JP2013193905A - ガラスの溶融装置、及び溶融ガラスの供給方法、並びに溶融炉用の流出通路 - Google Patents

ガラスの溶融装置、及び溶融ガラスの供給方法、並びに溶融炉用の流出通路 Download PDF

Info

Publication number
JP2013193905A
JP2013193905A JP2012061853A JP2012061853A JP2013193905A JP 2013193905 A JP2013193905 A JP 2013193905A JP 2012061853 A JP2012061853 A JP 2012061853A JP 2012061853 A JP2012061853 A JP 2012061853A JP 2013193905 A JP2013193905 A JP 2013193905A
Authority
JP
Japan
Prior art keywords
melting furnace
outflow passage
glass
melting
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012061853A
Other languages
English (en)
Inventor
Kosuke Aiuchi
孝介 愛内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012061853A priority Critical patent/JP2013193905A/ja
Publication of JP2013193905A publication Critical patent/JP2013193905A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/20Bridges, shoes, throats, or other devices for withholding dirt, foam, or batch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

【課題】溶融炉内で発生した異質素地が溶融炉外へと流出する量を可及的に抑制すること。
【解決手段】溶融ガラスGを生成または加熱する溶融炉2と、溶融炉2の下流側の側壁部2aから溶融炉2内に向かって突出する溶融ガラスGの流出通路4とを備えたガラスの溶融装置1であって、流出通路4が、流出通路4の内外を区画する構成壁と、構成壁の上部の少なくとも一部を開口して成る溶融ガラスGの流入孔4bとを有し、流入孔4bは溶融炉2の底部2bから上方に離反して位置するように構成した。
【選択図】図1

