JP2013193512A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2013193512A
JP2013193512A JP2012060643A JP2012060643A JP2013193512A JP 2013193512 A JP2013193512 A JP 2013193512A JP 2012060643 A JP2012060643 A JP 2012060643A JP 2012060643 A JP2012060643 A JP 2012060643A JP 2013193512 A JP2013193512 A JP 2013193512A
Authority
JP
Japan
Prior art keywords
sectional height
circumferential main
main groove
land portion
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012060643A
Other languages
Japanese (ja)
Other versions
JP5972618B2 (en
Inventor
Soichi Takahashi
聡一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2012060643A priority Critical patent/JP5972618B2/en
Publication of JP2013193512A publication Critical patent/JP2013193512A/en
Application granted granted Critical
Publication of JP5972618B2 publication Critical patent/JP5972618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire capable of exhibiting excellent hydroplaning preventing performance.SOLUTION: A surface of a tread part 3 includes a center land part 8C, a mediate land part 8M, a shoulder land part 8S, a circumferential main groove 91, and a circumferential main groove 92. A cross sectional height He of the center land part 8C in a tire equator CL is larger than a cross sectional height H1i of an inside wall surface of the circumferential main groove 91, and a cross sectional height H1o of an outside wall surface of the circumferential main groove 91 is larger than the cross sectional height H1i of the inside wall surface of the circumferential main groove 91 and a cross sectional height H2i of an inside wall surface of the circumferential main groove 92, and moreover, a cross sectional height H2o of an outside wall surface of the circumferential main groove 92 is equal to or smaller than the cross sectional height H2i of the inside wall surface of the circumferential main groove 92. At the same time, a difference h1 between the cross sectional height He and the cross sectional height H1i, a difference h2 between the cross sectional height H1o and the cross sectional height H2i, and a difference h3 between the cross sectional height H2o and the cross sectional height H2i satisfy a relationship h1>h2>h3≥0.

Description

本発明は、優れたハイドロプレーニング防止性能を発揮することができる空気入りタイヤに関する。   The present invention relates to a pneumatic tire capable of exhibiting excellent hydroplaning prevention performance.

従来、周方向主溝の溝幅や溝深さを大きくすることで排水性を高め、それによりハイドロプレーニング防止性能の向上を図っている。ところが、周方向主溝の溝幅や溝深さを大きくすると、陸部の剛性低下を引き起こすことから、操縦安定性能が低下する傾向にある。したがって、周方向主溝の溝幅や溝深さを余り大きくせずとも、優れたハイドロプレーニング防止性能を発揮できる手法の提案が強く望まれる。   Conventionally, drainage is improved by increasing the groove width and depth of the circumferential main groove, thereby improving the hydroplaning prevention performance. However, when the groove width and groove depth of the circumferential main groove are increased, the rigidity of the land portion is reduced, and the steering stability performance tends to be reduced. Therefore, it is strongly desired to propose a method that can exhibit excellent hydroplaning prevention performance without enlarging the groove width and groove depth of the circumferential main groove.

特許文献1には、センターリブの中央部がタイヤ径方向外側に向けて滑らかな凸形状をなして仮想トレッドプロファイルラインからタイヤ径方向外側へ膨出し、そのセンターリブのエッジ部が仮想トレッドプロファイルラインよりもタイヤ径方向内側に落ち込んだ空気入りタイヤが記載されている。しかし、センターリブ以外の陸部は仮想トレッドプロファイルラインに沿って円弧状に延びており、ハイドロプレーニングの防止性能に対する改善効果が十分とは言えない。   In Patent Document 1, the center portion of the center rib has a smooth convex shape toward the outer side in the tire radial direction and bulges from the virtual tread profile line to the outer side in the tire radial direction, and the edge portion of the center rib is the virtual tread profile line. Pneumatic tires that are depressed more radially inward than the tire are described. However, the land portions other than the center rib extend in an arc shape along the virtual tread profile line, and the improvement effect on the hydroplaning prevention performance is not sufficient.

特許文献2には、周方向主溝により区画された複数の陸部に対し、その少なくとも1つの表面に突出部を設けて、陸部の中央部が仮想トレッド面から外側に向かって円弧状に凸になるように形成した空気入りラジアルタイヤが記載されている。しかし、タイヤ幅方向外側に位置する陸部に上記突出部を設けた場合には、ハイドロプレーニングの起点となるトレッド中央への水の流れを十分に削減できないうえ、接地面外への排水を阻害しやすくなるため、ハイドロプレーニングを適切に防止できない。   In Patent Document 2, a plurality of land portions partitioned by a circumferential main groove are provided with protrusions on at least one surface thereof, and the central portion of the land portion is formed in an arc shape outward from the virtual tread surface. A pneumatic radial tire formed to be convex is described. However, if the above-mentioned protrusion is provided on the land located outside the tire width direction, the flow of water to the center of the tread, which is the starting point of hydroplaning, cannot be reduced sufficiently, and drainage outside the ground plane is obstructed. This makes it difficult to prevent hydroplaning.

特許文献3〜6には、トレッド部の表面構造に関して種々の対策を講じたタイヤが記載されているものの、ハイドロプレーニングの防止性能を有効に高めうる手段については、上記文献の何れにも開示されていない。   Although Patent Documents 3 to 6 describe tires in which various countermeasures are taken with respect to the surface structure of the tread portion, means for effectively improving the hydroplaning prevention performance is disclosed in any of the above documents. Not.

