーグループ株式会社 光学式測距センサ、及び光学式測距システム
WO2024039160A1 (ko) * 2022-08-18 2024-02-22 삼성전자주식회사 Itof 센서에 기반한 라이다 센서 및 그 제어 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7431193B2 (ja) * 2021-04-19 2024-02-14 株式会社日立エルジーデータストレージ 測距装置及びその制御方法
CN116338707B (zh) * 2023-05-31 2023-08-11 深圳玩智商科技有限公司 曝光调整方法、装置、设备和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098884A (ja) * 2003-09-25 2005-04-14 Nec Engineering Ltd 三次元形状計測装置
JP2008116309A (ja) * 2006-11-02 2008-05-22 Fujifilm Corp 距離画像生成方法及びその装置
JP2010071976A (ja) * 2008-08-19 2010-04-02 Panasonic Corp 距離推定装置、距離推定方法、プログラム、集積回路およびカメラ
JP2013190378A (ja) * 2012-03-15 2013-09-26 Omron Corp 光学式センサおよび感度調整制御のための設定方法
JP2013195117A (ja) * 2012-03-16 2013-09-30 Ricoh Co Ltd 測距装置
JP2018169336A (ja) * 2017-03-30 2018-11-01 パナソニックIpマネジメント株式会社 画像認識装置および距離画像生成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098884A (ja) * 2003-09-25 2005-04-14 Nec Engineering Ltd 三次元形状計測装置
JP2008116309A (ja) * 2006-11-02 2008-05-22 Fujifilm Corp 距離画像生成方法及びその装置
JP2010071976A (ja) * 2008-08-19 2010-04-02 Panasonic Corp 距離推定装置、距離推定方法、プログラム、集積回路およびカメラ
JP2013190378A (ja) * 2012-03-15 2013-09-26 Omron Corp 光学式センサおよび感度調整制御のための設定方法
JP2013195117A (ja) * 2012-03-16 2013-09-30 Ricoh Co Ltd 測距装置
JP2018169336A (ja) * 2017-03-30 2018-11-01 パナソニックIpマネジメント株式会社 画像認識装置および距離画像生成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009739A1 (ja) * 2022-07-08 2024-01-11 ソニーグループ株式会社 光学式測距センサ、及び光学式測距システム
WO2024039160A1 (ko) * 2022-08-18 2024-02-22 삼성전자주식회사 Itof 센서에 기반한 라이다 센서 및 그 제어 방법

Also Published As

Publication number Publication date
JPWO2020241294A1 (ja) 2020-12-03
CN113874750A (zh) 2021-12-31
DE112020002746T5 (de) 2022-03-03
US20220317269A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
TWI814804B (zh) 距離測量處理設備,距離測量模組,距離測量處理方法及程式
WO2020241294A1 (ja) 信号処理装置、信号処理方法、および、測距モジュール
WO2021085128A1 (ja) 測距装置、測定方法、および、測距システム
WO2017195459A1 (ja) 撮像装置、および撮像方法
US11561303B2 (en) Ranging processing device, ranging module, ranging processing method, and program
CN114424022A (zh) 测距设备,测距方法,程序,电子装置,学习模型生成方法,制造方法和深度图生成方法
WO2020209079A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
WO2021177045A1 (ja) 信号処理装置、信号処理方法、および、測距モジュール
WO2021065494A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
WO2020246264A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
WO2021065500A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
EP4314704A1 (en) Depth sensor device and method for operating a depth sensor device
JP2021056143A (ja) 測距センサ、信号処理方法、および、測距モジュール
WO2020203331A1 (ja) 信号処理装置、信号処理方法、および、測距モジュール
US20240168159A1 (en) Distance measuring device, distance measuring system, and distance measuring method
WO2021124918A1 (ja) 信号処理装置、信号処理方法、および、測距装置
TWI839646B (zh) 測定裝置及測距裝置
WO2022004441A1 (ja) 測距装置および測距方法
TWI839653B (zh) 測定裝置及測距裝置
WO2021106623A1 (ja) 測距センサ、測距システム、および、電子機器
WO2021192714A1 (ja) レンダリングシステム及び自動運転検証システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522209

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20814959

Country of ref document: EP

Kind code of ref document: A1