Description

本発明は、ガラスの溶融装置、及び溶融ガラスの供給方法、並びに溶融炉用の流出通路に係り、詳しくは、溶融炉に投入されたガラス原料を加熱し溶融させて溶融ガラスを生成した後、当該溶融ガラスを溶融炉から流出させる技術の改良に関する。
周知のように、溶融ガラスは、珪砂、石灰石、ソーダ灰、カレット等に代表されるガラス原料を調合、混合した後、加熱することにより生成される。溶融温度はガラス品種によるが、例えば、約1500℃である。溶融ガラスを生成するための装置としては、添付の図12に示すようなガラスの溶融装置が広く使用されている。
図12は、従来におけるガラスの溶融装置の一構成例を示す側面図である。同図に示すように、このガラスの溶融装置1は、投入口6から溶融炉2内に投入されたガラス原料Cを、溶融炉2内でバーナー、電気ヒーター、溶融ガラス内の通電等を用いて加熱し溶融させることで、溶融ガラスGを生成する。そして、生成された溶融ガラスGを溶融炉2における下流側の側壁部2aに形成された流出口3から溶融炉2外に流出させる構成となっている。
図中に示す各矢印7〜10は、溶融炉2内における溶融ガラスGの対流を示すものであり、投入機からのガラス原料Cの押し込みによる力や熱対流によって形成される。これら溶融ガラスGの流れの内、最終的に製造されるガラス製品の品質の良否を左右する重要な要素となるのが、矢印10で示した側壁部2aに沿って溶融炉2内を流下した後、流出口3へと流入する流れである。
詳述すると、溶融炉内では、ガラス原料Cが溶融する際に多数の泡が発生するが、この泡は溶融の過程で溶融炉2内を浮上し、ガラス表面S付近にて泡層を形成する。この泡層は、投入口6から遠ざかるに従って徐々に消滅していくが、図中にクロスハッチングで示した領域Aにおいては、消滅せずに残存した泡層が、その場に滞留することがある。
また、溶融の過程において、ガラス表面Sからガラス成分の一部が揮発し、例えば、シリカの含有量が高い不均質な溶融ガラスGの素地が生成されることがある。この不均質なガラス素地は、ガラス表面S付近を側壁部2aに向かって流れ、領域Aへと到達する。
このため、領域Aに行き着いた泡や不均質なガラス素地(以下、これらを総称して異質素地という)の内、特に流出口3の上方に存する異質素地が、矢印10で示す流れに沿って流出口3へと流入し、溶融炉2外へと流出してしまう事態を招いていた。そして、これに起因して、最終的に製造されるガラス製品に欠陥が含有されてしまい、製品の品質が大きく低下するという問題があった。
そこで、このような問題を解決するため、異質素地が溶融炉外へと流出することを抑制する手段として、下記の特許文献1、2に開示されるような構成が提案されている。
特許文献1には、溶融炉における下流側の側壁部に形成された流出口の上方に、側壁部から溶融炉内に突出するプレートを設けた構成が開示されている。また、特許文献2には、溶融炉における下流側の側壁部から溶融炉内に向かって突出する溶融ガラスの流出通路と、該流出通路の上方で異質素地を排出する排出通路とを設けた構成が開示されている。
特開2003−95662号公報 実公平3−54118号公報
しかしながら、上記特許文献1、2に開示されたいずれの構成によるにしても、上述の問題を解決に至らせるのに十分な効果を奏するものではないことが、本願発明者によって判明している。
具体的には、特許文献1に開示された構成によれば、流出口の上方で側壁部から溶融炉内に突出するプレートの存在により、側壁部に沿って溶融炉内を流下する異質素地を含んだ溶融ガラスが、流出口へと直接に流入することは回避できる。しかし、流下してプレートの表面へと到達した流れは、プレートの表面及び裏面に沿ってプレートを迂回するだけに過ぎず、結局は流出口へと流入し、溶融炉外へと流出してしまうことが明らかとなっている。
また、特許文献2に開示された構成によれば、異質素地の流出通路への流入を低減することが期待できる。しかしながら、この構成では側壁部に排出通路を設ける必要が生じるため、余分な設備コストが発生するのに加え、排出通路から排出された溶融ガラスの分だけ、成形できるガラスの量が減少する。その上、排出された溶融ガラスを再びガラスの製造に利用するためには、一旦、ガラスカレットとして原料に戻した後、再度溶融させてやる必要が生じ、さらに余分なコストが発生してしまう。
さらに、排出通路にて排出しきれなかった異質素地は、側壁部に沿って流下し、流出通路の上部および側部へと到達した後、溶融炉内に突出した流出通路の上部、側部、および側部に隣接する溶融炉の底部に沿って流出通路を迂回し、溶融炉外へと流出する経路を辿ることが判明している。つまり、溶融炉内に突出した流出通路を設けない場合に比べて、異質素地が溶融炉外へと至るまでの経路が延長されているに過ぎず、結果として溶融炉外へと流出することには何ら変わりがなかった。それゆえ、この構成によっても、異質素地の溶融炉外への流出を効果的に抑制することは困難であった。
上記事情に鑑みなされた本発明は、溶融炉内で発生した異質素地が溶融ガラスと共に溶融炉外へと流出する量を可及的に抑制することを技術的課題とする。
上記課題を解決するために創案された本発明に係る装置は、溶融ガラスを生成または加熱する溶融炉と、該溶融炉の下流側の側壁部から前記溶融炉内に向かって突出する前記溶融ガラスの流出通路とを備えたガラスの溶融装置であって、前記流出通路が、当該流出通路の内外を区画する構成壁と、前記構成壁の上部の少なくとも一部を開口して成る前記溶融ガラスの流入孔とを有し、前記流入孔は前記溶融炉の底部から上方に離反して位置することに特徴付けられる。
すなわち、本願発明者の鋭意研究により、このような構成によれば、側壁部に沿って溶融炉内を流下してくる異質素地を含んだ溶融ガラスに比べて、ガラス表面の下方に存する均質に溶融された溶融ガラスが、流入孔から流出通路へと流入する割合が高まることが判明している。このため、均質な溶融ガラスが流出通路に流入する割合が高まった分だけ、必然的に異質素地を含んだ溶融ガラスが流出通路へと流入する流量が低下することになる。これにより、異質素地が溶融ガラスと共に溶融炉外へと流出することを可及的に抑制できる。
上記の構成において、前記流入孔は、前記通路構成壁の上部において、前記流出通路の先端側に形成されていてもよい。