特開2005−319890号公報JP 2005-31890 A 特開2009−161001号公報JP 2009-161001 A 特開平11−123909号公報JP 11-123909 A 特開2001−287510号公報JP 2001-287510 A 特開2004−122904号公報JP 2004-122904 A 特開2006−168638号公報JP 2006-168638 A

本発明は上記実情に鑑みてなされたものであり、その目的は、優れたハイドロプレーニング防止性能を発揮できる空気入りタイヤを提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the pneumatic tire which can exhibit the outstanding hydroplaning prevention performance.

上記目的は、下記の如き本発明により達成することができる。即ち、本発明に係る空気入りタイヤは、トレッド部の表面に、タイヤ赤道を通るセンター陸部と、前記センター陸部のタイヤ幅方向外側に位置するメディエイト陸部と、前記メディエイト陸部のタイヤ幅方向外側に位置するショルダー陸部と、前記センター陸部と前記メディエイト陸部とを区画する第1の周方向主溝と、前記メディエイト陸部と前記ショルダー陸部とを区画する第2の周方向主溝とを備える空気入りタイヤにおいて、タイヤ赤道における前記センター陸部の断面高さHeが、前記第1の周方向主溝の内側壁面の断面高さH1iよりも大きく、前記第1の周方向主溝の外側壁面の断面高さH1oが、前記第1の周方向主溝の内側壁面の断面高さH1i及び前記第2の周方向主溝の内側壁面の断面高さH2iよりも大きく、前記第2の周方向主溝の外側壁面の断面高さH2oが、前記第2の周方向主溝の内側壁面の断面高さH2iと同じかそれよりも小さく、断面高さHeと断面高さH1iとの差をh1、断面高さH1oと断面高さH2iとの差をh2、断面高さH2oと断面高さH2iとの差をh3とするとき、h1>h2>h3≧0の関係を満たすものである。   The above object can be achieved by the present invention as described below. That is, the pneumatic tire according to the present invention includes, on the surface of the tread portion, a center land portion that passes through the tire equator, a mediate land portion that is located on the outer side in the tire width direction of the center land portion, and the mediate land portion. A shoulder land portion located on the outer side in the tire width direction, a first circumferential main groove that divides the center land portion and the mediate land portion, and a medial land portion and the shoulder land portion. In the pneumatic tire provided with two circumferential main grooves, the sectional height He of the center land portion at the tire equator is larger than the sectional height H1i of the inner wall surface of the first circumferential main groove. The sectional height H1o of the outer wall surface of the first circumferential main groove is determined from the sectional height H1i of the inner wall surface of the first circumferential main groove and the sectional height H2i of the inner wall surface of the second circumferential main groove. Bigger, said The sectional height H2o of the outer wall surface of the second circumferential main groove is equal to or smaller than the sectional height H2i of the inner wall surface of the second circumferential main groove, and the sectional height He and the sectional height H1i Satisfying the relationship of h1> h2> h3 ≧ 0, where h1 is the difference between the cross-section height H1o and the cross-section height H2i, and h3 is the difference between the cross-section height H2o and the cross-section height H2i. It is.

このタイヤでは、断面高さHeが断面高さH1iよりも大きく、h1>h2>h3の関係を満たすため、センター陸部では、接地長(接地面におけるタイヤ周方向長さ)が長くなるとともに接地圧が高くなる。また、断面高さ1oが断面高さH1i及び断面高さH2iよりも大きいため、メディエイト陸部では、センター陸部に近い側で接地圧が高くなる。これらにより、ハイドロプレーニングの起点となるトレッド中央への水の流れを削減できる。加えて、断面高さH2oが断面高さH2iと同じかそれよりも小さく、h1>h2>h3の関係を満たすため、ショルダー陸部では接地長が短くなり、接地面外への排水が効率的に行われる。その結果、優れたハイドロプレーニング防止性能が発揮される。   In this tire, the cross-section height He is larger than the cross-section height H1i and satisfies the relationship of h1> h2> h3. Therefore, in the center land portion, the ground contact length (the tire circumferential direction length on the ground contact surface) is increased and the ground contact is made. Pressure increases. Moreover, since the cross-sectional height 1o is larger than the cross-sectional height H1i and the cross-sectional height H2i, in the mediate land portion, the ground pressure increases on the side close to the center land portion. By these, the flow of the water to the tread center used as the starting point of hydroplaning can be reduced. In addition, since the cross-section height H2o is equal to or smaller than the cross-section height H2i and satisfies the relationship of h1> h2> h3, the ground contact length is shortened at the shoulder land, and drainage outside the ground contact surface is efficient. To be done. As a result, excellent anti-hydroplaning performance is exhibited.

本発明では、断面高さH2oが断面高さH2iよりも小さく、h3>0の関係を満たすものが好ましい。これにより、ショルダー陸部の接地長が一段と短くなるため、接地面外への排水が更に促進され、ハイドロプレーニングの防止性能を効果的に向上できる。   In the present invention, it is preferable that the cross-sectional height H2o is smaller than the cross-sectional height H2i and satisfies the relationship of h3> 0. Thereby, since the contact length of the shoulder land portion is further shortened, drainage to the outside of the contact surface is further promoted, and the prevention performance of hydroplaning can be effectively improved.

本発明では、前記センター陸部の表面が、タイヤ赤道或いは前記センター陸部の幅方向中央部に頂点を有し且つ外向きに凸となる円弧状面で形成されているものが好ましい。かかる構成によれば、タイヤ赤道或いはセンター陸部の幅方向中央部における接地圧が高められるため、トレッド中央への水の流れを的確に削減して、ハイドロプレーニングの発生を有効に抑制できる。   In the present invention, it is preferable that the surface of the center land portion is formed by an arcuate surface having a vertex at the center in the width direction of the tire equator or the center land portion and protruding outward. According to such a configuration, since the contact pressure at the center in the width direction of the tire equator or the center land portion is increased, the flow of water to the center of the tread can be accurately reduced, and the occurrence of hydroplaning can be effectively suppressed.