このようにすれば、上部に流入孔が無い場合と比べて、流出通路の上部、側部、および側部に隣接する溶融炉の底部に沿って流出通路を迂回し溶融炉外へと流出する異質素地のうち、側部および側部に隣接する底部に沿って流出通路を迂回する異質素地の量が低下することにより、均質に溶融された溶融ガラスが流出通路へと流入し、溶融炉外へと流出する割合が高まる。
上記の構成において、前記流入孔は、前記通路構成壁の上部において、前記流出通路の先端側から基端側まで連続的に開口して形成されていてもよい。
このようにすれば、上部に流入孔が無い場合と比べて、流出通路の上部、側部、および側部に隣接する溶融炉の底部に沿って流出通路を迂回し溶融炉外へと流出する異質素地のうち、側部および側部に隣接する底部に沿って流出通路を迂回する異質素地の量を、さらに低下させることができる。しかしながら、この場合、側壁部に沿って溶融炉内を流下し、流入孔から流出通路に流入する異質素地の量が増加する危険性が高まる。そのため、流入孔が開口する適切な範囲については、例えば、数値熱流体解析やモデル流体による実験等を用いて判断する必要がある。
上記の構成において、前記流出通路の先端部が封鎖されていてもよい。
このようにすれば、異質素地を含んだガラス表面付近の溶融ガラスの内、側壁部に沿って溶融炉内を流下し、流出通路の側部へと到達した溶融ガラスについて、下記のような好ましい態様が得られる。すなわち、流出通路の側方に到達した溶融ガラスの一部は、自然対流によって流出通路の側部および側部に隣接する底部に沿って当該流出通路の先端部に向かって流れた後、流出通路へと流入しようとするが、先端部が封鎖されているため、この溶融ガラスの流れを堰き止めることが可能となる。これにより、さらに効果的に溶融炉外への異質素地の流出を抑制することができる。
上記の構成において、前記流出通路の先端部が開口し、当該開口が前記流入孔と連続していてもよい。
このようにすれば、異質素地の溶融炉外への流出を抑制し得ると共に、流出通路を簡易に形成することが出来るため、設備コストの低減を図ることが可能となる。
上記の構成において、前記流出通路全体が、前記溶融炉の底部から上方に離反して位置していることが好ましい。
このようにすれば、流出通路が溶融炉内において、より上方に位置することにより、異質素地を含んだ溶融ガラスの内、溶融炉の底部に沿って流出通路を迂回する溶融ガラスが、溶融炉外へと流出することをさらに効果的に抑制できる。
上記の構成において、前記流出通路の通路構成壁の内、下部が前記溶融炉の底部により構成されていてもよい。
このようにすれば、異質素地の溶融炉外への流出を抑制し得ると共に、通路構成壁の下部を別途設ける必要がなくなり、流出通路を簡易に形成することができるため、設備コストの低減を図ることが可能となる。
上記の構成において、前記流出通路の一部又は全体は、白金族元素、白金族元素を含む合金、又はモリブデンで形成されていることが好ましい。
このようにすれば、耐食性の向上が図られるため、流出通路が侵食されることにより生じる異質素地の流出および流出通路の変形を抑制することが可能となる。
上記の構成において、前記溶融炉を複数備え、隣り合う前記溶融炉を接続する接続部を有すると共に、該接続部の内、少なくとも一つが、前記流出通路で構成されていてもよい。
このようにすれば、複数の接続部の全てが流出通路で構成される場合には、各々の溶融炉において発生し得る異質素地の溶融炉外への流出を抑制することが可能となる。また、複数の接続部の内のいくつかが流出通路で構成される場合には、特に異質素地の流出が顕著な溶融炉とその下流側に位置する溶融炉とを接続する接続部を流出通路で構成すれば、設備コストの高騰を防止しつつ、異質素地の溶融炉外への流出を抑制することができる。
また、上記課題を解決するために創案された本発明に係る方法は、溶融炉で生成または加熱した溶融ガラスを、前記溶融炉の下流側の側壁部から前記溶融炉内に向かって突出する流出通路から流出させ、溶融炉外へと供給する溶融ガラスの供給方法であって、前記流出通路は、当該流出通路の内外を区画する構成壁と、前記構成壁の上部の少なくとも一部を開口して成る前記溶融ガラスの流入孔とを有し、前記流入孔は前記溶融炉の底部から上方に離反して位置することに特徴付けられる。
このような方法によれば、上記の装置に係る説明で既に述べた事項と同様の作用効果を享受することが可能である。
さらに、上記課題を解決するために創案された本発明に係る装置は、溶融ガラスを流出させるために、溶融炉内に設けられる溶融炉用の流出通路であって、前記流出通路の内外を区画する構成壁と、前記構成壁の上部の少なくとも一部を開口して成る流入孔とを有し、前記流入孔は前記構成壁の底部から上方に離反して位置することに特徴付けられる。
このような流出通路を溶融炉に設置すれば、上記のガラスの溶融装置に係る説明で既に述べた事項と同様の作用効果を享受することが可能である。
以上のように、本発明によれば、溶融炉内で発生した異質素地が溶融ガラスと共に溶融炉外へと流出する量を可及的に抑制することが可能となる。
本発明の第一実施形態に係るガラスの溶融装置を示す斜視図である。 本発明の第一実施形態に係るガラスの溶融装置と、溶融ガラスの挙動とを示す側面図である。 本発明の第一実施形態に係るガラスの溶融装置と、溶融ガラスの挙動とを示す平面図である。 本発明の第二実施形態に係るガラスの溶融装置を示す斜視図である。 (a)は本発明の第三実施形態に係るガラスの溶融装置を示す斜視図、(b)は本発明の第四実施形態に係るガラスの溶融装置を示す斜視図である。 本発明の第五実施形態に係るガラスの溶融装置を示す斜視図である。 本発明の第五実施形態に係るガラスの溶融装置と、溶融ガラスの挙動とを示す正面図である。 (a)〜(c)は本発明の第六〜第八実施形態に係るガラスの溶融装置を示す斜視図である。 本発明の第九実施形態に係るガラスの溶融装置を示す側面図である。 従来技術に基づく比較例および本発明の実施例に用いたガラスの溶融装置と溶融ガラスの挙動とを示す概略図である。 従来技術に基づく比較例および本発明の実施例に用いたガラスの溶融装置と溶融ガラスの挙動とを示す概略図である。 従来のガラスの溶融装置を示す側面図である。
以下、本発明の実施形態に係るガラスの溶融装置について、添付の図面に基づいて説明する。
図1は、本発明の第一実施形態に係るガラスの溶融装置1(以下、単に溶融装置1という)を示す斜視図である。同図に示すように、溶融装置1は、溶融ガラスGを生成する溶融炉2と、溶融炉2内の溶融ガラスGを溶融炉2外へと流出させる流出口3と、流出口3に溶融ガラスGを流入させる流出通路4とを備える。
溶融炉2は、矩形の横断面形状を有すると共に、図示しない上流側端部に存するガラス原料の投入口と、加熱手段とを備えており、溶融炉2に投入されたガラス原料を加熱し、溶融させて溶融ガラスGを生成する。
流出口3は、溶融炉2の下流側端部となる側壁部2aに形成され、溶融炉2の底部2bから上方に離反して位置すると共に、流出通路4を通じて溶融炉2内から溶融ガラスGを溶融炉2外へと流出させる。
流出通路4は、土台5上に設置されることで、溶融炉2の底部2bから上方に離反して位置している。また、流出通路4は、その下流端が側壁部2aと当接して流出口3と隙間なく接続されると共に、側壁部2aから溶融炉2内を上流側に向かって突出しており、その上流端における上部には、溶融炉2内の溶融ガラスGを流路4aに流入させるための矩形で、且つ上方に向かって開口した流入孔4bが形成されている。さらに、流出通路4の通路構成壁によって形成され、溶融ガラスGが流れる流路4aは、矩形の横断面形状を有し、その上流端には、流出通路4の流入口を封鎖する封鎖板4cが備えられている。また、流出通路4には白金による被覆が施されている。
以下、上記の溶融装置1内を流れる溶融ガラスGの挙動について、添付の図2、図3に基づいて説明する。
図2は溶融装置1を示す側面図であり、図3はその平面図である。図2に示すクロスハッチングを施した領域Aには、異質素地(泡や不均質なガラス素地)を含んだ溶融ガラスGが存在する。この異質素地を含んだ溶融ガラスGの内、特に流出口3の上方に存する溶融ガラスGは、溶融炉2の側壁部2aに沿って溶融炉2内を流下し、流出通路4の上部へと到達する。
この一部は、図2に矢印10aで示すように、流出通路4の上部に沿って流出通路4の先端に向かう。一方、図3に示すように、流出通路4の側部に流下した異質素地が、流出通路4の側部および側部に隣接する溶融炉2の底部2bに沿って流出通路4の先端に向かう矢印10bで示す流れが存在する。また、流出通路4の上部に流下した異質素地の一部が流出通路4の上部を避けて側部へ向かい、その後、流出通路4の側部に沿って流出通路4の先端に向かう矢印10cで示す流れも存在する。そして、この溶融炉2内に突出した流出通路4を備える構成においては、10aよりも10bおよび10cの流量の割合が比較的高くなる。
ここで、流出通路4の上部に流入孔4bが形成されていることにより、異質素地を含んだ領域Aの下方に存する均質に溶融された溶融ガラスGが、流入孔4bを通じて流路4aへと流入する図2に矢印11で示す流れが生じる。
このため、均質な溶融ガラスGが流路4aに流入する割合が高まり、その分だけ、流出通路4の側部および側部に隣接する底部2bに沿って流出通路4の先端へ向かい、流入孔4bから流路4aへと流入する異質素地の量が低下することになる。その結果、異質素地が流出通路4と接続された流出口3へと流入し、溶融炉2外へと流出することを可及的に抑制できる。
さらに、流路4aの流入口が封鎖板4cで封鎖されているため、図3に破線で示すような、流路4aへと流入しようとする異質素地を含んだ溶融ガラスGの流れを堰き止めることが可能となる。これにより、溶融炉2外へと異質素地が流出することを、さらに効果的に抑制できる。また、流出通路4は、土台5によって溶融炉2の底部2bから上方に離反して位置しているため、異質素地を含んだ溶融ガラスGの内、溶融炉2の底部2bに沿って流出通路4を迂回する溶融ガラスGが、溶融炉2外へと流出することを抑制する効果がさらに高まる。
さらに、流出通路4には、白金による被覆が施されていることにより、耐食性の向上が図られるため、流出通路4が侵食されることにより生じる異質素地の流出、及び流出通路4の変形を抑制することができる。
加えて、この構成によれば、溶融炉2内で発生した異質素地を溶融炉2外へと積極的に排出するための排出通路等を別途設ける必要がなく、溶融炉2内の溶融ガラスGが流出口3以外から溶融炉2外へと流出することがないため、溶融炉2から溶融炉2外へと供給される溶融ガラスGの供給量が減少することもない。その結果、製品の製造効率の低下、及び設備コストの高騰を好適に防止することが可能となる。
図4は、本発明の第二実施形態に係るガラスの溶融装置1を示す斜視図である。なお、以下の第二〜第九実施形態に係るガラスの溶融装置について説明するための各図面において、上記第一実施形態に係るガラスの溶融装置1と同一の機能、又は形状を有する構成要素については、同一の符号を付すことにより重複する説明を省略している。
この第二実施形態に係る溶融装置1が、上記第一実施形態に係る溶融装置1と相違している点は、流入孔4bが流出通路4の上流端から下流端までの全域に亘って形成されている点である。
このような構成によれば、流出通路4の上部、側部、および側部に隣接する溶融炉2の底部2bに沿って流出通路4を迂回して溶融炉2外へと流出する異質素地のうち、側部および側部に隣接する底部2bに沿って流出通路4を迂回する異質素地が溶融炉2外へと流出する量を、さらに低下させることができる。
図5(a)は、本発明の第三実施形態に係るガラスの溶融装置1を示す斜視図であり、図5(b)は、本発明の第四実施形態に係るガラスの溶融装置1を示す斜視図である。これらの実施形態に係るガラスの溶融装置1が、上記の第一、第二実施形態と相違している点は、流路4aの上流端に設けられていた封鎖板4cが取り除かれており、流路4aの流入口と流入孔4bとが連続して形成されている点である。
これらの構成によっても、均質な溶融ガラスGが流路4aへと流入する割合を高めることができ、異質素地が溶融炉2外へと流出することを抑制することが可能である。また、流出通路4を簡易に形成することが出来るため、設備コストの低減を図ることが可能となる。なお、この図5において、流出口3、流出通路4、土台5以外の構成要素については、図示を省略している。