本発明では、断面高さHeと断面高さH1iとの差h1が0.5〜2.0mmの範囲内であるものが好ましい。差h1を0.5mm以上とすることで、センター陸部の接地長を長くし且つセンター陸部の接地圧を高める効果が適切に確保される。また、差h1を2.0mm以下とすることで、センター陸部の剛性が適度に保持され、操縦安定性能や耐摩耗性能の悪化を回避できる。   In the present invention, it is preferable that the difference h1 between the cross-sectional height He and the cross-sectional height H1i is in the range of 0.5 to 2.0 mm. By setting the difference h1 to be 0.5 mm or more, the effect of increasing the contact length of the center land portion and increasing the contact pressure of the center land portion is appropriately ensured. In addition, by setting the difference h1 to 2.0 mm or less, the rigidity of the center land portion is appropriately maintained, and deterioration of the steering stability performance and wear resistance performance can be avoided.

本発明では、前記第1の周方向主溝の外側壁面及び前記第2の周方向主溝の外側壁面の少なくとも一方に、表面側エッジの面取りが形成されているものが好ましい。上記の如き面取りを形成することにより、メディエイト陸部やショルダー陸部のエッジ効果を高めて、操縦安定性能を向上することができる。   In the present invention, it is preferable that a chamfer of a surface side edge is formed on at least one of the outer wall surface of the first circumferential main groove and the outer wall surface of the second circumferential main groove. By forming the chamfer as described above, the edge effect of the mediate land portion and the shoulder land portion can be enhanced, and the steering stability performance can be improved.

本発明に係る空気入りタイヤの一例を示すタイヤ子午線断面図Tire meridian cross-sectional view showing an example of a pneumatic tire according to the present invention 図1の空気入りタイヤの要部を示す断面図Sectional drawing which shows the principal part of the pneumatic tire of FIG. センター陸部を概略的に示す断面図Sectional view schematically showing the center land メディエイト陸部を概略的に示す断面図Sectional view schematically showing the mediate land ショルダー陸部を概略的に示す断面図Sectional view schematically showing the shoulder land 本発明の別実施形態に係るトレッド部の断面図Sectional drawing of the tread part which concerns on another embodiment of this invention.

以下、本発明の実施の形態について図面を参照しながら説明する。図1に示した空気入りタイヤTは、一対のビード部1と、そのビード部1の各々からタイヤ径方向外側に延びるサイドウォール部2と、そのサイドウォール部2の各々のタイヤ径方向外側端に連なるトレッド部3とを備える。カーカス層4は、一対のビード部1の間でトロイド状に設けられ、その端部がビードコア1aとビードフィラー1bを挟み込むようにして巻き上げられている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. A pneumatic tire T shown in FIG. 1 includes a pair of bead portions 1, sidewall portions 2 extending outward in the tire radial direction from each of the bead portions 1, and tire radial direction outer ends of the sidewall portions 2. And a tread portion 3 connected to the front. The carcass layer 4 is provided in a toroidal shape between the pair of bead portions 1 and is wound up so that the end portions sandwich the bead core 1a and the bead filler 1b.

トレッド部3では、カーカス層4の外側に、複数枚のベルトプライで構成されたベルト層5と、実質的にタイヤ周方向に延びるコードをゴム被覆してなるベルト補強層6と、トレッドゴム7とが設けられている。各ベルトプライは、タイヤ周方向に対して傾斜して延びるコードをゴム被覆してなり、該コードがプライ間で互いに逆向きに交差するように積層されている。ベルト補強層6は、必要に応じて省略しても構わない。トレッドゴム7の側方には、トレッドストリップ7aが接合されている。   In the tread portion 3, on the outer side of the carcass layer 4, a belt layer 5 constituted by a plurality of belt plies, a belt reinforcing layer 6 formed by rubber covering a cord extending substantially in the tire circumferential direction, and a tread rubber 7 And are provided. Each belt ply is formed by covering a cord extending obliquely with respect to the tire circumferential direction with rubber, and the cords are laminated so as to cross each other in opposite directions. The belt reinforcing layer 6 may be omitted as necessary. A tread strip 7 a is joined to the side of the tread rubber 7.

トレッド部3の表面には、五つの陸部と、それを区画する四本の周方向主溝が形成されている。具体的には、タイヤ幅の中央となるタイヤ赤道CLを通るセンター陸部8Cと、センター陸部8Cのタイヤ幅方向外側に位置する一対のメディエイト陸部8Mと、メディエイト陸部8Mのタイヤ幅方向外側に位置する一対のショルダー陸部8Sと、センター陸部8Cとメディエイト陸部8Mとを区画する第1の周方向主溝91と、メディエイト陸部8Mとショルダー陸部8Sとを区画する第2の周方向主溝92とが形成されている。   On the surface of the tread portion 3, five land portions and four circumferential main grooves that divide the land portions are formed. Specifically, the center land portion 8C passing through the tire equator CL, which is the center of the tire width, a pair of mediate land portions 8M located on the outer side in the tire width direction of the center land portion 8C, and the tires of the mediate land portion 8M A pair of shoulder land portions 8S located on the outer side in the width direction, a first circumferential main groove 91 that divides the center land portion 8C and the mediate land portion 8M, a mediate land portion 8M, and a shoulder land portion 8S A partitioning second circumferential main groove 92 is formed.