図6は、本発明の第五実施形態に係るガラスの溶融装置1を示す斜視図である。この第五実施形態に係る溶融装置1が、上記第一実施形態に係る溶融装置1と相違している点は、流出通路4を覆う屋根15を備えている点である。
屋根15は、その下流端が側壁部2aと当接すると共に、流出通路4の上部において流入孔4bよりも下流側となる部位を覆っている。また、屋根15の上部へと到達した溶融ガラスGを流出通路4の側方に誘導する溶融ガラス誘導面15aを有している。この溶融ガラス誘導面15aは、流出通路4の一方側の側方に向かって下り勾配となる第一傾斜平面15aaと、流出通路4の他方側の側方に向かって下り勾配となる第二傾斜平面15abとからなる。詳細には、第一傾斜平面15aaと第二傾斜平面15abは、屋根15の頂部において互いに接し、屋根15が三角形の横断面形状を有している。なお、この第一傾斜平面15aaと第二傾斜平面15abとが成す角度は、任意に設定することができるが、本実施形態では90°としている。
このような構成によれば、図7に矢印10で示すように、溶融炉2の側壁部2aに沿って溶融炉2内を流下し、屋根15の上部(頂部)へと到達した異質素地を含んだ溶融ガラスは、屋根15の上部(頂部)において、その流れを二方向に分離される。そして、第一傾斜平面15aaと第二傾斜平面15abとによって、積極的に流出通路4の側部へと流れた後、さらに流下して溶融炉2の底部2bへと至る。このため、異質素地を含んだ溶融ガラスGが、流出通路4の上部に沿って流出通路4を迂回して、溶融炉2外へと流出することを抑制することができる。
図8(a)〜(c)は、本発明の第六〜第八実施形態に係るガラスの溶融装置1を示す斜視図である。なお、この図8において、流出口3、流出通路4、土台5、屋根15以外の構成要素については、図示を省略している。
図8(a)に示す第六実施形態に係る溶融装置1が、上記第五実施形態に係る溶融装置1と相違している点は、屋根15が半円の横断面形状を有し、溶融ガラス誘導面15aが上方に向かって凸な湾曲面となっている点である。
このような構成によっても、異質素地を含んだ溶融ガラスGを湾曲面に沿って流出通路4の側方へと誘導することができる。
図8(b)に示す第七実施形態に係る溶融装置1が、上記第五実施形態に係る溶融装置1と相違している点は、溶融ガラス誘導面15aが、流出通路4の一方側の側方から他方側の側方に向かって傾斜した傾斜平面となっている点である。
このような構成によっても、異質素地を含んだ溶融ガラスGを、溶融ガラス誘導面15aに沿って流出通路4の側方へと誘導することができる。
図8(c)に示す第八実施形態に係る溶融装置1が、上記第五実施形態に係る溶融装置1と相違している点は、溶融ガラス誘導面15aが、流出通路4の上流側から側壁部2aに向かって下り勾配となる傾斜平面となっている点である。
このような構成によれば、屋根15の上部へと到達した異質素地を含んだ溶融ガラスGは、屋根15に沿って流出通路4の上流側に向かって流れることを抑制される。そして、当該溶融ガラスGは、屋根15の上部へと順次に流下してくる後続の溶融ガラスGによって流出通路4の側方へと押し出され、流出通路4の側方へと誘導されることになる。
図9は、本発明の第九実施形態に係るガラスの溶融装置1を示す側面図である。この溶融装置1が、上記第一実施形態に係る溶融装置1と相違している点は、流出通路4が溶融炉2(ここでは、第一溶融炉2Xという)の側壁部2aを貫通して、下流側に位置する第二溶融炉2Yと接続されている点である。なお、第二溶融炉2Yは、ガラス原料Cの投入口6が設けられていない点以外は、第一溶融炉2Xと同一な構成となっている。
このような構成によれば、第一溶融炉2X、および第二溶融炉2Yのそれぞれにおいて発生し得る異質素地が、溶融炉2X、2Yから流出することを抑制できる。また、第一溶融炉2Xで発生した異質素地が下流側に位置する第二溶融炉2Yへと流出しにくくなる。
ここで、本発明に係るガラスの溶融装置の構成は、上記の各実施形態に係る溶融装置に限定されるものではない。例えば、流出通路4の上部に形成される流入孔4bの形状は、上記の各実施形態で開示した形状に限られるものではなく、円形であってもよいし、多角形であってもよい。
また、上記の各実施形態に係る溶融装置1において、流出口3及び流路4aの横断面形状は、矩形となっているが、円形や楕円形、多角形の横断面形状としてもよい。
さらに、上記各実施形態においては、流出口3及び流出通路4は、溶融炉2の底部2bから上方に離反して位置しているが、側壁部2aにおける下端部に流出口3を形成し、その流出口3に流出通路4を接続するようにしてもよい。この場合、流出通路4の下部は溶融炉2の底部2bで構成してもよい。このようにすれば、流出通路4の下部を別途設ける必要がなくなり、流出通路4を簡易に形成することができるため、設備コストの低減を図ることが可能となる。加えて、上記各実施形態においては、流出口3は溶融炉2の側壁部2aに設けられているが、流出口3は溶融炉2の底部2bに設けても良い。流出口3を側壁部2a、又は側壁部2aに隣接する底部2bのいずれかに設ければ、流出通路4内(流路4a)において、溶融ガラスGが停滞する領域が生じることを防止できる。また、流出口3と流出通路4とを異なる要素とせずに、一体なものとして形成してもよい。
さらに、上記第九実施形態においては、2つの溶融炉2X,2Yが備えられているが、設置する溶融炉の数は、適宜変更してもよい。この場合、溶融炉同士を接続する接続部の全てが流出通路4で構成されていてもよいし、複数の接続部の内のいくつかのみを流出通路4で構成してもよい。
加えて、流出通路4は、溶融炉2の側壁部2aから溶融炉2内に向かって垂直に突出しているが、この限りではなく、側壁部2aに対して傾斜した状態で突出させてもよい。さらに、流出口3及び流出通路4は、必ずしも溶融炉2の幅方向における中央部に設ける必要はなく、中央部から幅方向にずれた位置に設けてもよい。また、流出口3及び流出通路4は、上記各実施形態において、溶融炉2の下流側端部となる側壁部2aに設けられているが、当該側壁部2aに連なる側壁部に設けてもよい。すなわち、図示した向きと略直交するように、流出口3と流出通路4とを設けてもよい。
また、上記各実施形態において、流出通路4は白金で被覆されているが、白金族元素を含んだ合金や、モリブデン等で形成してもよい。