周方向主溝91,92は、それぞれタイヤ周方向に連続して延びている。図示は省略するが、本実施形態では、センター陸部8Cがタイヤ周方向に連続して延びるリブにより構成され、メディエイト陸部8M及びショルダー陸部8Sが横溝で分断されたブロック列により構成されている。但し、これに限られるものではなく、各陸部はリブ及びブロック列の何れでも構わない。ショルダー陸部8Sは、接地端CEを含んでおり、接地面内でタイヤ幅方向の最外側に位置している。   The circumferential main grooves 91 and 92 each extend continuously in the tire circumferential direction. Although illustration is omitted, in this embodiment, the center land portion 8C is constituted by a rib extending continuously in the tire circumferential direction, and the mediate land portion 8M and the shoulder land portion 8S are constituted by a block row divided by a lateral groove. ing. However, the present invention is not limited to this, and each land portion may be either a rib or a block row. The shoulder land portion 8S includes a ground contact end CE and is located on the outermost side in the tire width direction within the ground contact surface.

図2〜5に示すように、この空気入りタイヤTでは、タイヤ赤道CLにおけるセンター陸部8Cの断面高さHeが、周方向主溝91の内側壁面の断面高さH1iよりも大きく、周方向主溝91の外側壁面の断面高さH1oが、周方向主溝91の内側壁面の断面高さH1i及び周方向主溝92の内側壁面の断面高さH2iよりも大きく、周方向主溝92の外側壁面の断面高さH2oが、周方向主溝92の内側壁面の断面高さH2iと同じかそれよりも小さい。尚且つ、断面高さHeと断面高さH1iとの差h1、断面高さH1oと断面高さH2iとの差h2、断面高さH2oと断面高さH2iとの差h3が、h1>h2>h3≧0の関係を満たす。   As shown in FIGS. 2 to 5, in this pneumatic tire T, the cross-sectional height He of the center land portion 8 </ b> C at the tire equator CL is larger than the cross-sectional height H <b> 1 i of the inner wall surface of the circumferential main groove 91. The cross-sectional height H1o of the outer wall surface of the main groove 91 is larger than the cross-sectional height H1i of the inner wall surface of the circumferential main groove 91 and the cross-sectional height H2i of the inner wall surface of the circumferential main groove 92. The cross-sectional height H2o of the outer wall surface is the same as or smaller than the cross-sectional height H2i of the inner wall surface of the circumferential main groove 92. In addition, the difference h1 between the sectional height He and the sectional height H1i, the difference h2 between the sectional height H1o and the sectional height H2i, and the difference h3 between the sectional height H2o and the sectional height H2i are h1> h2>. The relationship of h3 ≧ 0 is satisfied.

通常のタイヤでは、トレッド部の表面が、両側の接地端を滑らかに結ぶ円弧状の輪郭線に沿うのに対し、このタイヤTは、そのように形成されておらず、トレッド部3の表面は円弧状の輪郭線OLに沿っていない。具体的には、センター陸部8Cとメディエイト陸部8Mの表面が輪郭線OLよりも外側に突出し、ショルダー陸部8Sの表面が輪郭線OLよりも内側に窪んでいる。輪郭線OLは、両側の接地端CEと、周方向主溝91,92の内側壁面の表面側エッジE1,E2とを滑らかに結ぶ円弧状の仮想線である。   In a normal tire, the surface of the tread portion follows an arcuate contour line that smoothly connects the ground contact ends on both sides, whereas the tire T is not formed as such, and the surface of the tread portion 3 is It does not follow the arcuate outline OL. Specifically, the surfaces of the center land portion 8C and the mediate land portion 8M protrude outward from the contour line OL, and the surface of the shoulder land portion 8S is recessed inward from the contour line OL. The contour line OL is an arcuate virtual line that smoothly connects the ground contact ends CE on both sides and the surface side edges E1 and E2 of the inner wall surfaces of the circumferential main grooves 91 and 92.

断面高さHeは、図3のように、周方向主溝91の溝底ラインBLからセンター陸部8Cの表面までの距離として定められる。溝底ラインBLは、両側の周方向主溝91の溝底同士を結ぶ直線状の仮想線である。また、断面高さH1i,H2iは、それぞれ本来の周方向主溝91,92の溝深さに相当するものであり、これらは互いに同等に設定されている。したがって、h1、h2及びh3の各々は、輪郭線OLを基準とした断面高さとしても求められる。   The cross-sectional height He is determined as the distance from the groove bottom line BL of the circumferential main groove 91 to the surface of the center land portion 8C as shown in FIG. The groove bottom line BL is a straight virtual line connecting the groove bottoms of the circumferential main grooves 91 on both sides. The cross-sectional heights H1i and H2i correspond to the original groove depths of the circumferential main grooves 91 and 92, respectively, and are set to be equal to each other. Therefore, each of h1, h2, and h3 can be obtained as a cross-sectional height based on the contour line OL.

接地端CEは、接地面におけるタイヤ軸方向の最外位置である。接地面は、タイヤを正規リムにリム組みし、正規内圧を充填した状態でタイヤを平坦な路面に垂直に置き、正規荷重を加えたときの路面に接地するトレッド部3の表面を指す。正規リムは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば“Design Rim”、ETRTOであれば“Measuring Rim”となる。   The ground contact end CE is the outermost position in the tire axial direction on the ground contact surface. The contact surface refers to the surface of the tread portion 3 that contacts the road surface when a normal load is applied by placing the tire on a normal rim and placing the tire vertically on a flat road surface with normal internal pressure filled. A regular rim is a rim determined for each tire in a standard system including a standard on which a tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, and “Measuring” for ETRTO. Rim ".

正規内圧は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATIONPRESSURE”であるが、タイヤが乗用車用である場合には180KPaとする。また、正規荷重は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば上記の表に記載の最大値、ETRTOであれば“LOAD CAPACITY”であるが、タイヤが乗用車用である場合には内圧180KPaの対応荷重の85%とする。   The normal internal pressure is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based. "INFLATIONPRESSURE" for ETRTO, but 180 KPa for tires for passenger cars. In addition, the normal load is a load determined by each standard for each tire in the standard system including the standard on which the tire is based. If it is JATMA, it is the maximum load capacity, and if it is TRA, the maximum load described in the above table. If the value is ETRTO, it is “LOAD CAPACITY”, but if the tire is for a passenger car, the load is 85% of the corresponding load with an internal pressure of 180 KPa.

基本的に、ハイドロプレーニングはトレッド中央から発生し、それが外側に拡大して、最終的にトレッド全域に及ぶことになる。したがって、トレッド中央への水の流れを減らすこと、及び、接地面外への排水効率を高めることが、ハイドロプレーニングの防止性能の向上に寄与する。   Basically, hydroplaning occurs from the center of the tread, which expands outwards and eventually spans the entire tread. Therefore, reducing the flow of water to the center of the tread and increasing the efficiency of draining to the outside of the ground contact surface contribute to the improvement of the hydroplaning prevention performance.

このタイヤTでは、He>H1i、h1>h2>h3の関係を満たすため、センター陸部8Cで接地長が長くなるとともに接地圧が高くなる。また、H1o>H1i、H1o>H2iの関係を満たすため、メディエイト陸部8Mでは、センター陸部8Cに近い側(即ちタイヤ幅方向内側)で接地圧が高くなる。接地長は、センター陸部8Cに次いでメディエイト陸部8Mで長くなる。これにより、ハイドロプレーニングの起点となるトレッド中央への水の流れを削減できる。加えて、H2o≦H2i、h1>h2>h3の関係を満たすため、ショルダー陸部8Sでは接地長が短くなり、接地面外への排水が効率的に行われる。その結果、優れたハイドロプレーニング防止性能が発揮される。   In the tire T, since the relationship of He> H1i and h1> h2> h3 is satisfied, the contact length becomes longer and the contact pressure becomes higher in the center land portion 8C. Moreover, in order to satisfy | fill the relationship of H1o> H1i and H1o> H2i, in the mediate land part 8M, a contact pressure becomes high in the side close | similar to the center land part 8C (namely, tire width direction inner side). The contact length becomes longer at the mediate land portion 8M after the center land portion 8C. This can reduce the flow of water to the center of the tread that is the starting point for hydroplaning. In addition, in order to satisfy the relationship of H2o ≦ H2i and h1> h2> h3, the shoulder land portion 8S has a shorter ground contact length, and drainage outside the ground contact surface is performed efficiently. As a result, excellent anti-hydroplaning performance is exhibited.

本実施形態では、断面高さH2oが断面高さH2iよりも小さく、H2o<H2i、h3>0の関係を満たす。このことから、ショルダー陸部8Sの接地長が一段と短くなり、接地面外への排水が更に促進され、ハイドロプレーニングの防止性能を効果的に向上することができる。   In the present embodiment, the cross-sectional height H2o is smaller than the cross-sectional height H2i and satisfies the relationship of H2o <H2i, h3> 0. From this, the ground contact length of the shoulder land portion 8S is further shortened, drainage to the outside of the ground contact surface is further promoted, and the hydroplaning prevention performance can be effectively improved.

図3に示すように、センター陸部8Cの表面は、タイヤ赤道CLに頂点を有し且つ外向きに凸となる円弧状面で形成されている。これにより、トレッド中央への水の流れを的確に削減して、ハイドロプレーニングの発生を有効に抑制できる。本実施形態では、センター陸部8Cの幅方向中央部がタイヤ赤道CL上に位置するが、これらの位置が一致していなくてもよく、円弧状面がセンター陸部8Cの幅方向中央部に頂点を有していても構わない。   As shown in FIG. 3, the surface of the center land portion 8C is formed as an arcuate surface having a vertex at the tire equator CL and protruding outward. Thereby, the flow of water to the center of the tread can be accurately reduced, and the occurrence of hydroplaning can be effectively suppressed. In the present embodiment, the center portion in the width direction of the center land portion 8C is located on the tire equator CL, but these positions may not coincide with each other, and the arc-shaped surface is in the center portion in the width direction of the center land portion 8C. You may have a vertex.

図4に示すように、メディエイト陸部8Mの表面は、周方向主溝91の外側壁面の表面側エッジに頂点を有し且つ外向きに凸となる円弧状面で形成されている。これにより、トレッド中央への水の流れを的確に削減して、ハイドロプレーニングの発生を有効に抑制できる。図5に示すように、ショルダー陸部8Sの表面は、接地端CEの位置に頂点を有し且つ外向きに凸となる円弧状面で形成されている。   As shown in FIG. 4, the surface of the mediate land portion 8 </ b> M is formed as an arcuate surface having a vertex at the surface side edge of the outer wall surface of the circumferential main groove 91 and protruding outward. Thereby, the flow of water to the center of the tread can be accurately reduced, and the occurrence of hydroplaning can be effectively suppressed. As shown in FIG. 5, the surface of the shoulder land portion 8S is formed as an arcuate surface having a vertex at the position of the ground contact CE and protruding outward.