本発明の第一実施例として、図10に示す各ガラスの溶融装置(実施例6つ、比較例3つ)を用いて、ガラス表面付近に存する異質素地を含んだ溶融ガラスが、流出口へと流入する割合について数値熱流体解析を実施した。なお、この図10において流出通路、側壁部、底部以外の溶融装置の構成要素については図示を省略している。
以下、解析の実施条件について説明する。溶融ガラスを生成する溶融炉の寸法は、長さ:20m、幅:5m、高さ:1mである。溶融ガラスを溶融炉外へと流出させる流出口は、溶融炉の下流側端部となる側壁部の下端に備えられている。流出口の寸法は、幅:0.6m、高さ:0.35mであり、溶融ガラスが流れる流路の寸法も同様の値となっている。また、図10(c)〜(i)に示した溶融炉内に突出する流出通路は、長さ1mであり、断面形状は流出口と同じである。さらに、図10(d)、(g)、(h)、(i)に示した、流出通路上部先端において溶融ガラスを流出通路に流入させる流入孔の寸法は、長さ:0.5m、幅:0.6mである。加えて、図10(h)、(i)に示した、実施例5、6にのみ備えられた屋根の上端は、溶融炉の底部から0.65mの高さに位置し、屋根の頂角の角度は90°となっている。
なお、比較例1〜3の構成は、従来のガラスの溶融装置に基づくものであり、比較例1は、異質素地の溶融炉からの流出について何ら対策を施していない構成である。また、比較例2は、上記特許文献1に係るガラスの溶融装置の構成であって、流出口の上方に、側壁部から溶融炉内に突出するプレートを設けた構成となっている。さらに、比較例3は、上記特許文献2に係るガラスの溶融装置の構成であって、側壁部から溶融炉内に突出する流出通路を設けた構成となっているが、流入孔が設けられていない点で本発明と相違している。
使用したガラスは、ソーダライムシリカガラスであり、カレット率50%のガラス原料を100t/dの流量で溶融炉の上流端に投入した。ガラスの溶融を促進するため、溶融炉の上流端から12mの位置までの領域では、1000kWの電力で通電加熱を行い、溶融炉の長手方向における中央部のガラス表面の温度が1500℃、溶融炉の下流側端部となる側壁部におけるガラス表面の温度が1400℃となるように制御した。
上記の条件下で、溶融炉の側壁部から1mだけ上流側に移行した位置におけるガラス表面(線分)を200等分し、等分された各点を基点として流れの軌跡の追跡を行った後、各点が流出口へと流入した割合を百分率で算出した。ここで、流れの追跡時において、溶融炉内の自然対流に沿って、流出口および流出通路から離れるように溶融炉の上流側へと向かった点については、追跡を中止して流出口へと流入しないものとして扱った。
以下に解析によって得られた各条件下での流入率を示す。また、図10(a)〜(i)
に示した矢印は、各条件下における代表的な流れの軌跡を概略的に示したものである。
比較例1 (図10(a)):33%
比較例2 (図10(b)):40%
比較例3 (図10(c)):29%
実施例1 (図10(d)): 2%
実施例2 (図10(e)):10%
実施例3 (図10(f)):14%
実施例4 (図10(g)):16%
実施例5 (図10(h)):13%
実施例6 (図10(i)): 0%
上記のとおり、比較例1〜3に対して、実施例1〜6における流入率の値はいずれも低いものとなっている。これは、本発明の実施例では、流出通路の上部に流入孔が形成されていることにより、異質素地を含んだ溶融ガラスに比べて、ガラス表面の下方に存する均質に溶融された溶融ガラスが、流入孔を通じて流出通路へと流入する割合が高まったためと想定される。
本発明の第二実施例として、図11に示す各ガラスの溶融装置を(実施例6つ、比較例3つ)用いて、第一実施例と同様にガラス表面付近に存する異質素地を含んだ溶融ガラスが、流出口へと流入する割合について数値熱流体解析を実施した。なお、この図11において流出通路、側壁部、底部、土台以外の溶融装置の構成要素については図示を省略している。
以下、解析の実施条件について説明する。この第二実施例が上記第一実施例と相違している点は、溶融炉の下流側端部に設けられた流出口が、溶融炉の底部から上方に離反して位置している点と、流出通路を支持する土台を備え、この土台により流出通路が流出口と同様に溶融炉の底部から上方に離反して位置している点である。これにより、溶融炉の高さは1.25m、溶融炉の底部から流出口及び流出通路の下端までの高さは0.25mとなっており、実施例5、6にのみ備えられた屋根の上端は、溶融炉の底部から0.9mの高さに位置している。その他の実施条件は上記第一実施例と同一となっている。
以下に解析によって得られた各条件下での流入率を示す。また、図11(a)〜(i)に示した矢印は、各条件下における代表的な流れの軌跡を概略的に示したものである。
比較例1 (図11(a)):17%
比較例2 (図11(b)):21%
比較例3 (図11(c)):11%
実施例1 (図11(d)): 1%
実施例2 (図11(e)): 9%
実施例3 (図11(f)): 9%
実施例4 (図11(g)): 4%
実施例5 (図11(h)): 2%
実施例6 (図11(i)): 0%
上記のとおり、比較例1〜3に対して、実施例1〜6における流入率の値はいずれも低いものとなっている。これは、この第二実施例においても、上記の第一実施例と同様の効果が得られたためと想定される。
以上の結果、本発明によれば、異質素地を含んだガラス表面付近の溶融ガラスが溶融炉外へと流出することを効果的に抑制し得るものと推認することができる。
1 ガラスの溶融装置
2 溶融炉
2X 第一溶融炉
2Y 第二溶融炉
2a 側壁部
2b 底部
3 流出口
4 流出通路
4a 流路
4b 流入孔
4c 封鎖板
5 土台
G 溶融ガラス
S ガラス表面
6 投入口
7 ガラス素地の対流
8 ガラス素地の対流
9 ガラス素地の対流
10 ガラス素地の対流
10a 流出通路の上部を迂回する異質素地の流れ
10b 流出通路の側部および側部に隣接する溶融炉の底部を迂回する、異質素地の流れ
10c 流出通路の上部を避けて側部へ向かう異質素地の流れ
11 均質な溶融ガラスの流れ
15 屋根
15a 溶融ガラス誘導面
15aa 第一傾斜平面
15ab 第二傾斜平面
A 異質素地を含む領域
C ガラス原料