断面高さHeと断面高さH1iとの差h1(即ち、He−H1i)は、0.5〜2.0mmの範囲内であることが好ましい。また、断面高さH1oと断面高さH2iとの差h2(即ち、H1o−H2i)は、差h1よりも小さく、例えば0.3〜1.5mmに設定される。断面高さH2oと断面高さH2iとの差h3(即ち、H2i−H2o)は、差h2よりも小さく、例えば0.2〜1.0mmに設定される。   The difference h1 (that is, He-H1i) between the cross-sectional height He and the cross-sectional height H1i is preferably in the range of 0.5 to 2.0 mm. Moreover, the difference h2 (that is, H1o-H2i) between the cross-sectional height H1o and the cross-sectional height H2i is smaller than the difference h1, and is set to, for example, 0.3 to 1.5 mm. A difference h3 (that is, H2i−H2o) between the cross-sectional height H2o and the cross-sectional height H2i is smaller than the difference h2, and is set to 0.2 to 1.0 mm, for example.

本発明の別実施形態として、図6のように、周方向主溝91の外側壁面及び周方向主溝92の外側壁面の少なくとも一方に、表面側エッジの面取りを形成することが考えられる。かかる構成によれば、メディエイト陸部8Mやショルダー陸部8Sのエッジ効果を高めて、操縦安定性能を向上することができる。   As another embodiment of the present invention, as shown in FIG. 6, it is conceivable to form a chamfer on the surface side edge on at least one of the outer wall surface of the circumferential main groove 91 and the outer wall surface of the circumferential main groove 92. According to this configuration, the edge effect of the mediate land portion 8M and the shoulder land portion 8S can be enhanced, and the steering stability performance can be improved.

上記の面取りは、例えば0.5〜2.0mmの曲率半径Rを持つ円弧面により形成されるが、これに代えて傾斜面で形成しても構わない。この場合、断面高さH1oは、メディエイト陸部8Mの表面の延長線と周方向主溝91の外側壁面の延長線との交点を基準にして定められる。同様に、断面高さH2oは、ショルダー陸部8Sの表面の延長線と周方向主溝92の外側壁面の延長線との交点を基準にして定められる。   The chamfering is formed by an arc surface having a radius of curvature R of 0.5 to 2.0 mm, for example, but may be formed by an inclined surface instead. In this case, the cross-sectional height H1o is determined on the basis of the intersection of the extension line of the surface of the mediate land portion 8M and the extension line of the outer wall surface of the circumferential main groove 91. Similarly, the cross-sectional height H2o is determined on the basis of the intersection of the extension line of the surface of the shoulder land portion 8S and the extension line of the outer wall surface of the circumferential main groove 92.

本発明の空気入りタイヤは、トレッド部の表面を上記の如く構成すること以外は、通常の空気入りタイヤと同等に構成でき、従来公知の材料、形状、構造、製法などが何れも本発明に採用することができる。   The pneumatic tire of the present invention can be configured in the same manner as a normal pneumatic tire except that the surface of the tread portion is configured as described above, and any conventionally known material, shape, structure, manufacturing method, and the like are included in the present invention. Can be adopted.

本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。したがって、上述した陸部と周方向溝とを備えるものであれば、本発明の空気入りタイヤに設けられるトレッドパターンは、特に制限されない。   The present invention is not limited to the embodiment described above, and various improvements and modifications can be made without departing from the spirit of the present invention. Therefore, the tread pattern provided in the pneumatic tire of the present invention is not particularly limited as long as the land portion and the circumferential groove described above are provided.

以下、本発明の構成と効果を具体的に示す実施例について説明する。タイヤの各性能評価は、次のようにして行った。   Examples that specifically show the structure and effects of the present invention will be described below. Each performance evaluation of the tire was performed as follows.

(1)ハイドロプレーニング防止性能
薄い水膜を有する路面で直線走行したときにハイドロプレーニングが発生する速度を測定した。比較例1の結果を100としたときの指数で評価し、数値が大きいほど速度が大きくハイドロプレーニング防止性能に優れていることを示す。
(1) Hydroplaning prevention performance The speed at which hydroplaning occurs when the vehicle travels straight on a road surface having a thin water film was measured. Evaluation is based on an index when the result of Comparative Example 1 is set to 100, and the larger the value, the greater the speed and the better the hydroplaning prevention performance.

(2)操縦安定性能
乾燥した路面で直進走行やコーナリング走行を実施し、ドライバーの官能試験により評価した。比較例1の結果を「4」として7段階で評価し、数値が大きいほど操縦安定性能に優れていることを示す。
(2) Steering stability performance Driving straight and cornering on a dry road surface was evaluated by a driver's sensory test. The result of Comparative Example 1 was evaluated as “4” in seven stages, and the larger the value, the better the steering stability performance.

評価に供したタイヤのサイズは205/55R16であり、断面高さHe、H1i,H1o,H2i,H2oの寸法を除いて、各例におけるタイヤ構造やゴム配合は共通である。テスト車両には、2000ccの前輪駆動車を使用した。各例における断面高さの寸法を表1に示し、評価結果を表2に示す。   The size of the tire used for the evaluation is 205 / 55R16, and the tire structure and the rubber composition in each example are common except for the dimensions of the cross-sectional heights He, H1i, H1o, H2i, and H2o. A 2000 cc front-wheel drive vehicle was used as a test vehicle. The dimensions of the cross-sectional height in each example are shown in Table 1, and the evaluation results are shown in Table 2.

表1に示すように、比較例2〜4では、ハイドロプレーニング防止性能が比較的低い。比較例2では、h1よりもh2が大きいために、比較例4では、断面高さH1oが断面高さH2iよりも小さいために、それぞれトレッド中央への水の流れを適切に削減できなかったと考えられる。また、比較例3では、断面高さH2oが断面高さH2iよりも大きいために、接地面外への排水が効率的に行われなかったと考えられる。   As shown in Table 1, in Comparative Examples 2 to 4, the hydroplaning prevention performance is relatively low. In Comparative Example 2, h2 is larger than h1, and in Comparative Example 4, since the cross-sectional height H1o is smaller than the cross-sectional height H2i, the flow of water to the center of the tread could not be appropriately reduced. It is done. In Comparative Example 3, it is considered that drainage outside the ground contact surface was not efficiently performed because the cross-sectional height H2o was larger than the cross-sectional height H2i.

これに対し、実施例1〜3では、比較例1〜4と比べて、優れたハイドロプレーニング防止性能が発揮されている。このうち実施例1,2においては、操縦安定性能の維持又は向上の効果も得られており、h1が好ましい範囲内にあると考えられる。   On the other hand, in Examples 1-3, compared with Comparative Examples 1-4, the outstanding hydroplaning prevention performance is exhibited. Among these, in Examples 1 and 2, the effect of maintaining or improving the steering stability performance is also obtained, and h1 is considered to be within a preferable range.

1 ビード部
2 サイドウォール部
3 トレッド部
7 トレッドゴム
8C センター陸部
8M メディエイト陸部
8S ショルダー陸部
91 第1の周方向主溝
92 第2の周方向主溝
E1 表面側エッジ
E2 表面側エッジ
DESCRIPTION OF SYMBOLS 1 Bead part 2 Side wall part 3 Tread part 7 Tread rubber 8C Center land part 8M Mediate land part 8S Shoulder land part 91 1st circumferential main groove 92 2nd circumferential main groove E1 Surface side edge E2 Surface side edge

Claims (5)

トレッド部の表面に、タイヤ赤道を通るセンター陸部と、前記センター陸部のタイヤ幅方向外側に位置するメディエイト陸部と、前記メディエイト陸部のタイヤ幅方向外側に位置するショルダー陸部と、前記センター陸部と前記メディエイト陸部とを区画する第1の周方向主溝と、前記メディエイト陸部と前記ショルダー陸部とを区画する第2の周方向主溝とを備える空気入りタイヤにおいて、
タイヤ赤道における前記センター陸部の断面高さHeが、前記第1の周方向主溝の内側壁面の断面高さH1iよりも大きく、
前記第1の周方向主溝の外側壁面の断面高さH1oが、前記第1の周方向主溝の内側壁面の断面高さH1i及び前記第2の周方向主溝の内側壁面の断面高さH2iよりも大きく、
前記第2の周方向主溝の外側壁面の断面高さH2oが、前記第2の周方向主溝の内側壁面の断面高さH2iと同じかそれよりも小さく、
断面高さHeと断面高さH1iとの差をh1、断面高さH1oと断面高さH2iとの差をh2、断面高さH2oと断面高さH2iとの差をh3とするとき、h1>h2>h3≧0の関係を満たすことを特徴とする空気入りタイヤ。
On the surface of the tread portion, a center land portion passing through the tire equator, a mediate land portion located on the outer side in the tire width direction of the center land portion, and a shoulder land portion located on the outer side in the tire width direction of the mediate land portion, And a first circumferential main groove that divides the center land portion and the mediate land portion, and a second circumferential main groove that divides the mediate land portion and the shoulder land portion. In the tire,
The cross-sectional height He of the center land portion at the tire equator is larger than the cross-sectional height H1i of the inner wall surface of the first circumferential main groove,
The sectional height H1o of the outer wall surface of the first circumferential main groove is equal to the sectional height H1i of the inner wall surface of the first circumferential main groove and the sectional height of the inner wall surface of the second circumferential main groove. Bigger than H2i,
A sectional height H2o of the outer wall surface of the second circumferential main groove is equal to or smaller than a sectional height H2i of the inner wall surface of the second circumferential main groove;
When the difference between the cross-section height He and the cross-section height H1i is h1, the difference between the cross-section height H1o and the cross-section height H2i is h2, and the difference between the cross-section height H2o and the cross-section height H2i is h3> A pneumatic tire characterized by satisfying a relationship of h2> h3 ≧ 0.
断面高さH2oが断面高さH2iよりも小さく、h3>0の関係を満たす請求項1に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the cross-sectional height H2o is smaller than the cross-sectional height H2i and satisfies a relationship of h3> 0. 前記センター陸部の表面が、タイヤ赤道或いは前記センター陸部の幅方向中央部に頂点を有し且つ外向きに凸となる円弧状面で形成されている請求項1又は2に記載の空気入りタイヤ。   The pneumatic according to claim 1 or 2, wherein the surface of the center land portion is formed of an arcuate surface having an apex at a tire equator or a center portion in the width direction of the center land portion and protruding outward. tire. 断面高さHeと断面高さH1iとの差h1が0.5〜2.0mmの範囲内である請求項1〜3いずれか1項に記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 3, wherein a difference h1 between the cross-sectional height He and the cross-sectional height H1i is in a range of 0.5 to 2.0 mm. 前記第1の周方向主溝の外側壁面及び前記第2の周方向主溝の外側壁面の少なくとも一方に、表面側エッジの面取りが形成されている請求項1〜4いずれか1項に記載の空気入りタイヤ。   The chamfering of the surface side edge is formed in at least one of the outer wall surface of the said 1st circumferential main groove, and the outer wall surface of the said 2nd circumferential main groove. Pneumatic tire.
JP2012060643A 2012-03-16 2012-03-16 Pneumatic tire Active JP5972618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060643A JP5972618B2 (en) 2012-03-16 2012-03-16 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060643A JP5972618B2 (en) 2012-03-16 2012-03-16 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2013193512A true JP2013193512A (en) 2013-09-30
JP5972618B2 JP5972618B2 (en) 2016-08-17