Claims (11)

  1. 溶融ガラスを生成または加熱する溶融炉と、該溶融炉の下流側の側壁部から前記溶融炉内に向かって突出する前記溶融ガラスの流出通路とを備えたガラスの溶融装置であって、
    前記流出通路が、当該流出通路の内外を区画する構成壁と、前記構成壁の上部の少なくとも一部を開口して成る前記溶融ガラスの流入孔とを有し、前記流入孔は前記溶融炉の底部から上方に離反して位置することを特徴とするガラスの溶融装置。
  2. 前記流入孔は、前記通路構成壁の上部において、前記流出通路の先端側に形成されていることを特徴とする請求項1に記載のガラスの溶融装置。
  3. 前記流入孔は、前記通路構成壁の上部において、前記流出通路の先端側から基端側まで連続的に開口して形成されていることを特徴とする請求項1に記載のガラスの溶融装置。
  4. 前記流出通路の先端部が封鎖されていることを特徴とする請求項1〜3のいずれかに記載のガラスの溶融装置。
  5. 前記流出通路の先端部が開口し、当該開口が前記流入孔と連続していることを特徴とする請求項1〜3のいずれかに記載のガラスの溶融装置。
  6. 前記流出通路全体が、前記溶融炉の底部から上方に離反して位置していることを特徴とする請求項1〜5のいずれかに記載のガラスの溶融装置。
  7. 前記流出通路の通路構成壁の内、下部が前記溶融炉の底部により構成されていることを特徴とする請求項1〜5のいずれかに記載のガラスの溶融装置。
  8. 前記流出通路の一部又は全体は、白金族元素、白金族元素を含む合金、又はモリブデンで形成されていることを特徴とする請求項1〜7のいずれかに記載のガラスの溶融装置。
  9. 前記溶融炉を複数備え、隣り合う前記溶融炉を接続する接続部を有すると共に、該接続部の内、少なくとも一つが、前記流出通路で構成されていることを特徴とする請求項1〜8のいずれかに記載のガラス溶融装置。
  10. 溶融炉で生成または加熱した溶融ガラスを、前記溶融炉の下流側の側壁部から前記溶融炉内に向かって突出する流出通路から流出させ、溶融炉外へと供給する溶融ガラスの供給方法であって、
    前記流出通路は、当該流出通路の内外を区画する構成壁と、前記構成壁の上部の少なくとも一部を開口して成る前記溶融ガラスの流入孔とを有し、前記流入孔は前記溶融炉の底部から上方に離反して位置することを特徴とする溶融ガラスの供給方法。
  11. 溶融ガラスを流出させるために、溶融炉内に設けられる溶融炉用の流出通路であって、
    前記流出通路の内外を区画する構成壁と、前記構成壁の上部の少なくとも一部を開口して成る流入孔とを有し、前記流入孔は前記構成壁の底部から上方に離反して位置することを特徴とする溶融炉用の流出通路。
JP2012061853A 2012-03-19 2012-03-19 ガラスの溶融装置、及び溶融ガラスの供給方法、並びに溶融炉用の流出通路 Pending JP2013193905A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061853A JP2013193905A (ja) 2012-03-19 2012-03-19 ガラスの溶融装置、及び溶融ガラスの供給方法、並びに溶融炉用の流出通路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061853A JP2013193905A (ja) 2012-03-19 2012-03-19 ガラスの溶融装置、及び溶融ガラスの供給方法、並びに溶融炉用の流出通路

Publications (1)

Publication Number Publication Date
JP2013193905A true JP2013193905A (ja) 2013-09-30

Family

ID=49393300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061853A Pending JP2013193905A (ja) 2012-03-19 2012-03-19 ガラスの溶融装置、及び溶融ガラスの供給方法、並びに溶融炉用の流出通路

Country Status (1)

Country Link
JP (1) JP2013193905A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3689831A1 (de) 2019-01-30 2020-08-05 Schott Ag Vorrichtung und verfahren zum herstellen eines glasprodukts sowie glasprodukt
WO2021005935A1 (ja) * 2019-07-05 2021-01-14 日本電気硝子株式会社 ガラス溶融炉およびガラス物品の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3689831A1 (de) 2019-01-30 2020-08-05 Schott Ag Vorrichtung und verfahren zum herstellen eines glasprodukts sowie glasprodukt
WO2021005935A1 (ja) * 2019-07-05 2021-01-14 日本電気硝子株式会社 ガラス溶融炉およびガラス物品の製造方法
JP2021011405A (ja) * 2019-07-05 2021-02-04 日本電気硝子株式会社 ガラス溶融炉およびガラス物品の製造方法
CN113874330A (zh) * 2019-07-05 2021-12-31 日本电气硝子株式会社 玻璃熔融炉以及玻璃物品的制造方法
JP7330434B2 (ja) 2019-07-05 2023-08-22 日本電気硝子株式会社 ガラス溶融炉およびガラス物品の製造方法
CN113874330B (zh) * 2019-07-05 2024-03-01 日本电气硝子株式会社 玻璃熔融炉以及玻璃物品的制造方法

Similar Documents

Publication Publication Date Title
TWI274046B (en) A method for refining a glass melt and an apparatus for melting and refining a glass melt
CN103058494B (zh) 熔融玻璃的减压脱泡装置及减压脱泡方法
JP5660046B2 (ja) 溶融ガラスの供給装置
CN102812136A (zh) 铜阳极精炼系统和方法
CN103508652A (zh) 玻璃纤维池窑结构及玻璃熔制方法
CN105737614B (zh) 用于侧吹浸没燃烧熔池冶金炉的喷枪以及具有它的冶金炉
CN205838831U (zh) 熔融玻璃供给装置
CN103555889B (zh) 钢水中夹杂物快速去除装置与方法
TWI764952B (zh) 用於形成玻璃製品之設備及方法
CN101839631A (zh) 铜熔炼渣电热贫化炉
CN204770627U (zh) 一种单流通道式感应加热弯管式通道中间包装置
JP5520467B2 (ja) 非鉄金属溶解炉
CN105612263A (zh) 用于增强浸没式燃烧的顶部浸没式喷射喷枪
JP2013193905A (ja) ガラスの溶融装置、及び溶融ガラスの供給方法、並びに溶融炉用の流出通路
TWI474987B (zh) A molten glass supply device
CN102828177A (zh) 用于激光熔覆的一体化同轴喷头
JP5720898B2 (ja) ガラスの溶融装置、及び溶融ガラスの供給方法、並びに溶融炉用の流出通路
JP6311324B2 (ja) 製鋼用アーク炉の底吹き攪拌方法および底吹き攪拌製鋼用アーク炉
CN109694176A (zh) 玻璃熔化炉以及玻璃物品的制造方法
CN106810043A (zh) 一种用于强化纤维玻璃的熔窑流量控制方法
CN209957641U (zh) 玻璃窑炉
JP5652707B2 (ja) 溶融ガラス移送管
CN201476549U (zh) 全电熔炉
CN206645999U (zh) 一种用于3d玻璃窑炉耳池的澄清结构
CN105152520B (zh) 一种高效光学玻璃熔化池