Family

ID=49393015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060643A Active JP5972618B2 (en) 2012-03-16 2012-03-16 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5972618B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147545A (en) * 2014-02-07 2015-08-20 住友ゴム工業株式会社 pneumatic tire
JP2016037123A (en) * 2014-08-06 2016-03-22 東洋ゴム工業株式会社 Pneumatic tire
JP2016084046A (en) * 2014-10-27 2016-05-19 住友ゴム工業株式会社 Pneumatic tire
CN107804119A (en) * 2016-09-09 2018-03-16 建大工业股份有限公司 Tire
US20180093536A1 (en) * 2016-10-03 2018-04-05 Kenda Rubber Ind. Co., Ltd. Tire
JP2018122855A (en) * 2018-04-03 2018-08-09 住友ゴム工業株式会社 Pneumatic tire
EP3272551A4 (en) * 2015-03-17 2018-09-12 The Yokohama Rubber Co., Ltd. Pneumatic tire
US10647158B2 (en) 2014-10-27 2020-05-12 Bridgestone Corporation Pneumatic tire
EP3689642A1 (en) * 2019-01-22 2020-08-05 Sumitomo Rubber Industries, Ltd. Tire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241709A (en) * 1986-04-14 1987-10-22 Bridgestone Corp Pneumatic radial tire for heavy load
JPH11123909A (en) * 1997-10-24 1999-05-11 Bridgestone Corp Pneumatic tire
JPH11151911A (en) * 1997-11-25 1999-06-08 Bridgestone Corp Pneumatic tire
JP2002036819A (en) * 2000-07-21 2002-02-06 Bridgestone Corp Pneumatic tire
JP2004122904A (en) * 2002-10-01 2004-04-22 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2005319890A (en) * 2004-05-10 2005-11-17 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2009161001A (en) * 2007-12-28 2009-07-23 Bridgestone Corp Pneumatic radial tire
JP2011046222A (en) * 2009-08-25 2011-03-10 Bridgestone Corp Pneumatic tire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241709A (en) * 1986-04-14 1987-10-22 Bridgestone Corp Pneumatic radial tire for heavy load
JPH11123909A (en) * 1997-10-24 1999-05-11 Bridgestone Corp Pneumatic tire
JPH11151911A (en) * 1997-11-25 1999-06-08 Bridgestone Corp Pneumatic tire
JP2002036819A (en) * 2000-07-21 2002-02-06 Bridgestone Corp Pneumatic tire
JP2004122904A (en) * 2002-10-01 2004-04-22 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2005319890A (en) * 2004-05-10 2005-11-17 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2009161001A (en) * 2007-12-28 2009-07-23 Bridgestone Corp Pneumatic radial tire
JP2011046222A (en) * 2009-08-25 2011-03-10 Bridgestone Corp Pneumatic tire

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147545A (en) * 2014-02-07 2015-08-20 住友ゴム工業株式会社 pneumatic tire
JP2016037123A (en) * 2014-08-06 2016-03-22 東洋ゴム工業株式会社 Pneumatic tire
JP2016084046A (en) * 2014-10-27 2016-05-19 住友ゴム工業株式会社 Pneumatic tire
US10647158B2 (en) 2014-10-27 2020-05-12 Bridgestone Corporation Pneumatic tire
EP3272551A4 (en) * 2015-03-17 2018-09-12 The Yokohama Rubber Co., Ltd. Pneumatic tire
US10759231B2 (en) 2015-03-17 2020-09-01 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN107804119A (en) * 2016-09-09 2018-03-16 建大工业股份有限公司 Tire
US20180093536A1 (en) * 2016-10-03 2018-04-05 Kenda Rubber Ind. Co., Ltd. Tire
US11034192B2 (en) * 2016-10-03 2021-06-15 Kenda Rubber Ind. Co., Ltd. Tire
JP2018122855A (en) * 2018-04-03 2018-08-09 住友ゴム工業株式会社 Pneumatic tire
EP3689642A1 (en) * 2019-01-22 2020-08-05 Sumitomo Rubber Industries, Ltd. Tire
JP2020117020A (en) * 2019-01-22 2020-08-06 住友ゴム工業株式会社 tire
JP7225824B2 (en) 2019-01-22 2023-02-21 住友ゴム工業株式会社 tire

Also Published As

Publication number Publication date
JP5972618B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5972618B2 (en) Pneumatic tire
JP4905599B1 (en) Pneumatic tire
JP5796655B1 (en) Pneumatic tire
JP5727965B2 (en) Pneumatic tire
JP5667614B2 (en) Pneumatic tire
JP6657587B2 (en) Pneumatic tire
JP5333510B2 (en) Pneumatic tire
JP2016088338A (en) Pneumatic tire
JP6287554B2 (en) Pneumatic tire
JP6855800B2 (en) Pneumatic tires
WO2019098277A1 (en) Pneumatic tire
JP6044561B2 (en) Pneumatic tire
JP6551506B2 (en) Pneumatic tire
JP6597013B2 (en) Pneumatic tire
CN107867126B (en) Tyre for vehicle wheels
JP6816519B2 (en) Pneumatic tires
JP6421652B2 (en) Pneumatic tire
JP2007106175A (en) Pneumatic tire
JP6344088B2 (en) Pneumatic tire
JP6439416B2 (en) Pneumatic tire
JP6816520B2 (en) Pneumatic tires
JP6809239B2 (en) Pneumatic tires
JPWO2019156095A1 (en) Pneumatic tire
JP2013082456A (en) Pneumatic tire
JP2017036010A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160713

R150 Certificate of patent or registration of utility model

Ref document number: 5972618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250